Sample records for cellular lipid composition

  1. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by Raman spectroscopy and gas chromatography

    USDA-ARS?s Scientific Manuscript database

    Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a broad research trying to understand lipid droplets it has not been possible to determine the composition of individual cellular lipid droplets. In this paper we prese...

  2. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].

    PubMed

    Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V

    2005-01-01

    Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.

  3. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    PubMed Central

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  4. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  5. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  6. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  7. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  8. Creation and Relaxation of Phospholipid Compositional Asymmetry in Lipid Bilayers Examined by Sum-Frequency Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anglin, Timothy C.; Brown, Krystal; Conboy, John C.

    2010-08-01

    Eukaryotic cells contain an asymmetric distribution of phospholipids in the two leaflets of the lipid bilayer which is known to contribute to cellular function. In the plasma membrane of eukaryotic cells, the aminophospholipids with phosphatidylserine (PS) and phosphatidylethanolamine (PE) headgroups are predominately located on the cytosolic leaflet while sphingolipids with phosphatidylcholine (PC) headgroups and sphingomeylin are on the extra-cellular leaflet. There have been a number of theories about the mechanism of transbilayer movement of lipids in cellular systems and the physical process by which lipid compositional asymmetry in the plasma membrane of eukaryotic cells is maintained. It is generally accepted that a significant barrier to native lipid translocation (movement between leaflets of the bilayer) exists which is related to the energetic penalty of moving the hydrophilic headgroup of a phospholipid through the hydrophobic core of the membrane. Overcoming this energetic barrier represents the rate limiting step in the spontaneous flip-flop of phospholipids in biological membranes, yet, while numerous kinetic studies of phospholipid flip-flop have been conducted, few researchers have reported thermodynamic parameters for the process. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. This new method allows for the detection of lipid flip-flop kinetics and compositional asymmetry without the need for a fluorescent or spin-labeled lipid species by exploiting the coherent nature of SFVS. The SFVS intensity arising from the terminal methyl groups of the lipid fatty acid chains is used as an internal probe to directly monitor the compositional asymmetry in planar supported lipid bilayers (PSLBs(. By selectively deuterating a sub-population of lipids, the SFVS intensity is proportional to the population difference between hydrogenated lipids in the top, NT, and the bottom, NB, leaflets due to the cancellation of the SFVS signal arising from lipids hydrogenated residing in an anti-parallel arrangement, allowing us to directly relate the measured intensity to the population difference in the bilayer (Equation 1) and provides a direct measure of the percent asymmetry (%AS) in the membrane (Equation 2). ICH3∝(NT-NB)2 (1) %AS = (NT-NB)/NTotal×100 (2) In this presentation, the effect of lipid composition, headgroup and fatty acid chemical structure, on the rate and thermodynamics of lipid transbilayer migration and the electrostatic induction of lipid asymmetry will be discussed.

  9. Cellular Composition of the Spleen and Changes in Splenic Lysosomes in the Dynamics of Dyslipidemia in Mice Caused by Repeated Administration of Poloxamer 407.

    PubMed

    Goncharova, N V; Shurlygina, A V; Mel'nikova, E V; Karmatskikh, O L; Avrorov, P A; Loktev, K V; Korolenko, T A

    2015-11-01

    We studied the effect of dyslipidemia induced by poloxamer 407 (300 mg/kg twice a week for 30 days) on cellular composition of the spleen and splenocyte lysosomes in mice. Changes in blood lipid profile included elevated concentrations of total cholesterol, aterogenic LDL, and triglycerides most pronounced in 24 h after the last poloxamer 407 injection; gradual normalization of lipid profile was observed in 4 days (except triglycerides) and 10 days. The most pronounced changes in the spleen (increase in organ weight and number of cells, inhibition in apoptosis, and reduced accumulation of vital dye acridine orange in lysosomes) were detected on day 4; on day 10, the indices returned to normal. Cathepsin D activity in the spleen also increased at these terms. The relationship between changes in the cellular composition of the spleen and dynamics of serum lipid profile in mice in dyslipidemia caused by repeated administrations of relatively low doses of poloxamer 407 is discussed.

  10. Quantifying lipid changes in various membrane compartments using lipid binding protein domains.

    PubMed

    Várnai, Péter; Gulyás, Gergő; Tóth, Dániel J; Sohn, Mira; Sengupta, Nivedita; Balla, Tamas

    2017-06-01

    One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms. Published by Elsevier Ltd.

  11. Examining the Role of Membrane Lipid Composition in Determining the Ethanol Tolerance of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.

    2014-01-01

    Yeast (Saccharomyces cerevisiae) has an innate ability to withstand high levels of ethanol that would prove lethal to or severely impair the physiology of other organisms. Significant efforts have been undertaken to elucidate the biochemical and biophysical mechanisms of how ethanol interacts with lipid bilayers and cellular membranes. This research has implicated the yeast cellular membrane as the primary target of the toxic effects of ethanol. Analysis of model membrane systems exposed to ethanol has demonstrated ethanol's perturbing effect on lipid bilayers, and altering the lipid composition of these model bilayers can mitigate the effect of ethanol. In addition, cell membrane composition has been correlated with the ethanol tolerance of yeast cells. However, the physical phenomena behind this correlation are likely to be complex. Previous work based on often divergent experimental conditions and time-consuming low-resolution methodologies that limit large-scale analysis of yeast fermentations has fallen short of revealing shared mechanisms of alcohol tolerance in Saccharomyces cerevisiae. Lipidomics, a modern mass spectrometry-based approach to analyze the complex physiological regulation of lipid composition in yeast and other organisms, has helped to uncover potential mechanisms for alcohol tolerance in yeast. Recent experimental work utilizing lipidomics methodologies has provided a more detailed molecular picture of the relationship between lipid composition and ethanol tolerance. While it has become clear that the yeast cell membrane composition affects its ability to tolerate ethanol, the molecular mechanisms of yeast alcohol tolerance remain to be elucidated. PMID:24610851

  12. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses

    PubMed Central

    Köberlin, Marielle S.; Snijder, Berend; Heinz, Leonhard X.; Baumann, Christoph L.; Fauster, Astrid; Vladimer, Gregory I.; Gavin, Anne-Claude; Superti-Furga, Giulio

    2015-01-01

    Summary Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. PMID:26095250

  13. Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism

    PubMed Central

    Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit

    2015-01-01

    Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421

  14. Lipids in the cell: organisation regulates function.

    PubMed

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  15. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.

    PubMed

    Nagy, Peter D; Pogany, Judit; Xu, Kai

    2016-03-03

    Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.

  16. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  17. Analysis of Lipids and Lipid Rafts in Borrelia.

    PubMed

    Toledo, Alvaro; Huang, Zhen; Benach, Jorge L; London, Erwin

    2018-01-01

    Lipid rafts are membrane microdomains that are involved in cellular processes such as protein trafficking and signaling processes, and which play a fundamental role in membrane fluidity and budding. The lipid composition of the membrane and the biochemical characteristics of the lipids found within rafts define the ability of cells to form microdomains and compartmentalize the membrane. In this chapter, we describe the biophysical, biochemical, and molecular approaches used to define and characterize lipid rafts in the Lyme disease agent, Borrelia burgdorferi.

  18. Role of cholesterol and lipid organization in disease

    NASA Astrophysics Data System (ADS)

    Maxfield, Frederick R.; Tabas, Ira

    2005-12-01

    Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

  19. Membrane Microdomain Structures of Liposomes and Their Contribution to the Cellular Uptake Efficiency into HeLa Cells.

    PubMed

    Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo

    2016-02-01

    The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.

  20. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis

    PubMed Central

    Levental, Kandice R.; Surma, Michal A.; Skinkle, Allison D.; Lorent, Joseph H.; Zhou, Yong; Klose, Christian; Chang, Jeffrey T.; Hancock, John F.; Levental, Ilya

    2017-01-01

    Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling. PMID:29134198

  1. Alteration in lipid composition of plasma membranes of sensitive and resistant Guerin carcinoma cells due to the action of free and liposomal form of cisplatin.

    PubMed

    Naleskina, L A; Todor, I N; Nosko, M M; Lukianova, N Y; Pivnyuk, V M; Chekhun, V F

    2013-09-01

    To study in vivo changes of lipid composition of plasma membranes of sensitive and resistant to cisplatin Guerin carcinoma cells under influence of free and liposomal cisplatin forms. The isolation of plasma membranes from parental (sensitive) and resistant to cisplatin Guerin carcinoma cells was by differential ultracentrifugation in sucrose density gradient. Lipids were detected by method of thin-layer chromatography. It was determined that more effective action of cisplatin liposomal form on resistant cells is associated with essential abnormalities of conformation of plasma membrane due to change of lipid components and architectonics of rafts. It results in the increase of membrane fluidity. Reconstructions in lipid composition of plasma membranes of cisplatin-resistant Guerin carcinoma cells provide more intensive delivery of drug into the cells, increase of its concentration and more effective interaction with cellular structural elements.

  2. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    PubMed

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  3. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugalmore » separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.« less

  4. Light on fluorescent lipids in rafts: a lesson from model membranes.

    PubMed

    Kahya, Nicoletta

    2010-09-15

    Tracking fluorescent lipids in cellular membranes has been applied for decades to shed light on membrane trafficking, sorting, endocytosis and exocytosis, viral entry, and to understand the functional relevance of membrane heterogeneity, phase separation and lipid rafts. However, fluorescent probes may display different organizing behaviour from their corresponding endogenous lipids. A full characterization of these probes is therefore required for proper interpretation of fluorescence microscopy data in complex membrane systems. Model membrane studies provide essential clues that guide us to design and interpret our experiments, help us to avoid pitfalls and resolve artefacts in complex cellular environments. In the present issue of the Biochemical Journal, Juhasz, Davis and Sharom demonstrate the importance of testing lipid probes systematically in heterogeneous model membranes of specific composition and well-defined thermodynamic properties. The phase-partitioning behaviour of fluorescent probes, alone and/or in combination, cannot simply be assumed, but has to be fully characterized.

  5. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress.

    PubMed

    Jarc, Eva; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-06-01

    The data presented here is related to the research article entitled "Lipid droplets induced by secreted phospholipase A 2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress" by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018) 247-265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG) and phosphatidylcholine (PC) composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3). Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL) and by exogenous addition of secreted phospholipase A 2 (sPLA 2 ) in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress.

  6. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  7. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.

    PubMed

    Rai, Durgesh K; Qian, Shuo; Heller, William T

    2016-11-01

    Membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L=1/500, but membrane thinning results when P/L=1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. The results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema.

    PubMed

    Palestini, Paola; Calvi, Chiara; Conforti, Elena; Daffara, Rossella; Botto, Laura; Miserocchi, Giuseppe

    2003-10-01

    We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.

  9. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts

    PubMed Central

    Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian

    2017-01-01

    Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571

  10. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  11. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  12. Do lipids shape the eukaryotic cell cycle?

    PubMed

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function.

    PubMed

    Robinson, George A; Waddington, Kirsty E; Pineda-Torra, Ines; Jury, Elizabeth C

    2017-01-01

    It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  14. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    PubMed Central

    Robinson, George A.; Waddington, Kirsty E.; Pineda-Torra, Ines; Jury, Elizabeth C.

    2017-01-01

    It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed. PMID:29225604

  15. Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes

    PubMed Central

    Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin

    2010-01-01

    Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150

  16. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    PubMed Central

    Seco, J.

    2017-01-01

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes. PMID:28883835

  17. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    PubMed

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Glycerophospholipid Profiles of Bats with White-Nose Syndrome.

    PubMed

    Pannkuk, Evan L; McGuire, Liam P; Warnecke, Lisa; Turner, James M; Willis, Craig K R; Risch, Thomas S

    2015-01-01

    Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.

  19. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    PubMed

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease

    PubMed Central

    Drolle, Elizabeth; Negoda, Alexander; Hammond, Keely; Pavlov, Evgeny

    2017-01-01

    Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD. PMID:28767712

  1. Lipids of Pseudomonas aeruginosa Cells Grown on Hydrocarbons and on Trypticase Soy Broth1

    PubMed Central

    Edmonds, Paul; Cooney, J. J.

    1969-01-01

    Lipids were extracted from cells of Pseudomonas aeruginosa grown on a pure hydrocarbon (tridecane), mixed hydrocarbons (JP-4 jet fuel), and on Trypticase Soy Broth. Total lipids produced from each substrate represented from 7.1 to 8.2% of cellular dry weight, of which 5.0 to 6.4% were obtained before cellular hydrolysis (free lipids) and 1.7 to 2.0% were extracted after cellular hydrolysis (bound lipids). Free lipids from cells grown on each medium were separated into four fractions by thin-layer chromatography. All fractions were present in cells from each type of medium, and the “neutral fraction” constituted the largest fraction. The fatty acid composition of free lipids was determined by gas-liquid chromatography. Cells grown on each medium contained saturated and unsaturated C14 to C20 fatty acids. Trace amounts of C13 fatty acids were found in tridecane-grown cells. Saturated C16 and C18 were the major acids present in all cells. Quantitative differences were found in fatty acids produced on the three media, but specific correlations between substrate carbon sources and fatty acid content of cells were not evident. Tridecane-grown cells contained only traces of C13 acid and small amounts of C15 and C17 acids, suggesting that the organism's fatty acids were derived from de novo synthesis rather than by direct incorporation of the hydrocarbon. PMID:4976464

  2. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    PubMed Central

    2011-01-01

    Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA) are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA) solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29). Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp) and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride), respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein) after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43), 200 μM of MLalp (C18:1 c9, (223 ± 19). Vaccenic acid (C18:1 t11) contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8), compared to lipids from MLcon (0.3 - 0.6). Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular lipid composition suggested a milk lipid-depending influence on cell sensitivity. It is expected that similar changes may also be evident in other cell lines. To our knowledge, this is the first study showing a varied impact of complex milk lipids on fatty acid distribution in a colon cancer cell line. PMID:21816049

  3. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  4. Influence of the membrane environment on cholesterol transfer.

    PubMed

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  6. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    PubMed Central

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336

  7. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  8. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    PubMed

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-06-01

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity in the composition of C- and P-iGDGT lipids. Taken together, these data suggest that the ability to adjust the composition of GDGT lipid membranes played a central role in the diversification of archaea into or out of environments characterized by extremes of low pH and high temperature. PMID:23565112

  10. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.

  11. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    PubMed

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis.

    PubMed

    Martín-Acebes, Miguel A; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2014-10-01

    West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis

    PubMed Central

    Martín-Acebes, Miguel A.; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela

    2014-01-01

    ABSTRACT West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. IMPORTANCE West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. PMID:25122799

  14. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Homocysteine regulates fatty acid and lipid metabolism in yeast

    PubMed Central

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O.; Wolinski, Heimo; Rechberger, Gerald N.; Tehlivets, Oksana

    2018-01-01

    S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. PMID:29414770

  16. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  17. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.

    PubMed

    Larsen, Jannik B; Kennard, Celeste; Pedersen, Søren L; Jensen, Knud J; Uline, Mark J; Hatzakis, Nikos S; Stamou, Dimitrios

    2017-09-19

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. [Biomass composition of thermotolerant yeasts of the genus Candida under elevated cultivation temperatures].

    PubMed

    Chistiakova, T I; Dediukhina, E G; Eroshin, V K

    1981-01-01

    The effect of growth temperature on the content of nucleic acids, the content and composition of protein, and the pool of free amino acids and lipids was studied under the conditions of chemostat cultivation of yeast strains at constant flow rates and pO2. The pool of free amino acids in all of the strains decreased with an increase in the temperature of growth. Changes in the content and composition of other cellular components depending on temperature were determined by individual characteristics of the strains. A linear relationship between the content of biomass components and the temperature of growth was found only in Candida scottii. The temperature of yeast cultivation may be used as a factor regulating the pool of free intracellular amino acids and the fatty acids composition of lipids.

  19. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue.

    PubMed

    Abramczyk, Halina; Surmacki, Jakub; Kopeć, Monika; Olejnik, Alicja Klaudia; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-04-07

    We have studied live non-malignant (MCF10A), mildly malignant (MCF7) and malignant (MDA-MB-231) breast cancer cells and human breast cancer tissue. We demonstrate the first application of Raman imaging and spectroscopy in diagnosing the role of lipid droplets in cell line cultures that closely mimic an in vivo environment of various stages in human breast cancer tissue. We have analyzed the composition of the lipid droplets in non-malignant and malignant human breast epithelial cell lines and discussed the potential of lipid droplets as a prognostic marker in breast cancer. To identify any difference in the lipid droplet-associated biochemistry and to correlate it with different stages of breast cancer, the PCA method was employed. The chemical composition of lipids and proteins, both in the cell line models and in human breast tissue has been analyzed. The paper shows the alterations in lipid metabolism that have been reported in cancer, at both the cellular and tissue levels, and discusses how they contribute to the different aspects of tumourigenesis.

  20. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    PubMed

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Micro-Raman spectroscopy studies of changes in lipid composition in breast and prostate cancer cells treated with MPA and R1881 hormones

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel; Gibson, Emily A.

    2014-03-01

    Increasing interest in the role of lipids in cancer cell proliferation or resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells is therefore of great importance for research. Using Raman micro-spectroscopy we investigated whether the female hormone medroxyprogesterone acetate (MPA) and the synthetic androgen R1881 affect the lipid expression in breast (T47D) and prostate (LNCaP) cancer cells. Differences were noted in the spectral regions at 830-1800 cm-1 and 2800-3000 cm-1 when comparing different drug treatments. Significant changes were noticed for saturated (1063 - 1125 cm-1, 1295 cm-1 and 1439 cm-1), unsaturated (1262 cm-1 and 1656 cm-1, and 1720 - 1748 cm-1) chemical bonds, suggesting that the composition of the lipid droplets was changed by the hormone treatments. Also, significant differences were observed in the high frequency regions of lipids and proteins at 2851 cm-1 and around 2890 cm-1. Principal component analysis with Linear Discriminant Analysis (PCA-LDA) of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881 or vehicle (P < 0.05). Future work includes analysis to determine exact lipid composition and concentrations as well as development of clinical techniques to characterize differences in patient tumor lipid profiles to determine response to drug treatment and prognosis.

  2. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    PubMed

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. ω-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy

    PubMed Central

    Corsetto, Paola Antonia; Kopecka, Joanna; Riganti, Chiara

    2017-01-01

    Chemotherapy efficacy is strictly limited by the resistance of cancer cells. The ω-3 long chain polyunsaturated fatty acids (ω-3 LCPUFAs) are considered chemosensitizing agents and revertants of multidrug resistance by pleiotropic, but not still well elucidated, mechanisms. Nowadays, it is accepted that alteration in gene expression, modulation of cellular proliferation and differentiation, induction of apoptosis, generation of reactive oxygen species, and lipid peroxidation are involved in ω-3 LCPUFA chemosensitizing effects. A crucial mechanism in the control of cell drug uptake and efflux is related to ω-3 LCPUFA influence on membrane lipid composition. The incorporation of docosahexaenoic acid in the lipid rafts produces significant changes in their physical-chemical properties affecting content and functions of transmembrane proteins, such as growth factors, receptors and ATP-binding cassette transporters. Of note, ω-3 LCPUFAs often alter the lipid compositions more in chemoresistant cells than in chemosensitive cells, suggesting a potential adjuvant role in the treatment of drug resistant cancers. PMID:29261109

  4. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    PubMed

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  5. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.

    PubMed

    Rebaud, Samuel; Maniti, Ofelia; Girard-Egrot, Agnès P

    2014-12-01

    Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata

    PubMed Central

    Wei, Likun; Huang, Xuxiong

    2017-01-01

    Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance. PMID:28346505

  7. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    NASA Astrophysics Data System (ADS)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution of each individual fatty acids to a single cellular LD based on non-negative least squares analysis. The calculated quantities for oleic and palmitic acid from 10 individual cellular LDs were compared to results of a gas chromatography (GC) analysis of 2x10 6 cells. The analysis found that the data obtained by Raman spectroscopy of individual LDs closely resemble GC data of a significantly larger number of LDs.

  8. Lipids, lysosomes, and autophagy

    PubMed Central

    2016-01-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054

  9. Sorting of amphiphile membrane components in curvature and composition gradients

    NASA Astrophysics Data System (ADS)

    Tian, Aiwei

    Phase and shape heterogeneities in biomembranes are of functional importance. However, it is difficult to elucidate the roles membrane heterogeneities play in maintaining cellular function due to the complexity of biomembranes. Therefore, investigations of phase behavior and composition/curvature coupling in lipid and polymer model membranes offer some advantages. In this thesis, phase properties in lipid and polymer giant vesicles were studied. Line tension at the fluid/fluid phase boundary of giant lipid unilamellar vesicles was determined directly by micropipette aspiration, and found to be composition-dependent. Dynamics of calcium-induced domains within polyanionic vesicles subject to chemical stimuli were investigated, which revealed the strength of molecular interaction and suggested applications in triggered delivery. In addition, curvature sorting of lipids and proteins was examined. Lipid membrane tethers were pulled from giant unilamellar vesicles using two micropipettes and a bead. Tether radius can be controlled and measured in this system. By examining fluorescence intensity of labeled molecules as a function of curvature, we found that DiI dyes (lipid analogues with spontaneous curvatures) had no curvature preference down to radii of 10 nm. Theoretical calculation predicted that the distribution of small lipids was dominated by entropy instead of bending energy. However protein Cholera toxin subunit B was efficiently sorted away from the high positive curvature due to its negative spontaneous curvature. Bending stiffness was determined to decrease as curvature increased in homogeneous membranes with ternary lipid mixtures near a critical consulate point, revealing the strong preferential intermolecular interactions of such mixtures. In addition, diffusion controlled domain growth was observed in tethers pulled from phase-separated vesicles, which provides a new dynamic sorting principle for lipids and proteins in curvature gradients.

  10. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.

    PubMed

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment.

  11. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    PubMed Central

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. PMID:28790820

  12. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes containmore » a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less

  13. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    PubMed

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  14. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    PubMed

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  15. Trivalent chromium induces autophagy by activating sphingomyelin phosphodiesterase 2 and increasing cellular ceramide levels in renal HK2 cells.

    PubMed

    Yang, Cheng-Lin; Chiou, Shiow-Her; Tai, Wei-Chun; Joseph, Nithila A; Chow, Kuan-Chih

    2017-11-01

    In this study, we examined the role of autophagy in the initiation of lipid increases in renal epithelial HK2 cells. We found that trivalent chromium [Cr(III)] induced autophagy by activating sphingomyelin phosphodiesterase 2 (SMPD2). SMPD2 increases levels of ceramide and other lipids. Confocal immunofluorescence microscopy showed that signals of ceramide overlapped with LC3, suggesting that ceramide might play an important role in the formation of autophagosome. In conclusion, our data indicate that Cr(III) induces autophagy via structural aberration of organelle membrane, in particular by the increase of lipid compositions in addition to autophagy-associated proteins. © 2017 Wiley Periodicals, Inc.

  16. COMPOSITION OF CELLULAR MEMBRANES IN THE PANCREAS OF THE GUINEA PIG

    PubMed Central

    Meldolesi, J.; Jamieson, J. D.; Palade, G. E.

    1971-01-01

    The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ∼20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant. PMID:5555573

  17. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  18. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  19. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE PAGES

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...

    2017-08-15

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  20. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols.

    PubMed

    Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina

    2006-11-01

    The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.

  1. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    PubMed Central

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.

    2016-01-01

    ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058

  3. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.

    PubMed

    Kramer, David A; Quiroga, Ariel D; Lian, Jihong; Fahlman, Richard P; Lehner, Richard

    2018-06-15

    During fasting, the liver increases lipid storage as a mean to reserve and provide energy for vital cellular functions. After re-feeding, hepatocytes rapidly decrease the amount of triacylglycerol that is stored in lipid droplets (LDs), visible as the size of hepatic LDs significantly decreases after re-feeding. Little is known about the changes in the liver LD proteome that occur during the fasting/re-feeding transition. This study aimed to investigate the hepatic LD proteome in fasted and re-fed conditions in the mouse. Using label-free LC-MS/MS analysis the relative abundance of 817 proteins was determined in highly purified LDs. Comparative analysis for differential protein abundance with respect to feeding states revealed 130 with higher abundance in LDs from fasted mice and 31 in LDs from re-fed mice. Among proteins observed to have higher abundance on LDs in the fasted state we found perilipin-5, and several mitochondrial and peroxisomal marker proteins, supporting the role of LDs in the provision of substrates for fatty acid oxidation. Proteins of higher abundance upon re-feeding included several peroxisomal and mitochondrial marker proteins and expand our understanding of the dynamic nature of the hepatic LD proteome according to the energetic requirements of the cell. Proteomic investigations have been revealing the complexities and dynamics of cellular LDs from a variety of cell types. As these sub-cellular structures are truly dynamic in nature, our investigations reveal that simply the feeding state of an animal leads to significant changes to the protein composition of LDs and suggest a variety of dynamic interactions with other cellular organelles, such as the mitochondria and peroxisomes. As such, the experimental design for investigations of this cellular structure must consider this dynamic baseline. Lastly our analysis on global protein abundance has revealed the unforeseen high abundance of murine major urinary proteins associated with hepatic lipid droplets, which warrants further investigations. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Griffioen, Arjan W; Nicolay, Klaas

    2006-02-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanoparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed. 2006 John Wiley & Sons, Ltd.

  5. Deciphering the Functional Composition of Fusogenic Liposomes

    PubMed Central

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  6. The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin A.; Guarnieri, Michael T.; Knoshaug, Eric P.

    Oleaginous microalgae synthesize and accumulate large quantities of lipids that are promising feedstocks for the production of biofuels (Hu et al., 2008; Williams and Laurens, 2010; Day et al., 2012; Quinn and Davis, 2015). The algal species Chlorella vulgaris accumulates triacylglycerides that dominate its cellular composition (>60% lipid based on dry cell weight) when cultured in medium lacking a nitrogen source (Guarnieri et al., 2011; Ikaran et al., 2015), which is a 'lipid trigger' in an array of microalgae. As such, C. vulgaris represents a model algal species for examination of lipid accumulation mechanisms and a potential deployment organism inmore » industrial algal biofuels applications. C. vulgaris has been extensively characterized biochemically and physiologically (Converti et al., 2009; Liang et al., 2009), and de novo-generated transcriptomic and proteomic datasets have indicated that post-transcriptional and -translational mechanisms likely govern lipid accumulation in response to nitrogen starvation (Guarnieri et al., 2011, 2013). However, the specific mechanisms underlying lipid biosynthesis in response to nitrogen stress remain elusive.« less

  7. The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions

    DOE PAGES

    Henard, Calvin A.; Guarnieri, Michael T.; Knoshaug, Eric P.

    2017-01-17

    Oleaginous microalgae synthesize and accumulate large quantities of lipids that are promising feedstocks for the production of biofuels (Hu et al., 2008; Williams and Laurens, 2010; Day et al., 2012; Quinn and Davis, 2015). The algal species Chlorella vulgaris accumulates triacylglycerides that dominate its cellular composition (>60% lipid based on dry cell weight) when cultured in medium lacking a nitrogen source (Guarnieri et al., 2011; Ikaran et al., 2015), which is a 'lipid trigger' in an array of microalgae. As such, C. vulgaris represents a model algal species for examination of lipid accumulation mechanisms and a potential deployment organism inmore » industrial algal biofuels applications. C. vulgaris has been extensively characterized biochemically and physiologically (Converti et al., 2009; Liang et al., 2009), and de novo-generated transcriptomic and proteomic datasets have indicated that post-transcriptional and -translational mechanisms likely govern lipid accumulation in response to nitrogen starvation (Guarnieri et al., 2011, 2013). However, the specific mechanisms underlying lipid biosynthesis in response to nitrogen stress remain elusive.« less

  8. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  9. The role of lipids in host microbe interactions.

    PubMed

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  10. Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803.

    PubMed

    Zakar, Tomas; Herman, Eva; Vajravel, Sindhujaa; Kovacs, Laszlo; Knoppová, Jana; Komenda, Josef; Domonkos, Ildiko; Kis, Mihaly; Gombos, Zoltan; Laczko-Dobos, Hajnalka

    2017-05-01

    Polyunsaturated lipids are important components of photosynthetic membranes. Xanthophylls are the main photoprotective agents, can assist in protection against light stress, and are crucial in the recovery from photoinhibition. We generated the xanthophyll- and polyunsaturated lipid-deficient ROAD mutant of Synechocystis sp. PCC6803 (Synechocystis) in order to study the little-known cooperative effects of lipids and carotenoids (Cars). Electron microscopic investigations confirmed that in the absence of xanthophylls the S-layer of the cellular envelope is missing. In wild-type (WT) cells, as well as the xanthophyll-less (RO), polyunsaturated lipid-less (AD), and the newly constructed ROAD mutants the lipid and Car compositions were determined by MS and HPLC, respectively. We found that, relative to the WT, the lipid composition of the mutants was remodeled and the Car content changed accordingly. In the mutants the ratio of non-bilayer-forming (NBL) to bilayer-forming (BL) lipids was found considerably lower. Xanthophyll to β-carotene ratio increased in the AD mutant. In vitro and in vivo methods demonstrated that saturated, monounsaturated lipids and xanthophylls may stabilize the trimerization of Photosystem I (PSI). Fluorescence induction and oxygen-evolving activity measurements revealed increased light sensitivity of RO cells compared to those of the WT. ROAD showed a robust increase in light susceptibility and reduced recovery capability, especially at moderate low (ML) and moderate high (MH) temperatures, indicating a cooperative effect of xanthophylls and polyunsaturated lipids. We suggest that both lipid unsaturation and xanthophylls are required for providing the proper structure and functioning of the membrane environment that protects against light and temperature stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Studies on the Biochemistry and Fine Structure of Silica Shell Formation in Diatoms. Chemical Composition of Navicula pelliculosa during Silicon-Starvation Synchrony 1

    PubMed Central

    Coombs, J.; Darley, W. M.; Holm-Hansen, O.; Volcani, B. E.

    1967-01-01

    Changes are reported in total cellular organic carbon, nucleic acids, proteins, carbohydrates, lipids and chlorophylls during the course of silicon-starvation synchrony of Navicula pelliculosa. All constituents increased at the same rate, relative to cell number, for 30 hours of exponential growth during which silicon was depleted from the medium. Increase in cell number then stopped, but net synthesis of most components continued for a further 5 to 7 hours before ceasing. Deoxyribonucleic acids and lipids accumulated throughout the 14 hour silicon-starvation period. When silicon was resupplied, lipid synthesis ceased and organic carbon and carbohydrates decreased slightly. Net synthesis remained low during the 4 hour silicon uptake period but was resumed at higher rates as cell number began to rise. In cultures transferred to the dark 1 hour prior to readdition of silicon, total carbon, carbohydrates, and lipids decreased markedly during silicon uptake and cell separation. This was due in part to conversion of protein which maintained the protein level of the dark cells close to that of cells kept in the light. Mechanisms by which silicon starvation and reintroduction of silicon might affect rates of cellular synthesis are discussed. PMID:6080872

  12. Acute β-Hydroxy-β-Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes.

    PubMed

    Schnuck, Jamie K; Johnson, Michele A; Gould, Lacey M; Gannon, Nicholas P; Vaughan, Roger A

    2016-10-01

    Leucine modulates synthetic and degradative pathways in muscle, possibly providing metabolic benefits for both athletes and diseased populations. Leucine has become popular among athletes for improving performance and body composition, however little is known about the metabolic effects of the commonly consumed leucine-derived metabolite β-hydroxy-β-methyl butyrate (HMB). Our work measured the effects of HMB on metabolic protein expression, mitochondrial content and metabolism, as well as lipid content in skeletal muscle cells. Specifically, cultured C2C12 myotubes were treated with either a control or HMB ranging from 6.25 to 25 μM for 24 h and mRNA and/or protein expression, oxygen consumption, glucose uptake, and lipid content were measured. Contrary to leucine's stimulatory effect on metabolism, HMB-treated cells exhibited significantly reduced regulators of lipid oxidation including peroxisome proliferator-activated receptor alpha (PPARα) and PPARβ/δ, as well as downstream target carnitine palmitoyl transferase, without alterations in glucose or palmitate oxidation. Furthermore, HMB significantly inhibited activation of the master regulator of energetics, AMP-activated protein kinase. As a result, HMB-treated cells also displayed reduced total mitochondrial content compared with true control or cells equivocally treated with leucine. Additionally, HMB treatment amplified markers of lipid biosynthesis (PPARγ and fatty acid synthase) as well as consistently promoted elevated total lipid content versus control cells. Collectively, our results demonstrate that HMB did not improve mitochondrial metabolism or content, and may promote elevated cellular lipid content possibly through heightened PPARγ expression. These observations suggest that HMB may be most beneficial for populations interested in stimulating anabolic cellular processes.

  13. The Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes

    PubMed Central

    Moghadam, Babak Y.; Hou, Wen-Che; Corredor, Charlie; Westerhoff, Paul; Posner, Jonathan D.

    2012-01-01

    Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10 nm-diameter gold (Au) and titanium dioxide (TiO2) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core composition show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage. PMID:22921268

  14. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  15. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    PubMed

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  16. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ( composite function)C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  17. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    PubMed

    Boisramé-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(®), containing long-chain triglycerides (LCT--soybean oil); Medialipid(®), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(®), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid(®) compared to Intralipid(®), SMOFlipid(®) and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation.

  18. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  19. Examination of the Specificity of Tumor Cell Derived Exosomes with Tumor Cells In Vitro

    PubMed Central

    Smyth, Tyson J.; Redzic, Jasmina S.; Graner, Michael W.; Anchordoquy, Thomas J.

    2016-01-01

    Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over “immortalized” cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (> 10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH. PMID:25102470

  20. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The potent effect of mycolactone on lipid membranes

    PubMed Central

    Maniti, Ofelia; Marion, Estelle; Marsollier, Laurent; Dufourc, Erick J.; Canaan, Stéphane

    2018-01-01

    Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 μM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects. PMID:29320578

  2. Extreme low temperature tolerance in woody plants

    PubMed Central

    Strimbeck, G. Richard; Schaberg, Paul G.; Fossdal, Carl G.; Schröder, Wolfgang P.; Kjellsen, Trygve D.

    2015-01-01

    Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions. PMID:26539202

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less

  4. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress.

    PubMed

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J

    2016-10-15

    Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T maxima in response to heat stress. © 2016. Published by The Company of Biologists Ltd.

  5. Physiological aspects of human milk lipids.

    PubMed

    Koletzko, B; Rodriguez-Palmero, M; Demmelmair, H; Fidler, N; Jensen, R; Sauerwald, T

    2001-11-01

    Human milk from healthy and well-nourished mothers is the preferred form of feeding for all healthy newborn infants. The nutrient supply with human milk supports normal growth and development of the infant. Here the general characteristics of human milk lipids and recent knowledge on lactational physiology, composition and functional aspects of human milk lipids are discussed. Lipids in human milk represent the main source of energy for the breastfed baby and supply essential nutrients such as fat-soluble vitamins and polyunsaturated fatty acids (PUFA). The essential fatty acids linoleic and alpha-linolenic acids (LA and ALA) are precursors of long-chain polyunsaturated fatty acids (LC-PUFA), including arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids (AA and DHA). LC-PUFA serve as indispensable structural components of cellular membranes and are deposited to a considerable extent in the growing brain and the retina during perinatal development. The supply of preformed LC-PUFA with human milk lipids has been related to functional outcomes of the recipient infants such as visual acuity and development of cognitive functions during the first year of life. Recent stable isotope studies indicate that the major portion of milk PUFA is not derived directly from the maternal diet, but stems from endogenous body stores. Thus, not only the woman's current but also her long-term dietary intake is of marked relevance for milk fat composition.

  6. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells

    PubMed Central

    Viiri, Leena E.; Vihervaara, Terhi; Koistinen, Kaisa M.; Hilvo, Mika; Ekroos, Kim; Käkelä, Reijo; Aalto-Setälä, Katriina

    2017-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis. PMID:28733363

  7. Thyroid hormone effects on mitochondrial energetics.

    PubMed

    Harper, Mary-Ellen; Seifert, Erin L

    2008-02-01

    Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.

  8. Knockdown of Triglyceride Synthesis Does Not Enhance Palmitate Lipotoxicity or Prevent Oleate-Mediated Rescue in Rat Hepatocytes

    PubMed Central

    Leamy, Alexandra K.; Hasenour, Clinton M.; Egnatchik, Robert A.; Trenary, Irina A.; Yao, Conghui; Patti, Gary J.; Shiota, Masakazu; Young, Jamey D.

    2016-01-01

    Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapotosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OAmediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA cotreatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA’s protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA’s ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load. PMID:27249207

  9. Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae.

    PubMed

    Gaspar, Maria L; Aregullin, Manuel A; Jesch, Stephen A; Henry, Susan A

    2006-08-11

    The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from approximately 40% of total phosphatidylcholine to a basal level of less than 5%. nte1Delta cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.

  10. Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas.

    PubMed

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2018-06-15

    Temperature and light intensity are important environmental factors influencing microalgae for biodiesel production. The aim of present work was to study the effects of temperature (15 °C, 25 °C, and 35 °C) and its combination with high light intensity (HL, 400 μmol photon m -2  s -1 ) on lipid production of Monoraphidium dybowskii Y2 which was isolated from desert. The results demonstrated that algal growth was only inhibited at 15 °C. Promoted lipid content and decreased Fv/Fm were observed in 15 °C and 35 °C. Cellular carbohydrate, protein conversion and membrane lipid (MGDG, DGDG and SQDG) remodeling contributes for lipid accumulation. Stress combined temperatures with HL are benefit for lipid production, especially desired neutral lipid productivity all exceed 40 mg L -1  d -1 . Fatty acids compositions of C16:0 and C18:1 were further promoted under 15 °C or 35 °C combined with HL. Thus, M. dybowskii Y2 will well-adapted to outdoors cultivation for biodiesel production. Copyright © 2018. Published by Elsevier Ltd.

  11. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    PubMed

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  12. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species.

    PubMed

    Yao, Shuo; Brandt, Anders; Egsgaard, Helge; Gjermansen, Claes

    2012-12-01

    Triacylglycerols, an energy storage compound in microalgae, are known to be accumulated after nitrogen starvation of microalgae cells. Microalgae could be of importance for future biodiesel production due to their fast growth rate and high oil content. In collections of temperature sensitive mutants of Chlamydomonas reinhardtii and Chlorella vulgaris, nine out of fourty-one mutants in C. reinhardtii and eleven out of fifty-three mutants in C. vulgaris contained increased amounts of neutral lipids, predominantly as triacylglycerols. Upon temperature induced cell-cycle arrest, these mutants showed enlarged cellular volume compared with the wild type. The C. reinhardtii mutants were analyzed further and one type of mutants displayed a shift in lipid composition from polar membrane lipids to neutral lipids after a temperature up-shift, while the second type of mutants accumulated more total lipid per cell, predominantly as neutral lipids as compared with the wild type. Three C. reinhardtii mutants were analyzed further and found to be arrested after DNA synthesis but prior to cell division in the cell cycle. These mutants will be useful in order to further understand neutral lipid accumulation in microalgae and suggest possibilities for biodiesel production by specific induction of lipid accumulation in miroalgal cultures by cell-cycle inhibition. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery

    PubMed Central

    Peetla, Chiranjeevi; Stine, Andrew; Labhasetwar, Vinod

    2009-01-01

    The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery. PMID:19432455

  14. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function

    PubMed Central

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S. R.; Yew, Joanne Y.; Freitag, Michael; Oliferenko, Snezhana

    2014-01-01

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. PMID:25318672

  15. The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer.

    PubMed

    Zhou, Cheng-Bei; Fang, Jing-Yuan

    2018-01-23

    Metabolism regulation is crucial in colorectal cancer (CRC) and has emerged as a remarkable field currently. The cellular metabolism of glucose, amino acids and lipids in CRC are all reprogrammed. Each of them changes tumour microenvironment, modulates bacterial composition and activity, and eventually promotes CRC development. Metabolites such as short chain fatty acids, secondary bile acids, N-nitroso compounds, hydrogen sulphide, polyphenols and toxins like fragilysin, FadA, cytolethal distending toxin and colibactin play a dual role in CRC. The relationship of gut microbe-metabolite is essential in remodelling intestinal microbial ecology composition and metabolic activity. It regulates the metabolism of colonic epithelial cells and changes the tumour microenvironment in CRC. Microbial metabolism manipulation has been considered to be potentially preventive in CRC, but more large-scale clinical trials are required before their application in clinical practice in the near future.

  16. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta.

    PubMed

    Chatgilialoglu, Alexandros; Rossi, Martina; Alviano, Francesco; Poggi, Paola; Zannini, Chiara; Marchionni, Cosetta; Ricci, Francesca; Tazzari, Pier Luigi; Taglioli, Valentina; Calder, Philip C; Bonsi, Laura

    2017-02-07

    The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients.

  17. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    PubMed Central

    Koynova, Rumiana; MacDonald, Robert C.

    2007-01-01

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30 min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/ phosphatidylserine/cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, ∼40-45°C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer “frustration” which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a “frustrated” bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics. PMID:17559800

  18. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynova, Rumiana; MacDonald, Robert C.

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserinemore » or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a 'frustrated' bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics.« less

  19. Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish.

    PubMed

    Malekar, Vanita C; Morton, James D; Hider, Richard N; Cruickshank, Robert H; Hodge, Simon; Metcalf, Victoria J

    2018-01-01

    Homeoviscous adaptation (HVA) is a key cellular response by which fish protect their membranes against thermal stress. We investigated evolutionary HVA (long time scale) in Antarctic and non-Antarctic fish. Membrane lipid composition was determined for four Perciformes fish: two closely related Antarctic notothenioid species ( Trematomus bernacchii and Pagothenia borchgrevinki ); a diversified related notothenioid Antarctic icefish ( Chionodraco hamatus ); and a New Zealand species ( Notolabrus celidotus ). The membrane lipid compositions were consistent across the three Antarctic species and these were significantly different from that of the New Zealand species. Furthermore, acclimatory HVA (short time periods with seasonal changes) was investigated to determine whether stenothermal Antarctic fish, which evolved in the cold, stable environment of the Southern Ocean, have lost the acclimatory capacity to modulate their membrane saturation states, making them vulnerable to anthropogenic global warming. We compared liver membrane lipid composition in two closely related Antarctic fish species acclimated at 0 °C (control temperature), 4 °C for a period of 14 days in T. bernacchii and 28 days for P. borchgrevinki, and 6 °C for 7 days in both species. Thermal acclimation at 4 °C did not result in changed membrane saturation states in either Antarctic species. Despite this, membrane functions were not compromised, as indicated by declining serum osmolality, implying positive compensation by enhanced hypo-osmoregulation. Increasing the temperature to 6 °C did not change the membrane lipids of P. borchgrevinki. However, in T. bernacchii, thermal acclimation at 6 °C resulted in an increase of membrane saturated fatty acids and a decline in unsaturated fatty acids. This is the first study to show a homeoviscous response to higher temperatures in an Antarctic fish, although for only one of the two species examined.

  20. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    PubMed

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2017-04-01

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE -/- ) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  1. The different facets of organelle interplay-an overview of organelle interactions.

    PubMed

    Schrader, Michael; Godinho, Luis F; Costello, Joseph L; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy-a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.

  2. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    PubMed

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  3. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  4. Effects of environmental stressors on lipid metabolism in aquatic invertebrates.

    PubMed

    Lee, Min-Chul; Park, Jun Chul; Lee, Jae-Seong

    2018-07-01

    Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO 2 , and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Lipid profiling of parkin-mutant human skin fibroblasts.

    PubMed

    Lobasso, Simona; Tanzarella, Paola; Vergara, Daniele; Maffia, Michele; Cocco, Tiziana; Corcelli, Angela

    2017-12-01

    Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD. © 2017 Wiley Periodicals, Inc.

  6. Skeletal muscle membrane lipid composition is related to adiposity and insulin action.

    PubMed Central

    Pan, D A; Lillioja, S; Milner, M R; Kriketos, A D; Baur, L A; Bogardus, C; Storlien, L H

    1995-01-01

    The cellular basis of insulin resistance is still unknown; however, relationships have been demonstrated between insulin action in muscle and the fatty acid profile of the major membrane structural lipid (phospholipid). The present study aimed to further investigate the hypothesis that insulin action and adiposity are associated with changes in the structural lipid composition of the cell. In 52 adult male Pima Indians, insulin action (euglycemic clamp), percentage body fat (pFAT; underwater weighing), and muscle phospholipid fatty acid composition (percutaneous biopsy of vastus lateralis) were determined. Insulin action (high-dose clamp; MZ) correlated with composite measures of membrane unsaturation (% C20-22 polyunsaturated fatty acids [r= 0.463, P < 0.001], unsaturation index [r= -0.369, P < 0.01]), a number of individual fatty acids and with delta5 desaturase activity (r= 0.451, P < 0.001). pFAT (range 14-53%) correlated with a number of individual fatty acids and delta5 desaturase activity (r= -0.610, P < 0.0001). Indices of elongase activity (r= -0.467, P < 0.001), and delta9 desaturase activity (r= 0.332, P < 0.05) were also related to pFAT but not insulin action. The results demonstrate that delta5 desaturase activity is independently related to both insulin resistance and obesity. While determining the mechanisms underlying this relationship is important for future investigations, strategies aimed at restoring "normal" enzyme activities, and membrane unsaturation, may have therapeutic importance in the "syndromes of insulin resistance." PMID:8675650

  7. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    PubMed

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    PubMed

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the cryotolerance of Lb. delbrueckii ssp. bulgaricus CFL1 cells. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Preparation of membrane rafts.

    PubMed

    Waugh, Mark G; Hsuan, J Justin

    2009-01-01

    The concept that biological membranes contain microdomains of specialized lipid and protein composition has attracted great attention in recent years. Initially, the focus in the field was very much on the characterization of cholesterol-and sphingolipid-rich plasma membrane microdomains that were resistant to solubilization in the cold non-ionic detergent Triton X-100. Such detergent-insoluble membrane domains were of low buoyant density and could be readily purified on sucrose equilibrium density gradients. The intrinsic buoyancy of the detergent-insoluble domains gave rise to the term "lipid rafts." Cholesterol- and sphingolipid-rich rafts at the plasma membrane have been implicated in a wide range of cellular processes, including pathogen invasion, receptor signaling, and endocytosis. However, work with other non-ionic detergents such as Lubrol WX and Brij-98 has revealed the existence of various raft subtypes with differing lipid compositions and proposed functions. More recently, there has been some focus on isolating lipid rafts from intracellular organelles, in particular membranes from the Golgi-endosomal pathway, where raft lipids have been proposed to function in processes such as the sorting of vesicular cargo and the processing of amyloid precursor protein. While there remains a large degree of controversy surrounding the purity, the physiological importance, and even the existence of different types of lipid rafts in intact cells, the ability to routinely purify such domains has led to significant progress in understanding the functional architecture of biological membranes. We describe a number of widely used methods to prepare rafts, based on early preparations of caveolae by density gradient ultracentrifugation and immunoaffinity precipitation.

  10. A comparative assessment of fatty acids in Antarctic organisms from the Ross Sea: Occurrence and distribution.

    PubMed

    Corsolini, Simonetta; Borghesi, Nicoletta

    2017-05-01

    Lipids are important energy source and structural component for cellular membranes and tissues, involved in the osmoregulation and immune response, and are very important in the bioaccumulation of lipophilic chemicals too. Among lipids, fatty acids (FAs) give information on diet of organisms, since FA of consumer lipids can be related to those of diet; plants and animals vary in their FA signature because of differences in the synthesis of lipids. In this study, lipid content and FA composition in tissues of Antarctic organisms from the Ross Sea (Odontaster validus, Sterechinus neumayeri, Chionodraco hamatus, Trematomus bernacchii, Pygoscelis adèliae) were assessed. Differences in lipid characterisation were found between both species and tissues. The lipid content was highest in C. hamatus liver (3.51%), and lowest in T. bernacchii muscle (0.16%). The polyunsaturated fatty acids (PUFAs) prevailed in the C. hamatus muscle, and among FAs, the docosahexaenoic acid (DHA; C22:6n3) was the most abundant (20.93%). The C22:6n3 accumulated more in fish and penguin tissues than in invertebrate species. The high contribution of unsaturated fatty acids (>74%) in fish tissues wats related to the low environmental temperature. The fatty acid profile and the essential fatty acids occurrence were also discussed in the light of physiological adaptations and feeding habits of organisms; the relationships with contaminant bioaccumulation were also assessed. To the best of our knowledge, this is the first report of fatty acid composition and fingerprint in a Ross Sea trophic web and their correlation with contaminant concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Lipid based nanoemulsifying resveratrol for improved physicochemical characteristics, in vitro cytotoxicity and in vivo antiangiogenic efficacy.

    PubMed

    Pund, Swati; Thakur, Rohit; More, Umesh; Joshi, Amita

    2014-08-01

    Resveratrol, a dietary non-flavonoid polyphenolic phytoalexin, has gained attention in cancer chemoprevention. However, poor aqueous solubility and cellular bioavailability has limited its therapeutic application. We formulated a lipid based delivery system of resveratrol with self nanoemulsifying ability. Several edible and safe lipids, surfactants and cosolvents were screened for solubilization of resevratrol. Developed formulation comprised of Acrysol K 150 as a lipid and mixture of Labrasol and Transcutol HP as the surfactant system, as these components showed higher solubility. Pseudoternary phase diagram was constructed to identify the region of nanoemulsification. The formulations showed rapid emulsification with an average globule diameter; 85nm to 120nm and slight negative zeta potential. The nanocompositions exhibited cloud point above 55°C and were stable toward the gastrointestinal pH and thermodynamic stress testing. As compared to pristine resveratrol, the developed delivery system showed significant increase in vitro cytotoxicity in MCF-7 breast cancer cells. In vivo chick chorioallantoic membrane assay revealed enhanced antiangiogenic activity of composition with high lipid level. Briefly, lipid based nanoemulsifying resveratrol dramatically enhanced the anticancer and antiangiogenic activities, thus increasing its potential application in cancer chemotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile.

    PubMed

    Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena

    2017-11-03

    Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.

  13. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.

    PubMed

    Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd

    2002-04-01

    We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.

  14. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    DOE PAGES

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less

  15. Membrane remodeling, an early event in benzo[alpha]pyrene-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence

    2010-02-15

    Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H{submore » 2}O{sub 2} formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H{sub 2}O{sub 2} dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.« less

  16. The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide-dendrimer complexes with lipid membranes.

    PubMed

    Melikishvili, Sophie; Poturnayova, Alexandra; Ionov, Maksim; Bryszewska, Maria; Vary, Tomáš; Cirak, Julius; Muñoz-Fernández, María Ángeles; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Hianik, Tibor

    2016-12-01

    In this study, dendrimers have been purposed as an alternative approach for delivery of HIV peptides to dendritic cells. We have investigated the interaction of dendriplexes formed from polyanionic HIV peptide Nef and cationic carbosilane dendrimer (CBD) with model lipid membranes - large unilamellar vesicles (LUVs), Langmuir monolayers and supported lipid membranes (sBLMs) containing various molar ratio of zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG 2000 ). In our experiments, the lipid membranes represented the model of the plasma membrane of the cell. PEGylated lipids were used in order to model glycocalyx which constitutes the outer leaflet of cellular membranes. The presence of PEGylated lipids resulted in an increase of the phase transition temperature of the lipid bilayer of LUVs, in a decrease of specific volume and adiabatic compressibility. Fluorescence anisotropy study suggests that PEGylated LUVs possessed higher lipid order and decreased fluidity when compared to zwitterionic DMPC vesicles. The interaction of dendriplexes with monolayers was accompanied by the formation of the aggregates as revealed by BAM experiments. This conclusion has been confirmed also by AFM imaging of sBLMs. We have demonstrated that dendriplexes interact with lipid membranes for all types of lipid composition. Moreover, the stronger interaction of cationic dendrimer/peptide complexes with lipid monolayers, vesicles and sBLMs was observed for membranes composed of zwitterionic lipids than for PEGylated lipid membranes. Increased concentration of PEGylated lipids made this interaction weaker. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Aging impact on biochemical activities and gene expression of Drosophila melanogaster mitochondria.

    PubMed

    Dubessay, Pascal; Garreau-Balandier, Isabelle; Jarrousse, Anne-Sophie; Fleuriet, Annie; Sion, Benoit; Debise, Roger; Alziari, Serge

    2007-08-01

    The consequences of aging are characterized by a decline in the main cellular functions, including those of the mitochondria. Although these consequences have been much studied, efforts have often focused solely on a few parameters used to assess the "state" of mitochondrial function during aging. We performed comparative measurements of several parameters in young (a few days) and old (8 and 12 weeks) adult male Drosophila melanogaster: respiratory complex activities, mitochondrial respiration, ATP synthesis, lipid composition of the inner membrane, concentrations of respiratory complex subunits, expression of genes (nuclear and mitochondrial) coding for mitochondrial proteins. Our results show that, in the mitochondria of "old" flies, the activities of three respiratory complexes (I, III, IV) are greatly diminished, ATP synthesis is decreased, and the lipid composition of the inner membrane (fatty acids, cardiolipin) is modified. However, the respiration rate and subunit concentrations measured by Western blot are unaffected. Although cellular mitochondrial DNA (mtDNA) content remains constant, there is a decrease in concentrations of nuclear and mitochondrial transcripts apparently coordinated. The expression of nuclear genes encoding the transcription factors TFAM, TFB1, TFB2, and DmTTF, which are essential for the maintenance and expression of mtDNA are also decreased. The decrease in nuclear and mitochondrial transcript concentrations may be one of the principal effects of aging on mitochondria, and could explain observed decreases in mitochondrial efficiency.

  18. Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis

    PubMed Central

    Burstein, Michelle T.; Koupaki, Olivia; Gomez-Perez, Alejandra; Levy, Sean; Pluska, Lukas; Mattie, Sevan; Rafeh, Rami; Iouk, Tatiana; Sheibani, Sara; Greenwood, Michael; Vali, Hojatollah; Titorenko, Vladimir I.

    2013-01-01

    Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how the atg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.2%) concentration of glucose. Under these longevity-extending conditions of caloric restriction (CR) yeast cells are not starving. We also assessed a role of macromitophagy in lifespan extension by lithocholic acid (LCA), a bile acid that prolongs yeast longevity under CR conditions. Our findings imply that macromitophagy is a longevity assurance process underlying the synergistic beneficial effects of CR and LCA on yeast lifespan. Our analysis of how the atg32Δ mutation influences mitochondrial morphology, composition and function revealed that macromitophagy is required to maintain a network of healthy mitochondria. Our comparative analysis of the membrane lipidomes of organelles purified from wild-type and atg32Δ cells revealed that macromitophagy is required for maintaining cellular lipid homeostasis. We concluded that macromitophagy defines yeast longevity by modulating vital cellular processes inside and outside of mitochondria. PMID:23553280

  19. Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype.

    PubMed

    Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W

    2007-11-30

    Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.

  20. Methods to Measure Lipophagy in Yeast.

    PubMed

    Cristobal-Sarramian, A; Radulovic, M; Kohlwein, S D

    2017-01-01

    Maintenance of cellular and organismal lipid homeostasis is critical for life, and any deviation from a balanced equilibrium between fat uptake and degradation may have deleterious consequences, resulting in severe lipid-associated disorders. Excess fat is typically stored in cytoplasmic organelles termed "lipid droplets" (LDs); to adjust for a constantly fluctuating supply of and demand for cellular fat, these organelles are metabolically highly dynamic and subject to multiple levels of regulation. In addition to a well-described cytosolic lipid degradation pathway, recent evidence underscores the importance of "lipophagy" in cellular lipid homeostasis, i.e., the degradation of LD by autophagy in the lysosome/vacuole. Pioneering work in yeast mutant models has unveiled the requirement of key components of the autophagy machinery, providing evidence for a highly conserved process of lipophagy from yeast to man. However, further work is required to unveil the intricate metabolic interaction between LD metabolism and autophagy to sustain membrane homeostasis and cellular survival. © 2017 Elsevier Inc. All rights reserved.

  1. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  2. Avanti lipid tools: connecting lipids, technology, and cell biology.

    PubMed

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  3. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling

    PubMed Central

    Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.

    2014-01-01

    The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358

  4. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  5. Erythrocyte sedimentation rate and fibrinogen concentration of whole blood influences the cellular composition of platelet-rich plasma obtained from centrifugation methods.

    PubMed

    Yin, Wenjing; Xu, Zhengliang; Sheng, Jiagen; Xie, Xuetao; Zhang, Changqing

    2017-09-01

    Erythrocyte sedimentation rate (ESR), which reflects the sedimentation rate of platelets, leukocytes and erythrocytes in response to centrifugal force, may influence the cellular composition of platelet-rich plasma (PRP) obtained via centrifugation methods. However, no relevant studies have substantiated this. In the present study, blood was collected from 40 healthy volunteers and used to prepare PRP with two plasma-based preparation systems [YinPRP and Plasma Rich in Growth Factor (PRGF) systems] and two buffy coat-based systems (RegenPRP and WEGOPRP systems) in a single-donor model. Volumes of PRP and platelet-poor plasma (PPP) that were removed in the preparation process were recorded. Analyses of ESR, haematocrit, C-reaction protein, coagulation, serum glucose and serum lipid of the whole blood used for PRP preparation were performed to evaluate the levels of ESR and the factors known to influence it. Whole blood analysis was performed to evaluate the cellular composition of PRP. Results demonstrated that there were marked positive correlations between the ESR of the whole blood used for PRP preparation and PPP removal efficiencies, platelet concentrations, platelet capture efficiencies and platelet enrichment factors of PRP formulations obtained from plasma-based systems, and PRP yield efficiency of RegenPRP and PPP removal efficiency of WEGOPRP. Furthermore, there were marked negative correlations between ESR and concentrations and enrichment factors of platelets, leukocytes and erythrocytes of RegenPRP. Fibrinogen concentration of the whole blood, which had a marked positive correlation with ESR, also influenced the cellular composition of PRP. These findings may increase the understanding of PRP preparation and provide substantial evidence for the individualised optimisation of PRP preparation systems used in clinical practice.

  6. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    PubMed

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-04

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. RaftProt: mammalian lipid raft proteome database.

    PubMed

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?

    PubMed

    Brøns, Charlotte; Grunnet, Louise Groth

    2017-02-01

    Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver. © 2017 European Society of Endocrinology.

  9. Heat stress dictates microbial lipid composition in hydrothermal marine sediments

    NASA Astrophysics Data System (ADS)

    Sollich, M.; Yoshinaga, M. Y.; Häusler, S.; Hinrichs, K. U.; Bühring, S. I.

    2016-02-01

    Abundant and diverse microbial communities inhabit hydrothermal marine sediments. Since ion permeability of membranes increases with temperature archaea and bacteria that use proton/sodium as coupling ions for bioenergetics must constantly adjust their cytoplasmic membrane permeability, which in turn is mostly controlled by the lipid composition. Here, we investigated a thermal gradient across a marine sediment field (ranging from 18 to over 100°C) and tested the concept that membrane lipids provide a major biochemical basis for cellular bioenergetics of archaea and bacteria under stressful conditions. Reflecting the lower ion permeability of the ether-linked isoprenoidal lipids, we found that archaea dominate over bacteria in sediments of >50 °C. Moreover, a detailed examination of the molecular lipid species revealed a quandary: low membrane permeability concomitantly with increased fluidity is required for energy conservation of both archaea and bacteria under heat stress. For instance, bacterial fatty acids were found to increase chain length in concert with a higher degree of unsaturation at elevated sediment temperatures while archaeal tetraethers were observed to show a higher degree of bulking (e.g. methylation and H-shaped) and fluidity (i.e. cyclization) under elevated temperatures. In addition, our data indicate that strong intermolecular hydrogen bonding at the headgroup level of archaeal glycolipids and bacterial sphingolipids may provide ideal membrane stability to attain the required balance between low permeability and a more fluidized configuration. For example, sphingolipids may stabilize bacterial phospholipids into lipid domains, enabling bacteria to thrive in heated sediments under unfavorable thermodynamic conditions. The scientific marriage of lipidomics and bioenergetics described here provides a new dimension for understanding microbial life in natural environments.

  10. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    PubMed

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  11. Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens

    PubMed Central

    Elling, Felix J.; Yoshinaga, Marcos Y.; Söllinger, Andrea; Urich, Tim; Hinrichs, Kai-Uwe

    2016-01-01

    ABSTRACT A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis. We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea. PMID:27208108

  12. Phylogenetic Diversity in the Macromolecular Composition of Microalgae

    PubMed Central

    Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  13. Reversible Nuclear-Lipid-Droplet Morphology Induced by Oleic Acid: A Link to Cellular-Lipid Metabolism

    PubMed Central

    Lagrutta, Lucía C.; Montero-Villegas, Sandra; Layerenza, Juan P.; Sisti, Martín S.; García de Bravo, Margarita M.

    2017-01-01

    Neutral lipids—involved in many cellular processes—are stored as lipid droplets (LD), those mainly cytosolic (cLD) along with a small nuclear population (nLD). nLD could be involved in nuclear-lipid homeostasis serving as an endonuclear buffering system that would provide or incorporate lipids and proteins involved in signalling pathways as transcription factors and as enzymes of lipid metabolism and nuclear processes. Our aim was to determine if nLD constituted a dynamic domain. Oleic-acid (OA) added to rat hepatocytes or HepG2 cells in culture produced cellular-phenotypic LD modifications: increases in TAG, CE, C, and PL content and in cLD and nLD numbers and sizes. LD increments were reversed on exclusion of OA and were prevented by inhibition of acyl-CoA synthetase (with Triacsin C) and thus lipid biosynthesis. Under all conditions, nLD corresponded to a small population (2–10%) of total cellular LD. The anabolism triggered by OA, involving morphologic and size changes within the cLD and nLD populations, was reversed by a net balance of catabolism, upon eliminating OA. These catabolic processes included lipolysis and the mobilization of hydrolyzed FA from the LD to cytosolic-oxidation sites. These results would imply that nLD are actively involved in nuclear processes that include lipids. In conclusion, nLD are a dynamic nuclear domain since they are modified by OA through a reversible mechanism in combination with cLD; this process involves acyl-CoA-synthetase activity; ongoing TAG, CE, and PL biosynthesis. Thus, liver nLD and cLD are both dynamic cellular organelles. PMID:28125673

  14. Transmembrane voltage: Potential to induce lateral microdomains.

    PubMed

    Malinsky, Jan; Tanner, Widmar; Opekarova, Miroslava

    2016-08-01

    Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The way we view cellular (glyco)sphingolipids.

    PubMed

    Hoetzl, Sandra; Sprong, Hein; van Meer, Gerrit

    2007-11-01

    Mammalian cells synthesize ceramide in the endoplasmic reticulum (ER) and convert this to sphingomyelin and complex glycosphingolipids on the inner, non-cytosolic surface of Golgi cisternae. From there, these lipids travel towards the outer, non-cytosolic surface of the plasma membrane and all membranes of the endocytic system, where they are eventually degraded. At the basis of the selective, anterograde traffic out of the Golgi lies the propensity of the sphingolipids to self-aggregate with cholesterol into microdomains termed 'lipid rafts'. At the plasma membrane surface these rafts are thought to function as the scaffold for various types of (glyco) signaling domains of different protein and lipid composition that can co-exist on one and the same cell. In the past decade, various unexpected findings on the sites where sphingolipid-mediated events occur have thrown a new light on the localization and transport mechanisms of sphingolipids. These findings are largely based on biochemical experiments. Further progress in the field is hampered by a lack of morphological techniques to localize lipids with nanometer resolution. In the present paper, we critically evaluate the published data and discuss techniques and potential improvements.

  16. Endoplasmic reticulum mediated signaling in cellular microdomains

    PubMed Central

    Biwer, Lauren; Isakson, Brant E

    2016-01-01

    The endoplasmic reticulum (ER) is a prime mediator of cellular signaling due to its functions as an internal cellular store for calcium, as well as a site for synthesis of proteins and lipids. Its peripheral network of sheets and tubules facilitate calcium and lipid signaling, especially in areas of the cell that are more distant to the main cytoplasmic network. Specific membrane proteins shape the peripheral ER architecture and influence the network stability in order to project into restricted spaces. The signaling microdomains are anatomically separate from the cytoplasm as a whole and exhibit localized protein, ion channel and cytoskeletal element expression. Signaling can also occur between the ER and other organelles, such as the Golgi or mitochondria. Lipids made in the ER membrane can be sent to the Golgi via specialized transfer proteins and specific phospholipid synthases are enriched at ER-mitochondria junctions to more efficiently expedite phospholipid transfer. As a hub for protein and lipid synthesis, a store for intracellular calcium [Ca2+]i, and a mediator of cellular stress, the ER is an important cellular organelle. Its ability to organize into tubules and project into restricted spaces allows for discrete and temporal signaling, which is important for cellular physiology and organism homeostasis. PMID:26973141

  17. Applications of Mass Spectrometry for Cellular Lipid Analysis

    PubMed Central

    Wang, Chunyan; Wang, Miao; Han, Xianlin

    2015-01-01

    Mass spectrometric analysis of cellular lipids is an enabling technology for lipidomics, which is a rapidly-developing research field. In this review, we briefly discuss the principles, advantages, and possible limitations of electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry-based methodologies for the analysis of lipid species. The applications of these methodologies to lipidomic research are also summarized. PMID:25598407

  18. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    PubMed

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    PubMed

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Engineering hybrid exosomes by membrane fusion with liposomes.

    PubMed

    Sato, Yuko T; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari

    2016-02-25

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze-thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.

  1. Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane.

    PubMed

    Lv, Cheng; Lin, Yi; Liu, An-An; Hong, Zheng-Yuan; Wen, Li; Zhang, Zhenfeng; Zhang, Zhi-Ling; Wang, Hanzhong; Pang, Dai-Wen

    2016-11-01

    Highly efficient labeling of viruses with quantum dots (QDs) is the prerequisite for the long-term tracking of virus invasion at the single virus level to reveal mechanisms of virus infection. As one of the structural components of viruses, viral envelope lipids are hard to be labeled with QDs due to the lack of efficient methods to modify viral envelope lipids. Moreover, it is still a challenge to maintain the intactness and infectivity of labeled viruses. Herein, a mild method has been developed to label viral envelope lipids with QDs by harnessing the biotinylated lipid-self-inserted cellular membrane. Biotinylated lipids can spontaneously insert in cellular membranes of host cells during culture and then be naturally assembled on progeny Pseudorabies virus (PrV) via propagation. The biotinylated PrV can be labeled with streptavidin-conjugated QDs, with a labeling efficiency of ∼90%. Such a strategy to label lipids with QDs can retain the intactness and infectivity of labeled viruses to the largest extent, facilitating the study of mechanisms of virus infection at the single virus level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    PubMed

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  4. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment

    NASA Astrophysics Data System (ADS)

    Elling, Felix J.; Könneke, Martin; Lipp, Julius S.; Becker, Kevin W.; Gagen, Emma J.; Hinrichs, Kai-Uwe

    2014-09-01

    The characteristic glycerol dibiphytanyl glycerol tetraether membrane lipids (GDGTs) of marine ammonia-oxidizing archaea (AOA) are widely used as biomarkers for studying their occurrence and distribution in marine environments and for reconstructing past sea surface temperatures using the TEX86 index. Despite an increasing use of GDGT biomarkers in microbial ecology and paleoceanography, the physiological and environmental factors influencing lipid composition in AOA, in particular the cyclization of GDGTs, remain unconstrained. We investigated the effect of metabolic state on the composition of intact polar and core lipids and the resulting TEX86 paleothermometer in pure cultures of the marine AOA Nitrosopumilus maritimus as a function of growth phase. The cellular lipid content ranged from 0.9 to 1.9 fg cell-1 and increased during growth but was lower in the stationary phases, indicating changes in average cell size in response to metabolic status. The relative abundances of monoglycosidic GDGTs increased from 27% in early growth phase to 60% in late stationary phase, while monohydroxylated GDGTs increased only slightly. The proportions of characteristic hexose-phosphohexose GDGTs were up to 7-fold higher during growth than in stationary phase, suggesting that they are valuable biomarkers for the metabolically active fraction of AOA assemblages in the environment. Methoxy archaeol was identified as novel, genuine archaeal lipid of yet unknown function; it is one of the most abundant single compounds in the lipidome of N. maritimus. TEX86 values of individual intact GDGTs and total GDGTs differed substantially, were generally lower during early and late growth phases than in stationary phase, and did not reflect growth temperature. Consequently, our results strongly suggest that biosynthesis is at least partially responsible for the systematic offsets in TEX86 values between different intact polar GDGT classes observed previously in environmental samples. Nevertheless, differences in degradation rates of intact polar GDGTs may influence the TEX86 index because the intact polar lipid precursors differ for individual core GDGTs and moreover their relative abundances change with growth stage, which may result in distinct release rates of core GDGTs from their polar precursors. Overall, our findings stress the need to accurately describe the factors influencing GDGT cyclization in thaumarchaea and thus paleotemperature reconstructions.

  5. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  7. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    PubMed

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  8. RF Microalgal lipid content characterization

    PubMed Central

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali

    2014-01-01

    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372

  9. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Shuo; Heller, William T

    2011-01-01

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoylmore » phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.« less

  10. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  11. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis

    PubMed Central

    Zhang, Zhenlu; He, Guijuan; Catanzaro, Nicholas; Wu, Zujian; Xie, Lianhui

    2018-01-01

    Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection. PMID:29649282

  12. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function.

    PubMed

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S R; Yew, Joanne Y; Freitag, Michael; Oliferenko, Snezhana

    2014-12-15

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. © 2014 He, Yam, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499.

    PubMed

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Zambelli, Paolo; Simonetti, Paolo; Foschino, Roberto; Compagno, Concetta

    2015-05-01

    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response.

  14. Phospholipid composition of chlorophyll-free mitochondria isolated via protoplasts from oat mesophyll cells.

    PubMed

    Fuchs, R; Haas, R; Wrage, K; Heinz, E

    1981-08-01

    Mitochondria were isolated from oat primary leaves via mesophyll protoplasts and subjected to phospholipid analysis. In mesophyll cells mitochondria account for only small proportions of cellular phospholipids (in the order of 5%) and proteins (in the order of 2%). Contamination by lipids from other membranes was insignificant as indicated by the absence or very low levels of chlorophyll, galactolipids and steryl glycosides. The absence of 3-trans-hexadecenoic acid in phosphatidylglycerol from mitochondria of green cells serves an an additional criterion of purity. The phospholipid mixture extracted from these mitochondria resembles phospholipids in mitochondria from non-green tissues regarding composition as well as fatty acid profiles. Therefore, mitochondria maintain a rather constant lipid profile and in contrast to plastids do not respond at this level to differences in the physiological status of their housing cell. Palmitic acid in mitochondrial phosphatidylcholine and phosphatidylethanolamine is primarily localized at the C-1 position of the glycerol moiety. Two enzymatic activities so far not described in mitochondria, formation of acylgalactosyl diacylglycerol and hydrolysis of acyl-CoA, were found in the purified mitochondrial fraction.

  15. Proteolipidic Composition of Exosomes Changes during Reticulocyte Maturation*

    PubMed Central

    Carayon, Kévin; Chaoui, Karima; Ronzier, Elsa; Lazar, Ikrame; Bertrand-Michel, Justine; Roques, Véronique; Balor, Stéphanie; Terce, François; Lopez, André; Salomé, Laurence; Joly, Etienne

    2011-01-01

    During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process. PMID:21828046

  16. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance.

    PubMed

    Wang, Tao; Liu, Tingting; Wang, Zejian; Tian, Xiwei; Yang, Yi; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-05-01

    The rapid and real-time lipid determination can provide valuable information on process regulation and optimization in the algal lipid mass production. In this study, a rapid, accurate and precise quantification method of in vivo cellular lipids of Chlorella protothecoides using low field nuclear magnetic resonance (LF-NMR) was newly developed. LF-NMR was extremely sensitive to the algal lipids with the limits of the detection (LOD) of 0.0026g and 0.32g/L in dry lipid samples and algal broth, respectively, as well as limits of quantification (LOQ) of 0.0093g and 1.18g/L. Moreover, the LF-NMR signal was specifically proportional to the cellular lipids of C. protothecoides, thus the superior regression curves existing in a wide detection range from 0.02 to 0.42g for dry lipids and from 1.12 to 8.97gL(-1) of lipid concentration for in vivo lipid quantification were obtained with all R(2) higher than 0.99, irrespective of the lipid content and fatty acids profile variations. The accuracy of this novel method was further verified to be reliable by comparing lipid quantification results to those obtained by GC-MS. And the relative standard deviation (RSD) of LF-NMR results were smaller than 2%, suggesting the precision of this method. Finally, this method was successfully used in the on-line lipid monitoring during the algal lipid fermentation processes, making it possible for better understanding of the lipid accumulation mechanism and dynamic bioprocess control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A cellular backline: specialization of host membranes for defence.

    PubMed

    Faulkner, Christine

    2015-03-01

    In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    PubMed

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  19. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction.

    PubMed

    Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa

    2018-06-22

    In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).

  20. Chemical Imaging of the Cell Membrane by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Kraft, M L; Frisz, J F

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid raftsmore » in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a Cameca NanoSIMS 50 to probe membrane organization and test microdomain hypotheses. The NanoSIMS is an imaging secondary ion mass spectrometer with an unprecedented combination of spatial resolution, sensitivity and mass specificity. It has 50 nm lateral resolution and is capable of detecting 1 in 20 nitrogen atoms while excluding near-neighbor isobaric interferences. The tightly focused cesium ion beam is rastered across the sample to produce simultaneous, quantitative digital images of up to five different masses. By labeling each specific components of a membrane with a unique rare stable isotope or element and mapping the location of the labels with the NanoSIMS, the location of the each labeled component can be determined and quantified. This new approach to membrane composition analysis allows molecular interactions of biological membranes to be probed at length-scales relevant to lipid rafts (10s to 100s of nm) that were not previously possible. Results from our most recent experiments analyzing whole cells will be presented.« less

  1. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    PubMed Central

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  2. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    PubMed

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  3. Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs).

    PubMed

    Ghosh, Ruma; Lokman, P Mark; Lamare, Miles D; Metcalf, Victoria J; Burritt, David J; Davison, William; Hageman, Kimberly J

    2013-03-15

    Although polybrominated diphenyl ethers (PBDEs) have the ability to undergo long-range atmospheric transport to remote ecosystems like Antarctica, a recent study found evidence for a local source within the Antarctic. PBDEs from sewage treatment outfalls of McMurdo Station and Scott Base on Ross Island have been attributed to the high concentrations measured in emerald rock cod (Trematomus bernacchii). The potential impact of PBDEs on Antarctic fish physiology is unknown and therefore, the aim of this study was to obtain a greater understanding of physiological responses of emerald rock cod for assessing changes in ecosystem quality. A PBDE mixture (ΣPBDE 8 congeners) was administered fortnightly over 42 days and physiological changes were observed throughout this period and for a further 14 days thereafter. Changes in liver composition, molecular level changes and enzyme activities of selected detoxification-mediated and antioxidant defence markers were measured. Changes in total lipid, lipid peroxide and protein carbonyl concentrations in emerald rock cod liver were consistent with increases in nucleus surface area in the PBDE-treated groups, suggesting alterations in cellular function. Changes in the activities of selected antioxidant enzymes indirectly indicated oxidative stress, possibly resulting in the changes in liver composition. Additionally, glutathione-S-transferase (GST) activity reached its peak faster than that of ethoxyresorufin-O-deethylase (EROD), suggesting that during the early response to PBDE exposures there could be a greater involvement of GST-mediated detoxification. Thus, for at least the species examined here, protein carbonyl and lipid peroxides were useful and informative biomarkers for cellular level responses following PBDE-related exposure. Furthermore, our findings suggest that emerald rock cod exposed to PBDEs develop oxidative stress - a condition with potential consequences for fish growth, health and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Membrane Remodeling by the Double-Barrel Scaffolding Protein of Poxvirus

    PubMed Central

    Hijnen, Marcel; Schult, Philipp; Pettikiriarachchi, Anne; Mitra, Alok K.; Coulibaly, Fasséli

    2011-01-01

    In contrast to most enveloped viruses, poxviruses produce infectious particles that do not acquire their internal lipid membrane by budding through cellular compartments. Instead, poxvirus immature particles are generated from atypical crescent-shaped precursors whose architecture and composition remain contentious. Here we describe the 2.6 Å crystal structure of vaccinia virus D13, a key structural component of the outer scaffold of viral crescents. D13 folds into two jellyrolls decorated by a head domain of novel fold. It assembles into trimers that are homologous to the double-barrel capsid proteins of adenovirus and lipid-containing icosahedral viruses. We show that, when tethered onto artificial membranes, D13 forms a honeycomb lattice and assembly products structurally similar to the viral crescents and immature particles. The architecture of the D13 honeycomb lattice and the lipid-remodeling abilities of D13 support a model of assembly that exhibits similarities with the giant mimivirus. Overall, these findings establish that the first committed step of poxvirus morphogenesis utilizes an ancestral lipid-remodeling strategy common to icosahedral DNA viruses infecting all kingdoms of life. Furthermore, D13 is the target of rifampicin and its structure will aid the development of poxvirus assembly inhibitors. PMID:21931553

  6. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  7. Cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation

    USDA-ARS?s Scientific Manuscript database

    We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...

  8. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition.

    PubMed

    Krishnan, Anuradha; Abdullah, Tasduq Sheikh; Mounajjed, Taofic; Hartono, Stella; McConico, Andrea; White, Thomas; LeBrasseur, Nathan; Lanza, Ian; Nair, Sreekumaran; Gores, Gregory; Charlton, Michael

    2017-06-01

    The sequence of events that lead to inflammation and fibrosing nonalcoholic steatohepatitis (NASH) is incompletely understood. Hence, we investigated the chronology of whole body, tissue, and cellular events that occur during the evolution of diet-induced NASH. Male C57Bl/6 mice were assigned to a fast-food (FF; high calorie, high cholesterol, high fructose) or standard-chow (SC) diet over a period of 36 wk. Liver histology, body composition, mitochondrial respiration, metabolic rate, gene expression, and hepatic lipid content were analyzed. Insulin resistance [homeostasis model assessment-insulin resistance (HOMA-IR)] increased 10-fold after 4 wk. Fibrosing NASH was fully established by 16 wk. Total hepatic lipids increased by 4 wk and remained two- to threefold increased throughout. Hepatic triglycerides declined from sixfold increase at 8 wk to threefold increase by 36 wk. In contrast, hepatic cholesterol levels steadily increased from baseline at 8 wk to twofold by 36 wk. The hepatic immune cell population altered over time with macrophages persisting beyond 16 wk. Mitochondrial oxygen flux rates of FF mice diet were uniformly lower with all the tested substrates (13-276 pmol·s -1 ·ml -1 per unit citrate synthase) than SC mice (17-394 pmol·s -1 ·ml -1 per unit citrate synthase) and was accompanied by decreased mitochondrial:nuclear gene copy number ratios after 4 wk. Metabolic rate was lower in FF mice. Mitochondrial glutathione was significantly decreased at 24 wk in FF mice. Expression of dismutases and catalase was also decreased in FF mice. The evolution of NASH in the FF diet-induced model is multiphasic, particularly in terms of hepatic lipid composition. Insulin resistance precedes hepatic inflammation and fibrosis. Mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Collectively, these observations provide a unique overview of the sequence of changes that coevolve with the histological evolution of NASH. NEW & NOTEWORTHY This study demonstrates in a first of kind longitudinal analysis, the evolution of nonalcoholic steatohepatitis (NASH) on a fast-food diet-induced model. Key findings include 1 ) hepatic lipid composition changes in a multiphasic fashion as NASH evolves; 2 ) insulin resistance precedes hepatic inflammation and fibrosis, answering a longstanding chicken-and-egg question regarding the relationship of insulin resistance to liver histology in NASH; and 3 ) mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Copyright © 2017 the American Physiological Society.

  9. Lipid Droplets and Peroxisomes: Key Players in Cellular Lipid Homeostasis or A Matter of Fat—Store ’em Up or Burn ’em Down

    PubMed Central

    Kohlwein, Sepp D.; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide. PMID:23275493

  10. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, R. S.; Sessions, A. L.

    2015-12-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the first trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  11. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, Reto S.; Sessions, Alex L.

    2016-04-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  12. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Computer simulation studies on passive recruitment dynamics of lipids induced by the adsorption of charged nanoparticles.

    PubMed

    Li, Yang

    2014-07-07

    The recruitment dynamics of lipids in the biomembrane is believed to play an important role in a variety of cellular processes. In this work, we investigate the nanoparticle-induced recruitment dynamics of lipids in the heterogeneous phospholipid bilayers of distearoyl-phosphatidylcholine (DSPC) and dioleoyl-phosphatidylglycerol (DOPG) via coarse-grained molecular dynamics simulations. Three dynamic modes of individual charged DOPG lipid molecules have been taken into account in the recruitment process: lateral diffusion, protrusions, and flip-flops. Based on analysis of the mobility pattern of lipids, structural variations in the membrane as well as activation energy of the structure of lipid eyelids characterized by the potential of mean force, we have concluded that the electrostatic attraction of nanoparticles plays a crucial role in the recruitment process of lipids in phospholipid bilayers. These studies are consistent with experimental observations and to some extent give insight into the origin of some cellular processes such as signaling, formation of lipid rafts, and endocytosis.

  14. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  15. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  16. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  17. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  18. The relative proportions of different lipid classes and their fatty acid compositions change with culture age in the cariogenic dental pathogen Streptococcus mutans UA159.

    PubMed

    Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S

    2014-06-01

    The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.

  19. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  20. Sphingolipid topology and the dynamic organization and function of membrane proteins.

    PubMed

    van Meer, Gerrit; Hoetzl, Sandra

    2010-05-03

    When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  2. Impact of oxLDL on Cholesterol-Rich Membrane Rafts

    PubMed Central

    Levitan, Irena; Shentu, Tzu-Pin

    2011-01-01

    Numerous studies have demonstrated that cholesterol-rich membrane rafts play critical roles in multiple cellular functions. However, the impact of the lipoproteins on the structure, integrity and cholesterol composition of these domains is not well understood. This paper focuses on oxidized low-density lipoproteins (oxLDLs) that are strongly implicated in the development of the cardiovascular disease and whose impact on membrane cholesterol and on membrane rafts has been highly controversial. More specifically, we discuss three major criteria for the impact of oxLDL on membrane rafts: distribution of different membrane raft markers, changes in membrane cholesterol composition, and changes in lipid packing of different membrane domains. We also propose a model to reconcile the controversy regarding the relationship between oxLDL, membrane cholesterol, and the integrity of cholesterol-rich membrane domains. PMID:21490811

  3. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  4. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses.

    PubMed

    Haigh, Cathryn L; Tumpach, Carolin; Drew, Simon C; Collins, Steven J

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.

  5. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses

    PubMed Central

    Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007

  6. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    PubMed

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.

  7. Defining Lipid Transport Pathways in Animal Cells

    NASA Astrophysics Data System (ADS)

    Pagano, Richard E.; Sleight, Richard G.

    1985-09-01

    A new technique for studying the metabolism and intracellular transport of lipid molecules in living cells based on the use of fluorescent lipid analogs is described. The cellular processing of various intermediates (phosphatidic acid and ceramide) and end products (phosphatidylcholine and phosphatidylethanolamine) in lipid biosynthesis is reviewed and a working model for compartmentalization during lipid biosynthesis is presented.

  8. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives

    PubMed Central

    Shi, Kun; Gao, Zhen; Shi, Tian-Qiong; Song, Ping; Ren, Lu-Jing; Huang, He; Ji, Xiao-Jun

    2017-01-01

    Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production. PMID:28507542

  9. Adaptation of the membrane in Archaea.

    PubMed

    Oger, Philippe M; Cario, Anaïs

    2013-12-15

    Microbes often face contrasted and fluctuating environmental conditions, to which they need to adapt or die. Because membranes play a central role in regulating fluxes inward and outward from the cells, maintaining the appropriate structure of the membrane is crucial to maintain cellular integrity and functions. This is achieved in bacteria and eucarya by a modification of the membrane lipid compositions, a strategy termed homeoviscous adaptation. We review here evidence for homeoviscous adaptation in Archaea, and discuss the limits of this strategy and our knowledge in this very peculiar domain of life. © 2013 Elsevier B.V. All rights reserved.

  10. Epithelial junctions, cytoskeleton, and polarity.

    PubMed

    Pásti, Gabriella; Labouesse, Michel

    2014-11-04

    A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.

  11. Membrane contact sites, ancient and central hubs of cellular lipid logistics.

    PubMed

    Jain, Amrita; Holthuis, Joost C M

    2017-09-01

    Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017. Published by Elsevier B.V.

  12. Functional Anchoring Lipids for Drug Delivery Carrier Fabrication and Cell Surface Re-Engineering Applications

    NASA Astrophysics Data System (ADS)

    Vabbilisetty, Pratima

    For decades, lipid vesicular bodies such as liposomes have been widely used and explored as biomimetic models of cell membranes and as drug/gene delivery carrier systems. Similarly, micellar iron oxide nanoparticles have also been investigated as potential MRI agents as well as drug delivery carrier systems. Cell surface carbohydrate-protein interactions allow them to serve as markers for recognition of many molecular and cellular activities thereby, are exploited as attractive molecules for surface modification of nanocarrier systems with purpose for tissues specific targeting and biocompatibility. In addition, the cell lipid membrane serves as an important platform for occurrence of many biological processes that are governed and guided by cell surface receptors. Introduction of chemoselective functional groups, via bio-orthogonal conjugation strategies, at the cell surface facilitates many cellular modifications and paves path for novel and potential biomedical applications. Anchoring lipids are needed for liposome surface functionalization with ligands of interest and play important roles in ligand grafting density, liposomes stability and biological activity. On the other hand, anchoring lipids are also needed for cell surface re-engineering by lipid fusion approach and have high impact for ligand insertion efficiency and biological activity. Overall, in this dissertation study, functional anchoring lipids for glyco-functionalized carrier systems and for efficient cell surface re-engineering applications were systematically investigated, respectively. Firstly, investigation of the synthesis of glyco-functionalized liposome systems based on phosphatidylethonalamine (PE) and cholesterol (Chol) anchoring lipids, prepared by post chemically selective functionalization via Staudinger ligation were carried out. The effect of anchor lipids on the stability, encapsulation and releasing capacity of the glycosylated liposomes were investigated by dynamic light scattering (DLS) technique and by entrapping 5, 6-carboxyfluorescein (CF) dye and monitoring the fluorescence leakage, respectively. Overall, the Chol-anchored liposomes showed faster releasing rate than DSPE-anchored liposomes. This could be due to the increase in rigidity of the lipid membrane upon inclusion of Chol, thereby, leading to fast leakage of liposomes. Second, the potential effects of phospholipid (PE) and cholesterol (Chol)-based anchor lipids on cell surface re-engineering via copper free click chemistry were assessed with RAW 264.7 cells as model. The confocal microscopy and flow cytometry results indicated the successful incorporation of biotinylated Chol-based anchor lipids after specific streptavidin-FITC binding onto the cell surface. Higher fluorescence intensities from the cell membrane were observed for Chol-based anchor lipids when compared to DSPE as anchoring lipid. Furthermore, cytotoxicity of the synthesized biotinylated anchor lipids on the RAW 264.7 cells was assessed by MTT assay. The MTT assay results further confirmed that cell surface re-engineering via lipid anchoring approach strategy has very little or negligible amount of cytotoxicity on the cell viability. Thus, this study suggests the possible use of these lipids for potential cell surface re-engineering applications. In addition, synthesis of lipid coated iron oxide nanoparticles via dual solvent exchange approach and their glyco-functionalization via Staudinger ligation were investigated and characterized by FT-IR and TEM techniques. The stability of iron oxide nanoparticles with varying compositions of lipid anchors was evaluated by dynamic light scattering technique.

  13. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    PubMed

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  15. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles.

    PubMed

    Hadjidemetriou, Marilena; Al-Ahmady, Zahraa; Mazza, Mariarosa; Collins, Richard F; Dawson, Kenneth; Kostarelos, Kostas

    2015-08-25

    The adsorption of proteins and their layering onto nanoparticle surfaces has been called the "protein corona". This dynamic process of protein adsorption has been extensively studied following in vitro incubation of many different nanoparticles with plasma proteins. However, the formation of protein corona under dynamic, in vivo conditions remains largely unexplored. Extrapolation of in vitro formed protein coronas to predict the fate and possible toxicological burden from nanoparticles in vivo is of great interest. However, complete lack of such direct comparisons for clinically used nanoparticles makes the study of in vitro and in vivo formed protein coronas of great importance. Our aim was to study the in vivo protein corona formed onto intravenously injected, clinically used liposomes, based on the composition of the PEGylated liposomal formulation that constitutes the anticancer agent Doxil. The formation of in vivo protein corona was determined after the recovery of the liposomes from the blood circulation of CD-1 mice 10 min postinjection. In comparison, in vitro protein corona was formed by the incubation of liposomes in CD-1 mouse plasma. In vivo and in vitro formed protein coronas were compared in terms of morphology, composition and cellular internalization. The protein coronas on bare (non-PEGylated) and monoclonal antibody (IgG) targeted liposomes of the same lipid composition were also comparatively investigated. A network of linear fibrillary structures constituted the in vitro formed protein corona, whereas the in vivo corona had a different morphology but did not appear to coat the liposome surface entirely. Even though the total amount of protein attached on circulating liposomes correlated with that observed from in vitro incubations, the variety of molecular species in the in vivo corona were considerably wider. Both in vitro and in vivo formed protein coronas were found to significantly reduce receptor binding and cellular internalization of antibody-conjugated liposomes; however, the in vivo corona formation did not lead to complete ablation of their targeting capability.

  16. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.

    PubMed

    Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A

    2016-09-01

    Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.

    2011-10-01

    Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.

  18. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.

    PubMed

    Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V

    2018-04-05

    High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.

  19. Obesity in mares promotes uterine inflammation and alters embryo lipid fingerprints and homeostasis.

    PubMed

    Sessions-Bresnahan, Dawn R; Heuberger, Adam L; Carnevale, Elaine M

    2018-05-07

    Maternal body composition can be an important determinant for development of obesity and metabolic syndrome in adult offspring. Obesity-related outcomes in offspring may include epigenetic alterations; however, mechanisms of fetal programming remain to be fully elucidated. This study was conducted to determine the impact of maternal obesity in the absence of a high fat diet on equine endometrium and preimplantation embryos. Embryos were collected from normal and obese mares at 8 and 16 d and a uterine biopsy at 16 d (0 d = ovulation). With the exception of 8 d embryos, each sample was divided into two pieces. One piece was analyzed for gene expression markers related to carbohydrate metabolism, lipid homeostasis, inflammation, endoplasmic reticulum stress, oxidative stress, mitochondrial stress, and components of the insulin-like growth factor (IGF) system. The second piece was analyzed for lipid content using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Obese mares had elevated concentrations of insulin, leptin and total cholesterol, and they tended to have increased triglycerides and decreased insulin sensitivity. Embryos from obese mares had altered transcript abundance in genes for inflammation and lipid homeostasis, as well as, endoplasmic reticulum, oxidative and mitochondrial stress and altered lipid fingerprints. Endometrium from obese mares had increased expression of inflammatory cytokines, lipid homeostasis regulation, mitochondrial stress, and the IGF2 system. This study demonstrates increased adiposity in mares alters the uterine environment, transcript abundance of genes for cellular functions, and lipid profiles of embryos. These alterations could affect prenatal programming, with potential long-term effects in offspring.

  20. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    PubMed Central

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  1. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions

    PubMed Central

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-01-01

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200

  2. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions.

    PubMed

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-09-25

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.

  3. Patatin-Related Phospholipase pPLAIIIβ-Induced Changes in Lipid Metabolism Alter Cellulose Content and Cell Elongation in Arabidopsis[C][W

    PubMed Central

    Li, Maoyin; Bahn, Sung Chul; Guo, Liang; Musgrave, William; Berg, Howard; Welti, Ruth; Wang, Xuemin

    2011-01-01

    The release of fatty acids from membrane lipids has been implicated in various plant processes, and the patatin-related phospholipases (pPLAs) constitute a major enzyme family that catalyzes fatty acid release. The Arabidopsis thaliana pPLA family has 10 members that are classified into three groups. Group 3 pPLAIII has four members but lacks the canonical lipase/esterase consensus catalytic sequences, and their enzymatic activity and cellular functions have not been delineated. Here, we show that pPLAIIIβ hydrolyzes phospholipids and galactolipids and additionally has acyl-CoA thioesterase activity. Alterations of pPLAIIIβ result in changes in lipid levels and composition. pPLAIIIβ-KO plants have longer leaves, petioles, hypocotyls, primary roots, and root hairs than wild-type plants, whereas pPLAIIIβ-OE plants exhibit the opposite phenotype. In addition, pPLAIIIβ-OE plants have significantly lower cellulose content and mechanical strength than wild-type plants. Root growth of pPLAIIIβ-KO plants is less sensitive to treatment with free fatty acids, the enzymatic products of pPLAIIIβ, than wild-type plants; root growth of pPLAIIIβ-OE plants is more sensitive. These data suggest that alteration of pPLAIIIβ expression and the resulting lipid changes alter cellulose content and cell elongation in Arabidopsis. PMID:21447788

  4. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.

    PubMed

    Eichmann, Thomas Oliver; Lass, Achim

    2015-10-01

    The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

  5. Coping with sub-optimal water temperature: modifications in fatty acid profile of barramundi as influenced by dietary lipid.

    PubMed

    Alhazzaa, Ramez; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2013-06-01

    Metabolic responses to sub-optimal temperature deplete lipid depots, remodel membrane lipid and alter the fatty acid profile in the whole body and tissues of ectothermic vertebrates including fish. The magnitude of these changes may depend on dietary history including oil sources with different fatty acid compositions. Barramundi, Lates calcarifer (Perciformes, Latidae), a tropical ectothermic fish, was fed on diets either rich in dietary long-chain (≥C(20)) polyunsaturated fatty acids (LC-PUFA) from fish oil, rich in stearidonic and γ-linolenic acid (SDA and GLA, respectively) from Echium plantagineum, or rapeseed oil deficient in LC-PUFA. Following 5 weeks at the optimum temperature of 30 °C when growth rates were comparable amongst dietary treatments, water temperature was dropped to 20 °C for 1 week for half of the animals and maintained at 30 °C for the other half. Decreased temperature increased the liver and skeletal muscle content of LC-PUFA in fish fed on echium oil compared with rapeseed oil, while dietary LC-PUFA depots in fish oil fed-fish depleted rapidly in the week of sub-optimal temperature. The lipid unsaturation index of cellular membrane in the liver and muscle increased under low temperature at the same rate regardless of dietary oil. Therefore, rapid exposure of an ectothermic vertebrate to a lower and sub-optimal temperature caused significant modulation in fatty acid composition. We propose that the tolerance of barramundi, a representative of tropical farmed fish, to sub-optimal temperature will be enhanced when fatty acid substrates closer to the LC-PUFA are available in their diet. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    PubMed Central

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  7. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Muehlhausen, Laurel A.; Zahnle, Debra L.

    1988-09-01

    Cultures of the marine coccolithophorid, Emiliania huxleyi, were grown in the laboratory at five temperatures (8°, 10°, 15°, 20°, 25°C) and monitored by capillary gas chromatography for their long-chain, unsaturated lipid compositions. The long-chain lipids of this plant comprise a series of C 37, C 38 and C 39 di-, tri- and, in cells grown below 15°C, tetra-unsaturated methyl and ethyl ketones and a methyl and ethyl ester of a di-unsaturated C 36 fatty acid. Systematic changes in the degree of unsaturation and in the overall carbon chain length distribution of the alkenones and in the proportion of fatty acid esters relative to alkenones are noted as a function of growth temperature. We present temperature calibrations for these changes in the lipid composition of laboratory cultures and compare these results with the compositions of this biomarker series measured in a variety of sediments accumulating beneath warm (⩾25°C) and cold (⩽12°C) surface waters in the tropical and temperate North Pacific Ocean, respectively. The comparisons demonstrate 1) this series of biomarkers is deposited in these oceanic sediments with minimal evidence of alteration to its original composition and 2) the strain of E. huxleyi used in this laboratory calibration is representative of the "average" marine phytoplankton supplying this novel series of biomarkers to contemporary sediments in these two environments and a wide variety of other oceanic environments. The long-chain alkenones constitute a major component (8.0 ± 2.9%) of the total organic carbon content of living cells of E. huxleyi. The high cellular abundance of these compounds appears to be relatively constant and independent of the growth temperature of the plant. These biomarkers provide a well-designed and useful geochemical tool for assessing variations not only in surface water temperatures but potentially also in the productivity of an important group of marine phytoplankton in oceans of the recent and distant past.

  8. Nucleolar molecular signature of pluripotent stem cells.

    PubMed

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N

    2013-04-02

    Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.

  9. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361

  12. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    NASA Astrophysics Data System (ADS)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02174c

  13. How Phytoplankton Membranes Cope With Steep Ionic Strength (Salinity) Gradient?

    NASA Astrophysics Data System (ADS)

    Gasparovic, B.; Sesar, T.; Cankovic, M.; Ljubešić, Z.; Hrustić, E.; Zhu, Z.; Zhang, R.; Du, J.

    2016-02-01

    We report on phytoplankton accommodation on stressful conditions being steep ionic strength, i.e. salinity, changes, the conditions regularly found in the estuaries. We aimed defining how lipid composition of phytoplankton membrane structure is accommodated to prevent spontaneous osmosis. Salinity-dependent lipid profiles for particulate lipid extracts from blooming periods of the two opposing estuaries: eutrophic and polluted Wenchang River Estuary and pristine oligotrophic/mesotrophic Krka River Estuary were characterized by thin layer chromatography (TLC). The composition of phytoplankton pigments which was analyzed by high performance liquid chromatography. Domination of pigment Fucoxanthin in both estuaries indicates diatoms were major blooming group. While total particulate lipid concentration was almost an order of magnitude higher in the Wenchang River estuary (on average 238 µg/L) than in the Krka River Estuary (on average 36 µg/L), the lipid composition was similar. This implies that salinity stress is the main influential factor on phytoplankton lipid composition rather than availability of nutrients. Details on the lipid composition that follow salinity changes will be discussed.

  14. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs.

    PubMed

    Penny, William M; Palmer, Christopher P

    2018-03-01

    Styrene-maleic acid polymer-bound lipid bilayer nanodiscs have been investigated and characterized by electrokinetic chromatography. Linear solvation energy relationship analysis was employed to characterize the changes in solvation environment of nanodiscs of varied belt to lipid ratio, belt polymer chemistry and molecular weight, and lipid composition. Increases in the lipid to belt polymer ratio resulted in smaller, more cohesive nanodiscs with greater electrophoretic mobility. Nanodisc structures with belt polymers of different chemistry and molecular weight were compared and showed only minor changes in solvent characteristics and selectivity consistent with changes in structure of the lipid bilayer. Seven phospholipid and sphingomyelin nanodiscs of different lipid composition were characterized. Changes in lipid head group structure had a significant effect on bilayer-solute interactions. In most cases, changes in alkyl tail structure had no discernible effect on solvation environment aside from those explained by changes in the gel-liquid transition temperature. Comparison to vesicles of similar lipid composition show only minor differences in solvation environment, likely due to differences in lipid composition and bilayer curvature. Together these results provide evidence that the dominant solute-nanodisc interactions are with the lipid bilayer and that head group chemistry has a greater impact on bilayer-solute interactions than alkyl tail or belt polymer structure. Nanodisc electrokinetic chromatography is demonstrated to allow characterization of solute interactions with lipid bilayers of varied composition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials

    PubMed Central

    Autefage, Hélène; Littmann, Elena; Hedegaard, Martin A. B.; Von Erlach, Thomas; O’Donnell, Matthew; Burden, Frank R.; Winkler, David A.; Stevens, Molly M.

    2015-01-01

    Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells’ global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell–material interactions and suggest alternative research routes for evaluating biomaterials to improve their design. PMID:25831522

  16. Advances in Lipidomics for Cancer Biomarkers Discovery

    PubMed Central

    Perrotti, Francesca; Rosa, Consuelo; Cicalini, Ilaria; Sacchetta, Paolo; Del Boccio, Piero; Genovesi, Domenico; Pieragostino, Damiana

    2016-01-01

    Lipids play critical functions in cellular survival, proliferation, interaction and death, since they are involved in chemical-energy storage, cellular signaling, cell membranes, and cell–cell interactions. These cellular processes are strongly related to carcinogenesis pathways, particularly to transformation, progression, and metastasis, suggesting the bioactive lipids are mediators of a number of oncogenic processes. The current review gives a synopsis of a lipidomic approach in tumor characterization; we provide an overview on potential lipid biomarkers in the oncology field and on the principal lipidomic methodologies applied. The novel lipidomic biomarkers are reviewed in an effort to underline their role in diagnosis, in prognostic characterization and in prediction of therapeutic outcomes. A lipidomic investigation through mass spectrometry highlights new insights on molecular mechanisms underlying cancer disease. This new understanding will promote clinical applications in drug discovery and personalized therapy. PMID:27916803

  17. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment.

    PubMed

    Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno

    2014-01-01

    The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.

  18. Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.

    PubMed

    Göse, Martin; Scheffler, Kira; Reibetanz, Uta

    2016-11-14

    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.

  19. Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells.

    PubMed

    Murphy, E J; Horrocks, L A

    1993-04-07

    The effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells were determined. The cellular lipids were extracted on days 0, 3 and 7, following the addition of 1.2% dimethylsulfoxide to induce cellular differentiation. Proportions of ethanolamine glycerophospholipids (EtnGpl), phosphatidylinositol (PtdIns) and sphingomyelin (CerPCho) were significantly elevated following differentiation. The mole percentage of choline glycerophospholipids (ChoGpl) decreased with differentiation. The plasmalogens, both choline and ethanolamine, increased by 1.3- and 2.3-fold, respectively, during differentiation. The fatty acid composition of the phospholipid classes was also altered. PtdIns and ChoGpl had decreased proportions of polyenoic fatty acids, while these proportions were increased in EtnGpl. Both ChoGpl and EtnGpl had increased n-3/n-6 series fatty acid ratios, but this ratio was decreased in PtdIns. The mole percentage of arachidonic acid was significantly decreased in both PtdIns and ChoGpl, but elevated in EtnGpl and may be a result of the increase in ethanolamine plasmalogen. Thus, differentiation did not increase the overall mole percentage of polyenoic FA in the cells nor increase the n-6 series fatty acid proportions. We speculate plasmalogens may have a role in the differentiation process or in maintaining the cell in the differentiated state.

  20. Antimicrobial role of human meibomian lipids at the ocular surface.

    PubMed

    Mudgil, Poonam

    2014-10-14

    Human meibomian lipids form the outermost lipid layer of the tear film and serve many important functions to maintain its integrity. Although not investigated earlier, these lipids may have antimicrobial properties that help in strengthening the innate host defense of tears at the ocular surface. The aim of this study was to investigate the antimicrobial role of human meibomian lipids. Ocular pathogenic bacteria, Staphylococcus aureus 31, Pseudomonas aeruginosa 19, Pseudomonas aeruginosa 20, and Serratia marcescens 35, were grown in the presence and absence of human meibomian lipids in an artificial tear solution at the physiological temperature. Viable counts were obtained to note the number of bacteria surviving the treatment with meibomian lipids. Bacterial cells were imaged using scanning electron microscopy to observe the damages caused by meibomian lipids. Viable count results showed that in the presence of meibomian lipids, growth of all bacteria was considerably lower. Scanning electron microscopy showed that meibomian lipids caused extensive cellular damage to bacteria as manifested in smaller size, loss of aggregation, abnormal phenotype, cellular distortion, damaged cell wall, and cell lysis. This is the first-ever report of the antimicrobial role of human meibomian lipids. These lipids possess antimicrobial properties against both Gram-positive and Gram-negative bacteria and are involved in the innate host defense of tears in protecting the ocular surface against microbial pathogens. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. Mitochondria-associated ER Membranes (MAMs) and Glycosphingolipid Enriched Microdomains (GEMs): Isolation from Mouse Brain

    PubMed Central

    d'Azzo, Alessandra

    2013-01-01

    Intracellular organelles are highly dynamic structures with varying shape and composition, which are subjected to cell-specific intrinsic and extrinsic cues. Their membranes are often juxtaposed at defined contact sites, which become hubs for the exchange of signaling molecules and membrane components1,2,3,4. The inter-organellar membrane microdomains that are formed between the endoplasmic reticulum (ER) and the mitochondria at the opening of the IP3-sensitive Ca2+ channel are known as the mitochondria associated-ER membranes or MAMs4,5,6. The protein/lipid composition and biochemical properties of these membrane contact sites have been extensively studied particularly in relation to their role in regulating intracellular Ca2+ 4,5,6. The ER serves as the primary store of intracellular Ca2+, and in this capacity regulates a myriad of cellular processes downstream of Ca2+ signaling, including post-translational protein folding and protein maturation7. Mitochondria, on the other hand, maintain Ca2+ homeostasis, by buffering cytosolic Ca2+ concentration thereby preventing the initiation of apoptotic pathways downstream of Ca2+ unbalance4,8. The dynamic nature of the MAMs makes them ideal sites to dissect basic cellular mechanisms, including Ca2+ signaling and regulation of mitochondrial Ca2+ concentration, lipid biosynthesis and transport, energy metabolism and cell survival 4,9,10,11,12. Several protocols have been described for the purification of these microdomains from liver tissue and cultured cells13,14. Taking previously published methods into account, we have adapted a protocol for the isolation of mitochondria and MAMs from the adult mouse brain. To this procedure we have added an extra purification step, namely a Triton X100 extraction, which enables the isolation of the glycosphingolipid enriched microdomain (GEM) fraction of the MAMs. These GEM preparations share several protein components with caveolae and lipid rafts, derived from the plasma membrane or other intracellular membranes, and are proposed to function as gathering points for the clustering of receptor proteins and for protein–protein interactions4,15. PMID:23486347

  2. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios.

    PubMed

    Wen, Chih-Jen; Yen, Tzu-Chen; Al-Suwayeh, Saleh A; Chang, Hui-Wen; Fang, Jia-You

    2011-11-01

    The objective of the present work was to investigate the influence of the inner cores of lipid nanocarriers on the efficiency of brain targeting. Cetyl palmitate and squalene were respectively chosen as the solid lipid and liquid oil in the inner phase of the nanocarriers. Nanoparticulate systems with different cetyl palmitate/squalene ratios were compared by evaluating the size, zeta potential, molecular environment, and mobility of lipids in the systems. The particulate diameter ranged from 190 to 210 nm, with systems containing 100% cetyl palmitate in the matrix (solid lipid nanoparticles [SLN]) showing the smallest size, followed by systems with both cetyl palmitate and squalene (nanostructured lipid carriers [NLC]) and with 100% squalene (lipid emulsions [LE]). A cationic surfactant, Forestall, was used to produce a positive surface charge of 40-55 mW. The in vitro release was evaluated using various dyes located in different phases of the nanocarriers. The release of sulforhodamine B occurred in a sustained manner from the shell of the nanocarriers. The in vivo brain distribution of lipid nanosystems after an intravenous injection into rats was monitored by a real-time fluorescence imaging system. LE showed higher brain accumulation than SLN and NLC. NLC only exhibited a slightly higher brain accumulation compared with the aqueous control. Incorporation of sulforhodamine B into LE could prolong its retention in the brain from 20 to 50 min. The results were further confirmed by imaging the entire brain and brain slices. The specific association of lipid nanocarriers with rat brain endothelial cells (bEnd3) was demonstrated using fluorescence microscopy. The cellular uptake of LE and SLN was higher compared with NLC and the aqueous control. LE were observed to be internalized by cells through caveola-mediated and macropinocytotic energy-dependent endocytosis. The experimental profiles indicated that LE with moderate additives are a promising brain-targeting nanocarrier. The composition of the lipid matrix played a significant role in delivering compounds to the brain.

  3. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  5. COMPREHENSIVE RESPONSES OF LIPID CLASSES TO TOXIANTS AND INVOLVEMENT IN DISEASES

    EPA Science Inventory

    Along with genes and proteins, lipids are a key component of the cellular metabolome. Lipids can mediate the induction of some diseases such as atherosclerosis and also responses to some diseases, e.g., asthma. Pollutants such as ozone appear to induce biological responses throug...

  6. Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.

    PubMed

    Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu

    2016-06-02

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.

  7. The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis

    PubMed Central

    Zavala, Eder; Marquez-Lago, Tatiana T.

    2014-01-01

    Diffusion barriers are effective means for constraining protein lateral exchange in cellular membranes. In Saccharomyces cerevisiae, they have been shown to sustain parental identity through asymmetric segregation of ageing factors during closed mitosis. Even though barriers have been extensively studied in the plasma membrane, their identity and organization within the nucleus remains poorly understood. Based on different lines of experimental evidence, we present a model of the composition and structural organization of a nuclear diffusion barrier during anaphase. By means of spatial stochastic simulations, we propose how specialised lipid domains, protein rings, and morphological changes of the nucleus may coordinate to restrict protein exchange between mother and daughter nuclear lobes. We explore distinct, plausible configurations of these diffusion barriers and offer testable predictions regarding their protein exclusion properties and the diffusion regimes they generate. Our model predicts that, while a specialised lipid domain and an immobile protein ring at the bud neck can compartmentalize the nucleus during early anaphase; a specialised lipid domain spanning the elongated bridge between lobes would be entirely sufficient during late anaphase. Our work shows how complex nuclear diffusion barriers in closed mitosis may arise from simple nanoscale biophysical interactions. PMID:25032937

  8. The effect of MLS laser radiation on cell lipid membrane.

    PubMed

    Pasternak, Kamila; Wróbel, Dominika; Nowacka, Olga; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2018-03-14

    Authors of numerous publications have proved the therapeutic effect of laser irradiation on biological material, but the mechanisms at cellular and subcellular level are not yet well understood. The aim of this study was to assess the effect of laser radiation emitted by the MLS M1 system (Multiwave Locked System) at two wavelengths (808 nm continuous and 905 nm pulsed) on the stability and fluidity of liposomes with a lipid composition similar to that of human erythrocyte membrane or made of phosphatidylocholine. Liposomes were exposed to low-energy laser radiation at surface densities 195 mW/cm2 (frequency 1,000 Hz) and 230 mW/cm2 (frequency 2,000 Hz). Different doses of radiation energy in the range 0-15 J were applied. The surface energy density was within the range 0.46 - 4.9 J/cm 2. The fluidity and stability of liposomes subjected to such irradiation changed depending on the parameters of radiation used. Since MLS M1 laser radiation, depending on the parameters used, affects fluidity and stability of liposomes with the lipid content similar to erythrocyte membrane, it may also cause structural and functional changes in cell membranes.

  9. Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics.

    PubMed

    Ding, Wei; Palaiokostas, Michail; Wang, Wen; Orsi, Mario

    2015-12-10

    Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.

  10. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  11. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Bo; Campbell, Robert B., E-mail: robert.campbell@mcphs.edu

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carriermore » systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of PEG can sufficiently encapsulate siRNA, improve cellular uptake and the efficiency of gene silencing.« less

  12. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo

    PubMed Central

    2016-01-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  13. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. © 2016 The Author(s).

  14. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  15. Cell-based composite materials with programmed structures and functions

    DOEpatents

    Kaehr, Bryan J.; Brinker, C. Jeffrey; Townson, Jason L.

    2018-05-15

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  16. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.

    PubMed

    Li, Xie-kun; Xu, Jing-liang; Guo, Ying; Zhou, Wei-zheng; Yuan, Zhen-hong

    2015-08-01

    Scenedesmus raciborskii WZKMT cultured with simulated flue gas was investigated. Cellular components, including total sugar, starch, chlorophyll, protein and lipid, were compared between simulated flue gas and 7% (v/v) CO2. Dissolution of SO2 and NO in simulated flue gas led to pH decrease and toxicity to microalgae cells. Furthermore, the death or aging of microalgae cells reduced the buffer capacity and caused decrease of simulated flue gas absorption. With 7% CO2, the highest total sugar and starch content could attain to 66.76% and 53.16%, respectively, which indicated S. raciborskii WZKMT is a desired feedstock candidate for bioethanol production. Microalgae growth and starch accumulation was inhibited, while cells produced more chlorophyll, protein and lipid when simulated flue gas was the carbon source. Fatty acids composition analysis indicated that there was no significant distinction on fatty acids relative content (fatty acid/TFA) between cells aerated using simulated flue gas and 7% CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  18. System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions

    DOE PAGES

    Bosak, Tanja; Schubotz, Florence; de Santiago-Torio, Ana; ...

    2016-12-28

    The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analysesmore » of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing @-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.« less

  19. System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosak, Tanja; Schubotz, Florence; de Santiago-Torio, Ana

    The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analysesmore » of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing @-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.« less

  20. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion.

    PubMed

    Pirro, Valentina; Oliveri, Paolo; Ferreira, Christina Ramires; González-Serrano, Andrés Felipe; Machaty, Zoltan; Cooks, Robert Graham

    2014-10-27

    The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Reorganization of plasma membrane lipid domains during conidial germination.

    PubMed

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Increasing P-stress and viral infection impact lipid remodeling of the picophytoplankter Micromonas pusilla

    NASA Astrophysics Data System (ADS)

    Maat, D. S.; Bale, N. J.; Hopmans, E. C.; Sinninghe Damsté, J. S.; Schouten, S.; Brussaard, C. P. D.

    2015-09-01

    The intact polar lipid (IPL) composition of phytoplankton is plastic and dependent on environmental factors. Previous studies have shown that phytoplankton under phosphorus (P)-stress substitute phosphatidylglycerols (PGs) with sulphoquinovosyldiacylglycerols (SQDGs) and digalactosyldiacylglycerols (DGDGs). However, these studies focused merely on P-depletion, while phytoplankton in the natural environment often experience P-limitation whereby the degree of limitation depends on the supply rate of the limiting nutrient. Here we demonstrate a linear increase in SQDG : PG and DGDG : PG ratios with increasing cellular P-stress in the picophotoeukaryote Micromonas pusilla, obtained by P-replete, P-limited (chemostat) and P-starved (no supply of P) culturing conditions. These ratios were not affected by the degree of the P-limiting conditions itself (i.e. 0.97 and 0.32 μmax chemostats), suggesting there is a minimum requirement of PGs for the maintenance of cell growth. Viral infection reduced the increase in SQDG : PG and DGDG : PG ratios in P-starved cells, but the extent did depend on the growth rate of the cultures before infection. The membrane of M. pusilla virus MpV itself was lacking some IPLs compared to the host as, e.g. no monogalactosyldiacylglycerols could be detected. Growth of the phytoplankton cultures under enhanced CO2 concentration did not affect the lipid remodeling results. The present study provides new insights into how the P-related trophic state of an ecosystem as well as viral infection can affect phytoplankton IPL composition, and therefore influence food web dynamics and biogeochemical cycling.

  3. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    PubMed

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  5. Lipid and fatty acid compositions of cod ( Gadus morhua), haddock ( Melanogrammus aeglefinus) and halibut ( Hippoglossus hippoglossus)

    NASA Astrophysics Data System (ADS)

    Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.

    2010-12-01

    This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.

  6. Foraminiferal Metabolism Under Hypoxia: Sub-Cellular NanoSIMS Imaging of Intertidal Ammonia tepida Feeding Behavior

    NASA Astrophysics Data System (ADS)

    LeKieffre, C.; Spangenberg, J.; Geslin, E.; Meibom, A.

    2016-02-01

    Hypoxic events particularly affect benthic ecosystems on continental shelves and in coastal areas where renewal of bottom waters slow. Foraminifera living in such environments are among the most tolerant to hypoxia in the meiofauna. Some foraminifera species are able to survive hypoxia, and even anoxia, for weeks to months. Different species must have developed different mechanisms for survival - hypotheses include reduction of the metabolism, symbiosis with bacteria, or denitrification. NanoSIMS (Secondary Ion Mass Spectrometry) imaging is a powerful analytical technique to visualize and quantify the incorporation and transfer of isotopically labeled compounds in organisms with subcellular resolution. We used NanoSIMS imaging, correlated with TEM ultrastructural observations of individual foraminifera, to study the metabolism of intertidal Ammonia tepida, which has shown strongly reduced metabolism under anoxia. Individuals were fed with a 13C-labeled microalgal biofilm and incubated for 4 weeks in oxic and anoxic conditions, respectively. NanoSIMS imaging reveal strongly contrasting cellular-level dynamics of integration and transfer of the ingested biofilm components under the two conditions. In oxic conditions, ingested biofilm components are internalized, metabolized, and used for biosynthesis of different cellular components on a time scale of 24 hours: Lipid droplets are formed, then consumed through respiration. In contrast, upon the onset of anoxia, individual internalized biofilm components remain visible within the cytoplasm after 4 weeks. Lipids of different compositions are initially formed but then not respired. These observations indicate that foraminifera do initially have an active heterotrophic metabolism in the absence of oxygen, but this it is strongly reduced when oxygen is no longer available. Isotopic labeling experiments, NanoSIMS and TEM imaging, and GC-MS will be key to study metabolic mechanisms under anoxic conditions in marine environments.

  7. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    PubMed Central

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies. PMID:25484487

  8. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    PubMed

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies.

  9. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham-Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies.

  10. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    PubMed Central

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  11. Proximate composition and caloric content of eight Lake Michigan fishes

    USGS Publications Warehouse

    Rottiers, Donald V.; Tucker, Robert M.

    1982-01-01

    We measured the proximate composition (percentage lipid, water, fat-free dry material, ash) and caloric content of eight species of Lake Michigan fish: lake trout (Salvelinus namaycush), coho salmon (Oncorhynchus kisutch), lake whitefish (Coregonus clupeaformis), bloater (Coregonus hoyi), alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), deepwater sculpin (Myoxocephalus quadricornis), and slimy sculpin (Cottus cognatus). Except for alewives, proximate composition and caloric content did not differ significantly between males and females. And, for coho salmon, there was no significant difference in composition between fish collected in different years. Lipid and caloric content of lake trout increased directly with age. In all species examined, lipids and caloric contents were significantly lower in small, presumably immature, fish than in larger, older fish. Lipid content of lake trout, lake whitefish, and bloaters (range of means, 16-22%) was nearly 3 times higher than that of coho salmon, sculpins, rainbow smelt, and alewives (range of means, 5.2-7.0%). The mean caloric content ranged from 6.9 to 7.1 kcal/g for species high in lipids and from 5.8 to 6.3 kcal/g for species low in lipids. Although the caloric content of all species varied directly with lipid content and inversely with water content, an increase in lipid content did not always coincide with a proportional increase in caloric content when other components of fish composition were essentially unchanged. This observation suggests that the energy content of fish estimated from the proximate composition by using universal conversion factors may not necessarily be accurate.

  12. Composition Based Strategies for Controlling Radii in Lipid Nanotubes

    PubMed Central

    Kurczy, Michael E.; Mellander, Lisa J.; Najafinobar, Neda; Cans, Ann-Sofie

    2014-01-01

    Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome–lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature. PMID:24392077

  13. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.

    PubMed

    Kirejev, Vladimir; Ali Doosti, Baharan; Shaali, Mehrnaz; Jeffries, Gavin D M; Lobovkina, Tatsiana

    2018-04-17

    Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  15. Regulation of Cellular Diacylglycerol through Lipid Phosphate Phosphatases Is Required for Pathogenesis of the Rice Blast Fungus, Magnaporthe oryzae

    PubMed Central

    Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan

    2014-01-01

    Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955

  16. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.

  17. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera)

    PubMed Central

    Zhi, Yao; Taylor, Matthew C.; Campbell, Peter M.; Warden, Andrew C.; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R.; White, Rosemary G.; Chen, Wenli; Singh, Surinder P.; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues. PMID:28824675

  18. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera).

    PubMed

    Zhi, Yao; Taylor, Matthew C; Campbell, Peter M; Warden, Andrew C; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R; White, Rosemary G; Chen, Wenli; Singh, Surinder P; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera . Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.

  19. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    PubMed Central

    Mebarek, Saida; Abousalham, Abdelkarim; Magne, David; Do, Le Duy; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Buchet, René

    2013-01-01

    The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions. PMID:23455471

  20. Immunomodulatory effects of exosomes produced by virus-infected cells.

    PubMed

    Petrik, Juraj

    2016-08-01

    Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Flotillin proteins recruit sphingosine to membranes and maintain cellular sphingosine-1-phosphate levels

    PubMed Central

    Riento, Kirsi; Zhang, Qifeng; Clark, Jonathan; Begum, Farida; Stephens, Elaine; Wakelam, Michael J.

    2018-01-01

    Sphingosine-1-phosphate (S1P) is an important lipid signalling molecule. S1P is produced via intracellular phosphorylation of sphingosine (Sph). As a lipid with a single fatty alkyl chain, Sph may diffuse rapidly between cellular membranes and through the aqueous phase. Here, we show that the absence of microdomains generated by multimeric assemblies of flotillin proteins results in reduced S1P levels. Cellular phenotypes of flotillin knockout mice, including changes in histone acetylation and expression of Isg15, are recapitulated when S1P synthesis is perturbed. Flotillins bind to Sph in vitro and increase recruitment of Sph to membranes in cells. Ectopic re-localisation of flotillins within the cell causes concomitant redistribution of Sph. The data suggest that flotillins may directly or indirectly regulate cellular sphingolipid distribution and signalling. PMID:29787576

  2. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell

    NASA Astrophysics Data System (ADS)

    Hamilton, Jason S.; Aguilar, Roberto; Petros, Robby A.; Verbeck, Guido F.

    2017-05-01

    The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids.

  3. Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers.

    PubMed

    Syed, Aleem; Smith, Emily A

    2017-06-12

    Raman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies.

  4. Enhanced labeling of microalgae cellular lipids by application of an electric field generated by alternating current.

    PubMed

    Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu

    2012-05-01

    An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Adaptation of retrovirus producer cells to serum deprivation: Implications in lipid biosynthesis and vector production.

    PubMed

    Rodrigues, A F; Amaral, A I; Veríssimo, V; Alves, P M; Coroadinha, A S

    2012-05-01

    The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering. Copyright © 2011 Wiley Periodicals, Inc.

  6. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.

    PubMed

    Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen

    2016-07-05

    Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.

  7. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters.

    PubMed

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  8. A Standardized Composition Comprised of Extracts from Rosmarinus officinalis, Annona squamosa and Zanthoxylum clava-herculis for Cellulite

    PubMed Central

    Yimam, Mesfin; Lee, Young-Chul; Jiao, Ping; Hong, Mei; Brownell, Lidia; Jia, Qi

    2017-01-01

    Background: Cellulite, characterized by changes in the skin morphology presented as dimpled or puckered skin appearance, is highly prevalent among postadolescent women. Cellulite management ranges from topical cream applications to invasive procedures. While some interventions showed improvements in physical appearances of affected areas, so far, none have reversed the condition to a full recovery. These unsuccessful measures signify the intricate nature of cellulite etiology highlighting its complexity leading to the possibility for a combination treatment approach to target multiple mechanisms. Materials and Methods: We screened our plant library for extracts that reduce cellular lipid accumulation, improve microcirculation, possess high total antioxidant capacity, significant anti-platelet aggregation, and anti-inflammatory activities using lipid accumulation assay in 3T3-L1 cells, Croton oil-induced hemorrhoid test in rats as a model for microcirculation, anti-platelet aggregation assay, nitric oxide (NO) inhibition assay, and 1,1-diphenyl-2-picrylhydrazyl assay. Results: Three known botanicals such as Rosemary officinalis, Annona squamosa and Zanthoxylum clava-herculis were identified as lead extracts in these tests. Treatment of 3T3 cell with A. squamosa at 1 μg/ml resulted in 68.8% reduction in lipid accumulation. In croton oil-induced hemorrhoid study, Z. clava-herculis reduced the recto-anus coefficient by 79.6% at 6 mg/kg indicating improvement in microcirculations. Similarly, R. officinalis caused inhibition of 82%, 71.8%, and 91.8% in platelet aggregation, NO production and free radical generation at 31.25 μg/ml, 6.2 μg/ml, and 40 μg/ml concentrations suggesting its anti-oxidant, and anti-inflammatory activities. Conclusions: Data depicted here suggest that formulation of these well-known botanicals at a specific ratio perhaps may yield a composition with a much wider spectrum of mechanisms of actions to impact the multiple pathways involved in cellulite onset, continuation, or exacerbations. SUMMARY Cellulite represents one of the main esthetic concerns of women with a likely cause of psychological insecurities. Its pathophysiology involves multiple pathways that include vascular, adipose tissues, inflammation, structural and physiological.Treatment strategies for cellulite comprises increasing microcirculation flow, reducing lipogenesis, promoting lipolysis, free radicals scavenging or formation reduction, anti-inflammation and other invasive procedures.We screened our plant library for extracts that reduces cellular lipid accumulation, improves microcirculation, possesses high total antioxidant capacity, inhibits platelet aggregation, and moderates inflammation.Botanical extracts from Rosmarinus officinalis, Annona squamosa and Zanthoxylum clava-herculis were identified as leads and formulated to yield a standardized composition designated as UP1307 and suggested its usage for cellulite. Abbreviations Used: GMP: Good Manufacturing Practice; CA: Carnosic acid; NF-kB: nuclear factor-kB; HPLC: high-performance liquid chromatography; EtOH: Ethanol; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; SD: Sprague Dawley; RAC: recto-anus coefficient; LPS: Lipopolysaccharide; DPPH: 1,1-diphenyl-2-picryl-hydrazyl; TNF-α: tumor necrosis factor; NO: Nitric oxide PMID:29263624

  9. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation.

    PubMed

    Huang, Tai-Chun; Lu, Kwok-Tung; Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β-amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production.

  10. Resveratrol Protects Rats from Aβ-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation

    PubMed Central

    Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β–amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production. PMID:22220203

  11. Lipid A binding sites in membranes of macrophage tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.

    1988-10-15

    Lipopolysaccharide affects a variety of eukaryotic cells and mammalian organisms. These actions are involved in the pathogenesis of Gram-negative septicemia. Many of the actions of lipopolysaccharide are believed to be caused by its active moiety, lipid A. Our laboratory has previously identified a bioactive lipid A precursor, termed lipid IVA, which can be labeled with 32P of high specific activity and purified. In this work we have used the labeled probe, 4'-32P-lipid IVA, to develop a novel assay for the specific binding of lipid IVA to whole cells. We have also demonstrated its use in a ligand blotting assay ofmore » immobilized cellular proteins. Using the whole cell assay, we show that 4'-32P-lipid IVA specifically binds to RAW 264.7 macrophage-like cultured cells. The binding is saturable, is inhibited with excess unlabeled lipid IVA, and is proteinase K-sensitive. It displays cellular and pharmacological specificity. Using the ligand blotting assay, we show that several RAW 264.7 cell proteins can bind 4'-32P-lipid IVA. The two principal binding proteins have Mr values of 31 and 95 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fractionation studies indicate that the 31-kDa protein is enriched in the nuclear fraction and may be a histone, whereas the 95-kDa protein is enriched in the membrane fraction. The binding assays that we have developed should lead to a clearer understanding of lipid A/animal cell interactions.« less

  12. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    PubMed Central

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong

    2012-01-01

    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  13. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging

    PubMed Central

    Mitchell, Nick; Kalber, Tammy L.; Cooper, Margaret S.; Sunassee, Kavitha; Chalker, Samantha L.; Shaw, Karen P.; Ordidge, Katherine L.; Badar, Adam; Janes, Samuel M.; Blower, Philip J.; Lythgoe, Mark F.; Hailes, Helen C.; Tabor, Alethea B.

    2013-01-01

    A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd3+, 64Cu2+, or 111In3+, and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)2000] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent. PMID:23131536

  14. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  15. Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins

    PubMed Central

    Lima-Fernandes, Evelyne; Enslen, Hervé; Camand, Emeline; Kotelevets, Larissa; Boularan, Cédric; Achour, Lamia; Benmerah, Alexandre; Gibson, Lucien C D; Baillie, George S; Pitcher, Julie A; Chastre, Eric; Etienne-Manneville, Sandrine; Marullo, Stefano; Scott, Mark G H

    2011-01-01

    The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins β-arrestins (β-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, β-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, β-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. β-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration. PMID:21642958

  16. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  17. Bicarbonate trigger for inducing lipid accumulation in algal systems

    DOEpatents

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  18. The Role of Lipid Droplets in Mortierella alpina Aging Revealed by Integrative Subcellular and Whole-Cell Proteome Analysis.

    PubMed

    Yu, Yadong; Li, Tao; Wu, Na; Jiang, Ling; Ji, Xiaojun; Huang, He

    2017-03-07

    Lipid droplets (LDs) participate in many cellular processes in oleaginous microorganisms. However, the exact function of LDs in the Mortierella alpina aging process remains elusive. Herein, subcellular proteomics was employed to unveil the composition and dynamics of the LD proteome in the aging M. alpina for the first time. More than 400 proteins were detected in LDs and 62 of them changed expression significantly during aging. By combining the LD proteomic data with whole-cell data, we found that the carbohydrate metabolism and de novo lipid biosynthesis were all inhibited during aging of M. alpina mycelia. The up-regulation of fructose metabolism-related enzymes in LDs might imply that LDs facilitated the fructose metabolism, which in turn might cause pyruvate to accumulate and enter malate-pyruvate cycle, and ultimately, provide additional NADPH for the synthesis of arachidonic acid (ARA). Lysophospholipase and lecithinase were up-regulated in LDs during the aging process, suggesting that the phospholipids and lecithin were starting to be hydrolyzed, in order to release fatty acids for the cells. The impairment of the anti-oxidant system might lead to the accumulation of ROS and consequently cause the up-regulation of autophagy-related proteins in LDs, which further induces the M. alpina mycelia to activate the autophagy process.

  19. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    PubMed

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Lipid-converter, a framework for lipid manipulations in molecular dynamics simulations

    PubMed Central

    Larsson, Per; Kasson, Peter M.

    2014-01-01

    Construction of lipid membrane and membrane protein systems for molecular dynamics simulations can be a challenging process. In addition, there are few available tools to extend existing studies by repeating simulations using other force fields and lipid compositions. To facilitate this, we introduce lipidconverter, a modular Python framework for exchanging force fields and lipid composition in coordinate files obtained from simulations. Force fields and lipids are specified by simple text files, making it easy to introduce support for additional force fields and lipids. The converter produces simulation input files that can be used for structural relaxation of the new membranes. PMID:25081234

  1. [Mechanisms of the therapeutic effect of bemitil in neuromuscular diseases].

    PubMed

    Lobzin, V S; Saĭkova, L A; Chukhlovina, M L; Pustozerov, V G

    1991-01-01

    Studies into the mechanism of the therapeutic action of bemitil were carried out in 21 patients with neuromuscular diseases. Measurements of lipid peroxidation and permeability of the erythrocytic membranes demonstrated the drug to influence carbohydrate and lipid metabolism, lipid peroxidation, and permeability of the cellular membranes. It is recommended that bemitil be used for the treatment of neuromuscular diseases.

  2. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  3. Pasting characteristics of starch-lipid composites

    USDA-ARS?s Scientific Manuscript database

    Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

  4. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  5. Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes

    DOEpatents

    Rahman, Yueh Erh

    1977-11-10

    A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.

  6. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine epidermal lipids, revealed satisfying results regarding alterations of skin lipid composition in canine atopic dermatitis and might be suitable for epidermal lipid investigations of further canine skin diseases. Although the ceramide composition should be unaffected by the deeper lipid sampling of skin scrub compared to other sampling methods, further studies are required to determine methodological differences. PMID:25012966

  7. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy

    PubMed Central

    Shimura, Mari; Shindou, Hideo; Szyrwiel, Lukasz; Tokuoka, Suzumi M.; Hamano, Fumie; Matsuyama, Satoshi; Okamoto, Mayumi; Matsunaga, Akihiro; Kita, Yoshihiro; Ishizaka, Yukihito; Yamauchi, Kazuto; Kohmura, Yoshiki; Lobinski, Ryszard; Shimizu, Isao; Shimizu, Takao

    2016-01-01

    Fatty acids are taken up by cells and incorporated into complex lipids such as neutral lipids and glycerophospholipids. Glycerophospholipids are major constituents of cellular membranes. More than 1000 molecular species of glycerophospholipids differ in their polar head groups and fatty acid compositions. They are related to cellular functions and diseases and have been well analyzed by mass spectrometry. However, intracellular imaging of fatty acids and glycerophospholipids has not been successful due to insufficient resolution using conventional methods. Here, we developed a method for labeling fatty acids with bromine (Br) and applied scanning X-ray fluorescence microscopy (SXFM) to obtain intracellular Br mapping data with submicrometer resolution. Mass spectrometry showed that cells took up Br-labeled fatty acids and metabolized them mainly into glycerophospholipids in CHO cells. Most Br signals observed by SXFM were in the perinuclear region. Higher resolution revealed a spot-like distribution of Br in the cytoplasm. The current method enabled successful visualization of intracellular Br-labeled fatty acids. Single-element labeling combined with SXFM technology facilitates the intracellular imaging of fatty acids, which provides a new tool to determine dynamic changes in fatty acids and their derivatives at the single-cell level.—Shimura, M., Shindou, H., Szyrwiel, L., Tokuoka, S. M., Hamano, F., Matsuyama, S., Okamoto, M., Matsunaga, A., Kita, Y., Ishizaka, Y., Yamauchi, K., Kohmura, Y., Lobinski, R., Shimizu, I., Shimizu, T. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy. PMID:27601443

  8. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    PubMed

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  9. Functional diversification and specialization of cytosolic 70-kDa heat shock proteins.

    PubMed

    McCallister, Chelsea; Siracusa, Matthew C; Shirazi, Farzaneh; Chalkia, Dimitra; Nikolaidis, Nikolas

    2015-03-20

    A fundamental question in molecular evolution is how protein functional differentiation alters the ability of cells and organisms to cope with stress and survive. To answer this question we used two paralogous Hsp70s from mouse and explored whether these highly similar cytosolic molecular chaperones, which apart their temporal expression have been considered functionally interchangeable, are differentiated with respect to their lipid-binding function. We demonstrate that the two proteins bind to diverse lipids with different affinities and therefore are functionally specialized. The observed lipid-binding patterns may be related with the ability of both Hsp70s to induce cell death by binding to a particular plasma-membrane lipid, and the potential of only one of them to promote cell survival by binding to a specific lysosomal-membrane lipid. These observations reveal that two seemingly identical proteins differentially modulate cellular adaptation and survival by having acquired specialized functions via sequence divergence. Therefore, this study provides an evolutionary paradigm, where promiscuity, specificity, sub- and neo-functionalization orchestrate one of the most conserved systems in nature, the cellular stress-response.

  10. Approaches for the Analysis of Chlorinated Lipids

    PubMed Central

    Wang, Wen-yi; Albert, Carolyn J.; Ford, David A.

    2013-01-01

    Leukocytes are key cellular mediators of human diseases through their role in inflammation. Identifying unique molecules produced by leukocytes may provide new biomarkers and mechanistic insights into the role of leukocytes in disease. Chlorinated lipids are generated as a result of myeloperoxidase-containing leukocyte-derived hypochlorous acid targeting the vinyl ether bond of plasmalogens. The initial product of this reaction is α-chlorofatty aldehyde. α -Chlorofatty aldehyde is both oxidized to α-chlorofatty acid and reduced to α-chlorofatty alcohol by cellular metabolism. This review focuses on the separation techniques and quantitative analysis for these chlorinated lipids. For α-chlorofatty acid the negative charge of carboxylic acids is exploited to detect the chlorinated lipid species of these acids by electrospray ionization mass spectrometry in the negative ion mode. In contrast, α-chlorofatty aldehyde and α-chlorofatty alcohol are converted to pentafluorobenzyl oxime and pentafluorobenzoyl ester derivatives, which are detected by negative ion-chemical ionization mass spectrometry. These two detection methods coupled with the use of stable isotope internal standards and either liquid chromatography or gas chromatography provide highly sensitive analytical approaches to measure these novel lipids. PMID:24056259

  11. Membrane-sculpting BAR domains generate stable lipid microdomains.

    PubMed

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G; Lappalainen, Pekka

    2013-09-26

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  13. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    PubMed

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P

    2014-10-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  14. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942

    PubMed Central

    Ruffing, Anne M.; Jones, Howland D.T.

    2012-01-01

    The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production. PMID:22473793

  16. Lipid cross-linking of nanolipoprotein particles substantially enhances serum stability and cellular uptake [Lipid crosslinking enhances the stability of nanolipoprotein particles in serum by multiple orders of magnitude

    DOE PAGES

    Gilmore, Sean F.; Blanchette, Craig D.; Scharadin, Tiffany M.; ...

    2016-07-13

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100%more » serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ~10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. Lastly, these results collectively support the potential utility of X-NLPs for a variety of in vivo applications.« less

  17. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe.

    PubMed

    Glatz, Attila; Pilbat, Ana-Maria; Németh, Gergely L; Vince-Kontár, Katalin; Jósvay, Katalin; Hunya, Ákos; Udvardy, Andor; Gombos, Imre; Péter, Mária; Balogh, Gábor; Horváth, Ibolya; Vígh, László; Török, Zsolt

    2016-03-01

    Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.

  18. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    PubMed Central

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes. PMID:24411253

  19. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna; Kot, Anna M

    2018-04-19

    This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.

  20. Lipid cross-linking of nanolipoprotein particles substantially enhances serum stability and cellular uptake [Lipid crosslinking enhances the stability of nanolipoprotein particles in serum by multiple orders of magnitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Sean F.; Blanchette, Craig D.; Scharadin, Tiffany M.

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100%more » serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ~10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. Lastly, these results collectively support the potential utility of X-NLPs for a variety of in vivo applications.« less

  1. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver.

    PubMed

    Tsai, Tsung-Huang; Chen, Elaine; Li, Lan; Saha, Pradip; Lee, Hsiao-Ju; Huang, Li-Shin; Shelness, Gregory S; Chan, Lawrence; Chang, Benny Hung-Junn

    2017-07-03

    Excess triglyceride (TG) accumulation in the liver underlies fatty liver disease, a highly prevalent ailment. TG occurs in the liver sequestered in lipid droplets, the major lipid storage organelle. Lipid droplets are home to the lipid droplet proteins, the most abundant of which are the perilipins (PLINs), encoded by 5 different genes, Plin1 to Plin5. Of the corresponding gene products, PLIN2 is the only constitutive and ubiquitously expressed lipid droplet protein that has been used as a protein marker for lipid droplets. We and others reported that plin2 -/- mice have an ∼60% reduction in TG content, and are protected against fatty liver disease. Here we show that PLIN2 overexpression protects lipid droplets against macroautophagy/autophagy, whereas PLIN2 deficiency enhances autophagy and depletes hepatic TG. The enhanced autophagy in plin2 -/- mice protects against severe ER stress-induced hepatosteatosis and hepatocyte apoptosis. In contrast, hepatic TG depletion resulting from other genetic and pharmacological manipulations has no effect on autophagy. Importantly, PLIN2 deficiency lowers cellular TG content in wild-type mouse embryonic fibroblasts (MEFs) via enhanced autophagy, but does not affect cellular TG content in atg7 -/- MEFs that are devoid of autophagic function. Conversely, adenovirus-shAtg7-mediated hepatic Atg7 knockdown per se does not alter the hepatic TG level, suggesting a more complex regulation in vivo. In sum, PLIN2 guards its own house, the lipid droplet. PLIN2 overexpression protects against autophagy, and its downregulation stimulates TG catabolism via autophagy.

  2. Phosphatidic acid - a simple phospholipid with multiple faces.

    PubMed

    Zegarlińska, Jolanta; Piaścik, Magda; Sikorski, Aleksander F; Czogalla, Aleksander

    2018-01-01

    Phosphatidic acid (PA) is the simplest glycerophospholipid naturally occurring in living organisms, and even though its content among other cellular lipids is minor, it is drawing more and more attention due to its multiple biological functions. PA is a precursor for other phospholipids, acts as a lipid second messenger and, due to its structural properties, is also a modulator of membrane shape. Although much is known about interaction of PA with its effectors, the molecular mechanisms remain unresolved to a large degree. Throughout many of the well-characterized PA cellular sensors, no conserved binding domain can be recognized. Moreover, not much is known about the cellular dynamics of PA and how it is distributed among subcellular compartments. Remarkably, PA can play distinct roles within each of these compartments. For example, in the nucleus it behaves as a mitogen, influencing gene expression regulation, and in the Golgi membrane it plays a role in membrane trafficking. Here, we discuss how a biophysical experimental approach enabled PA behavior to be described in the context of a lipid bilayer and to what extent various physicochemical conditions may modulate the functional properties of this lipid. Understanding these aspects would help to unravel specific mechanisms of PA-driven membrane transformations and protein recruitment and thus would lead to a clearer picture of the biological role of PA.

  3. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  4. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane.

    PubMed

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C; Fradin, Cécile

    2015-10-30

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol's condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content.

  5. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach.

    PubMed

    Soema, Peter C; Willems, Geert-Jan; Jiskoot, Wim; Amorij, Jean-Pierre; Kersten, Gideon F

    2015-08-01

    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. One man's poison is another man's meat: using azithromycin-induced phospholipidosis to promote ocular surface health.

    PubMed

    Liu, Yang; Kam, Wendy R; Ding, Juan; Sullivan, David A

    2014-06-05

    Drug-induced phospholipidosis (PLD) is a common adverse effect which has led to the termination of clinical trials for many candidate pharmaceuticals. However, this lipid-inducing effect may be beneficial in the treatment of meibomian gland dysfunction (MGD). MGD is the major cause of dry eye disease (DED), which affects 40 million people in the USA and has no cure. Azithromycin (AZM) is a PLD-inducing antibiotic that is used off-label to treat MGD, and is presumably effective because it suppresses the MGD-associated conjunctival inflammation (i.e. posterior blepharitis) and growth of lid bacteria. We hypothesize that AZM can act directly to promote the function of human meibomian gland epithelial cells by inducing PLD in these cells, characterized by the accumulation of lipids and lysosomes. Immortalized human meibomian gland epithelial cells (HMGEC) were cultured with or without azithromycin for 5 days. Cells were evaluated for cholesterol (Filipin) and neutral lipid (LipidTox) staining, as well as the appearance of lysosomes (LysoTracker) and lamellar bodies (transmission electron microscopy, TEM). The lipid composition of cellular lysates was analyzed by high performance thin-layer chromatography. Our findings demonstrate that AZM stimulates the accumulation of free cholesterol, neutral lipids and lysosomes in HMGEC. This AZM-induced increase of neutral lipid content occurred predominantly within lysosomes. Many of these vesicles appeared to be lamellar bodies by TEM, which is the characteristic of PLD. Our findings also show that AZM promotes an accumulation of free and esterified cholesterol, as well as phospholipids in HMGECimmortalized. Our results support our hypothesis and confirm the beneficial effect of PLD induced by AZM on HMGEC. Our discovery reveals a new potential use of PLD-inducing drugs, and makes this adverse effect a beneficial effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  8. Triglyceride accumulation protects against fatty acid-induced lipotoxicity

    PubMed Central

    Listenberger, Laura L.; Han, Xianlin; Lewis, Sarah E.; Cases, Sylvaine; Farese, Robert V.; Ory, Daniel S.; Schaffer, Jean E.

    2003-01-01

    Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic β-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation. PMID:12629214

  9. Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration.

    PubMed

    Vongsangnak, Wanwipa; Kingkaw, Amornthep; Yang, Junhuan; Song, Yuanda; Laoteng, Kobkul

    2018-09-05

    Lipid accumulation is an important cellular process of oleaginous microorganisms. To dissect metabolic behavior of oleaginous Zygomycetes, the lipid over-producing strain, Mucor circinelloides WJ11, was subjected for omics-scale analysis. The genome annotation was improved and used for construction of genome-scale metabolic network of WJ11 strain. Then, the quality of the metabolic network was enhanced by incorporating gene and protein expression data. In addition to the known oleaginous genes, our results showed a number of newly identified unique genes of WJ11 strain, which involved in central carbon metabolism, lipid, amino acid and nitrogen metabolisms. The systematic compilations indicated the additional metabolic routes with the involvement in supplying precursors (acetyl-CoA, NADPH and fatty acyl substrate) for fatty acid and lipid biosynthesis. Interestingly, amino acid metabolism played a substantial role in responsive mechanism of the fungal cells to nutrient imbalance circumstance through lipogenesis as the finding of reporter metabolites (l-methionine, l-glutamate, l-aspartate, l-asparagine and l-glutamine) at lipid-accumulating stage. The cooperative function of certain lipid-degrading enzymes at the particular growth stage was elucidated by integrating the metabolic networks with gene expression data. The unique feature of carotenoid biosynthetic route in WJ11 strain was also identified by protein domain analysis. Taken together, there were cross-functional metabolisms in regulating lipid biosynthesis and retaining high level of cellular lipids in the representative of lipid over-producing strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties.

    PubMed

    Luo, Jie; Huang, Ziyu; Liu, Hongna; Zhang, Yan; Ren, Fazheng

    2018-04-15

    Yak milk fat products constitute the base of Qinghai-Tibetan pastoralists' daily food intake. Despite the great importance of fat in processing and pastoralists' health, studies about yak milk fat are scarce. In this study, the lipid composition and the morphological properties of milk fat globule membranes (MFGMs) of yak milk were investigated. The results demonstrated that the yak milk had a higher cholesterol and sphingomyelin content compared to cow milk. In situ structural investigations performed at 25 °C by confocal microscopy showed the presence of lipid domains in yak MFGM, with a larger number and wider size range compared to cow milk. Moreover, the simultaneous localization of glycosylated molecules and polar lipids indicated that glycosylated molecules could be integrated into the lipid domains in yak MFGM. Different characteristics in yak MFGM could be related to the lipid composition and may affect the functions of yak milk lipids during processing and digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    PubMed

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  12. Polar lipid composition of mammalian hair.

    PubMed

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  13. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability.

    PubMed

    Sun, Jiabei; Bi, Chao; Chan, Hok Man; Sun, Shaoping; Zhang, Qingwen; Zheng, Ying

    2013-11-01

    The aim of the present study was to blend liquid lipids with solid lipids to encapsulate curcumin in solid lipid nanoparticles (SLNs), thereby improving the dispersibility and chemical stability of curcumin, prolonging its antitumour activity and cellular uptake and enhancing its bioavailability. Curcumin-loaded SLNs (C-SLNs) were prepared by high-pressure homogenisation with liquid lipid Sefsol-218(®). The morphology, stability and release of curcumin in the optimised formulation were investigated. The anti-cancer activity of the formulation was evaluated in MCF-7 cells. Fluorescence spectrophotometry was used to quantify cellular uptake of the drug. The pharmacokinetic profiles of curcumin in SLNs after intravenous administration were studied in rats. Blending Sefsol-218(®) into a lipid matrix reduced the particle size without improving drug loading. An optimised formulation consisting of Dynasan 114(®), Sefsol-218(®), and Pluronic F68(®) (630:70:300, w/w) loaded with 0.8% drug was prepared. This formulation could be dispersed in water with a mean particle size of 152.8 ± 4.7 nm and a 90% entrapment efficiency. Curcumin displayed a two-phase sustained release profile from C-SLNs with improved chemical stability. Compared to the solubilised solution, C-SLNs exhibited prolonged inhibitory activity in cancer cells, as well as time-dependent increases in intracellular uptake. After intravenous administration to rats, the bioavailability of curcumin was increased by 1.25-fold. C-SLNs with improved dispersibility and chemical stability in an aqueous system have been successfully developed. C-SLNs may represent a potentially useful cancer therapeutic curcumin delivery system. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Influence of north climatic conditions on the peat lipids composition

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.

    2018-03-01

    The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.

  15. Charge-reversal Lipids, Peptide-based Lipids, and Nucleoside-based Lipids for Gene Delivery

    PubMed Central

    LaManna, Caroline M.; Lusic, Hrvoje; Camplo, Michel; McIntosh, Thomas J.; Barthélémy, Philippe; Grinstaff, Mark W.

    2013-01-01

    Conspectus Twenty years after gene therapy was introduced in the clinic, advances in the technique continue to garner headlines as successes pique the interest of clinicians, researchers, and the public. Gene therapy’s appeal stems from its potential to revolutionize modern medical therapeutics by offering solutions to a myriad of diseases by tailoring the treatment to a specific individual’s genetic code. Both viral and non-viral vectors have been used in the clinic, but the low transfection efficiencies when utilizing non-viral vectors have lead to an increased focus on engineering new gene delivery vectors. To address the challenges facing non-viral or synthetic vectors, specifically lipid-based carriers, we have focused on three main themes throughout our research: 1) that releasing the nucleic acid from the carrier will increase gene transfection; 2) that utilizing biologically inspired designs, such as DNA binding proteins, to create lipids with peptide-based headgroups will improve delivery; and 3) that mimicking the natural binding patterns observed within DNA, by using lipids having a nucleoside headgroup, will give unique supramolecular assembles with high transfection efficiency. The results presented in this Account demonstrate that cellular uptake and transfection efficacy can be improved by engineering the chemical components of the lipid vectors to enhance nucleic acid binding and release kinetics. Specifically, our research has shown that the incorporation of a charge-reversal moiety to initiate change of the lipid from positive to negative net charge during the transfection process improves transfection. In addition, by varying the composition of the spacer (rigid, flexible, short, long, and aromatic) between the cationic headgroup and the hydrophobic chains, lipids can be tailored to interact with different nucleic acids (DNA, RNA, siRNA) and accordingly affect delivery, uptake outcomes, and transfection efficiency. Introduction of a peptide headgroup into the lipid provides a mechanism to affect the binding of the lipid to the nucleic acid, to influence the supramolecular lipoplex structure, and to enhance gene transfection activity. Lastly, we discuss the in-vitro successes we have had when using lipids possessing a nucleoside headgroup to create unique self-assembled structures and to deliver DNA to cells. In this Account, we state our hypotheses and design elements as well as describe the techniques that we have utilized in our research, in order to provide readers with the tools to characterize and engineer new vectors. PMID:22439686

  16. Thermodynamic study of benzocaine insertion into different lipid bilayers

    NASA Astrophysics Data System (ADS)

    Cascales, J. J. López; Costa, S. D. Oliveira; Porasso, R. D.

    2011-10-01

    Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy (ΔG) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy (ΔG) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process.

  17. Thermodynamic study of benzocaine insertion into different lipid bilayers.

    PubMed

    Cascales, J J López; Costa, S D Oliveira; Porasso, R D

    2011-10-07

    Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy (ΔG) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy (ΔG) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process. © 2011 American Institute of Physics

  18. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers

    PubMed Central

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M.; Israelachvili, Jacob N.

    2014-01-01

    The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from “normal” (healthy) and “disease-like” [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3–4 nm) with strong intermembrane adhesion (∼0.36 mJ/m2), in contrast to its formation of thicker (7–8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m2) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane–protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases. PMID:24516125

  19. New insights on glucosylated lipids: metabolism and functions.

    PubMed

    Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio

    2013-09-01

    Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    PubMed

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  1. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows

    PubMed Central

    Muñoz-Garcia, Agustí; Williams, Joseph B.

    2008-01-01

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments. PMID:18838693

  2. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows.

    PubMed

    Muñoz-Garcia, Agustí; Williams, Joseph B

    2008-10-07

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments.

  3. Lipid content and composition of coffee brews prepared by different methods.

    PubMed

    Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B

    1993-04-01

    The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup.

  4. Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient.

    PubMed

    Champagne, Alex M; Muñoz-Garcia, Agustí; Shtayyeh, Tamer; Tieleman, B Irene; Hegemann, Arne; Clement, Michelle E; Williams, Joseph B

    2012-12-15

    Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments. Furthermore, we compared covalently bound lipids with CWL and intercellular lipids in the lark family (Alaudidae). We found that CWL increases in birds from more mesic environments, and this increase was related to changes in intercellular SC lipid composition. The most consistent pattern that emerged was a decrease in the relative amount of cerebrosides as CWL increased, a pattern that is counterintuitive based on studies of mammals with Gaucher disease. Although covalently bound lipids in larks did not correlate with CWL, we found that covalently bound cerebrosides correlated positively with intercellular cerebrosides and intercellular cholesterol ester, and intercellular cerebrosides correlated positively with covalently bound free fatty acids. Our results led us to propose a new model for the organization of lipids in the avian SC, in which the sugar moieties of cerebrosides lie outside of intercellular lipid layers, where they may interdigitate with adjacent intercellular cerebrosides or with covalently bound cerebrosides.

  5. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  6. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    PubMed

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10-16) and percent truncal body fat (p<2*10-16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  7. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    PubMed Central

    Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6–21.7), and median BMI SDS 2.8 (range 1.3–5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4–7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. Results At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10−4) and positively with TG (p = 9.7*10−6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10−16) and percent truncal body fat (p<2*10−16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve. PMID:29444114

  8. Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gaie; Jeffree, Chris E.; McDonald, Terence

    2004-10-01

    The assembly of respiratory syncytial virus (RSV) in lipid-rafts was examined in Hep2 cells. Confocal and electron microscopy showed that during RSV assembly, the cellular distribution of the complement regulatory proteins, decay accelerating factor (CD55) and CD59, changes and high levels of these cellular proteins are incorporated into mature virus filaments. The detergent-solubility properties of CD55, CD59, and the RSV fusion (F) protein were found to be consistent with each protein being located predominantly within lipid-raft structures. The levels of these proteins in cell-released virus were examined by immunoelectronmicroscopy and found to account for between 5% and 15% of themore » virus attachment (G) glycoprotein levels. Collectively, our findings suggest that an intimate association exists between RSV and lipid-raft membranes and that significant levels of these host-derived raft proteins, such as those regulating complement activation, are subsequently incorporated into the envelope of mature virus particles.« less

  9. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  10. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  11. Polar lipid composition of a new halobacterium

    NASA Technical Reports Server (NTRS)

    Tindall, B. J.; Tomlinson, G. A.; Hochstein, L. I.

    1987-01-01

    Investigations of the polar lipid composition of a new aerobic, extremely halophilic aracheabacterium capable of nitrate reduction have shown that this organism contains two previously unknown phospholycolipids derived from diphytanyl glycerol diethers. Comparison of the lipid pattern from this new isolate with other known strains indicate that this organism is novel. On the basis of the unique polar lipid pattern it can be concluded that this organism represents a new taxon, at least at the species level.

  12. Alteration of interleaflet coupling due to compounds displaying rapid translocation in lipid membranes

    PubMed Central

    Reigada, Ramon

    2016-01-01

    The spatial coincidence of lipid domains at both layers of the cell membrane is expected to play an important role in many cellular functions. Competition between the surface interleaflet tension and a line hydrophobic mismatch penalty are conjectured to determine the transversal behavior of laterally heterogeneous lipid membranes. Here, by a combination of molecular dynamics simulations, a continuum field theory and kinetic equations, I demonstrate that the presence of small, rapidly translocating molecules residing in the lipid bilayer may alter its transversal behavior by favoring the spatial coincidence of similar lipid phases. PMID:27596355

  13. Simulated microgravity impacts the plant plasmalemma lipid bilayer

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy

    Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and unsaturated fatty acids, that maintains the plasmalemma fluidity in the normal limits, and it may be considered as an adaptive pattern. This assumption was directly confirmed by the data on plasmalemma fluidity in control and under clinorotation defined by electron paramagnetic resonance spectrometer Bruker Elexsys E 580 (Germany). It was in the first established a significant increase in the sterol content under clinorotation. It is of much interest because sterols along with glyco- and phospholipids and mainly saturated fatty acids form “rafts” that are membrane certain domains, where a lipid bilayer is in the dense, highly ordered state. As rafts include the protein complexes, which are necessary for perception and transduction of exogenous signals, stress protection, pathogenesis, vesicular transport also, a significant increase of sterols under clinorotation may indicate the changes in both membrane permeability and protein activity. On the basis of obtained data, the future researches of components of signaling pathways and regulation of certain plasmalemma membranous proteins activity are grounded and planned.

  14. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum

    PubMed Central

    Sabharwal, Tanya; Sathasivan, Kanagasabapathi

    2017-01-01

    Diatoms rapidly release extracellular oxylipins (oxygenated lipids) including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD) to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46–0.69 fold of levels in solvent control cells) except for 18:2 (decreased but not significantly). The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses. PMID:28582415

  15. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI).

    PubMed

    Kurko, Johanna; Tringham, Maaria; Tanner, Laura; Näntö-Salonen, Kirsti; Vähä-Mäkilä, Mari; Nygren, Heli; Pöhö, Päivi; Lietzen, Niina; Mattila, Ismo; Olkku, Anu; Hyötyläinen, Tuulia; Orešič, Matej; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2016-09-01

    Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Consequences of Lipid Droplet Coat Protein Downregulation in Liver Cells

    PubMed Central

    Bell, Ming; Wang, Hong; Chen, Hui; McLenithan, John C.; Gong, Da-Wei; Yang, Rong-Zee; Yu, Daozhan; Fried, Susan K.; Quon, Michael J.; Londos, Constantine; Sztalryd, Carole

    2008-01-01

    OBJECTIVE—Accumulation of intracellular lipid droplets (LDs) in non-adipose tissues is recognized as a strong prognostic factor for the development of insulin resistance in obesity. LDs are coated with perilipin, adipose differentiation–related protein, tail interacting protein of 47 kd (PAT) proteins that are thought to regulate LD turnover by modulating lipolysis. Our hypothesis is that PAT proteins modulate LD metabolism and therefore insulin resistance. RESEARCH DESIGN AND METHODS—We used a cell culture model (murine AML12 loaded with oleic acid) and small interfering RNA to directly assess the impact of PAT proteins on LD accumulation, lipid metabolism, and insulin action. PAT proteins associated with excess fat deposited in livers of diet-induced obese (DIO) mice were also measured. RESULTS—Cells lacking PAT proteins exhibited a dramatic increase in LD size and a decrease in LD number. Further, the lipolytic rate increased by ∼2- to 2.5-fold in association with increased adipose triglyceride lipase (ATGL) at the LD surface. Downregulation of PAT proteins also produced insulin resistance, as indicated by decreased insulin stimulation of Akt phosphorylation (P < 0.001). Phosphoinositide-dependent kinase-1 and phosphoinositide 3-kinase decreased, and insulin receptor substrate-1 307 phosphorylation increased. Increased lipids in DIO mice livers were accompanied by changes in PAT composition but also increased ATGL, suggesting a relative PAT deficiency. CONCLUSIONS—These data establish an important role for PAT proteins as surfactant at the LD surface, packaging lipids in smaller units and restricting access of lipases and thus preventing insulin resistance. We suggest that a deficiency of PAT proteins relative to the quantity of ectopic fat could contribute to cellular dysfunction in obesity and type 2 diabetes. PMID:18487449

  17. Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Jo, Naeun; Kang, Jae Joong; Park, Won Gyu; Lee, Bo Ram; Yun, Mi Sun; Lee, Jang Han; Kim, Su Min; Lee, Dasom; Joo, HuiTae; Lee, Jae Hyung; Ahn, So Hyun; Lee, Sang Heon

    2017-09-01

    The macromolecular composition of phytoplankton communities and the proximate composition of zooplankton communities were measured monthly in the southwestern East/Japan Sea from April to November 2014 in order to identify seasonal changes in, and relationships among, the biochemical compositions in both phytoplankton and zooplankton. The carbohydrate content of phytoplankton was highest in June, whereas the protein content was highest in August and lipids were highest in April. Overall, carbohydrates were dominant (53.2 ± 12.5%) in the macromolecular composition of phytoplankton during the study period. This composition is believed to result from the dominance of diatoms and/or nutrient-depleted conditions. In comparison, the protein level of zooplankton was highest in November, whereas lipids were slightly higher in May than other months. Overall, proteins were the dominant organic compounds (47.9±8.6% DW) in zooplankton communities, whereas lipids were minor components (5.5±0.6% DW). The high protein content of zooplankton might be related to the abundance of copepods, whereas the low lipid content might be due to a relatively high primary production that could provide a sufficient food supply for zooplankton so that they do not require high lipid storage. A significant positive correlation (r=0.971, n=7, p<0.01) was found between the lipid compositions of phytoplankton and zooplankton during our study period with a time lag, which is consistent with the findings from previous studies. More detailed studies on the biochemical composition of phytoplankton and zooplankton are needed to better understand the East/Japan Sea ecosystem's response to the many environmental changes associated with global warming.

  18. Targeting of the hydrophobic metabolome by pathogens.

    PubMed

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  20. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets.

    PubMed

    Leroux, Christine; Bernard, Laurence; Faulconnier, Yannick; Rouel, Jacques; de la Foye, Anne; Domagalski, Jordann; Chilliard, Yves

    2016-01-01

    Fatty acid (FA) composition plays a crucial role in milk nutritional quality. Despite the known nutritional regulation of ruminant milk composition, the overall mammary mechanisms underlying this regulation are far from being understood. The aim of our study was to determine nutritional regulation of mammary transcriptomes in relation to the cow milk composition. Twelve cows received diets differing in the forage-to-concentrate ratio [high forage (HF) and low forage (LF)] supplemented or not with lipids [HF with whole intact rapeseeds (RS) and LF sunflower oil (SO)] in a 4 × 4 Latin square design. Milk production and FA composition were determined. The gene expression profile was studied using RT-qPCR and a bovine microarray. Our results showed a higher amplitude of milk composition and mammary transcriptome responses to lipid supplementation with the LF-SO compared with the LF diet than with the HF-RS compared with the HF diet. Forty-nine differentially expressed genes, including genes involved in lipid metabolism, were identified with LF-SO versus LF, whereas RS supplementation to the HF diet did not affect the mammary transcriptome. This study highlights different responses to lipid supplementation of milk production and composition and mammary transcriptomes depending on the nature of lipid supplementation and the percentage of dietary concentrate. © 2016 S. Karger AG, Basel.

  2. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication

    PubMed Central

    Merino-Ramos, Teresa; Vázquez-Calvo, Ángela; Casas, Josefina; Sobrino, Francisco; Saiz, Juan-Carlos

    2015-01-01

    West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses. PMID:26503654

  3. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication.

    PubMed

    Merino-Ramos, Teresa; Vázquez-Calvo, Ángela; Casas, Josefina; Sobrino, Francisco; Saiz, Juan-Carlos; Martín-Acebes, Miguel A

    2016-01-01

    West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Color and shape changing polymeric ribbons and sheets

    DOEpatents

    Stevens, Raymond C.; Cheng, Quan; Song, Jie

    2006-05-23

    The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.

  5. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms. Copyright © 2017 Ericson et al.

  6. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein

    PubMed Central

    Dominguez, Laura; Foster, Leigh; Straub, John E.; Thirumalai, D.

    2016-01-01

    Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer’s disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923−55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923−55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991−55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition. PMID:27559086

  7. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.« less

  8. Lipids as a principle for the identification of Archaebacteria

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Lloyd, R. E.; Holzer, G.; Oro, J.

    1980-01-01

    The 'Archaebacteria' consist of several distinct subgroups including methanogens, extreme halophiles and specific thermoacidophiles. These bacteria are distinct from other bacteria with respect to their characteristic RNA compositions, the absence of muramic acid in the cell walls and the predominance of nonsaponifable lipids. The lipid composition of the Archaebacteria consists of isoprenoid and hydroisoprenoid hydrocarbons and isopranyl glycerol ether lipids. The pathways for the biosynthesis of the lipid components are those shared by most microorganisms and demonstrate a close relationship; however, an independent line of descent is indicated by the formation of the isopranyl glycerol ether lipids. This discontinuity formulates a point for delineating the early stages of biological evolution and for dividing bacteria into two subgroups.

  9. Lysosomal degradation of membrane lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells

    PubMed Central

    Vecchione, Giulia; Grasselli, Elena; Voci, Adriana; Baldini, Francesca; Grattagliano, Ignazio; Wang, David QH; Portincasa, Piero; Vergani, Laura

    2016-01-01

    AIM: To investigate in vitro the therapeutic effect and mechanisms of silybin in a cellular model of hepatic steatosis. METHODS: Rat hepatoma FaO cells were loaded with lipids by exposure to 0.75 mmol/L oleate/palmitate for 3 h to mimic liver steatosis. Then, the steatotic cells were incubated for 24 h with different concentrations (25 to 100 μmol/L) of silybin as phytosome complex with vitamin E. The effects of silybin on lipid accumulation and metabolism, and on indices of oxidative stress were evaluated by absorption and fluorescence microscopy, quantitative real-time PCR, Western blot, spectrophotometric and fluorimetric assays. RESULTS: Lipid-loading resulted in intracellular triglyceride (TG) accumulation inside lipid droplets, whose number and size increased. TG accumulation was mediated by increased levels of peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding protein-1c (SREBP-1c). The lipid imbalance was associated with higher production of reactive oxygen species (ROS) resulting in increased lipid peroxidation, stimulation of catalase activity and activation of nuclear factor kappa-B (NF-κB). Incubation of steatotic cells with silybin 50 μmol/L significantly reduced TG accumulation likely by promoting lipid catabolism and by inhibiting lipogenic pathways, as suggested by the changes in carnitine palmitoyltransferase 1 (CPT-1), PPAR and SREBP-1c levels. The reduction in fat accumulation exerted by silybin in the steatotic cells was associated with the improvement of the oxidative imbalance caused by lipid excess as demonstrated by the reduction in ROS content, lipid peroxidation, catalase activity and NF-κB activation. CONCLUSION: We demonstrated the direct anti-steatotic and anti-oxidant effects of silybin in steatotic cells, thus elucidating at a cellular level the encouraging results demonstrated in clinical and animal studies. PMID:27468193

  11. Inhibition of lipid A-mediated type I interferon induction by bactericidal/permeability-increasing protein (BPI).

    PubMed

    Azuma, Masahiro; Matsuo, Aya; Fujimoto, Yukari; Fukase, Koichi; Hazeki, Kaoru; Hazeki, Osamu; Matsumoto, Misako; Seya, Tsukasa

    2007-03-09

    Lipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.

  12. The Epidermis of Grhl3-Null Mice Displays Altered Lipid Processing and Cellular Hyperproliferation

    PubMed Central

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M

    2005-01-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin. PMID:19521564

  13. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.

    PubMed

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M

    2005-04-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.

  14. Variation in lipid classes and fatty acid composition of salmon shark (Lamna ditropis) liver with season and gender.

    PubMed

    Jayasinghe, Chamila; Gotoh, Naohiro; Wada, Shun

    2003-02-01

    The influence of season and gender on lipid content, lipid classes, and fatty acid compositions was assessed in livers of salmon shark (Lamna ditropis), caught in the Pacific Ocean. No significant difference in the hepatosomatic index was noted with season, though the lipid content was significantly higher (P<0.05) in winter. Triacylglycerol (TAG) was identified as the predominant lipid class (78.5-82.0%), followed by sterol esters (5.7-9.1%) and hydrocarbons (3.4-5.4%). No significant differences were observed in TAG composition with respect to the season or gender. However, diacylglyceryl ether contents were significantly higher (P<0.05) in winter (3.8-5.3%) than those obtained in summer (1.3-1.1%). Polyunsaturated fatty acids constituted the major fatty acid class of salmon shark total liver lipid and docosahexaenoic acid (C22:6n-3) (22.7-28.4%) was the most abundant fatty acid which was significantly lower (P<0.05) in winter. These results suggested that lipid characteristics of salmon shark liver were influenced by season, but not by gender.

  15. Engineering Lipid Bilayer Membranes for Protein Studies

    PubMed Central

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  16. Linkages between mitochondrial lipids and life history in temperate and tropical birds.

    PubMed

    Calhoon, Elisabeth A; Jimenez, Ana Gabriela; Harper, James M; Jurkowitz, Marianne S; Williams, Joseph B

    2014-01-01

    Temperate birds tend to have a fast pace of life and short life spans with high reproductive output, whereas tropical birds tend to have a slower pace of life, invest fewer resources in reproduction, and have higher adult survival rates. How these differences in life history at the organismal level are rooted in differences at the cellular level is a major focus of current research. Here, we cultured fibroblasts from phylogenetically paired tropical and temperate species, isolated mitochondria from each, and compared their mitochondrial membrane lipids. We also correlated the amounts of these lipids with an important life history parameter, clutch size. We found that tropical birds tended to have less mitochondrial lipid per cell, especially less cardiolipin per cell, suggesting that cells from tropical birds have fewer mitochondria or less inner mitochondrial membrane per cell. We also found that the mitochondria of tropical birds and the species with the smallest clutch sizes had higher amounts of plasmalogens, a lipid that could serve as an antioxidant. Overall, our findings are consistent with the idea that there are underlying molecular and cellular physiological traits that could account for the differences in whole-animal physiology between animals with different life histories.

  17. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    PubMed Central

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. PMID:25631820

  18. You Sank My Lipid Rafts!

    ERIC Educational Resources Information Center

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  19. Zilpaterol hydrochloride affects cellular muscle metabolism and lipid components of ten different muscles in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    This study determined if zilpaterol hydrochloride (ZH) altered muscle metabolism and lipid components of ten muscles. Crossbred heifers were either supplemented with ZH (n = 9) or not (Control; n = 10). Muscle tissue was collected (adductor femoris, biceps femoris, gluteus medius, infraspinatus, lat...

  20. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  2. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  3. Activation of hepatic Nogo-B receptor expression—A new anti-liver steatosis mechanism of statins

    PubMed Central

    Zhang, Wenwen; Yang, Xiaoxiao; Chen, Yuanli; Hu, Wenquan; Liu, Lipei; Zhang, Xiaomeng; Liu, Mengyang; Sun, Lei; Liu, Ying; Yu, Miao; Li, Xiaoju; Li, Luyuan; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-01-01

    Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression. PMID:29217477

  4. Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle

    PubMed Central

    Wang, Junping; Örnek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles. PMID:23293518

  5. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease.

    PubMed

    van der Veen, Jelske N; Kennelly, John P; Wan, Sereana; Vance, Jean E; Vance, Dennis E; Jacobs, René L

    2017-09-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Interaction of 3‧,4‧,6‧-trimyristoyl-uridine derivative as potential anticancer drug with phospholipids of tumorigenic and non-tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Salis, Luiz Fernando Grosso; Jaroque, Guilherme Nuñez; Escobar, Jhon Fernando Berrío; Giordani, Cristiano; Martinez, Alejandro Martinez; Fernández, Diana Margarita Márquez; Castelli, Francesco; Sarpietro, Maria Grazia; Caseli, Luciano

    2017-12-01

    Investigating the mechanism of action of drugs whose pharmaceutical activity is associated with cell membranes is fundamental to comprehending the biochemical and biophysical processes that occur on membrane surfaces. In this work, we investigated the interaction of an ester-type derivative of uridine, 3‧,4‧,6‧-trimyristoyl uridine, with models for cell membranes formed by lipid monolayers at the air-water interface. For that, selected lipids have been chosen in order to mimic tumorigenic and non-tumorigenic cells. For mixed monolayers with 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine (DPPS), the surface pressure-area isotherms exhibited a noticeable shift to lower areas in relation to the areas predicted for ideal mixtures, indicating a condensation of the monolayer structure. Changes in the viscoelastic properties of the interfacial film could be inferred by analyzing the compressibility modulus of the monolayer. Structural and morphological changes were also evidenced by using vibrational spectroscopy and Brewster angle microscopy, respectively, with distinctive effects on DPPC and DPPS. As conclusion we can state that the lipid composition of the monolayer modulates the interaction with this lipophilic drug, which may have important implications in understanding how this drug acts on specific sites of the cellular membrane.

  7. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-12-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; deltamore » 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue.« less

  8. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    PubMed

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains.

    PubMed

    de Almeida, Rodrigo F M; Joly, Etienne

    2014-01-01

    To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.

  10. Regulation of triglyceride metabolism. I. Eukaryotic neutral lipid synthesis: "Many ways to skin ACAT or a DGAT".

    PubMed

    Turkish, Aaron; Sturley, Stephen L

    2007-04-01

    Esterification of sterols, fatty acids and other alcohols into biologically inert forms conserves lipid resources for many cellular functions. Paradoxically, the accumulation of neutral lipids such as cholesteryl ester or triglyceride, is linked to several major disease pathologies. In a remarkable example of genetic expansion, there are at least eleven acyltransferase reactions that lead to neutral lipid production. In this review, we speculate that the complexity and apparent redundancy of neutral lipid synthesis may actually hasten rather than impede the development of novel, isoform-specific, therapeutic interventions for acne, type 2 diabetes, obesity, hyperlipidemia, fatty liver disease, and atherosclerosis.

  11. Comparison of lipid content and Fatty Acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from china.

    PubMed

    Li, Guipu; Sinclair, Andrew J; Li, Duo

    2011-03-09

    The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.

  12. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities

    PubMed Central

    Delplanque, Bernadette; Gibson, Robert; Koletzko, Berthold; Lapillonne, Alexandre; Strandvik, Birgitta

    2015-01-01

    Abstract Dietary lipids are key for infants to not only meet their high energy needs but also fulfill numerous metabolic and physiological functions critical to their growth, development, and health. The lipid composition of breast milk varies during lactation and according to the mother's diet, whereas the lipid composition of infant formulae varies according to the blend of different fat sources. This report compares the compositions of lipids in breast milk and infant formulae, and highlights the roles of dietary lipids in term and preterm infants and their potential biological and health effects. The major differences between breast milk and formulae lie in a variety of saturated fatty acids (such as palmitic acid, including its structural position) and unsaturated fatty acids (including arachidonic acid and docosahexaenoic acid), cholesterol, and complex lipids. The functional outcomes of these differences during infancy and for later child and adult life are still largely unknown, and some of them are discussed, but there is consensus that opportunities exist for improvements in the qualitative lipid supply to infants through the mother's diet or infant formulae. Furthermore, research is required in several areas, including the needs of term and preterm infants for long-chain polyunsaturated fatty acids, the sites of action and clinical effects of lipid mediators on immunity and inflammation, the role of lipids on metabolic, neurological, and immunological outcomes, and the mechanisms by which lipids act on short- and long-term health. PMID:25883056

  13. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. Sociedad Argentina de Pediatría.

  14. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.

    PubMed

    Gayral, Mathieu; Bakan, Bénédicte; Dalgalarrondo, Michele; Elmorjani, Khalil; Delluc, Caroline; Brunet, Sylvie; Linossier, Laurent; Morel, Marie-Hélène; Marion, Didier

    2015-04-08

    Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.

  15. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae.

    PubMed

    Costa, Samantha Serra; Miranda, Andréa Lobo; Andrade, Bianca Bomfim; Assis, Denilson de Jesus; Souza, Carolina Oliveira; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Druzian, Janice Izabel

    2018-05-12

    This study sought to evaluate influence of nitrogen availability on cell growth, biomass composition, production, and the properties of polyhydroxyalkanoates during cultivation of microalgae Chlorella minutissima, Synechococcus subsalsus, and Spirulina sp. LEB-18. The cellular growth of microalgae reduced with the use of limited nitrogen medium, demonstrating that nitrogen deficiency interferes with the metabolism of microorganisms and the production of biomass. The biochemical composition of microalgae was also altered, which was most notable in the degradation of proteins and chlorophylls and the accumulation of carbonaceous storage molecules such as lipids and polyhydroxyalkanoates. Chlorella minutissima did not produce these polymers even in a nitrogen deficient environment. The largest accumulations of the polyhydroxyalkanoates occurred after a 15 days culture, with a concentration of 16% (dry cell weight) produced by the Synechococcus subsalsus strain and 12% by Spirulina sp. LEB-18. Polyhydroxyalkanoates produced by Synechococcus subsalsus and Spirulina sp. LEB-18 presented different thermal and physical properties, indicating the influence of producing strain on polyhydroxyalkanoates properties. The polymers obtained consisted of long chain monomers with 14 to 18 carbon atoms. This composition is novel, as it has not previously been found in PHAs obtained from Synechococcus subsalsus and Spirulina sp. LEB-18. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Clustering T cell GM1 Lipid Rafts Increases Cellular Resistance to Shear on Fibronectin through Changes in Integrin Affinity and Cytoskeletal Dynamics

    PubMed Central

    Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.

    2008-01-01

    Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760

  17. Effects of Prey Macronutrient Content on Body Composition and Nutrient Intake in a Web-Building Spider

    PubMed Central

    Hawley, Jesse; Simpson, Stephen J.; Wilder, Shawn M.

    2014-01-01

    The nutritional composition of diets can vary widely in nature and have large effects on the growth, reproduction and survival of animals. Many animals, especially herbivores, will tightly regulate the nutritional composition of their body, which has been referred to as nutritional homeostasis. We tested how experimental manipulation of the lipid and protein content of live prey affected the nutrient reserves and subsequent diet regulation of web-building spiders, Argiope keyserlingi. Live locusts were injected with experimental solutions containing specific amounts of lipid and protein and then fed to spiders. The nutrient composition of the spiders' bodies was directly related to the nutrient composition of the prey on which they fed. We then conducted an experiment where spiders were fed either high lipid or high protein prey and subsequently provided with two large unmanipulated locusts. Prior diet did not affect the amount or ratio of lipid and protein ingested by spiders when feeding on unmanipulated prey. Argiope keyserlingi were flexible in the storage of lipid and protein in their bodies and did not bias their extraction of nutrients from prey to compensate for previously biased diets. Some carnivores, especially those that experience frequent food limitation, may be less likely to strictly regulate their body composition than herbivores because food limitation may encourage opportunistic ingestion and assimilation of nutrients. PMID:24911958

  18. [Characteristics of lipid metabolism and the cardiovascular system in glycogenosis types I and III].

    PubMed

    Polenova, N V; Strokova, T V; Starodubova, A V

    Glycogen storage disease (GSD) is an inherited metabolic disorder characterized by early childhood lipid metabolic disturbances with potentially proatherogenic effects. The review outlines the characteristics of impaired lipid composition and other changes in the cardiovascular system in GSD types I and III. It analyzes the factors enabling and inhibiting the development of atherosclerosis in patients with GSD. The review describes the paradox of vascular resistance to the development of early atherosclerosis despite the proatherogenic composition of lipids in the patients of this group.

  19. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    PubMed

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  20. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    PubMed Central

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  1. Autophagic pathways and metabolic stress

    PubMed Central

    Kaushik, S.; Singh, R.; Cuervo, A. M.

    2014-01-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. PMID:21029294

  2. Autophagic pathways and metabolic stress.

    PubMed

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  3. Deciphering the roles of acyl-CoA-binding proteins in plant cells.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.

  4. Absorption rates and free radical scavenging values of vitamin C-lipid metabolites in human lymphoblastic cells.

    PubMed

    Weeks, Benjamin S; Perez, Pedro P

    2007-10-01

    In this study we investigated the cellular absorption rates, antioxidant and free radical scavenging activity of vitamin C-lipid metabolites. The absorption was measured in a human lymphoblastic cell line using a spectrophotometric technique. Cellular vitamin C levels in the human lymphoblastic H9 cell line were measured using the 2,4-dinitrophenylhydrazine spectrophotometric technique. Free radical scavenging activity of vitamin C-lipid metabolites was measured by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH) to 1,1-diphenyl-2-picryl hydrazine. Vitamin C-lipid metabolite scavenging of peroxyl radical oxygen reactive species (ORAC) was determined by fluorescence spectrophotometry. Compared to ascorbic acid (AA), calcium ascorbate (CaA), and calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C), vitamin C-lipid metabolites (PureWay-C) were more rapidly absorbed by the H9 human T-lymphocytes. The vitamin C-lipid metabolites (PureWay-C) also reduced pesticide-induced T-lymphocyte aggregation by 84%, while calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C) reduced aggregation by only 34%. The vitamin C-lipid metabolites (PureWay-C) demonstrated free radical scavenging activity of nearly 100% reduction of DPPH at 20 microg/ml and oxygen radical scavenging of over 1200 micro Trolox equivalents per gram. These data demonstrate that the vitamin C-lipid metabolites (PureWay-C) are more rapidly taken-up and absorbed by cells than other forms of vitamin C, including Ester-C. This increased rate of absorption correlates with an increased protection of the T-lymphocytes from pesticide toxicities. Further, vitamin C-lipid metabolites (PureWay-C) are a potent antioxidant and have significant free radical scavenging capabilities.

  5. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide.

    PubMed

    Hatahet, T; Morille, M; Shamseddin, A; Aubert-Pouëssel, A; Devoisselle, J M; Bégu, S

    2017-02-25

    Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were formulated with two particle size range, (50nm and 20nm) allowing a drug loading of 18.6 and 32mM respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent water solubility by more than 5000 fold (from 0.5μg/ml to about 5mg/ml). The physicochemical properties of these formulations such as surface charge, stability and morphology were characterized. Lipid nanocapsules had spherical shape and were stable for 28days at 25°C. Quercetin release from lipid nanocapsules was studied and revealed a prolonged release kinetics during 24h. Using DPPH assay, we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity of quercetin in vitro (92.3%). With the goal of a future dermal application, quercetin lipid nanocapsules were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2μg/ml of quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells from oxidative stress by exogenous hydrogen peroxide. With its lipophilic nature and occlusive effect on skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value for other poorly water soluble drug candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modifications in plasma membrane lipid composition and morphological features of AH-130 hepatoma cells by polyenylphosphatidylcholine in vivo treatment.

    PubMed

    Cinosi, Vincenzo; Antonini, Roberto; Crateri, Pasqualina; Arancia, Giuseppe

    2011-07-01

    The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v. with 20 mg/kg/day PPC, when compared to those of control cells, did not show significantly different amounts of cholesterol or phospholipids relative to protein content, but, surprisingly, the individual phospholipid distribution inside the two membrane leaflets changed dramatically. Phosphatidylcholine (PC), the major phospholipid in the external membrane leaflet, increased ~47% (p<0.001). By contrast, phosphatidylethanolamine (PE), the most important component of the inner leaflet, decreased nearly 37% (p<0.001), while sphingomyelin (SM) also decreased ~17%, (p=0.1). Tumor cells collected from control rats at the same time interval and observed by scanning electron microscopy, exhibited a spherical shape with numerous and randomly distributed long microvilli, the same morphological and ultrastructural features displayed by the implanted cells. Conversely, tumor cells from PPC-treated rats no longer showed the roundish cell profile, and microvilli appeared shortened and enlarged, with the formation of surface blebs. Transmission electron microscopy observations confirmed the morphological and ultrastructural cell changes, mainly seen as loss of microvilli and intense cytoplasmic vacuolization. Taken together, these results indicate that the new phospholipid class distribution in the plasma membrane leaflets, modifying tumor cell viable structures, produced heavy cell damage and in many cases brought about complete cellular disintegration.

  7. Membrane interactions of ionic liquids and imidazolium salts.

    PubMed

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  8. FABP4-Cre mediated expression of constitutively active ChREBP protects against obesity

    USDA-ARS?s Scientific Manuscript database

    Carbohydrate response element binding protein (ChREBP) regulates cellular glucose and lipid homeostasis. Although ChREBP is highly expressed in many key metabolic tissues, the role of ChREBP in most of those tissues and consequent effects on whole-body glucose and lipid metabolism are not well under...

  9. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    PubMed

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  10. Lipid Accumulation during the Establishment of Kleptoplasty in Elysia chlorotica

    PubMed Central

    Pelletreau, Karen N.; Weber, Andreas P. M.; Weber, Katrin L.; Rumpho, Mary E.

    2014-01-01

    The establishment of kleptoplasty (retention of “stolen plastids”) in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1–14 days post metamorphosis (dpm). These observations revealed an abundance of lipid droplets (LDs) correlating to plastid abundance. Starvation of animals resulted in LD and plastid decay in animals <5 dpm that had not yet achieved permanent kleptoplasty. Animals allowed to feed on algal prey (Vaucheria litorea C. Agardh) for 7 d or greater retained stable plastids resistant to cellular breakdown. Lipid analysis of algal and animal samples supports that these accumulating LDs may be of plastid origin, as the often algal-derived 20∶5 eicosapentaenoic acid was found in high abundance in the animal tissue. Subsequent culturing of animals in dark conditions revealed a reduced ability to establish permanent kleptoplasty in the absence of photosynthetic processes, coupled with increased mortality. Together, these data support an important role of photosynthetic lipid production in establishing and stabilizing this unique animal kleptoplasty. PMID:24828251

  11. Preparation of Deep Sea Fish Oil-Based Nanostructured Lipid Carriers with Enhanced Cellular Uptake.

    PubMed

    Zhu, Qiu-Yun; Guissi, Fida; Yang, Ru-Ya; Wang, Qian; Wang, Ke; Chen, Dan; Han, Zhi-Hao; Ma, Yi; Zhang, Min; Gu, Yue-Qing

    2015-12-01

    Nanostructured lipid carriers (NLC) are a promising pharmaceutical delivery system with mean diameter less than 200 nm which are dispersed in an aqueous phase containing emulsifier(s), to increase the water solubility, stability and bioavailability of oil compounds. Herein we prepared a promising NLC with glyceryl monostearate (GMS) as the solid lipid template and deep sea fish oil as the liquid lipid template using melted-ultrasonic method. Fish oil-NLC had a mean size of 84.7 ± 2.6 nm and a zeta potential that ranged from -17.87 mV to -32.91 mV. The nanoparticles exhibited good stability for four weeks with a high encapsulation efficiency of 87.5 ± 5.2%. Afterwards, confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) were used to investigate the contribution of Fish oil-NLC in enhancing fluorescein isothiocyanate (FITC) cellular uptake in comparison with free FITC. The results of this study indicated the possibility of this carrier to overcome the shortcomings of deep sea fish oil and to provide a novel bifunctional carrier with nutritional potential and drug delivery ability.

  12. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  13. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    PubMed

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  14. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress

    PubMed Central

    Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S.; Guerra, L. Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A. S.; Bhattacharya, Debashish; Falkowski, Paul G.

    2015-01-01

    Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193

  15. TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona.

    PubMed

    Runa, Sabiha; Lakadamyali, Melike; Kemp, Melissa L; Payne, Christine K

    2017-09-21

    Titanium dioxide (TiO 2 ) nanoparticles, used as pigments and photocatalysts, are widely present in modern society. Inhalation or ingestion of these nanoparticles can lead to cellular-level interactions. We examined the very first step in this cellular interaction, the effect of TiO 2 nanoparticles on the lipids of the plasma membrane. Within 12 h of TiO 2 nanoparticle exposure, the lipids of the plasma membrane were oxidized, determined with a malondialdehyde assay. Lipid peroxidation was inhibited by surface passivation of the TiO 2 nanoparticles, incubation with an antioxidant (Trolox), and the presence of serum proteins in solution. Subsequent experiments determined that serum proteins adsorbed on the surface of the TiO 2 nanoparticles, forming a protein corona, inhibit lipid peroxidation. Super-resolution fluorescence microscopy showed that these serum proteins were clustered on the nanoparticle surface. These protein clusters slow lipid peroxidation, but by 24 h, the level of lipid peroxidation is similar, independent of the protein corona or free serum proteins. Additionally, over 24 h, this corona of proteins was displaced from the nanoparticle surface by free proteins in solution. Overall, these experiments provide the first mechanistic investigation of plasma membrane oxidation by TiO 2 nanoparticles, in the absence of UV light and as a function of the protein corona, approximating a physiological environment.

  16. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats.

    PubMed

    Miotto, Paula M; Castelli, Laura M; Amoye, Foyinsola; Ward, Wendy E; LeBlanc, Paul J

    2015-06-01

    Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.

  17. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content

    PubMed Central

    Joseph, Roy; Poschmann, Jeremie; Sukarieh, Rami; Too, Peh Gek; Julien, Sofi G.; Xu, Feng; Teh, Ai Ling; Holbrook, Joanna D.; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D.; Prabhakar, Shyam

    2015-01-01

    Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals. PMID:25915184

  18. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.

    PubMed

    Joseph, Roy; Poschmann, Jeremie; Sukarieh, Rami; Too, Peh Gek; Julien, Sofi G; Xu, Feng; Teh, Ai Ling; Holbrook, Joanna D; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D; Prabhakar, Shyam; Stünkel, Walter

    2015-06-01

    Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals.

  19. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  20. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-01

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis.

    PubMed

    Campe, Ruth; Hollenbach, Eva; Kämmerer, Lara; Hendriks, Janneke; Höffken, Hans Wolfgang; Kraus, Helmut; Lerchl, Jens; Mietzner, Thomas; Tresch, Stefan; Witschel, Matthias; Hutzler, Johannes

    2018-06-01

    The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes. Copyright © 2018 BASF SE. Published by Elsevier Inc. All rights reserved.

  2. Acquisition of intact polar lipids from the Prymnesiophyte Phaeocystis globosa by its lytic virus PgV-07T

    NASA Astrophysics Data System (ADS)

    Maat, D. S.; Bale, N. J.; Hopmans, E. C.; Baudoux, A.-C.; Sinninghe Damsté, J. S.; Schouten, S.; Brussaard, C. P. D.

    2013-07-01

    Recent studies showed changes in phytoplankton lipid composition during viral infection and have indicated roles for specific lipids in the mechanisms of algal virus-host interaction. To investigate the generality of these findings and obtain a better understanding of the allocation of specific lipids to viruses, we studied the intact polar lipid (IPL) composition of virally infected and non-infected cultures of the Prymnesiophyte Phaeocystis globosa G(A) and its lytic virus PgV-07T. The P. globosa IPL composition was relatively stable over a diel cycle and not strongly affected by viral infection. Glycolipids, phospholipids and betaine lipids were present in both the host and virus, although specific groups such as the diacylglyceryl-hydroxymethyltrimethyl-β-alanines and the sulfoquinovosyldiacylglycerols, were present in a lower proportion or were not detected in the virus. Viral glycosphingolipids (vGSLs), which have been shown to play a role in the infection strategy of the virus EhV-86, infecting the Prymnesiophyte Emiliania huxleyi CCMP374, were not encountered. Our results show that the involvement of lipids in virus-algal host interactions can be very different amongst virus-algal host systems.

  3. Acquisition of intact polar lipids from the prymnesiophyte Phaeocystis globosa by its lytic virus PgV-07T

    NASA Astrophysics Data System (ADS)

    Maat, D. S.; Bale, N. J.; Hopmans, E. C.; Baudoux, A.-C.; Sinninghe Damsté, J. S.; Schouten, S.; Brussaard, C. P. D.

    2014-01-01

    Recent studies showed changes in phytoplankton lipid composition during viral infection and have indicated roles for specific lipids in the mechanisms of algal virus-host interaction. To investigate the generality of these findings and obtain a better understanding of the allocation of specific lipids to viruses, we studied the intact polar lipid (IPL) composition of virally infected and non-infected cultures of the prymnesiophyte Phaeocystis globosa G(A) and its lytic virus PgV-07T. The P. globosa IPL composition was relatively stable over a diel cycle and not strongly affected by viral infection. Glycolipids, phospholipids and betaine lipids were present in both the host and virus, although specific groups such as the diacylglyceryl-hydroxymethyltrimethyl-β-alanines and the sulfoquinovosyldiacylglycerols, were present in a lower proportion or were not detected in the virus. Viral glycosphingolipids (vGSLs), which have been shown to play a role in the infection strategy of the virus EhV-86, infecting the prymnesiophyte Emiliania huxleyi CCMP374, were not encountered. Our results show that the involvement of lipids in virus-algal host interactions can be very different amongst virus-algal host systems.

  4. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTORmore » and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.« less

  6. The effect of anabolic implants on intramuscular lipid deposition in finished beef cattle.

    PubMed

    Smith, K R; Duckett, S K; Azain, M J; Sonon, R N; Pringle, T D

    2007-02-01

    Two experiments were conducted to determine the effects of anabolic implants on performance, changes in ultrasound measurements, carcass quality, cellularity of i.m. and s.c. adipose depots, and mRNA expression of acetyl CoA carboxylase (ACC), stearoyl CoA desaturase (SCD), and lipoprotein lipase (LPL) in i.m. adipose tissue of finished beef cattle. Angus heifers (experiment 1: n = 10; 411 kg of BW) and steers (experiment 2: n = 18; 279 kg of BW) were randomly allotted as control (C) or implanted with Synovex-Plus (SP) at d 0 and midway through the finishing period. The cattle were fed a high-concentrate diet and were weighed at approximately 28-d intervals. Heifers and steers were finished for 108 and 133 d, respectively. At slaughter, a section of the LM (sixth to ninth rib) was removed, and i.m. adipose tissue was dissected for mRNA analysis. Subcutaneous and i.m. adipose tissues also were collected for determination of cellularity. At 48 h postmortem, carcass data were collected, and a steak (12th rib) was removed for analysis of lipid and fatty acid composition. Body weight did not differ (P > 0.10) between treatments until after reimplanting of the heifers (d 55) or steers (d 73). Average daily gain was 36 and 16% faster (P < or = 0.01) for implanted heifers and steers, respectively, compared with their control counterparts. Implanting resulted in larger (P < or = 0.10) HCW and LM area for heifers and steers. However, implanting did not affect (P > 0.10) dressing percent, fat thickness, percentage of KPH, yield grade, or marbling score. Intramuscular lipid content and concentrations of major fatty acids did not differ (P > 0.10) between treatments. Percentage of SC adipocytes was greater at larger diameters ( > 150 microm), whereas the majority of i.m. adipocytes were at small to middle diameters (50 to 150 microm). The number of i.m. adipocytes per gram of tissue was greater (P < 0.05) for SP than C and also were greater (P < 0.05) than the number of s.c. adipocytes in SP heifers. In experiment 2, adipocytes per gram of tissue tended to be greater (P = 0.07) for SP than C and were greater (P < 0.01) for i.m. than s.c. In experiment 1, average cell diameter and volume did not differ (P > 0.10) between treatments and tissues, but in experiment 2 both cellularity traits were greater (P < 0.01) for s.c. than for i.m.. Implanting did not alter mRNA expression of ACC, SCD, or LPL in i.m. adipose tissue. This study shows that anabolic implants do not appear to have direct effects on i.m. lipid deposition.

  7. Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas.

    PubMed

    Guillevin, Remy; Menuel, Carole; Duffau, Hugues; Kujas, Michel; Capelle, Laurent; Aubert, Agnès; Taillibert, Sophie; Idbaih, Ahmed; Pallud, Joan; Demarco, Giovanni; Costalat, Robert; Hoang-Xuan, Khê; Chiras, Jacques; Vallée, Jean-Noel

    2008-04-01

    The aim of the study was to investigate the ability of (1)HMRS to reflect proliferative activity of diffuse low-grade gliomas (WHO grade II). Between November 2002 and March 2007, a prospective study was performed on consecutive patients with suspected supratentorial hemispheric diffuse low-grade tumors. All the patients underwent MR examination using uniform procedures, and then surgical resection or biopsy within 2 weeks of the MR examination. Proliferative activity of the tumors was assessed by Ki-67 immunochemistry (Mb-1) on paraffin embedded tumor sections. Spectroscopic data was compared with Ki-67 labeling index and other histologic data such as histological subtype, cellular atypia, cellular density using univariate and multivariate analysis. 82 of 97 consecutive patients had histologically confirmed WHO grade 2 gliomas. Ki-67 proliferation index (PI) was correlated with specific spectral patterns: (1) low PI (<4%) was associated with increased Cho/Cr and absence of both free lipids or lactates; (2) intermediate PI (4-8%) was associated with resonance of lactates; and (3) high PI (>8%) was characterized by a resonance of free lipids. On multivariate analysis, resonance of lactates and resonance of free lipids appeared as independent predictors of intermediate PI (P < 0.001) and high PI (P < 0.001), respectively; moreover, free lipids resonance was correlated with cellular atypia (P < 0.05). This study suggests that (1)HMRS is a reliable tool to evaluate the proliferation activity of WHO grade 2 glioma and to identify potentially more aggressive clinical behavior.

  8. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  9. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  10. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  11. Effect of dietary lipid levels on body compositions, digestive ability and antioxidant parameters of common carp

    NASA Astrophysics Data System (ADS)

    Sun, Jinhui; Fan, Ze; Chen, Chunxiu; Li, Jinghui; Cheng, Zhenyan; Li, Yang; Qiao, Xiuting

    2017-11-01

    This study was designed to evaluate the effect of dietary lipid level on body composition, and digestive ability of common carp with initial average weight (36.12 ± 1.18)g. Five experimental diets with increasing lipid levels of 2.1%, 4.0%, 5.8%, 7.6%, 9.4% were fed to triplicate groups of fish for 9 weeks. The results showed that lipid content of whole body and muscle increased in parallel with the increase of dietary lipid levels. Protein content of muscle decreased with the increase of dietary lipid levels, and the lowest muscle protein content was observed in fish fed 9.4% lipid diet. Lipaseactivity was significantly affected by dietary lipid levels in hepatopancreas andintestine (P <0.05). Lipase activity in fish fed at 5.8% lipid level group was significantly higher than others inhepatopancreas (P <0.05). There were no significant differences in amylase and proteaseactivities (P > 0.05). The results suggested that the most excellentdigestive ability and antioxidant parameters were obtained at 7.6% lipid level group.

  12. Presentation of lipid antigens to T cells.

    PubMed

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  13. Lipid Droplets: Formation to Breakdown.

    PubMed

    Meyers, Alex; Weiskittel, Taylor M; Dalhaimer, Paul

    2017-06-01

    One of the most exciting areas of cell biology during the last decade has been the study of lipid droplets. Lipid droplets allow cells to store non-polar molecules such as neutral lipids in specific compartments where they are sequestered from the aqueous environment of the cell yet can be accessed through regulated mechanisms. These structures are highly conserved, appearing in organisms throughout the phylogenetic tree. Until somewhat recently, lipid droplets were widely regarded as inert, however progress in the field has continued to demonstrate their vast roles in a number of cellular processes in both mitotic and post-mitotic cells. No doubt the increase in the attention given to lipid droplet research is due to their central role in current pressing human diseases such as obesity, type-2 diabetes, and atherosclerosis. This review provides a mechanistic timeline from neutral lipid synthesis through lipid droplet formation and size augmentation to droplet breakdown.

  14. [Lipids of Aureobasidium (Pullularia) pullulans].

    PubMed

    Elinov, N P; Iurlova, N A; Efimova, T P

    1975-01-01

    Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively).

  15. Depth related trends in proximate composition of demersal fishes in the eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Drazen, J. C.

    2007-02-01

    The proximate chemistry of the white muscle and liver of 18 species of demersal fish from the eastern North Pacific was studied to determine trends with depth, locomotory mode and buoyancy mechanism, foraging strategy and to elucidate energetic strategies. Data for 24 species from shallow water were taken from the literature and included for analysis of muscle water content. Benthopelagic species, primarily gadiforms, have significantly larger lipid-rich livers than benthic species. The benthopelagic species may use this lipid to add buoyancy, but it is also used as energy storage. Buoyancy mechanism was directly related to proximate composition. Fishes using gasbladders had normal muscle composition. The two species of benthopelagic fishes without gasbladders have either very high muscle lipid content ( Anoplopoma fimbria) or gelatinous muscle ( Alepocephalus tenobrosus) to aid in achieving neutral buoyancy. The macrourid, Albatrossia pectoralis, has a very small gasbladder and also has gelatinous muscle. Both of these benthopelagic fishes with gelatinous muscle feed on pelagic organisms. Gelatinous muscle was also found in two flatfishes that inhabit the oxygen minimum zone. For these fishes, high water content may serve to lower metabolic costs while maintaining large body size. Scavengers such as Coryphaenoides armatus and Coryphaenoides acrolepis have lipid rich livers and others such as A. fimbria and Pachycara sp. have high and variable muscle lipid content. Thus foraging mode also acts to influence proximate composition. Several depth-related trends in proximate composition were found. White muscle water content increased significantly with depth, and all four gelatinous species occurred at bathyal depths. This adds evidence in support of the hypothesis that decreasing light levels shorten reactive distances and relax the selective pressure for high locomotory capacity. In addition significant declines in liver protein content were observed, suggesting that the rates of metabolism in this organ also decline with depth. There was little evidence for food availability affecting proximate composition. There were no significant changes in either muscle or liver lipid or caloric density with depth. Total lipid stores actually increased significantly, but they were driven primarily by the abyssal scavenger C. armatus suggesting that foraging strategy rather than depth may be the most important factor determining total lipid stores.

  16. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  17. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  18. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, Sitindra S.; Pagani, Mark

    2013-10-01

    We studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen isotope composition (D/H) of water, temperature, and salinity. Cultures were grown on three substrates: succinate, pyruvate and glycerol with known hydrogen isotope compositions, and in water with different hydrogen isotopic compositions. All culture series grown on a particular substrate show strong correlations between δDarchaeol and δDwater. However, correlations are distinctly different for cultures grown on different substrates. Our results indicate that the metabolic pathway of substrate exerts a fundamental influence on the δD value of lipids, likely by influencing the D/H composition of NADPH (nicotinamide adenine dinucleotide phosphate), the reducing agent that contributes hydrogen to carbon atoms during lipid biosynthesis. Temperature and salinity have smaller, but similar effects on δDlipid, primarily due to the way temperature and salinity influence growth rate, as well as temperature effects on the activity of enzymes.

  19. The cellular source for APOBEC3G's incorporation into HIV-1

    PubMed Central

    2011-01-01

    Background Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear. Results Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:21211018

  20. Lipid Metabolism, Apoptosis and Cancer Therapy

    PubMed Central

    Huang, Chunfa; Freter, Carl

    2015-01-01

    Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy. PMID:25561239

  1. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    PubMed

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  2. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).

    PubMed

    Wilkinson, S G; Caudwell, P F

    1980-06-01

    The major polar lipids in cells of Pseudomonas putrefaciens NCIB 10472 grown on nutrient agar were phosphatidylethanolamine, phoisphatidylglycerol, a glucosyldiacylglycerol, a glucuronosyldiacylglycerol and an ornithine amide lipid. An additional phospholipid, tentatively identified as acyl phosphatidylglycerol or bis-phosphatidic acid, was a trace component of the wall lipids from broth cultures, which lacked the glycolipids and the ornithine amide lipid. The wall lipids from broth cultures of three further strains of P. putrefaciens (NCIB 10471, NCIB 11156 and NCTC 10737) contained all of the above lipids, and in two cases (strains NCIB 10471 and NCIB 11156) had an unusually high content of free fatty acid. Fatty acid compositions of the extractable lipids were qualitatively similar for all four strains: the major components were iso-pentadecanoic acid, pentadecanoic acid, a cis-heptadecenoic acid and a cis-hexadecenoic acid. Anteiso fatty acids were minor components in strain NCIB 10472. Lipid mixtures in which the ornithine amide lipid was present also contained small amounts of beta-hydroxy fatty acids: in strain NCIB 10472 the major ones were the straight-chain and iso-branched C16 acids. Lipopolysaccharides from all four strains had similar, complex fatty acid compositions. The major non-hydroxy acids were the straight-chain and iso-branched C13 acids. beta-Hydroxy acids common to all strains included the straight-chain C11, C12, C13, C14 and C15 acids, together with branched-chain C13 and C15 acids probably belonging to the iso series. The lipopolysaccharide from strains NCIB 10472 also contained C12 and C14 hydroxy acids of the same series, and small amounts of C13 and C15 beta-hydroxy acids probably belonging to the anteiso series. The close resemblance in both polar lipid and fatty acid compositions between strains of P. putrefaciens and Pseudomonas rubescens is further evidence that these species are synonymous. Significant differences between the lipids and fatty acids of P. putrefaciens and those reported for a strain of Alteromonas haloplanktis do not harmonize with a proposal to transfer the former organism to the genus Alteromonas.

  3. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL.

    PubMed

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-06-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MS ALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MS ALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MS ALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MS ALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MS ALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula.

  4. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL

    PubMed Central

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-01-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula. PMID:26089741

  5. Biological Diversity Comprising Microbial Structures of Antarctic Ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Matys, E. D.

    2015-12-01

    Analysis of microbial membrane lipids is a rapid and non-selective method for evaluating the composition of microbial communities. To fully realise the diagnostic potential of these lipids, we must first understand their structural diversity, biological sources, physiological functions, and pathways of preservation. Particular environmental conditions likely prompt the production of different membrane lipid structures. Antarctica's McMurdo Dry Valleys host numerous ice-covered lakes with sharp chemical gradients that vary in illumination, geochemical structure, and benthic mat morphologies that are structured by nutrient availability and water chemistry. The lipid contents of these benthic mats have not received extensive study nor have the communities yet been thoroughly characterized. Accordingly, a combination of lipid biomarker and nucleic acid sequence data provides the means of assessing species diversity and environmental controls on the composition and diversity of membrane lipid assemblages. We investigated the richness and diversity of benthic microbial communities and accumulated organic matter in Lake Vanda of the McMurdo Dry Valleys. We have identified diverse glycolipids, aminolipids, and phospholipids in addition to many unknown compounds that may be specific to these particular environments. Light levels fluctuate seasonally, favoring low-light-tolerant cyanobacteria and specific lipid assemblages. Adaptations to nutrient limitations are reflected in contrasting intact polar lipid assemblages. For example, under P-limiting conditions, phospholipids are subsidiary to membrane-forming lipids that do not contain P (i.e. ornithine, betaine, and sulfolipids). The bacteriohopanepolyol (BHP) composition is dominated by bacteriohopanetetrol (BHT), a ubiquitous BHP, and 2-methylhopanoids. The relative abundance of 2-methylhopanoids is unprecedented and may reflect the unusual seasonal light regime of this polar environment. By establishing correlations between environmental conditions, microbial community composition and the lipid assemblages of microbial structures in ice-covered lakes of Antarctica's McMurdo Dry Valleys, our data provides important ecological and evolutionary insights into these unusual environments.

  6. A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants

    PubMed Central

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-01-01

    Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096

  7. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    PubMed

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  8. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin

    USGS Publications Warehouse

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

  9. Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

    PubMed

    Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2008-01-01

    Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.

  10. New Method for Quantitation of Lipid Droplet Volume From Light Microscopic Images With an Application to Determination of PAT Protein Density on the Droplet Surface.

    PubMed

    Dejgaard, Selma Y; Presley, John F

    2018-06-01

    Determination of lipid droplet (LD) volume has depended on direct measurement of the diameter of individual LDs, which is not possible when LDs are small or closely apposed. To overcome this problem, we describe a new method in which a volume-fluorescence relationship is determined from automated analysis of calibration samples containing well-resolved LDs. This relationship is then used to estimate total cellular droplet volume in experimental samples, where the LDs need not be individually resolved, or to determine the volumes of individual LDs. We describe quantitatively the effects of various factors, including image noise, LD crowding, and variation in LD composition on the accuracy of this method. We then demonstrate this method by utilizing it to address a scientifically interesting question, to determine the density of green fluorescent protein (GFP)-tagged Perilipin-Adipocyte-Tail (PAT) proteins on the LD surface. We find that PAT proteins cover only a minority of the LD surface, consistent with models in which they primarily serve as scaffolds for binding of regulatory proteins and enzymes, but inconsistent with models in which their major function is to sterically block access to the droplet surface.

  11. Cellular Fatty Acid Metabolism and Cancer

    PubMed Central

    Currie, Erin; Schulze, Almut; Zechner, Rudolf; Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Cancer cells commonly have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation. PMID:23791484

  12. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    PubMed

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  13. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  14. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  16. A Novel Arabidopsis Vacuolar Glucose Exporter Is Involved in Cellular Sugar Homeostasis and Affects the Composition of Seed Storage Compounds1[W][OA

    PubMed Central

    Poschet, Gernot; Hannich, Barbara; Raab, Sabine; Jungkunz, Isabel; Klemens, Patrick A.W.; Krueger, Stephan; Wic, Stefan; Neuhaus, H. Ekkehard; Büttner, Michael

    2011-01-01

    Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves. PMID:21984725

  17. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  18. Regulation of AMPA receptor localization in lipid rafts

    PubMed Central

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  19. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    PubMed

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance.

    PubMed

    Maejima, Eriko; Osaki, Mitsuru; Wagatsuma, Tadao; Watanabe, Toshihiro

    2017-05-01

    High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  1. Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40.

    PubMed

    Wijesinghe, Kaveesha J; Stahelin, Robert V

    2015-12-30

    Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  3. Relationship between plasma adropin levels and body composition and lipid characteristics amongst young adolescents in Taiwan.

    PubMed

    Chang, Jin-Biou; Chu, Nain-Feng; Lin, Fu-Huang; Hsu, Jhu-Ting; Chen, Pi-Yun

    Adropin is a 76 amino acid peptide hormone with a molecular weight of 4999.9Da that may be associated with energy homeostasis, insulin resistance and lipid metabolism in mice and human. There is only a few studies that examine plasma adropin levels and body composition in children. This study is to evaluate the relationship between plasma adropin levels, body composition and lipid variables amongst young adolescents in Taiwan. We examined 492 adolescents (269 females and 223 males) ranging from 12 to 15 years old, with a mean age of 13.6 years. Body composition was measured using impedance method by Tanita-BC418. Plasma lipid variables were measured using standard methods and plasma adropin levels were measured using the ELISA method. There was no significant difference in plasma adropin levels between males and females (3.52 vs. 3.58ng/ml). Plasma adropin levels were negatively correlated with fat free mass (r=-0.12, p<0.01). More interestingly, children with higher plasma adropin levels had lower waist-to-hip ratios (WHR) and lower body fat percentage by mass. Furthermore, there is no difference in lipid profiles in high vs. low adropin subjects. Plasma adropin levels are not consistency associated with body composition and no association with lipid variables amongst Taiwanese adolescents. The role of adropin in the development of obesity is still not clear, and further studies are need especially for children. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  4. WE-FG-207B-06: Plaque Composition Measurement with Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C; Ding, H; Malkasian, S

    Purpose: To investigate the feasibility of characterizing arterial plaque composition in terms of water, lipid and protein or calcium using dual energy computed tomography. Characterization of plaque composition can potentially help distinguish vulnerable from stable plaques. Methods: Simulations studies were performed by the CT simulator based on ASTRA tomography toolbox. The beam energy for dual energy images was selected to be 80 kVp and 135 kVp. The radiation dose and energy spectrum for the CT simulator were carefully calibrated with respect to a 320-slice CT scanner. A digital chest phantom was constructed using Matlab for calibration and plaque measurement. Puremore » water, lipid, protein or calcium was used for calibration and a mixture of different volume percentages of these materials were used for validation purposes. Non-calcified plaque was simulated using water, lipid and protein with volumetric percentage range of 35%∼65%, 5%∼60% and 5%∼40%, respectively. Calcified plaque was simulated using water, lipid and calcium with volumetric percentage range of 50%∼80%, 8%∼45% and 3%∼13%, respectively. We employed iterative sinogram processing (ISP) to reduce the beam hardening effect in the simulation to improve the decomposition results. Results: The simulated known composition and dual energy decomposition results were in good agreement. Water, lipid and protein (calcium) mixtures were decomposed into water, lipid and protein (calcium) contents. The RMS errors of volumetric percentage for the water, lipid and protein (non-calcified plaque) decomposition, as compared to known values, were estimated to be approximately 5.74%, 2.54%, and 0.95% respectively. The RMS errors of volumetric percentage for the water, lipid and Calcium (calcified plaque) decomposition, as compared to known values, were estimated to be approximately 7.4%, 8.64%, and 0.08% respectively. Conclusion: The results of this study suggest that the dual energy decomposition can potentially be used to quantify the water, lipid, and protein or calcium composition of a plaque with relatively good accuracy. Grant funding from Toshiba Medical Systems and Philips Medical Systems.« less

  5. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    PubMed

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species.

    PubMed

    Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders

    2007-03-01

    The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.

  7. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media

    PubMed Central

    Liland, Nina S.; Biancarosa, Irene; Araujo, Pedro; Biemans, Daan; Bruckner, Christian G.; Waagbø, Rune; Torstensen, Bente E.

    2017-01-01

    Black soldier fly (Hermetia illucens) larvae are a promising source of protein and lipid for animal feeds. The nutritional composition of the BSF larvae depend partly on the composition of the feeding medium. The BSF lipid profile in part mimics the feeding media lipid profile, and micronutrients, like minerals and vitamins, can readily accumulate in black soldier fly larvae. However, investigative studies on bioconversion and accumulation of nutrients from media to black soldier fly larvae are scarce. Here we show that inclusion of the brown algae Ascophyllum nodosum in the substrate for black soldier fly larvae can introduce valuable nutrients, commonly associated with the marine environment, into the larvae. The omega-3 fatty acid eicosapentaenoic acid (20:5n-3), iodine and vitamin E concentrations increased in the larvae when more seaweed was included in the diet. When the feeding media consisted of more than 50% seaweed, the larvae experienced poorer growth, lower nutrient retention and lower lipid levels, compared to a pure plant based feeding medium. Our results confirm the plasticity of the nutritional make-up of black soldier fly larvae, allowing it to accumulate both lipid- and water-soluble compounds. A broader understanding of the effect of the composition of the feeding media on the larvae composition can help to tailor black soldier fly larvae into a nutrient profile more suited for specific feed or food purposes. PMID:28837591

  8. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media.

    PubMed

    Liland, Nina S; Biancarosa, Irene; Araujo, Pedro; Biemans, Daan; Bruckner, Christian G; Waagbø, Rune; Torstensen, Bente E; Lock, Erik-Jan

    2017-01-01

    Black soldier fly (Hermetia illucens) larvae are a promising source of protein and lipid for animal feeds. The nutritional composition of the BSF larvae depend partly on the composition of the feeding medium. The BSF lipid profile in part mimics the feeding media lipid profile, and micronutrients, like minerals and vitamins, can readily accumulate in black soldier fly larvae. However, investigative studies on bioconversion and accumulation of nutrients from media to black soldier fly larvae are scarce. Here we show that inclusion of the brown algae Ascophyllum nodosum in the substrate for black soldier fly larvae can introduce valuable nutrients, commonly associated with the marine environment, into the larvae. The omega-3 fatty acid eicosapentaenoic acid (20:5n-3), iodine and vitamin E concentrations increased in the larvae when more seaweed was included in the diet. When the feeding media consisted of more than 50% seaweed, the larvae experienced poorer growth, lower nutrient retention and lower lipid levels, compared to a pure plant based feeding medium. Our results confirm the plasticity of the nutritional make-up of black soldier fly larvae, allowing it to accumulate both lipid- and water-soluble compounds. A broader understanding of the effect of the composition of the feeding media on the larvae composition can help to tailor black soldier fly larvae into a nutrient profile more suited for specific feed or food purposes.

  9. Coccolith calcite time capsules preserve a molecule-specific record of pCO2

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.

    2017-12-01

    Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6, 34263 (2016). McClelland, H. L. O. et al., Nat. Commun. 8, 1-16 (2017)

  10. Multivalent Cation-Bridged PI(4,5)P2 Clusters Form at Very Low Concentrations.

    PubMed

    Wen, Yi; Vogt, Volker M; Feigenson, Gerald W

    2018-06-05

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca 2+ , Mg 2+ , Zn 2+ , or trivalent ions Fe 3+ and Al 3+ . Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition

    PubMed Central

    Singhal, N. K.; Huang, H.; Li, S.; Clements, R.; Gadd, J.; Daniels, A.; Kooijman, E. E.; Bannerman, P.; Burns, T.; Guo, F.; Pleasure, D.; Freeman, E.; Shriver, L.

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography–tandem mass spectrometry (LC–MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L−/−) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L−/− mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination. PMID:27709268

  12. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    PubMed

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  13. Comparative study of lipids in mature seeds of six Cordia species (family Boraginaceae) collected in different regions of Brazil.

    PubMed

    Carvalho, Patricía de O; Arrebola, Melissa B; Sawaya, Alexandra C H F; Cunha, Ildenize B S; Bastos, Deborah H M; Eberlin, Marcos N

    2006-08-01

    The oil content, FA, and lipid class composition of the mature seeds of six Cordia species were analyzed. Mature seeds of each species were collected in their natural habitat from 2002 to 2004. The total lipid content varied from 1.9% to 13.2%, there being significant differences between the results found in different years for each species and between the species analyzed. The contents of FFA varied from 2.0% to 7.9% of total lipids. Neutral lipids (NL) were the largest class, making up between 89.6% and 96.4% of the total lipids; the phospholipids (PL) were the second largest class (3.0% to 8.9% of the total lipids), and the glycolipids (GL) were the smallest class (0.6 to 3.4%). The presence of GLA was determined in each class of lipids; it is predominant in the NL. Levels of GLA ranged from 1.2% to 6.8% of total seed FA. This is, to our knowledge the first study of lipid composition in seeds of species of Cordia from Brazil.

  14. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach

    NASA Astrophysics Data System (ADS)

    Imbs, A. B.; Yakovleva, I. M.

    2012-03-01

    Coral bleaching induces changes in lipid and fatty acid composition that result in low lipid content, reducing the likelihood of coral survival. Species-specific differences in the metabolism of lipid reserves may contribute to the differential resistance of corals under acute heat exposures. Here, we examined the dynamics of lipids and fatty acid abundance in corals subjected to short-term heat stress. The stony corals Acropora intermedia, Montipora digitata, and the soft coral Sinularia capitalis all showed a 60-75% decline in both storage and structural lipids. However, S. capitalis and M. digitata exhibited no significant change in the percentages of structural lipids (i.e., polar lipids and sterols) until they had lost 90-95% of their endosymbionts, whereas A. intermedia showed a rapid decline in structural lipids after a 50% loss of symbionts. After a 90-95% loss of symbionts under heat stress, all three corals showed a relative depletion of polyunsaturated fatty acids that had symbiont biomarkers, suggesting that polyunsaturated fatty acids were translocated from the symbiont to the coral host tissue.

  15. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model

    PubMed Central

    Santos, Guido; Díaz, Mario; Torres, Néstor V.

    2016-01-01

    A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease. PMID:27014089

  16. Functional analysis of alpha5beta1 integrin and lipid rafts in invasion of epithelial cells by Porphyromonas gingivalis using fluorescent beads coated with bacterial membrane vesicles.

    PubMed

    Tsuda, Kayoko; Furuta, Nobumichi; Inaba, Hiroaki; Kawai, Shinji; Hanada, Kentaro; Yoshimori, Tamotsu; Amano, Atsuo

    2008-01-01

    Porphyromonas gingivalis, a periodontal pathogen, was previously suggested to exploit alpha5beta1 integrin and lipid rafts to invade host cells. However, it is unknown if the functional roles of these host components are distinct from one another during bacterial invasion. In the present study, we analyzed the mechanisms underlying P. gingivalis invasion, using fluorescent beads coated with bacterial membrane vesicles (MV beads). Cholesterol depletion reagents including methyl-beta-cyclodextrin (MbetaCD) drastically inhibited the entry of MV beads into epithelial cells, while they were less effective on bead adhesion to the cells. Bead entry was also abolished in CHO cells deficient in sphingolipids, components of lipid rafts, whereas adhesion was negligibly influenced. Following MbetaCD treatment, downstream events leading to actin polymerization were abolished; however, alpha5beta1 integrin was recruited to beads attached to the cell surface. Dominant-negative Rho GTPase Rac1 abolished cellular engulfment of the beads, whereas dominant-negative Cdc42 did not. Following cellular interaction with the beads, Rac1 was found to be translocated to the lipid rafts fraction, which was inhibited by MbetaCD. These results suggest that alpha5beta1 integrin, independent of lipid rafts, promotes P. gingivalis adhesion to epithelial cells, while the subsequent uptake process requires lipid raft components for actin organization, with Rho GTPase Rac1.

  17. Quantitative Profiling of Brain Lipid Raft Proteome in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Kalinowska, Magdalena; Castillo, Catherine; Francesconi, Anna

    2015-01-01

    Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders. PMID:25849048

  18. Exploring the interactions between peptides and lipid bilayers using coherent anti-Stokes Raman scattering and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Mari, M.; Mouras, R.; Downes, A.; Elfick, A.

    2011-06-01

    We have used a versatile and powerful microscope[1] for multi-modal biomedical imaging on which we combine Coherent Anti-Stokes Raman Scattering (CARS) with Two Photon Excitation Fluorescence (TPEF) using a Nd: YVO4 pump laser. We acquired 2PEF, CARS, and phase contrast images of Multilamellar Vesicles (MLVs) and Giant Unilamellar Vesicles (GUVs), as well as Raman spectra of the constituent lipids. A wide range of peptides are harmful to cells by altering the structure of the biological membranes. This effect depends on the composition of the membrane and the chemical structure of the peptide. The peptide we studied is the beta amyloid Aβ which is a major component of the amyloid plaques deposited on neuronal membranes of Alzheimer's disease (AD) patients. AD is neurodegenerative disorder in which the hallmark symptoms include cognitive decline and dementia[2] and is characterized by the formation of extracellular amyloid fibrils on the neuronal membranes of the brain. Many questions still remain unanswered concerning the destabilization of cellular ionic homeostasis due to pores formed during the interactions of lipid membranes with peptides. In this project, biomimics of cell membranes are used. The structures that best mimic the plasma membranes are MLVs or GUVs. These vesicles are formed using the gentle hydration technique[3] or the electroformation technique[4] respectively and are composed of phospholipids such as DOPC, DPPC, D62PPC and their binary mixtures. The MLVs and GUVs imaging by CARS and TPEF microscopy not only permits the direct imaging of the leakage phenomenon caused by the toxic peptide (Aβ) on the lipid bilayer, but also records simultaneously the lateral structure of the bilayer and peptide distribution in the plane across the membrane.

  19. Molecular mechanism of membrane binding of the GRP1 PH domain.

    PubMed

    Lai, Chun-Liang; Srivastava, Anand; Pilling, Carissa; Chase, Anna R; Falke, Joseph J; Voth, Gregory A

    2013-09-09

    The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an unbiased omics approach for the comprehensive study of the metabolism. PMID:26084047

  1. Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates.

    PubMed

    McCartney, C A; Dewhurst, R J; Bull, I D

    2014-09-01

    The distinctive membrane lipids of the archaea can contain a wide range of chemical structures. The membrane lipid composition of ruminal methanogenic archaea has not yet been characterized. In this study, we analyzed proportions of the core archaeal membrane lipids dialkyl glycerol diethers (DGDG) and glycerol dialkyl glycerol tetraether (GDGT). We analyzed the feces of beef steers consuming diets that promoted differences in ruminal conditions that were either favorable (i.e., grass silage) or challenging (i.e., concentrates) for the methanogenic archaea. There was significantly less total ether lipid in the feces of cattle consuming the concentrate diet in comparison to the grass silage diet (97 vs. 218 mg/kg DM, respectively), reflecting the inhibitory effect of dietary concentrate on methanogens. Additionally, the proportion of fecal ether lipids as GDGT was much greater in feces from cattle consuming the concentrate diet than in feces from cattle fed grass silage (90% vs. 67% GDGT). A possible explanation for this adaptation is that membrane lipids composited of GDGT lipids are less permeable to protons, thereby protecting the methanogens against low ruminal pH and helping to maintain the chemiosmotic potential (which is important for ATP production, methanogenesis, and growth). The greater proportion of fecal ether lipids as GDGT may reflect adaptation of membrane lipids within the same species, a shift toward methanogens that have a greater proportion of GDGT (e.g., Thermoplasmata), or both. The effect of ruminal environment on membrane composition means that it will be important to consider the production of both DGDG and GDGT lipids when developing a proxy for methanogenesis.

  2. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.

    PubMed

    Kastaniotis, Alexander J; Autio, Kaija J; Kerätär, Juha M; Monteuuis, Geoffray; Mäkelä, Anne M; Nair, Remya R; Pietikäinen, Laura P; Shvetsova, Antonina; Chen, Zhijun; Hiltunen, J Kalervo

    2017-01-01

    Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)

    PubMed Central

    Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina

    2013-01-01

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662

  4. Lysosomal Lipid Storage Diseases

    PubMed Central

    Schulze, Heike; Sandhoff, Konrad

    2011-01-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement. PMID:21502308

  5. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans

    PubMed Central

    Yang, Li; Ding, Yunfeng; Chen, Yong; Zhang, Shuyan; Huo, Chaoxing; Wang, Yang; Yu, Jinhai; Zhang, Peng; Na, Huimin; Zhang, Huina; Ma, Yanbin; Liu, Pingsheng

    2012-01-01

    Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle. PMID:22534641

  6. Lipoic acid functionalized amino acids cationic lipids as gene vectors.

    PubMed

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zheng, Li-Ting; Zhao, Zhi-Gang

    2016-10-01

    A series of reducible cationic lipids 4a-4f with different amino acid polar-head groups were prepared. The novel lipid contains a hydrophobic lipoic acid (LA) moiety, which can be reduced under reductive conditions to release of the encapsulated plasmid DNA. The particle size, zeta potential and cellular uptake of lipoplexes formed with DNA, as well as the transfection efficacy (TE) were characterized. The TE of the cationic lipid based on arginine was especially high, and was 2.5times higher than that of a branched polyethylenimine in the presence of 10% serum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  8. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    PubMed

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  9. Chemically induced phospholipid translocation across biological membranes.

    PubMed

    Gurtovenko, Andrey A; Onike, Olajide I; Anwar, Jamshed

    2008-09-02

    Chemical means of manipulating the distribution of lipids across biological membranes is of considerable interest for many biomedical applications as a characteristic lipid distribution is vital for numerous cellular functions. Here we employ atomic-scale molecular simulations to shed light on the ability of certain amphiphilic compounds to promote lipid translocation (flip-flops) across membranes. We show that chemically induced lipid flip-flops are most likely pore-mediated: the actual flip-flop event is a very fast process (time scales of tens of nanoseconds) once a transient water defect has been induced by the amphiphilic chemical (dimethylsulfoxide in this instance). Our findings are consistent with available experimental observations and further emphasize the importance of transient membrane defects for chemical control of lipid distribution across cell membranes.

  10. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponec, M.; Weerheim, A.; Havekes, L.

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less

  11. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    PubMed

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.

  12. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  13. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein

    PubMed Central

    Kon, Valentina; Yang, Haichun; Fazio, Sergio

    2016-01-01

    Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population. PMID:26009251

  14. Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications.

    PubMed

    Gilmore, Sean F; Carpenter, Timothy S; Ingólfsson, Helgi I; Peters, Sandra K G; Henderson, Paul T; Blanchette, Craig D; Fischer, Nicholas O

    2018-04-26

    Nanolipoprotein particles (NLPs) are reconstituted high-density lipoproteins, consisting of a phospholipid bilayer stabilized by an apolipoprotein scaffold protein. This class of nanoparticle has been a vital tool in the study of membrane proteins, and in recent years has been increasingly used for in vivo applications. Previous work demonstrated that the composition of the lipid bilayer component affects the stability of these particles in serum solutions. In the current study, NLPs assembled with phosphatidylcholine lipids featuring different acyl chain structures were systematically tested to understand the effect that lipid composition has on NLP stability in both neat serum and cell culture media supplemented with 10% serum by volume. The time at which 50% of the particles dissociate, as well as the fraction of the initial population that remains resistant to dissociation, were correlated to key parameters obtained from all-atom simulations of the corresponding lipid bilayers. A significant correlation was observed between the compressibility modulus of the lipid bilayer and particle stability in these complex biological milieu. These results can be used as a reference to tune the stability of these versatile biological nanoparticles for in vitro and in vivo applications.

  15. Metabolic effects of exercise on childhood obesity: a current view

    PubMed Central

    Paes, Santiago Tavares; Marins, João Carlos Bouzas; Andreazzi, Ana Eliza

    2015-01-01

    OBJECTIVE: To review the current literature concerning the effects of physical exercise on several metabolic variables related to childhood obesity. DATA SOURCE: A search was performed in Pubmed/MEDLINE and Web of Science databases. The keywords used were as follows: Obesity, Children Obesity, Childhood Obesity, Exercise and Physical Activity. The online search was based on studies published in English, from April 2010 to December 2013. DATA SYNTHESIS: Search queries returned 88,393 studies based on the aforementioned keywords; 4,561 studies were selected by crossing chosen keywords. After applying inclusion criteria, four studies were selected from 182 eligible titles. Most studies found that aerobic and resistance training improves body composition, lipid profile and metabolic and inflammatory status of obese children and adolescents; however, the magnitude of these effects is associated with the type, intensity and duration of practice. CONCLUSIONS: Regardless of the type, physical exercise promotes positive adaptations to childhood obesity, mainly acting to restore cellular and cardiovascular homeostasis, to improve body composition, and to activate metabolism; therefore, physical exercise acts as a co-factor in fighting obesity. PMID:25662015

  16. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  17. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease

    PubMed Central

    Tracey, Timothy J.; Steyn, Frederik J.; Wolvetang, Ernst J.; Ngo, Shyuan T.

    2018-01-01

    Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS. PMID:29410613

  18. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    ERIC Educational Resources Information Center

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  19. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  20. Endoplasmic Reticulum - Plasma Membrane Crosstalk Mediated by the Extended Synaptotagmins.

    PubMed

    Saheki, Yasunori

    2017-01-01

    The endoplasmic reticulum (ER) possesses multiplicity of functions including protein synthesis, membrane lipid biogenesis, and Ca 2+ storage and has broad localization throughout the cell. While the ER and most other membranous organelles are highly interconnected via vesicular traffic that relies on membrane budding and fusion reactions, the ER forms direct contacts with virtually all other membranous organelles, including the plasma membrane (PM), without membrane fusion. Growing evidence suggests that these contacts play major roles in cellular physiology, including the regulation of Ca 2+ homeostasis and signaling and control of cellular lipid homeostasis. Extended synaptotagmins (E-Syts) are evolutionarily conserved family of ER-anchored proteins that tether the ER to the PM in PM PI(4,5)P 2 -dependent and cytosolic Ca 2+ -regulated manner. In addition, E-Syts possess a cytosolically exposed lipid-harboring module that confers the ability to transfer/exchange glycerolipids between the ER and the PM at E-Syts-mediated ER-PM contacts. In this chapter, the functions of ER-PM contacts and their role in non-vesicular lipid transport with special emphasis on the crosstalk between the two bilayers mediated by E-Syts will be discussed.

Top