Sample records for cellular membrane affinity

  1. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using pointmore » mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.« less

  2. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  3. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  4. Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes

    NASA Astrophysics Data System (ADS)

    Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.

    2017-03-01

    Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.

  5. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    PubMed Central

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  6. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.

    2008-07-05

    The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less

  7. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    PubMed Central

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  8. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    PubMed

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  9. Cell-penetrating peptides and antimicrobial peptides: how different are they?

    PubMed Central

    Henriques, Sónia Troeira; Melo, Manuel Nuno; Castanho, Miguel A. R. B.

    2006-01-01

    Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented. PMID:16956326

  10. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition.

    PubMed

    Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P

    2018-02-02

    Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.

  11. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes.

    PubMed

    Ramandeep; Hwang, K W; Raje, M; Kim, K J; Stark, B C; Dikshit, K L; Webster, D A

    2001-07-06

    The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.

  12. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  13. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins

    PubMed Central

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-01-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099

  14. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies.

    PubMed

    Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei

    2018-04-30

    Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red.

    PubMed

    Prifti, Efthymia; Reymond, Luc; Umebayashi, Miwa; Hovius, Ruud; Riezman, Howard; Johnsson, Kai

    2014-03-21

    A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging.

  16. Inhibiting host-pathogen interactions using membrane-based nanostructures.

    PubMed

    Bricarello, Daniel A; Patel, Mira A; Parikh, Atul N

    2012-06-01

    Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The competitor-introduced Ggamma recruitment system, a new approach for screening affinity-enhanced proteins.

    PubMed

    Fukuda, Nobuo; Ishii, Jun; Tanaka, Tsutomu; Kondo, Akihiko

    2010-04-01

    We have developed a new approach based on the Ggamma recruitment system to screen affinity-enhanced proteins by expressing a binding competitor. The previously established Ggamma recruitment system is a yeast two-hybrid (Y2H) system that utilizes G-protein signaling, and is based on the fact that membrane localization of the G-protein gamma subunit (Ggamma) is essential for signal transduction in yeast. In the original Y2H system, an engineered Ggamma that lacks membrane localization upon deletion of the lipid modification site (Ggamma(cyto)) is produced, and a candidate protein with an artificial lipidation site and its counterpart fused with Ggamma(cyto) are expressed. As protein-protein interactions bring Ggamma(cyto) towards the plasma membrane, G-protein signaling can be activated, and the interaction is detected by various cellular responses as the readout. In the current study, we expressed a third cytosolic protein that competes with the candidate protein to specifically isolate affinity-enhanced mutants from a mutation library of the candidate protein. Enhancing the affinity of the protein candidate guides the counterpart-Ggamma(cyto) fusion protein towards the plasma membrane and activates signaling. Using mutants of the Z domain derived from Staphylococcus aureus protein A as candidate proteins or competitors, and the Fc portion of human immunoglobulin G (IgG) as the counterpart, we demonstrate that affinity-enhanced proteins can be effectively screened from a library containing a 10 000-fold excess of non-enhanced proteins. This new approach, called the competitor-introduced Ggamma recruitment system, will be useful for efficient discovery of rare valuable candidates hidden among excess ordinary ones.

  18. Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions

    NASA Astrophysics Data System (ADS)

    Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael

    A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.

  19. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    NASA Astrophysics Data System (ADS)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  20. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  1. Influence of altered gravity on brain cellular energy and plasma membrane metabolism of developing lower aquatic vertebrates

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.

    Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.

  2. Initial targets and cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Chiu, Song-mao; Delos Santos, Grace; Joseph, Sheeba; Xue, Liang-yan; Oleinick, Nancy L.

    2007-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals of Cleveland, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components are photodamaged. In most cancer cells, apoptosis is triggered by the initial photodamage; however, in cells deficient in one of the critical intermediates of apoptosis, this process does not occur, although the cells remain as sensitive to the lethal effects of Pc 4-PDT as the apoptosis-competent cells, when cell death is determined by colony formation. Here we report that an alternative death process, autophagy, is induced in all cells tested and becomes the dominant pathway for elimination of lethally damaged cells when apoptosis is compromised. The anti-apoptotic protein Bcl-2, when overexpressed, protects only apoptosis-competent cells against loss of clonogenicity, while the autophagy inhibitor 3-methyladenine provides a markedly greater protection to apoptosis-deficient cells. The results suggest that the primary determinant of cell death is not the final pathway for elimination of the cells but the initial photodamage to critical membrane targets. In attempts to identify those targets, we have studied the role of different membrane phospholipids in the localization of Pc 4. Cardiolipin (CL) is a phospholipid found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. Previous fluorescence resonance energy transfer studies revealed colocalization of Pc 4 and CL, which points to CL as a possible binding site and target for Pc 4. Unilamellar liposomes with different lipid compositions were used as membrane models to test the affinity of Pc 4. As revealed by the binding constants, Pc 4 does not display preferential binding to CL in these systems. Moreover, binding affinities appear to be independent of lipid composition. Localization of Pc 4 in mitochondrial membranes is likely determined by proteins or other factors not replicated in the liposomes. Studies in cells with modified CL content could report modified binding affinities.

  3. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  4. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  5. Interfacial Partitioning of a Loop Hinge Residue Contributes to Diacylglycerol Affinity of Conserved Region 1 Domains*

    PubMed Central

    Stewart, Mikaela D.; Cole, Taylor R.; Igumenova, Tatyana I.

    2014-01-01

    Conventional and novel isoenzymes of PKC are activated by the membrane-embedded second messenger diacylglycerol (DAG) through its interactions with the C1 regulatory domain. The affinity of C1 domains to DAG varies considerably among PKCs. To gain insight into the origin of differential DAG affinities, we conducted high-resolution NMR studies of C1B domain from PKCδ (C1Bδ) and its W252Y variant. The W252Y mutation was previously shown to render C1Bδ less responsive to DAG (Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282, 826–830) and thereby emulate the behavior of C1B domains from conventional PKCs that have a conserved Tyr at the equivalent position. Our data revealed that W252Y mutation did not perturb the conformation of C1Bδ in solution but significantly reduced its propensity to partition into a membrane-mimicking environment in the absence of DAG. Using detergent micelles doped with a paramagnetic lipid, we determined that both the residue identity at position 252 and complexation with diacylglycerol influence the geometry of C1Bδ-micelle interactions. In addition, we identified the C-terminal helix α1 of C1Bδ as an interaction site with the head groups of phosphatidylserine, a known activator of PKCδ. Taken together, our studies (i) reveal the identities of C1Bδ residues involved in interactions with membrane-mimicking environment, DAG, and phosphatidylserine, as well as the affinities associated with each event and (ii) suggest that the initial ligand-independent membrane recruitment of C1B domains, which is greatly facilitated by the interfacial partitioning of Trp-252, is responsible, at least in part, for the differential DAG affinities. PMID:25124034

  6. Ion channel regulation by phosphoinositides analyzed with VSPs—PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility

    PubMed Central

    Rjasanow, Alexandra; Leitner, Michael G.; Thallmair, Veronika; Halaszovich, Christian R.; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs. PMID:26150791

  7. Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout.

    PubMed

    Misra, Sougat; Kwong, Raymond W M; Niyogi, Som

    2012-05-01

    Transport of essential solutes across biological membranes is one of the fundamental characteristics of living cells. Although selenium is an essential micronutrient, little is known about the cellular mechanisms of chemical species-specific selenium transport in fish. We report here the kinetic and pharmacological transport characteristics of selenite and its thiol (glutathione and l-cysteine) derivatives in primary cultures of hepatocytes and isolated enterocytes of rainbow trout. Findings from the current study suggest an apparent low-affinity linear transport system for selenite in both cell types. However, we recorded high-affinity Hill kinetics (K(d)=3.61±0.28 μmol l(-1)) in enterocytes exposed to selenite in the presence of glutathione. The uptake of selenite in the presence of thiols was severalfold higher than uptake of selenite alone (at equimolar concentration) in both hepatocytes and enterocytes. Cellular accumulation of selenium was found to be energy independent. Interestingly, we observed a decrease in selenite transport with increasing pH, whereas selenite uptake increased with increasing pH in the presence glutathione in both cell types. The cellular uptake of selenite demonstrated a pronounced competitive interaction with a structurally similar compound, sulfite. The uptake of selenite as well as its thiol derivatives was found to be sensitive to the anion transport blocker DIDS, irrespective of the cell type. Inorganic mercury (Hg(2+)) elicited an inhibition of selenite transport in both cell types, but augmented the transport of reduced forms of selenite in hepatocytes. Based on the substrate choice and comparable pharmacological properties, we advocate that multiple anion transport systems are probably involved in the cellular transport of selenite in fish.

  8. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2.

    PubMed

    Sarmento, Maria J; Coutinho, Ana; Fedorov, Aleksander; Prieto, Manuel; Fernandes, Fábio

    2017-10-31

    Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P 2 and PI(3,5)P 2 . Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca 2+ -induced PI(4,5)P 2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P 2 . Clustering of PI(4,5)P 2 is also detected at physiological concentrations of Mg 2+ , suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P 2 and PI(3,5)P 2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.

  9. Two classes of receptor specific for sperm-activating peptide III in sand-dollar spermatozoa.

    PubMed

    Yoshino, K; Suzuki, N

    1992-06-15

    We characterized receptors specific for sperm-activating peptide III (SAP-III: DSDSAQNLIQ) in spermatozoa of the sand dollar, Clypeaster japonicus, using both binding and cross-linking techniques. Analyses of the data obtained from the equilibrium binding of a radiolabeled SAP-III analogueto C. japonicus spermatozoa, using Klotz, Scatchard and Hill plots, showed the presence of two classes of receptors specific for SAP-III in the spermatozoa. One of the receptors (high-affinity) had a Kd of 3.4 nM and 3.4 x 10(4) binding sites/spermatozoon. The other receptor (low-affinity) had a Kd of 48 nM, with 6.1 x 10(4) binding sites/spermatozoon. The Kd of the high-affinity receptor was comparable to the median effective concentration of the intracellular-pH-increasing activity of SAP-III and that of the low-affinity receptor was comparable to the median effective concentration of the cellular-cGMP-elevating activity of the peptide. In addition, Scatchard and Hill plots of the data suggested the existence of positive cooperativity between the high-affinity members. Similar results were also obtained from a binding experiment using a sperm-membrane fraction prepared from C. japonicus spermatozoa. The incubation of intact spermatozoa or sperm plasma membranes with the radioiodinated SAP-III analogue and a chemical cross-linking reagent, disuccinimidyl suberate, resulted in the radiolabeling of three proteins with molecular masses of 126, 87 and 64 kDa, estimated by SDS/PAGE under reducing conditions.

  10. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  11. Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target.

    PubMed

    Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A

    2018-06-01

    The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.

  12. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    PubMed

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel.

    PubMed

    Boiteux, Céline; Bernèche, Simon

    2011-01-12

    Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment.

    PubMed

    Paul, David; Hoppe, Simone; Saher, Gesine; Krijnse-Locker, Jacomine; Bartenschlager, Ralf

    2013-10-01

    Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.

  15. Morphological and Biochemical Characterization of the Membranous Hepatitis C Virus Replication Compartment

    PubMed Central

    Hoppe, Simone; Saher, Gesine; Krijnse-Locker, Jacomine

    2013-01-01

    Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses. PMID:23885072

  16. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  17. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less

  18. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  20. Biolayer interferometry of lipid nanodisc-reconstituted yeast vacuolar H+ -ATPase.

    PubMed

    Sharma, Stuti; Wilkens, Stephan

    2017-05-01

    Vacuolar H + -ATPase (V-ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V-ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1 -ATPase and membrane-integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein-protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein-protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc-reconstituted V-ATPase (V 1 V 0 ND). We show that V 1 V 0 ND can be immobilized on streptavidin-coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. © 2017 The Protein Society.

  1. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms.

    PubMed

    Ries, Jonas; Yu, Shuizi Rachel; Burkhardt, Markus; Brand, Michael; Schwille, Petra

    2009-09-01

    Analysis of receptor-ligand interactions in vivo is key to biology but poses a considerable challenge to quantitative microscopy. Here we combine static-volume, two-focus and dual-color scanning fluorescence correlation spectroscopy to solve this task at cellular resolution in complex biological environments. We quantified the mobility of fibroblast growth factor receptors Fgfr1 and Fgfr4 in cell membranes of living zebrafish embryos and determined their in vivo binding affinities to their ligand Fgf8.

  2. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE PAGES

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  3. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiwen; Gao, Yanfei

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  4. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    PubMed

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen

    2016-02-16

    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, wemore » use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.« less

  6. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells.

    PubMed

    Li, Jie-Ren; Ross, Shailise S; Liu, Yang; Liu, Ying X; Wang, Kang-Hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A; Liu, Gang-Yu

    2015-07-28

    A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.

  7. Considerations on the role of cardiolipin in cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Morris, Rachel L.; Azizuddin, Kashif; Berlin, Jeffrey C.; Burda, Clemens; Kenney, Malcolm E.; Samia, Anna C. S.; Oleinick, Nancy L.

    2004-06-01

    Cardiolipin is a unique phospholipid containing two phosphatidyl glycerol moieties and four fatty acids per molecule. It is found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. The acridine derivative, nonyl-acridine orange (NAO), is a highly specific probe of cardiolipin, with a binding affinity approximately two orders of magnitude greater than that for binding to other anionic phospholipids. We recently reported that when NAO is bound in the mitochondria of human prostate cancer PC-3 cells and activated at 488 nm, NAO could transfer fluorescence resonance energy to the phthalocyanine photosensitizer Pc 4. This observation indicates that one site of Pc 4 binding is very near to NAO and therefore very near to cardiolipin. The average distance between the two fluorophores was calculated to be 7 nm. In the present study, we have extended the observation to the endogenously synthesized photosensitizer, protoporphyrin IX, an intermediate in heme biosynthesis that is used for photodynamic therapy of several types of malignant and non-malignant conditions. Protoporphyrin IX is generated in the mitochondria but is known to bind to other cellular sites as well, especially the endoplasmic reticulum. The ability of this molecule to accept resonance energy from NAO in cells is consistent with a localization of at least some of the molecules in the mitochondria either on the inner membrane, the site of cardiolipin, or within about 10 nm of it. Since protoporphyrin IX binds with high affinity to the peripheral benzodiazepine receptor, a component of the permeability transition pore complex that forms at contact sites between the inner and outer membranes, our observations provide evidence for the close association of several critical molecules for mitochondrial functions and suggest that cardiolipin may be an early oxidative target during PDT with at least two photosensitizers.

  8. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  9. Bisubstrate inhibitors of protein kinases: from principle to practical applications.

    PubMed

    Lavogina, Darja; Enkvist, Erki; Uri, Asko

    2010-01-01

    Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.

  10. Calcium regulation in crustaceans during the molt cycle: a review and update.

    PubMed

    Ahearn, Gregory A; Mandal, Prabir K; Mandal, Anita

    2004-02-01

    Epithelial cells of the gut, gills, antennal glands and integument regulate calcium concentrations in crustaceans during the molt cycle. A cellular calcium transport model has been proposed suggesting the presence of calcium pumps, cation antiporters and calcium channels in transporting epithelial membranes that regulate the movements of this cation across the cell layer. Basolateral calcium transport during postmolt appears mainly regulated by the low affinity NCX antiporter, while calcium regulating 'housekeeping' activities of these cells in intermolt are controlled by the high affinity calcium ATPase (PMCA). A model is proposed for the involvement of the epithelial ER in the massive transepithelial calcium fluxes that occur during premolt and postmolt. This model involves the endoplasmic reticulum SERCA and RyR proteins and proposed cytoplasmic unstirred layers adjacent to apical and basolateral plasma membranes where calcium activities may largely exceed those in the bulk cytoplasmic phase. A result of the proposed transepithelial calcium transport model is that large quantities of calcium can be moved through these cells by these processes without affecting the low, and carefully controlled, bulk cytoplasmic calcium activities.

  11. Cellular Membrane Phospholipids Act as a Depository for Quaternary Amine containing Drugs thus competing with the Acetylcholine / Nicotinic Receptor

    PubMed Central

    Barbacci, Damon; Jackson, Shelley N.; Muller, Ludovic; Egan, Thomas; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2014-01-01

    We previously demonstrated that ammonium- or guanidinium- phosphate interactions are key to forming non-covalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine. Ion mobility baseline separated isobaric phosphatidyl ethanolamine and a matrix cluster, providing an accurate estimate for phospholipid counts. Overall this technique is a powerful method for screening drugs' interactions with targeted lipids and protein respectively containing quaternary amines and guanidinium moieties. PMID:22506649

  12. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response1[OPEN

    PubMed Central

    Brauer, Elizabeth K.; Ahsan, Nagib; Kato, Naohiro; Coluccio, Alison E.; Thelen, Jay J.

    2016-01-01

    Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca2+ uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H+)/K+ symporter that mediates a high-affinity uptake during K+ deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K+ efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K+ loss. Taken together, our results position ILK1 as a link between plant defense pathways and K+ homeostasis. PMID:27208244

  14. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  15. Biolayer interferometry of lipid nanodisc‐reconstituted yeast vacuolar H+‐ATPase

    PubMed Central

    Sharma, Stuti

    2017-01-01

    Abstract Vacuolar H+‐ATPase (V‐ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V‐ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1‐ATPase and membrane‐integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein‐protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein–protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc‐reconstituted V‐ATPase (V 1 V 0ND). We show that V 1 V 0ND can be immobilized on streptavidin‐coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. PMID:28241399

  16. Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod.

    PubMed

    Seco-Rovira, V; Beltrán-Frutos, E; Ferrer, C; Sánchez-Huertas, M M; Madrid, J F; Saez, F J; Pastor, L M

    2013-12-01

    Lectins have been widely used to study the pattern of cellular glycoconjugates in numerous species. In the process of cellular apoptosis, it has been observed that changes occur in the membrane sugar sequences of these apoptotic cells. The aim of our work was to identify which lectins, out of an extensive battery of the same (PNA, SBA, HPA, LTA, Con-A, UEA-I, WGA, DBA, MAA, GNA, AAA, SNA), show affinity for germinal cells in apoptosis, at what stage of cell death they do so and in which germinal cell types they can be detected. For this, we studied testis sections during testicular regression in Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Several lectins showed an affinity for the glycoconjugate residues of germ cells in apoptosis: Gal β1,3-GalNAcα1, α-d-mannose, N-acetylgalactosamine and l-fucose. Furthermore, lectin specificity was observed for some specific germinal cells and in certain stages of apoptosis. It was also observed that one of these lectins (PNA) showed affinity for Sertoli cells undergoing apoptosis. Therefore, we conclude that the use of lectin histochemistry could be a very useful tool for studying apoptosis in the seminiferous epithelium because of the specificity shown towards germinal cells in pathological or experimentally induced epithelial depletion models. © 2013 Blackwell Verlag GmbH.

  17. A cationic, C-terminal patch and structural rearrangements in Ebola virus matrix VP40 protein control its interactions with phosphatidylserine.

    PubMed

    Del Vecchio, Kathryn; Frick, Cary T; Gc, Jeevan B; Oda, Shun-Ichiro; Gerstman, Bernard S; Saphire, Erica Ollmann; Chapagain, Prem P; Stahelin, Robert V

    2018-03-02

    Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription. VP40 associates with plasma-membrane lipids such as phosphatidylserine (PS), and this association is critical to budding from the host cell. However, it is poorly understood how different VP40 structures interact with PS, what essential residues are involved in this association, and whether VP40 has true selectivity for PS among different glycerophospholipid headgroups. In this study, we used lipid-binding assays, MD simulations, and cellular imaging to investigate the molecular basis of VP40-PS interactions and to determine whether different VP40 structures ( i.e. monomer, dimer, and octamer) can interact with PS-containing membranes. Results from quantitative analysis indicated that VP40 associates with PS vesicles via a cationic patch in the C-terminal domain (Lys 224, 225 and Lys 274, 275 ). Substitutions of these residues with alanine reduced PS-vesicle binding by >40-fold and abrogated VP40 localization to the plasma membrane. Dimeric VP40 had 2-fold greater affinity for PS-containing membranes than the monomer, whereas binding of the VP40 octameric ring was reduced by nearly 10-fold. Taken together, these results suggest the different VP40 structures known to form in the viral life cycle harbor different affinities for PS-containing membranes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam

    2012-02-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.

  19. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    DOE PAGES

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; ...

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less

  20. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    PubMed

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.

  1. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains.

    PubMed

    Busse, B L; Bezrukov, L; Blank, P S; Zimmerberg, J

    2016-08-08

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains.

  2. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains

    PubMed Central

    Busse, B. L.; Bezrukov, L.; Blank, P. S.; Zimmerberg, J.

    2016-01-01

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains. PMID:27499335

  3. Effect of the GPI anchor of human Thy-1 on antibody recognition and function

    PubMed Central

    Bradley, John E.; Chan, Joy M.; Hagood, James S.

    2012-01-01

    Thymocyte differentiation antigen 1 (Thy-1) is a glycosylphosphatidyl inositol (GPI)-linked cell surface glycoprotein expressed on numerous cell types, which regulates signals affecting cell adhesion, migration, differentiation, and survival. In addition, Thy-1 has been detected in serum, cerebral spinal fluid, wound fluid from venous ulcers, synovial fluid from joints in rheumatoid arthritis and more recently urine. We previously detected Thy-1 in the conditioned media of cytokine-stimulated lung fibroblasts, suggesting that Thy-1 shedding may be a response to cellular stress. Soluble and membrane bound forms of Thy-1 from in vivo sources have been shown to be identical in size when deglycosylated, suggesting that soluble Thy-1 is separated from the diacyl glycerol portion of its GPI-anchor by hydrolysis within the GPI moiety. For Thy-1 and other GPI-anchored proteins, delipidation induces a stable change in conformation that manifests itself in a change in antibody affinity for soluble forms. Using epitope tagged recombinant soluble Thy-1, we report that widely available monoclonal antibodies to human Thy-1 are unable to detect soluble Thy-1 by immunoblotting. We reevaluated the Thy-1 that we previously reported in the conditioned media of normal human lung fibroblasts and found it to be entirely insoluble. These findings suggest that most Thy-1 reported in body fluids retains its GPI anchor and may be associated with membrane fragments or vesicles. This phenomenon should be considered in the generation of antibodies and controls for Thy-1 bioassays. Furthermore, the changes in Thy-1 conformation with delipidation, beyond affecting antibody affinity, likely affect the ligand affinity and biological function of soluble vs. released membrane-associated forms. PMID:23358110

  4. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  5. Functional diversification and specialization of cytosolic 70-kDa heat shock proteins.

    PubMed

    McCallister, Chelsea; Siracusa, Matthew C; Shirazi, Farzaneh; Chalkia, Dimitra; Nikolaidis, Nikolas

    2015-03-20

    A fundamental question in molecular evolution is how protein functional differentiation alters the ability of cells and organisms to cope with stress and survive. To answer this question we used two paralogous Hsp70s from mouse and explored whether these highly similar cytosolic molecular chaperones, which apart their temporal expression have been considered functionally interchangeable, are differentiated with respect to their lipid-binding function. We demonstrate that the two proteins bind to diverse lipids with different affinities and therefore are functionally specialized. The observed lipid-binding patterns may be related with the ability of both Hsp70s to induce cell death by binding to a particular plasma-membrane lipid, and the potential of only one of them to promote cell survival by binding to a specific lysosomal-membrane lipid. These observations reveal that two seemingly identical proteins differentially modulate cellular adaptation and survival by having acquired specialized functions via sequence divergence. Therefore, this study provides an evolutionary paradigm, where promiscuity, specificity, sub- and neo-functionalization orchestrate one of the most conserved systems in nature, the cellular stress-response.

  6. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    NASA Astrophysics Data System (ADS)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains. In the bound state, PTEN's regulatory C-terminal tail is displaced from the membrane and organized on the far side of the protein, ˜ 60 å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN. Molecular dynamics simulations, currently in progress, refine this structural picture further.

  7. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.).

    PubMed

    Strehler, Emanuel E

    2015-04-24

    The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A study of combined filtration and adsorption on nylon-based dye-affinity membranes: separation of recombinant L-alanine dehydrogenase from crude fermentation broth.

    PubMed

    Weissenborn, M; Hutter, B; Singh, M; Beeskow, T C; Anspach, F B

    1997-04-01

    Dextran, hydroxyethylcellulose (HEC), and poly(vinyl alcohol) PVA were covalently linked to bisoxirane-activated nylon membranes. Cibacron Blue F3G-A was immobilized on to these membranes to yield a dye-affinity membrane. The hydrodynamic permeability of affinity membranes was reduced to approximately 50% of that of the original Nylon membrane due to extension of polymer coils into flow-through pores. Adsorption of pre-purified human serum albumin (HSA) and malate dehydrogenase (MDH) displayed highest maximum binding capacities on HEC-coated dye-ligand-affinity membranes, ranging from (163 micrograms/cm2 for HSA to 316 micrograms/cm2 for MDH. The protein recovery of HSA was 100% on dextran-coated membranes compared with 70% on PVA-coated membranes, whereas almost 100% recovery was found for MDH, independent of the polymer. Application of crude supernatant from recombinant Escherichia coli yielded purification factors of 7.4, 8.9 and 11.2 for recombinant alanine dehydrogenase from Mycobacterium tuberculosis for HEC-, dextran- and PVA-coated membranes respectively. Dynamic capacities decreased remarkably to approximately 3 micrograms/cm2 due to co-adsorption of host proteins. The presence of cell debris caused only a slight decrease of purification factors, but a dramatic decrease of the permeability of affinity membranes due to development of a particle layer in front of the membranes. Although enzyme recoveries were up to 90% using cell-free supernatant, more than 50% of the product was lost due to polarization, concentration and rejection at particle layers when using crude homogenates. In order to further improve this integrated downstream process, sophisticated membrane techniques are required by which the formation of a filter cake is circumvented. Further refinement of polymer-coated membranes would not help one to avoid this problem.

  9. Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Figueira, Tiago N.; Freire, João M.; Cunha-Santos, Catarina; Heras, Montserrat; Gonçalves, João; Moscona, Anne; Porotto, Matteo; Salomé Veiga, Ana; Castanho, Miguel A. R. B.

    2017-03-01

    Understanding the interplay between molecules and lipid membranes is fundamental when studying cellular and biotechnological phenomena. Partition between aqueous media and lipid membranes is key to the mechanism of action of many biomolecules and drugs. Quantifying membrane partition, through adequate and robust parameters, is thus essential. Surface Plasmon Resonance (SPR) is a powerful technique for studying 1:1 stoichiometric interactions but has limited application to lipid membrane partition data. We have developed and applied a novel mathematical model for SPR data treatment that enables determination of kinetic and equilibrium partition constants. The method uses two complementary fitting models for association and dissociation sensorgram data. The SPR partition data obtained for the antibody fragment F63, the HIV fusion inhibitor enfuvirtide, and the endogenous drug kyotorphin towards POPC membranes were compared against data from independent techniques. The comprehensive kinetic and partition models were applied to the membrane interaction data of HRC4, a measles virus entry inhibitor peptide, revealing its increased affinity for, and retention in, cholesterol-rich membranes. Overall, our work extends the application of SPR beyond the realm of 1:1 stoichiometric ligand-receptor binding into a new and immense field of applications: the interaction of solutes such as biomolecules and drugs with lipids.

  10. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  11. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    PubMed

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  12. Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

    PubMed Central

    2012-01-01

    Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways. PMID:22551149

  13. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer.

    PubMed

    Hornick, John R; Vangveravong, Suwanna; Spitzer, Dirk; Abate, Carmen; Berardi, Francesco; Goedegebuure, Peter; Mach, Robert H; Hawkins, William G

    2012-05-02

    Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.

  14. Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.

    PubMed

    Mata-Cabana, Alejandro; Florencio, Francisco J; Lindahl, Marika

    2007-11-01

    Cysteine dithiol/disulphide exchange forms the molecular basis for regulation of a wide variety of enzymatic activities and for transduction of cellular signals. Thus, the search for proteins with reactive, accessible cysteines is expected to contribute to the unravelling of new molecular mechanisms for enzyme regulation and signal transduction. Several methods have been designed for this purpose taking advantage of the interactions between thioredoxins and their protein substrates. Thioredoxins comprise a family of redox-active enzymes, which catalyse reduction of protein disulphides and sulphenic acids. Due to the inherent practical difficulties associated with studies of membrane proteins these have been largely overlooked in the many proteomic studies of thioredoxin-interacting proteins. In the present work, we have developed a procedure to isolate membrane proteins interacting with thioredoxin by binding in situ to a monocysteinic His-tagged thioredoxin added directly to the intact membranes. Following fractionation and solubilisation of the membranes, thioredoxin target proteins were isolated by Ni-affinity chromatography and 2-DE SDS-PAGE under nonreducing/reducing conditions. Applying this method to total membranes, including thylakoid and plasma membranes, from the cyanobacterium Synechocystis sp. PCC 6803 we have identified 50 thioredoxin-interacting proteins. Among the 38 newly identified thioredoxin targets are the ATP-binding subunits of several transporters and members of the AAA-family of ATPases.

  15. No evidence for a local renin-angiotensin system in liver mitochondria

    PubMed Central

    Astin, Ronan; Bentham, Robert; Djafarzadeh, Siamak; Horscroft, James A.; Kuc, Rhoda E.; Leung, Po Sing; Skipworth, James R. A.; Vicencio, Jose M.; Davenport, Anthony P.; Murray, Andrew J.; Takala, Jukka; Jakob, Stephan M.; Montgomery, Hugh; Szabadkai, Gyorgy

    2013-01-01

    The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets. PMID:23959064

  16. Cell biological mechanisms of multidrug resistance in tumors.

    PubMed

    Simon, S M; Schindler, M

    1994-04-26

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  17. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks.

  18. Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant

    2011-03-01

    Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.

  19. Membrane Cholesterol Modulates Superwarfarin Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less

  20. Translocation and Endocytosis for Cell-penetrating Peptide Internalization

    PubMed Central

    Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine

    2009-01-01

    Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724

  1. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.

    PubMed

    Vandenbol, M; Jauniaux, J C; Grenson, M

    1989-11-15

    The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.

  2. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process.

    PubMed Central

    Stremmel, W

    1988-01-01

    The mechanism by which fatty acids enter cardiomyocytes is unclear. Therefore, the influx kinetics of [3H]oleate into isolated rat heart myocytes were examined. Cells were incubated at 37 degrees C with [3H]oleate bound to albumin in various molar ratios and the initial rate of uptake (V0) was determined as a function of the unbound oleate concentration in the medium. V0 was saturable with increasing oleate concentrations incubated (Km 78 nM; Vmax 1.9 nmol X min-1 per 10(6) cells) and temperature dependent with an optimum at 37 degrees C. Furthermore, binding of [3H]oleate to isolated plasma membranes of cardiomyocytes was saturable, revealing a KD of 42 nM, and was inhibited by heat denaturation or trypsin pretreatment of the membranes. From these membranes a single 40-kD protein with high affinity for a variety of long chain fatty acids was isolated. With a monospecific antibody to this membrane protein, binding as well as cellular influx of [3H]oleate was selectively inhibited. These data indicate that at least a portion of myocardial fatty acid uptake is mediated by a specific membrane protein. Images PMID:3343344

  3. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    PubMed Central

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total numbers of beta-adrenoceptors with a greater percentage of receptors of the beta 2 subtype as compared to mongrel lung membranes. 2. Agonist and antagonist binding affinity and the percentage of beta-adrenoceptors sequestered were not different in BG and mongrel dog lung membranes. However, the percentage of beta-adrenoceptors in the high affinity state for agonist was decreased in BG lung membranes suggesting an uncoupling of the receptor from Gs alpha. 3. Impaired coupling between the beta-adrenoceptor and G protein documented by the decreased numbers of beta-adrenoceptors in the high affinity state in BG lung membranes, is a plausible explanation for the reduced stimulation of adenylyl cyclase and the resultant reduction in airway smooth muscle relaxation in this model. PMID:8864536

  4. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction.

    PubMed

    Simões, M J; Gärtner, A; Shirosaki, Y; Gil da Costa, R M; Cortez, P P; Gartnër, F; Santos, J D; Lopes, M A; Geuna, S; Varejão, A S P; Maurício, A Colette

    2011-01-01

    Tissue regeneration over a large defect with a subsequent satisfactory functional recovery still stands as a major problem in areas such as nerve regeneration or bone healing. The routine technique for the reconstruction of a nerve gap is the use of autologous nerve grafting, but still with severe complications. Over the last decades several attempts have been made to overcome this problem by using biomaterials as scaffolds for guided tissue regeneration. Despite the wide range of biomaterials available, functional recovery after a serious nerve injury is still far from acceptable. Prior to the use of a new biomaterial on healing tissues, an evaluation of the host's inflammatory response is mandatory. In this study, three chitosan membranes were tested in vitro and in vivo for later use as nerve guides for the reconstruction of peripheral nerves submitted to axonotmesis or neurotmesis lesions. Chitosan membranes, with different compositions, were tested in vitro, with a nerve growth factor cellular producing system, N1E-115 cell line, cultured over each of the three membranes and differentiated for 48h in the presence of 1.5% of DMSO. The intracellular calcium concentrations of the non-differentiated and of the 48h-differentiated cells cultured on the three types of the chitosan membranes were measured to determine the cell culture viability. In vivo, the chitosan membranes were implanted subcutaneously in a rat model, and histological evaluations were performed from material retrieved on weeks 1, 2, 4 and 8 after implantation. The three types of chitosan membranes were a viable substrate for the N1E-115 cell multiplication, survival and differentiation. Furthermore, the in vivo studies suggested that these chitosan membranes are promising candidates as a supporting material for tissue engineering applications on the peripheral nerve, possibly owing to their porous structure, their chemical modifications and high affinity to cellular systems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less

  6. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium

    PubMed Central

    Martinez, Jennifer S.; Carter-Franklin, Jayme N.; Mann, Elizabeth L.; Martin, Jessica D.; Haygood, Margo G.; Butler, Alison

    2003-01-01

    Iron concentrations in the ocean are low enough to limit the growth of marine microorganisms, which raises questions about the molecular mechanisms these organisms use to acquire iron. Marine bacteria have been shown to produce siderophores to facilitate iron(III) uptake. We describe the structures of a suite of amphiphilic siderophores, named the amphibactins, which are produced by a nearshore isolate, γ Proteobacterium, Vibrio sp. R-10. Each amphibactin has the same Tris-hydroxamate-containing peptidic headgroup composed of three ornithine residues and one serine residue but differs in the acyl appendage, which ranges from C-14 to C-18 and varies in the degree of saturation and hydroxylation. Although amphiphilic siderophores are relatively rare, cell-associated amphiphilic siderophores are even less common. We find that the amphibactins are cell-associated siderophores. As a result of the variation in the nature of the fatty acid appendage and the cellular location of the amphibactins, the membrane partitioning of these siderophores was investigated. The physiological mixture of amphibactins had a range of membrane affinities (3.8 × 103 to 8.3 × 102 M−1) that are larger overall than other amphiphilic siderophores, likely accounting for their cell association. This cell association is likely an important defense against siderophore diffusion in the oceanic environment. The phylogenetic affiliation of Vibrio sp. R-10 is discussed, as well as the observed predominance of amphiphilic siderophores produced by marine bacteria in contrast to those produced by terrestrial bacteria. PMID:12651947

  7. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein

    PubMed Central

    Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.

    2007-01-01

    Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946

  8. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahy, N.; Woolkalis, M.; Thermos, K.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was tomore » a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.« less

  9. Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D

    1979-12-01

    Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.

  10. In vitro removal of human IgG autoantibodies by affinity filtration using immobilized L-histidine onto PEVA hollow fiber membranes.

    PubMed

    Ventura, R C; Zollner, R L; Legallais, C; Vijayalakshmi, M; Bueno, S M

    2001-01-01

    Histidine was immobilized onto PEVA membrane to obtain an affinity support for human IgG removal from serum with a view to clinical apheresis for the treatment of autoimmune diseases. These membranes were able to remove in vitro several autoantibodies from the serum of SLE patients.

  11. AtCHX13 is a plasma membrane K+ transporter.

    PubMed

    Zhao, Jian; Cheng, Ning-Hui; Motes, Christy M; Blancaflor, Elison B; Moore, Miranda; Gonzales, Naomi; Padmanaban, Senthilkumar; Sze, Heven; Ward, John M; Hirschi, Kendal D

    2008-10-01

    Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K+ required for growth and development is poorly understood. The Arabidopsis (Arabidopsis thaliana) genome contains numerous cation:proton antiporters (CHX), which may mediate K+ transport; however, the vast majority of these transporters remain uncharacterized. Here, we show that AtCHX13 (At2g30240) has a role in K+ acquisition. AtCHX13 suppressed the sensitivity of yeast (Saccharomyces cerevisiae) mutant cells defective in K+ uptake. Uptake experiments using (86)Rb+ as a tracer for K+ demonstrated that AtCHX13 mediated high-affinity K+ uptake in yeast and in plant cells with a K(m) of 136 and 196 microm, respectively. Functional green fluorescent protein-tagged versions localized to the plasma membrane of both yeast and plant. Seedlings of null chx13 mutants were sensitive to K+ deficiency conditions, whereas overexpression of AtCHX13 reduced the sensitivity to K+ deficiency. Collectively, these results suggest that AtCHX13 mediates relatively high-affinity K+ uptake, although the mode of transport is unclear at present. AtCHX13 expression is induced in roots during K+-deficient conditions. These results indicate that one role of AtCHX13 is to promote K+ uptake into plants when K+ is limiting in the environment.

  12. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    PubMed

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Structure of Transmembrane Domain of Lysosome-associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-mediated Autophagy*

    PubMed Central

    Rout, Ashok K.; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-01-01

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. PMID:25342746

  14. Interaction of the new monofunctional anticancer agent Phenanthriplatin with transporters for organic cations

    NASA Astrophysics Data System (ADS)

    Hucke, Anna; Park, Ga Young; Bauer, Oliver B.; Beyer, Georg; Köppen, Christina; Zeeh, Dorothea; Wehe, Christoph A.; Sperling, Michael; Schröter, Rita; Kantauskaitè, Marta; Hagos, Yohannes; Karst, Uwe; Lippard, Stephen J.; Ciarimboli, Giuliano

    2018-05-01

    Cancer treatment with platinum compounds is an important achievement of modern chemotherapy. However, despite the beneficial effects, the clinical impact of these agents is hampered by the development of drug resistance as well as dose-limiting side effects. The efficacy but also side effects of platinum complexes can be mediated by uptake through plasma membrane transporters. In the kidneys, plasma membrane transporters are involved in their secretion into the urine. Renal secretion is accomplished by uptake from the blood into the proximal tubules cells, followed by excretion into the urine. The uptake process is mediated mainly by organic cation transporters (OCT), which are expressed in the basolateral domain of the plasma membrane facing the blood. The excretion of platinum into the urine is mediated by exchange with protons via multidrug and toxin extrusion proteins (MATE) expressed in the apical domain of plasma membrane. Recently, the monofunctional, cationic platinum agent phenanthriplatin, which is able to escape common cellular resistance mechanisms, has been synthesized and investigated. In the present study, the interaction of phenanthriplatin with transporters for organic cations has been evaluated. Phenanthriplatin is a high affinity substrate for OCT2, but has a lower apparent affinity for MATEs. The presence of these transporters increased cytotoxicity of phenanthriplatin. Therefore, phenanthriplatin may be especially effective in the treatment of cancers that express OCTs, such as colon cancer cells. However, the interaction of phenanthriplatin with OCTs suggests that its use as chemotherapeutic agent may be complicated by OCT-mediated toxicity. Unlike cisplatin, phenanthriplatin interacts with high specificity with hMATE1 and hMATE2K in addition to hOCT2. This interaction may facilitate its efflux from the cells and thereby decrease overall efficacy and/or toxicity.

  15. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels.

    PubMed

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Lau, Cher Hon; Shao, Lu

    2017-05-09

    To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    PubMed

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount. (c) 2010 Elsevier B.V. All rights reserved.

  17. Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels

    PubMed Central

    Wang, Weiwei; Touhara, Kouki K; Weir, Keiko; Bean, Bruce P; MacKinnon, Roderick

    2016-01-01

    G protein gated inward rectifier K+ (GIRK) channels open and thereby silence cellular electrical activity when inhibitory G protein coupled receptors (GPCRs) are stimulated. Here we describe an assay to measure neuronal GIRK2 activity as a function of membrane-anchored G protein concentration. Using this assay we show that four Gβγ subunits bind cooperatively to open GIRK2, and that intracellular Na+ – which enters neurons during action potentials – further amplifies opening mostly by increasing Gβγ affinity. A Na+ amplification function is characterized and used to estimate the concentration of Gβγ subunits that appear in the membrane of mouse dopamine neurons when GABAB receptors are stimulated. We conclude that GIRK2, through its dual responsiveness to Gβγ and Na+, mediates a form of neuronal inhibition that is amplifiable in the setting of excess electrical activity. DOI: http://dx.doi.org/10.7554/eLife.15751.001 PMID:27074662

  18. Uptake and subcellular distribution of [3H]arachidonic acid in murine fibrosarcoma cells measured by electron microscope autoradiography

    PubMed Central

    1985-01-01

    We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors. PMID:3926781

  19. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems.

    PubMed

    Milne, Ricky J; Perroux, Jai M; Rae, Anne L; Reinders, Anke; Ward, John M; Offler, Christina E; Patrick, John W; Grof, Christopher P L

    2017-02-01

    How sucrose transporters (SUTs) regulate phloem unloading in monocot stems is poorly understood and particularly so for species storing high Suc concentrations. To this end, Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5-SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  1. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    NASA Astrophysics Data System (ADS)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3 PUFAs can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA-chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was developed, to monitor the partitioning of a spin-labeled analog of chol, 3beta-doxyl-5alpha-cholestane (chlstn), between large unilamellar vesicles (LUVs) and methyl-beta-cyclodextrin (mbetaCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates, allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and avoidance of potential artifacts associated with physical separation of LUV and mbetaCD. Additionally, in a check of the method, the relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation, PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA-driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.

  2. Influence of N-ethylmaleimide on cholinoceptors and responses in longitudinal muscles from guinea-pig ileum.

    PubMed Central

    Aronstam, R. S.; Carrier, G. O.

    1982-01-01

    1 The binding of carbamylcholine to membranes prepared from the longitudinal muscle of guinea-pig ileum was determined from its inhibition of the binding of [3H]-3-quinuclidinyl benzilate. Carbamylcholine binding was resolved into high and low affinity components with apparent dissociation constants of 0.11 +/- 0.02 and 11 +/- 1 microM; 42% of the receptors displayed high affinity carbamylcholine binding. 2 Alkylation of longitudinal muscle membranes with N-ethylmaleimide increased muscarinic receptor affinity for carbamylcholine in a manner consistent with a conversion of low affinity to high affinity receptors. After exposure the muscle membrane fragments to 1 mM N-ethylmaleimide for 20 min at 35 degrees C, carbamylcholine binding was resolved into two components with apparent dissociation constants of 0.11 +/- 0.01 and 9 +/- 2 microM, with 74% of the receptors displaying the higher affinity. 3 Exposure of longitudinal membranes mounted in an organ chamber to 1 mM N-ethylmaleimide for 30s depressed isometric contractions in response to acetylcholine by 80%, while contractions induced by K+ and Ba2+ were reduced by less than 20% and 10%, respectively. Acetylcholine dose-response curves were shifted to the right while Ba2+ curves were unaffected. 4 It is suggested that N-ethylmaleimide has a selective effect on muscarinic responses in the longitudinal muscle by disrupting processes occurring after receptor occupancy but before the induction of phospholipid turnover or calcium influx in the postsynaptic membrane. PMID:7126999

  3. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5.

    PubMed

    Nieves-Cordones, Manuel; Miller, Anthony J; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2008-12-01

    A chimeric CaHAK1-LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K(+) uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K(+) uptake shown by K(+)-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K(+) uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K(+) uptake was not correlated with the root K(+) content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K(+) starvation or growth in the presence of NH(4) (+), but which do not decrease the K(+) content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K(+) starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K(+) transporter.

  4. Targeting diseased tissues by pHLIP insertion at low cell surface pH.

    PubMed

    Andreev, Oleg A; Engelman, Donald M; Reshetnyak, Yana K

    2014-01-01

    The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.

  5. Cellular protein receptors of maculosin, a host specific phytotoxin of spotted knapweed (Centaurea maculosa L.).

    PubMed

    Park, S H; Strobel, G A

    1994-01-05

    Maculosin (the diketopiperazine, cyclo (L-Pro-L-Tyr)) is a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa L.). Receptors for this phytotoxin have been isolated from spotted knapweed. Knapweed leaves possess most of the maculosin-binding activity in the cytosolic fraction. However, activity was also observed in the whole membrane fraction of the leaf. The binding component of the cytosolic fraction was identified as a protein(s) because of its heat-lability and sensitivity to proteases. A 16-fold purification of a toxin-binding protein was carried out by ammonium sulfate fractionation, and Sephadex G-200, and maculosin-affinity column chromatography. The affinity column was prepared with epoxy activated Sepharose 6B to which the phenolic group of maculosin was attached. The receptor was estimated to contain more than one binding protein by native and SDS-PAGE. At least one of the maculosin-binding proteins was identified as ribulose-1,5-biphosphate carboxylase (RuBPcase).

  6. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    PubMed

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  7. Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.

    2012-01-01

    Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632

  8. [Cellular uptake of TPS-L-carnitine synthesised as transporter-based renal targeting prodrug].

    PubMed

    Li, Li; Zhu, Di; Sun, Xun

    2012-11-01

    To synthesize transporter-based renal targeting prodrug TPS-L-Carnitine and to determine its cellular uptake in vitro. Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 degrees C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.

  9. The Mechanism of Interaction of Oximes with the Muscarinic-Cholinergic Complex in the Central Nervous System

    DTIC Science & Technology

    1983-11-03

    ACh binding to the remaining sites. However, the affinity of oxotremorine to the high affinity agonist binding sites was reduced. The relative...when examined in the remaining sites in the washed membranes, were similar to those in control membranes. The affinity of the agonist oxotremorine ... oxotremorine was substituted for atropine. All determinations were carriid out in quadruplicate, each one varying by < 15%. Centrifugation assays

  10. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    Bhagatji, Pinkesh; Leventis, Rania; Comeau, Jonathan; Refaei, Mohammad

    2009-01-01

    Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein. PMID:19687251

  11. Studies on gallium accumulation in inflammatory lesions: I. Gallium uptake by human polymorphonuclear leukocytes. [/sup 67/Ga, rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsan, M.F.; Chen, W.Y.; Scheffel, U.

    1978-01-01

    The mechanism of ionic gallium-67 localization in inflammatory lesions was studied. Human polymorphonuclear leukocytes (PMN) had higher Ga-67 uptake than lymphocytes, whereas red blood cells had no affinity for Ga-67. Uptake by PMN showed temperature dependence, was independent of Ga-67 concentrations, and was not inhibited by metabolic inhibitors. However, its binding to PMN could be removed by trypsin but not by neuraminidase. These results are consistent with the hypothesis that the plasma membrane serves as a diffusion barrier and Ga-67 only binds to the surface of the PMN plasma membrane. When this membrane's permeability barrier was disrupted, as in heat-killedmore » PMN, Ga-67 uptake increased markedly. Experimental abscesses were induced with E. coli or turpentine in rabbits. Twenty-four hours after i.v. injection, only 20 percent of Ga-67 in abscesses was in fractions containing intact PMN, cell debris or bacteria; the remainder was in a soluble, non-cellular fraction (2,500-g supernatant).« less

  12. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegami, T.; Semler, B.L.; Anderson, C.W.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have alsomore » revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.« less

  13. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes.

    PubMed

    Ribeiro, Mariana Borsoi; Vijayalakshmi, Mookambesvaran; Todorova-Balvay, Daniele; Bueno, Sonia Maria Alves

    2008-01-01

    The purification of IgG from human plasma was studied by comparing two affinity membranes complexed with Ni(II), prepared by coupling iminodiacetic acid (IDA) and Tris(2-aminoethyl)amine (TREN) to poly(ethylenevinyl alcohol), PEVA, hollow fiber membranes. The Ni(II)-TREN-PEVA hollow fiber membrane had lower capacity for human IgG than the complex Ni(II)-IDA-PEVA, but with similar selectivity. The IgG in peak fractions eluted from the Ni(II)-IDA-PEVA with a stepwise concentration gradient of Tris-HCl pH 7.0 (100-700 mM) reached a purity of 98% (based on IgG, IgM, IgA, albumin, and transferrin nephelometric analysis). Adsorption IgG data at different temperatures (4-37 degrees C) were analyzed using Langmuir model resulting in a calculated maximum capacity at 25 degrees C of 204.6 mg of IgG/g of dry membrane. Decrease in Kd with increasing temperature (1.7x10(-5) to 5.3x10(-6) M) indicated an increase in affinity with increased temperature. The positive value of enthalpy change (26.2 kJ/mol) indicated that the adsorption of IgG in affinity membrane is endothermic. Therefore, lower temperature induces adsorption as verified experimentally.

  15. The identification of a naturally occurring cell surface growth inhibitor related to a previously described bovine sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Fattaey, H. K.; Enebo, D. J.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A 66-kDa sialoglycoprotein has been identified as the parental membrane molecule of an earlier described sialoglycopeptide (SGP), an 18-kDa molecule released by protease treatment of intact bovine cerebral cortex cells that was shown to be a potent inhibitor of cellular proliferation. The 66-kDa parental sialoglycoprotein (p-SGP) was purified approximately 2,400-fold, to apparent homogeneity, from bovine cerebral cortex cell membranes by its release during incubation with 3 M NaCl, preparative isoelectric focusing and lectin affinity chromatography. Although a membrane-associated molecule, the p-SGP appeared to be tightly bound to the cell membrane, since it was not released during incubations in the absence of 3 M NaCl. Incubation of the membrane preparations with 3 M urea proved to be too harsh, and the antigenicity required to follow the purification of the p-SGP was abolished. Analyses by SDS-PAGE, under reducing and nonreducing conditions, suggested that the p-SGP membrane component was a single polypeptide without subunit structure. The p-SGP was shown to be structurally related to the SGP fragment by immunoblots with IgG raised to the SGP inhibitor, and functionally related to the SGP by its ability to inhibit Swiss 3T3 proliferation at concentrations strikingly similar to that previous measured with the SGP fragment.

  16. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis[OPEN

    PubMed Central

    Adamowski, Maciek; Kania, Urszula

    2018-01-01

    Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis. PMID:29511054

  17. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

  18. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    PubMed

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  19. AtCHX13 Is a Plasma Membrane K+ Transporter1[C][W][OA

    PubMed Central

    Zhao, Jian; Cheng, Ning-Hui; Motes, Christy M.; Blancaflor, Elison B.; Moore, Miranda; Gonzales, Naomi; Padmanaban, Senthilkumar; Sze, Heven; Ward, John M.; Hirschi, Kendal D.

    2008-01-01

    Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K+ required for growth and development is poorly understood. The Arabidopsis (Arabidopsis thaliana) genome contains numerous cation:proton antiporters (CHX), which may mediate K+ transport; however, the vast majority of these transporters remain uncharacterized. Here, we show that AtCHX13 (At2g30240) has a role in K+ acquisition. AtCHX13 suppressed the sensitivity of yeast (Saccharomyces cerevisiae) mutant cells defective in K+ uptake. Uptake experiments using 86Rb+ as a tracer for K+ demonstrated that AtCHX13 mediated high-affinity K+ uptake in yeast and in plant cells with a Km of 136 and 196 μm, respectively. Functional green fluorescent protein-tagged versions localized to the plasma membrane of both yeast and plant. Seedlings of null chx13 mutants were sensitive to K+ deficiency conditions, whereas overexpression of AtCHX13 reduced the sensitivity to K+ deficiency. Collectively, these results suggest that AtCHX13 mediates relatively high-affinity K+ uptake, although the mode of transport is unclear at present. AtCHX13 expression is induced in roots during K+-deficient conditions. These results indicate that one role of AtCHX13 is to promote K+ uptake into plants when K+ is limiting in the environment. PMID:18676662

  20. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order tomore » quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.« less

  1. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    PubMed

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  2. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  3. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  4. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.

  5. Pressure reversal of the action of octanol on postsynaptic membranes from Torpedo.

    PubMed Central

    Braswell, L. M.; Miller, K. W.; Sauter, J. F.

    1984-01-01

    Octanol increases the binding of [3H]-acetylcholine to the desensitized state of the nicotinic receptor in postsynaptic membranes prepared from Torpedo californica. This increase in binding results from an increase in the affinity of [3H]-acetylcholine for its receptor without any change in the number of sites or the shape of the acetylcholine binding curve. High pressures of helium (300 atm) decrease [3H]-acetylcholine binding by a mechanism that changes only the affinity of acetylcholine binding. Helium pressure reverses the effect of octanol on the affinity of [3H]-acetylcholine for its receptor. This pressure reversal of the action of octanol at a postsynaptic membrane is consistent either with pressure counteracting an octanol-induced membrane expansion or with independent mechanisms for the actions of octanol and pressure. The data do not conform with a mechanism in which pressure displaces octanol from a binding site on the receptor protein. PMID:6487895

  6. High-level expression in Saccharomyces cerevisiae enables isolation and spectroscopic characterization of functional human adenosine A2a receptor

    PubMed Central

    O’Malley, Michelle A.; Lazarova, Tzvetana; Britton, Zachary T.; Robinson, Anne S.

    2007-01-01

    The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (~4 mg/L of culture) of functional human adenosine A2a receptor fused to a green fluorescent protein (A2aR-GFP) from Saccharomyces cerevisiae. In this work we re-engineered A2aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A2aR and A2aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A2aR-GFP-His10. One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-β-D-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A2aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A2a-His10 receptor was purified in quantities of 6 +/− 2 mg/L of culture, with ligand-binding yields of 1 mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A2aR yet achieved from any heterologous expression system. PMID:17591446

  7. The BioPlex Network: A Systematic Exploration of the Human Interactome.

    PubMed

    Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P

    2015-07-16

    Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The BioPlex Network: A Systematic Exploration of the Human Interactome

    PubMed Central

    Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.

    2015-01-01

    SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194

  9. Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria

    PubMed Central

    Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S

    2014-01-01

    Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908

  10. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  11. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining wasmore » determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.« less

  12. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases

    PubMed Central

    Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  13. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  14. Na+/H+ exchange activity in the plasma membrane of Arabidopsis.

    PubMed

    Qiu, Quan-Sheng; Barkla, Bronwyn J; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S

    2003-06-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.

  15. Anomalous Surface Diffusion of Protons on Lipid Membranes

    PubMed Central

    Wolf, Maarten G.; Grubmüller, Helmut; Groenhof, Gerrit

    2014-01-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. PMID:24988343

  16. Anomalous surface diffusion of protons on lipid membranes.

    PubMed

    Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit

    2014-07-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Interaction between phloretin and the red blood cell membrane

    PubMed Central

    1976-01-01

    Phloretin binding to red blood cell components has been characterized at pH6, where binding and inhibitory potency are maximal. Binding to intact red cells and to purified hemoglobin are nonsaturated processes approximately equal in magnitude, which strongly suggests that most of the red cell binding may be ascribed to hemoglobin. This conclusion is supported by the fact that homoglobin-free red cell ghosts can bind only 10% as much phloretin as an equivalent number of red cells. The permeability of the red cell membrane to phloretin has been determined by a direct measurement at the time-course of the phloretin uptake. At a 2% hematocrit, the half time for phloretin uptake is 8.7s, corresponding to a permeability coefficient of 2 x 10(-4) cm/s. The concentration dependence of the binding to ghosts reveals two saturable components. Phloretin binds with high affinity (K diss = 1.5 muM) to about 2.5 x 10(6) sites per cell; it also binds with lower affinity (Kdiss = 54 muM) to a second (5.5 x 10(7) per cell) set of sites. In sonicated total lipid extracts of red cell ghosts, phloretin binding consists of a single, saturable component. Its affinity and total number of sites are not significantly different from those of the low affinity binding process in ghosts. No high affinity binding of phloretin is exhibited by the red cell lipid extracts. Therefore, the high affinity phloretin binding sites are related to membrane proteins, and the low affinity sites result from phloretin binding to lipid. The identification of these two types of binding sites allows phloretin effects on protein-mediated transport processes to be distinguished from effects on the lipid region of the membrane. PMID:5575

  18. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, G.B.; Block, E.R.

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxicmore » (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.« less

  19. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.

    PubMed

    Dickson, Eamonn J

    2017-01-01

    Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

  20. Evaluation of the BH3-only Protein Puma as a Direct Bak Activator*

    PubMed Central

    Dai, Haiming; Pang, Yuan-Ping; Ramirez-Alvarado, Marina; Kaufmann, Scott H.

    2014-01-01

    Interactions among Bcl-2 family proteins play critical roles in cellular life and death decisions. Previous studies have established the BH3-only proteins Bim, tBid, and Noxa as “direct activators” that are able to directly initiate the oligomerization and activation of Bak and/or Bax. Earlier studies of Puma have yielded equivocal results, with some concluding that it also acts as a direct activator and other studies suggesting that it acts solely as a sensitizer BH3-only protein. In the present study we examined the interaction of Puma BH3 domain or full-length protein with Bak by surface plasmon resonance, assessed Bak oligomerization status by cross-linking followed by immunoblotting, evaluated the ability of the Puma BH3 domain to induce Bak-mediated permeabilization of liposomes and mitochondria, and determined the effect of wild type and mutant Puma on cell viability in a variety of cellular contexts. Results of this analysis demonstrate high affinity (KD = 26 ± 5 nm) binding of the Puma BH3 domain to purified Bak ex vivo, leading to Bak homo-oligomerization and membrane permeabilization. Mutations in Puma that inhibit (L141E/M144E/L148E) or enhance (M144I/A145G) Puma BH3 binding to Bak also produce corresponding alterations in Bak oligomerization, Bak-mediated membrane permeabilization and, in a cellular context, Bak-mediated killing. Collectively, these results provide strong evidence that Puma, like Bim, Noxa, and tBid, is able to act as a direct Bak activator. PMID:24265320

  1. Interview with Irving W Wainer.

    PubMed

    Wainer, Irving W

    2013-08-01

    Irving W Wainer, Senior Investigator in the Intramural Research Program at the National Institute on Aging/NIH received his PhD degree in chemistry from Cornell University and did postdoctoral doctoral studies in molecular biology (University of Oregon) and clinical pharmacology (Thomas Jefferson Medical School). He worked for the US FDA and held positions at St Jude's Children's Research Hospital, at McGill University as Professor in the Department of Oncology, and as a Professor of Pharmacology at Georgetown University. Wainer has published over 350 scientific papers, 10 books, 25 book chapters and holds 11 patents. His awards include: 'A.J.P. Martin Medal' presented by the Chromatographic Society; Doctor HonorisCausa awarded by the Medical University of Gdansk (Gdansk, Poland, 2006), Doctor HonorisCausa awarded by the Department of Medicine, University of Liege (Liege, Belgium, 2012), and the 2013 Eastern Analytical Symposium Award for Outstanding Contributions to the Fields of Analytical Chemistry. Wainer's research includes the development of new therapeutic agents for the treatment of congestive heart failure, cancer, pain and depression, many of which are in the later stages of drug development. His laboratory has also continued the development of cellular membrane affinity chromatography technology, and recent work includes the development of columns containing immobilized forms of the breast cancer resistance protein found in cellular and nuclear membranes and mitochondrial membrane columns. Wainer's laboratory has also continued its study of the effect of disease progression and aging on drug metabolism in critically ill and terminal patients. Interview was conducted by Lisa Parks, Assistant Commissioning Editor of Bioanalysis.

  2. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    PubMed

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  3. Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins.

    PubMed

    Marinelli, Fabrizio; Kuhlmann, Sonja I; Grell, Ernst; Kunte, Hans-Jörg; Ziegler, Christine; Faraldo-Gómez, José D

    2011-12-06

    Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.

  4. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  5. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE PAGES

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan; ...

    2018-04-10

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  6. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  7. Specificity of cell–cell adhesion by classical cadherins: Critical role for low-affinity dimerization through β-strand swapping

    PubMed Central

    Chen, Chien Peter; Posy, Shoshana; Ben-Shaul, Avinoam; Shapiro, Lawrence; Honig, Barry H.

    2005-01-01

    Cadherins constitute a family of cell-surface proteins that mediate intercellular adhesion through the association of protomers presented from juxtaposed cells. Differential cadherin expression leads to highly specific intercellular interactions in vivo. This cell–cell specificity is difficult to understand at the molecular level because individual cadherins within a given subfamily are highly similar to each other both in sequence and structure, and they dimerize with remarkably low binding affinities. Here, we provide a molecular model that accounts for these apparently contradictory observations. The model is based in part on the fact that cadherins bind to one another by “swapping” the N-terminal β-strands of their adhesive domains. An inherent feature of strand swapping (or, more generally, the domain swapping phenomenon) is that “closed” monomeric conformations act as competitive inhibitors of dimer formation, thus lowering affinities even when the dimer interface has the characteristics of high-affinity complexes. The model describes quantitatively how small affinity differences between low-affinity cadherin dimers are amplified by multiple cadherin interactions to establish large specificity effects at the cellular level. It is shown that cellular specificity would not be observed if cadherins bound with high affinities, thus emphasizing the crucial role of strand swapping in cell–cell adhesion. Numerical estimates demonstrate that the strength of cellular adhesion is extremely sensitive to the concentration of cadherins expressed at the cell surface. We suggest that the domain swapping mechanism is used by a variety of cell-adhesion proteins and that related mechanisms to control affinity and specificity are exploited in other systems. PMID:15937105

  8. High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations.

    PubMed

    Schittny, J C; Timpl, R; Engel, J

    1988-10-01

    Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.

  9. Curcuminoid Binding to Embryonal Carcinoma Cells: Reductive Metabolism, Induction of Apoptosis, Senescence, and Inhibition of Cell Proliferation

    PubMed Central

    Quitschke, Wolfgang W.

    2012-01-01

    Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4–6 days to either preparation in cell culture media reduced cell division (1–5 µM), induced senescence (6–7 µM) or comprehensive cell death (8–10 µM) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM) for 0.5–4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6–10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are sequentially activated and that this activation is dependent on the affinity of curcuminoids for the respective binding sites. Defined serum-solubilized curcuminoids used in cell culture media are thus suitable for further investigating the differential activation of signal transduction pathways. PMID:22768090

  10. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.

    PubMed

    Shimizu, Kenta; Nakamura, Hideya; Watano, Satoru

    2016-06-09

    Nanoparticles (NPs) have been attracting much attention for biomedical and pharmaceutical applications. In most of the applications, NPs are required to translocate across the cell membrane and to reach the cell cytosol. Experimental studies have reported that by applying an electric field NPs can directly permeate across the cell membrane without the confinement of NPs by endocytic vesicles. However, damage to the cell can often be a concern. Understanding of the mechanism underlying the direct permeation of NPs under an external electric field can greatly contribute to the realization of a technology for the direct delivery of NPs. Here we investigated the permeation of a cationic gold NP across a phospholipid bilayer under an external electric field using a coarse-grained molecular dynamics simulation. When an external electric field that is equal to the membrane breakdown intensity was applied, a typical NP delivery by electroporation was shown: the cationic gold NP directly permeated across a lipid bilayer without membrane wrapping of the NP, while a persistent transmembrane pore was formed. However, when a specific range of the electric field that is lower than the membrane breakdown intensity was applied, a unique permeation pathway was exhibited: the generated transmembrane pore immediately resealed after the direct permeation of NP. Furthermore, we found that the affinity of the NP for the membrane surface is a key for the self-resealing of the pore. Our finding suggests that by applying an electric field in a suitable range NPs can be directly delivered into the cell with less cellular damage.

  11. Agonist properties of a stable hexapeptide analog of neurotensin, N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1).

    PubMed

    Akunne, H C; Demattos, S B; Whetzel, S Z; Wustrow, D J; Davis, D M; Wise, L D; Cody, W L; Pugsley, T A; Heffner, T G

    1995-04-18

    The major signal transduction pathway for neurotensin (NT) receptors is the G-protein-dependent stimulation of phospholipase C, leading to the mobilization of intracellular free Ca2+ ([Ca2+]i) and the stimulation of cyclic GMP. We investigated the functional actions of an analog of NT(8-13), N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1), and other NT related analogs by quantitative measurement of the cytosolic free Ca2+ concentration in HT-29 (human colonic adenocarcinoma) cells using the Ca(2+)-sensitive dye fura-2/AM and by effects on cyclic GMP levels in rat cerebellar slices. The NT receptor binding affinities for these analogs to HT-29 cell membranes and newborn (10-day-old) mouse brain membranes were also investigated. Data obtained from HT-29 cell and mouse brain membrane preparations showed saturable single high-affinity sites and binding densities (Bmax) of 130.2 and 87.5 fmol/mg protein, respectively. The respective KD values were 0.47 and 0.39 nM, and the Hill coefficients were 0.99 and 0.92. The low-affinity levocabastine-sensitive site was not present (K1 > 10,000) in either membrane preparation. Although the correlation of binding between HT-29 cell membranes and mouse brain membranes was quite significant (r = 0.92), some of the reference agents had lower binding affinities in the HT-29 cell membranes. The metabolically stable compound NT1 plus other NT analogs and related peptides [NT, NT(8-13), xenopsin, neuromedin N, NT(9-13), kinetensin and (D-Trp11)-NT] increased intracellular Ca2+ levels in HT-29 cells, indicating NT receptor agonist properties. The effect of NT1 in mobilizing [Ca2+]i blocked by SR 48692, a non-peptide NT antagonist. Receptor binding affinities of NT analogs to HT-29 cell membranes were positively correlated with potencies for mobilizing intracellular calcium in the same cells. In addition, NT1 increased cyclic GMP levels in rat cerebellar slices, confirming the latter findings of its NT agonist action. These results substantiate the in vitro NT agonist properties of the hexapeptide NT analog NT1.

  12. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    PubMed

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  13. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  14. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.

  15. Enhanced bacterial affinity of PVDF membrane: its application as improved sea water sampling tool for environmental monitoring.

    PubMed

    Kumar, Sweta Binod; Sharnagat, Preeti; Manna, Paramita; Bhattacharya, Amit; Haldar, Soumya

    2017-02-01

    Isolation of diversified bacteria from seawater is a major challenge in the field of environmental microbiology. In the present study, an attempt has been made to select specific membrane with improved property of attaching diversified bacteria. Initially, different concentrations (15, 18, and 20% W/W) of polysulfone (PSF) were used to check their affinity for the attachment of selected gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria. Among these, 20% W/W PSF showed maximum attachment. Therefore, membrane prepared with other materials such as polyvinylidene fluoride (PVDF) and polyether sulfone (PES) were used with the same concentration (20% W/W) to check their improved bacterial attachment property. Comparative study of bacterial attachment on three different membranes revealed that PVDF possessed the highest affinity towards both the groups of bacteria. This property was confirmed by different analytical methods viz. contact angle, atomic force microscopy, zeta potential, and flux study and further validated with seawater samples collected from seven sites of western coast and Lakshadweep island of India, using Biolog EcoPlate™. All the samples showed that bacterial richness and diversity was high in PVDF membrane in comparison to surrounding seawater samples. Interestingly, affinity for more diversified bacteria was reported to be higher in water sample with less turbidity and low bacteria load. This finding can facilitate the development of PVDF (20% W/W) membrane as a simple, cheap, and less labor intensive environmental sampling tool for the isolation of diversified bacteria from seawater sample wih different physiochemical properties. Graphical abstract ᅟ.

  16. Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER).

    PubMed

    Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T

    2016-01-01

    The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.

  17. Scaffold design of trivalent chelator heads dictates high-affinity and stable His-tagged protein labeling in vitro and in cellulo.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert

    2018-05-29

    Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of plasma membrane domains of mouse EL4 lymphoma cells obtained by affinity chromatography on concanavalin A-Sepharose.

    PubMed

    Szamel, M; Goppelt, M; Resch, K

    1985-12-19

    Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.

  19. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Treesearch

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  20. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric

    2014-01-01

    The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.

  1. Systems biology of cellular membranes: a convergence with biophysics.

    PubMed

    Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini

    2017-09-01

    Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  2. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity.

    PubMed

    Alves, Ana Catarina; Ribeiro, Daniela; Horta, Miguel; Lima, José L F C; Nunes, Cláudia; Reis, Salette

    2017-08-01

    Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl- sn -glycero- 3 -phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function. © 2017 The Author(s).

  3. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, C.; Matozaki, T.; Nagao, M.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated withmore » 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.« less

  4. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody.

    PubMed

    Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves

    2005-02-25

    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.

  5. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGES

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; ...

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  6. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA. PMID:26912608

  7. How-to-Do-It: Demonstrating the Effects of Stress on Cellular Membranes.

    ERIC Educational Resources Information Center

    Vodopich, Darrell S.; Moore, Randy

    1989-01-01

    Describes two simple procedures allowing students to experiment with living membranes and to relate their results to fundamental membrane structure. Provides instructions for determining the effects of temperature and organic solvent stress on cellular membranes, and spectrophotometric analysis. (RT)

  8. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  9. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose

    PubMed Central

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton

    2016-01-01

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose–response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways. PMID:27702900

  10. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose.

    PubMed

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton; Dushek, Omer

    2016-10-25

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways.

  11. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  12. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  13. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less

  14. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  15. A red-emitting indolium fluorescence probe for membranes - flavonoids interactions.

    PubMed

    Gao, Qingyun; Liu, Han; Ding, Qiongjie; Du, Jinya; Liu, Chunlin; Yang, Wei; Shen, Ping; Yang, Changying

    2018-05-01

    The red-emitting indolium derivative compound (E)-2-(4-(diphenylamino)styryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (H3) was demonstrated as a sensitive membrane fluorescence probe. The probe located at the interface of liposomes when mixed showed much fluorescence enhancement by inhibiting the twisted intramolecular charge transfer state. After ultrasonic treatment, it penetrated into lipid bilayers with the emissions leveling off and a rather large encapsulation efficiency (71.4%) in liposomes. The ζ-potential and particle size measurement confirmed that the charged indolium group was embedded deeply into lipid bilayers. The probe was then used to monitor the affinities of antioxidant flavonoids for membranes. It was verified that quercetin easily interacted with liposomes and dissociated the probe from the internal lipid within 60 s under the condition of simply mixing. The assessment of binding affinities of six flavonoids and the coincident results with their antioxidation activities indicated that it was a promising membrane probe for the study of drug bio-affinities. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Neurotensin effect on Na+, K+-ATPase is CNS area- and membrane-dependent and involves high affinity NT1 receptor.

    PubMed

    López Ordieres, María Graciela; Rodríguez de Lores Arnaiz, Georgina

    2002-11-01

    We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.

  17. Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent proteins.

    PubMed Central

    Elliott, J; Blanchard, S G; Wu, W; Miller, J; Strader, C D; Hartig, P; Moore, H P; Racs, J; Raftery, M A

    1980-01-01

    A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 7. PLATE 1 PMID:7387629

  18. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    NASA Astrophysics Data System (ADS)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  19. Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates.

    PubMed

    Hegedüs, Rózsa; Manea, Marilena; Orbán, Erika; Szabó, Ildikó; Kiss, Eva; Sipos, Eva; Halmos, Gábor; Mező, Gábor

    2012-10-01

    Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Identification of Litopenaeus vannamei BiP as a novel cellular attachment protein for white spot syndrome virus by using a biotinylation based affinity chromatography method.

    PubMed

    Yuan, Zengzhi; Chen, Meng; Wang, Jingting; Li, Zhuoyu; Geng, Xuyun; Sun, Jinsheng

    2018-05-05

    White spot syndrome virus (WSSV) is a dangerous threat to shrimp farming that also attacks a wide range of crustaceans. Knowledge of the surface protein-protein interactions between the pathogen and host is very crucial to unraveling the molecular pathogenesis mechanisms of WSSV. In this study, LvBiP (Litopenaeus vannamei immunoglobulin heavy-chain-binding protein) was identified as a novel WSSV binding protein of L. vannamei by a biotinylation based affinity chromatography method. By using pull-down and ELISA assays, the binding of recombinant LvBiP to WSSV was proved to be specific and ATP- dependent. The interaction was also confirmed by the result of co-immunoprecipitation assay. Immunofluorescence studies revealed the co-localization of LvBiP with WSSV on the cell surface of shrimp haemocytes. Additionally, LvBiP is likely to play an important role in WSSV infection. Treatment of gill cellular membrane proteins (CMPs) with purified rLvBiP and antibody that specifically recognizes LvBiP, led to a significant reduction in the binding of WSSV to gill CMPs. In the in vivo neutralization assay, rLvBiP and anti-LvBiP polyclonal antibody partially blocked the infection of WSSV. Taken together, the results indicate that LvBiP, a molecular chaperon of the HSP70 family, is a novel host factor involved at the step of attachment of the WSSV to the host cells and a potential candidate of therapeutic target. Copyright © 2018. Published by Elsevier Ltd.

  1. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    PubMed

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.

  2. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry.

    PubMed

    Butler, G S; Overall, C M

    2007-01-01

    We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.

  3. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  4. Single-cell measurement of red blood cell oxygen affinity.

    PubMed

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  5. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  6. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.

    PubMed

    Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D

    2000-09-01

    Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.

  7. Affine cellularity of finite type KLR algebras, and homomorphisms between Specht modules for KLR algebras in affine type A

    NASA Astrophysics Data System (ADS)

    Loubert, Joseph William

    This thesis consists of two parts. In the first we prove that the Khovanov-Lauda-Rouquier algebras Ralpha of finite type are (graded) affine cellular in the sense of Koenig and Xi. In fact, we establish a stronger property, namely that the affine cell ideals in Ralpha are generated by idempotents. This in particular implies the (known) result that the global dimension of Ralpha is finite. In the second part we use the presentation of the Specht modules given by Kleshchev-Mathas-Ram to derive results about Specht modules. In particular, we determine all homomorphisms from an arbitrary Specht module to a fixed Specht module corresponding to any hook partition. Along the way, we give a complete description of the action of the standard KLR generators on the hook Specht module. This work generalizes a result of James. This dissertation includes previously published coauthored material.

  8. Purine uptake in Plasmodium: transport versus metabolism.

    PubMed

    Kirk, Kiaran; Howitt, Susan M; Bröer, Stefan; Saliba, Kevin J; Downie, Megan J

    2009-06-01

    In a recent paper, Quashie et al. have proposed that purine uptake into the intraerythrocytic malaria parasite involves four different plasma membrane transporters - two high affinity and two low affinity. They equate one of the two high-affinity transporters with PfNT1, a transporter reported previously to be a low-affinity system. Here, we offer an alternative interpretation of their data, suggesting that the conclusions drawn by Quashie et al. take insufficient account of metabolism.

  9. Kv11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv11.1 (hERG) inhibitors

    PubMed Central

    Yu, Z; IJzerman, A P; Heitman, L H

    2015-01-01

    Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617

  10. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361

  11. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    NASA Astrophysics Data System (ADS)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  12. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    PubMed Central

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  13. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  14. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands.

    PubMed Central

    Kinnally, K W; Zorov, D B; Antonenko, Y N; Snyder, S H; McEnery, M W; Tedeschi, H

    1993-01-01

    The mitochrondrial benzodiazepine receptor (mBzR) binds a subset of benzodiazepines and isoquinoline carboxamides with nanomolar affinity and consists of the voltage-dependent anion channel, the adenine nucleotide translocator, and an 18-kDa protein. The effect of ligands of the mBzR on two inner mitochondrial membrane channel activities was determined with patch-clamp techniques. The relative inhibitory potencies of the drugs resemble their binding affinities for the mBzR. Ro5-4864 and protoporphyrin IX inhibit activity of the multiple conductance channel (MCC) and the mitochondrial centum-picosiemen (mCtS) channel activities at nanomolar concentrations. PK11195 inhibits mCtS activity at similar levels. Higher concentrations of protoporphyrin IX induce MCC but possibly not mCtS activity. Clonazepam, which has low affinity for mBzR, is at least 500 times less potent at both channel activities. Ro15-1788, which also has a low mBzR affinity, inhibits MCC at very high concentrations (16 microM). The findings indicate an association of these two channel activities with the proteins forming the mBzR complex and are consistent with an interaction of inner and outer membrane channels. PMID:7679505

  15. Characterization of GABAA receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells

    PubMed Central

    Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.

    2016-01-01

    Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543

  16. Membrane order in the plasma membrane and endocytic recycling compartment.

    PubMed

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  17. Membrane order in the plasma membrane and endocytic recycling compartment

    PubMed Central

    Iaea, David B.; Maxfield, Frederick R.

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865

  18. Cellular Targets of Dietary Polyphenol Resveratrol

    DTIC Science & Technology

    2005-03-01

    attempts to generate affinity columns tagged with other polyphenols, e.g., epigallocatechin gallate ( EGCG ). Conceivably such columns, if generated, would...Similar affinity chromatography with the related polyphenol Epigallocatechin gallate does not produce similar results.” Answer: We did not make...addition, the PI does not provid expression. If there is “increased ex many bind the resveratrol affinity co related polyphenol Epigallocatechin Response

  19. A Major Binding Protein for Leukemia Inhibitory Factor in Normal Mouse Serum: Identification as a Soluble Form of the Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.

    1992-09-01

    A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.

  20. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    NASA Astrophysics Data System (ADS)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  1. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  2. CTP:phosphocholine cytidylyltransferase binds anionic phospholipid vesicles in a cross-bridging mode.

    PubMed

    Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B

    2005-07-05

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.

  3. Lipid-lipid and lipid-drug interactions in biological membranes

    NASA Astrophysics Data System (ADS)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host defense peptides from the innate immune system, are active against bacteria, and avoid developed antibiotic resistance. Optimization of peptoids by modulation of hydrophobicity and structural rigidity are explored.

  4. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles

    NASA Technical Reports Server (NTRS)

    Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.

    2000-01-01

    We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, K.; Vaughn, D.A.; Fanestil, D.D.

    Thiazides and related diuretics inhibit NaCl reabsorption in the distal tubule through an unknown mechanism. The authors report here that ({sup 3}H)metolazone, a diuretic with a thiazide-like mechanism of action, labels a site in rat kidney membranes that has characteristics of the thiazide-sensitive ion transporter. ({sup 3}H)Metolazone bound with high affinity to a site with a density of 0.717 pmol/mg of protein in kidney membranes. The binding site was localized to the renal cortex, with little or not binding in other kidney regions and 11 other tissues. The affinities of thiazide-type diuretics for this binding site were significantly correlated withmore » their clinical potency. Halide anions specifically inhibited high-affinity binding of ({sup 3}H)metolazone to this site. ({sup 3})Metolazone also bound with lower affinity to sites present in kidney as well as in liver, testis, lung, brain, heart, and other tissues. Calcium antagonists and certain smooth muscle relaxants had K{sub i} values of 0.6-10 {mu}M for these low-affinity sites, which were not inhibited by most of the thiazide diuretics tested. Properties of the high-affinity ({sup 3}H)metolazone binding site are consistent with its identity as the receptor for thiazide-type diuretics.« less

  6. Crossing boundaries: the importance of cellular membranes in industrial biotechnology.

    PubMed

    Jezierska, Sylwia; Van Bogaert, Inge N A

    2017-05-01

    How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.

  7. [Propranolol beta-blocker decrease in the concentration of high-affinity binding sites for calcium ions by sarcolemma membranes of the rat heart].

    PubMed

    Seleznev, Iu M; Martynov, A V; Smirnov, V N

    1982-05-01

    In vivo administration of propranolol considerably inhibits the isoproterenol-stimulated increase in 45Ca accumulation by the myocardium and completely eliminates the potentiation of isoproterenol effect by hydrocortisone. A significant lowering of the concentration of high affinity binding sites for calcium in the sarcolemmal membranes can be produced by propranolol in vitro. Under these conditions, the glucocorticoids do not change the sarcolemmal Ca2+-binding parameters or modulate the propranolol effect. Therefore, for the manifestation of glucocorticoid action to be brought about, the integrity of the cells is apparently required, while propranolol seems to change calcium binding by direct interaction with the sarcolemmal membranes. It is suggested that in vivo propranolol inhibition of catecholamine effect on calcium ion accumulation by the myocardium depends on the interaction with the beta-receptors and direct modulation of the concentration of high affinity binding sites for calcium ions on the surface of the sarcolemma.

  8. Plasma membrane calcium ATPases and related disorders.

    PubMed

    Giacomello, Marta; De Mario, Agnese; Scarlatti, Chiara; Primerano, Simona; Carafoli, Ernesto

    2013-03-01

    The plasma membrane Ca(2+) ATPases (PMCA pumps) cooperate with other transport systems in the plasma membrane and in the organelles in the regulation of cell Ca(2+). They have high Ca(2+) affinity and are thus the fine tuners of cytosolic Ca(2+). They belong to the superfamily of P-type ATPases: their four basic isoforms share the essential properties of the reaction cycle and the general membrane topography motif of 10 transmembrane domains and three large cytosolic units. However they also differ in other important properties, e.g., tissue distribution and regulatory mechanisms. Their chief regulator is calmodulin, that removes their C-terminal cytosolic tail from autoinhibitory binding sites next to the active site of the pump, restoring activity. The number of pump isoforms is increased to over 30 by alternative splicing of the transcripts at a N-terminal site (site A) and at site C within the C-terminal calmodulin binding domain: the splice variants are tissue specific and developmentally regulated. The importance of PMCAs in the maintenance of cellular Ca(2+) homeostasis is underlined by the disease phenotypes, genetic or acquired, caused by their malfunction. Non-genetic PMCA deficiencies have long been considered possible causative factors in disease conditions as important as cancer, hypertension, or neurodegeneration. Those of genetic origin are better characterized: some have now been discovered in humans as well. They concern all four PMCA isoforms, and range from cardiac dysfunctions, to deafness, to hypertension, to cerebellar ataxia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Nuclear localization of Klotho in brain: an anti-aging protein

    PubMed Central

    German, Dwight C.; Khobahy, Ida; Pastor, Johanne; Kuro-o, Makoto; Liu, Xinran

    2011-01-01

    Klotho is a putative age-suppressing gene whose over-expression in mice results in extension of life span. The klotho gene encodes a single-pass transmembrane protein whose extracellular domain is shed and released into blood, urine, and cerebrospinal fluid, potentially functioning as a humoral factor. The extracellular domain of Klotho has an activity that increases the expression of anti-oxidant enzymes and confers resistance to oxidative stress in cultured cells and in whole animals. The transmembrane form of the Klotho protein directly binds to multiple fibroblast growth factor receptors and modifies their ligand affinity and specificity. The purpose of the present study was to determine the precise cellular localization of Klotho in the mouse brain. Using light microscopic immunohistochemical methods, we found the highest levels of Klotho immunoreactivity in two brain regions: the choroid plexus, and cerebellar Purkinje cells. In the choroid plexus cells, Klotho was found not only on the plasma membrane but also in large amounts near the nuclear membrane. Likewise, in the Purkinje cell Klotho was found throughout the cell including dendrites, axon and soma with large amounts near the nuclear membrane. Using immunoelectron microscopy, we found Klotho in the cell membrane, but the highest concentration was localized in the peripheral portion of the nucleus and the nucleolus in both cell types. This new finding suggests that in addition to Klotho being secreted from cells in brain, it also has a nuclear function. PMID:22245317

  10. Membrane transport mechanisms of choline in human intestinal epithelial LS180 cells.

    PubMed

    Horie, Asuka; Ishida, Kazuya; Watanabe, Yuri; Shibata, Kaito; Hashimoto, Yukiya

    2014-12-01

    The aim of the present study was to investigate the membrane transport mechanisms of choline using human intestinal epithelial LS180 cells. The mRNA of choline transporter-like proteins (CTLs) was expressed significantly in LS180 cells, and the rank order was CTL1 > CTL4 > CTL3 > CTL2 > CTL5. In contrast, the mRNA expression of other choline transporters, organic cation transporter (OCT) 1, OCT2 and high-affinity choline transporter 1 (CHT1), was considerably lower in LS180 cells. Five mm unlabelled choline, hemicolinium-3 and guanidine, but not tetraethylammonium, inhibited the cellular uptake of 100 µm choline in LS180 cells. The uptake of choline into LS180 cells was virtually Na(+)-independent. The uptake of choline was significantly decreased by acidification of the extracellular pH; however, it was not increased by alkalization of the extracellular pH. In addition, both acidification and alkalization of intracellular pH decreased the uptake of choline, indicating that the choline uptake in LS180 cells is not stimulated by the outward H(+) gradient. On the other hand, the uptake of choline was decreased by membrane depolarization along with increasing extracellular K(+) concentration. In addition, the Na(+)-independent uptake of choline was saturable, and the Km value was estimated to be 108 µm. These findings suggest that the uptake of choline into LS180 cells is membrane potential-dependent, but not outward H(+) gradient-dependent. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis.

    PubMed

    Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J

    2017-12-15

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  12. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.

    2018-01-01

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  13. Engineering emergent multicellular behavior through synthetic adhesion

    NASA Astrophysics Data System (ADS)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  14. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  16. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  17. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    PubMed

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedynyshyn, J.P.

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less

  19. Class B type I scavenger receptor is responsible for the high affinity cholesterol binding activity of intestinal brush border membrane vesicles

    PubMed Central

    Labonté, Eric D.; Howles, Philip N.; Granholm, Norman A.; Rojas, Juan C.; Davies, Joanna P.; Ioannou, Yiannis A.; Hui, David Y.

    2007-01-01

    Recent studies have documented the importance of Niemann Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1−/− mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1−/− mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1−/− mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1. PMID:17442616

  20. IFITM proteins-cellular inhibitors of viral entry.

    PubMed

    Smith, Se; Weston, S; Kellam, P; Marsh, M

    2014-02-01

    Interferon inducible transmembrane (IFITM) proteins are a recently discovered family of cellular anti-viral proteins that restrict the replication of a number of enveloped and non-enveloped viruses. IFITM proteins are located in the plasma membrane and endosomal membranes, the main portals of entry for many viruses. Biochemical and membrane fusion studies suggest IFITM proteins have the ability to inhibit viral entry, possibly by modulating the fluidity of cellular membranes. Here we discuss the IFITM proteins, recent work on their mode of action, and future directions for research. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Atomistic models for free energy evaluation of drug binding to membrane proteins.

    PubMed

    Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y

    2011-01-01

    The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.

  2. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data.

    PubMed

    Russo, Giacomo; Capuozzo, Antonella; Barbato, Francesco; Irace, Carlo; Santamaria, Rita; Grumetto, Lucia

    2018-06-01

    Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC 50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  4. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cytomegalovirus-Specific CD8+ T-Cells With Different T-Cell Receptor Affinities Segregate T-Cell Phenotypes and Correlate With Chronic Graft-Versus-Host Disease in Patients Post-Hematopoietic Stem Cell Transplantation

    PubMed Central

    Poiret, Thomas; Axelsson-Robertson, Rebecca; Remberger, Mats; Luo, Xiao-Hua; Rao, Martin; Nagchowdhury, Anurupa; Von Landenberg, Anna; Ernberg, Ingemar; Ringden, Olle; Maeurer, Markus

    2018-01-01

    Virus-specific T-cell responses are crucial to control cytomegalovirus (CMV) infections/reactivation in immunocompromised individuals. Adoptive cellular therapy with CMV-specific T-cells has become a viable treatment option. High-affinity anti-viral cellular immune responses are associated with improved long-term immune protection against CMV infection. To date, the characterization of high-affinity T-cell responses against CMV has not been achieved in blood from patients after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, the purpose of this study was to describe and analyze the phenotype and clinical impact of different CMV-specific CD8+ cytotoxic T-lymphocytes (CMV-CTL) classes based on their T-cell receptor (TCR) affinity. T-cells isolated from 23 patients during the first year following HSCT were tested for the expression of memory markers, programmed cell death 1 (PD-1), as well as TCR affinity, using three different HLA-A*02:01 CMVNLVPMVATV-Pp65 tetramers (wild-type, a245v and q226a mutants). High-affinity CMV-CTL defined by q226a tetramer binding, exhibited a higher frequency in CD8+ T-cells in the first month post-HSCT and exhibited an effector memory phenotype associated with strong PD-1 expression as compared to the medium- and low-affinity CMV-CTLs. High-affinity CMV-CTL was found at higher proportion in patients with chronic graft-versus-host disease (p < 0.001). This study provides a first insight into the detailed TCR affinities of CMV-CTL. This may be useful in order to improve current immunotherapy protocols using isolation of viral-specific T-cell populations based on their TCR affinity. PMID:29692783

  7. Higher-order assemblies of BAR domain proteins for shaping membranes.

    PubMed

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32551b

  9. Structure and mechanism of Zn2+-transporting P-type ATPases

    PubMed Central

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C.; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    Zinc is an essential micronutrient for all living organisms, required for signaling and proper function of a range of proteins involved in e.g. DNA-binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements2,3. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 and 2.7 Å resolution, respectively. The structures reveal a similar fold as the Cu+-ATPases with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including Cys392, Cys394 and Asp714. The pathway closes in the E2.Pi state where Asp714 interacts with the conserved Lys693, which possibly stimulates Zn2+ release as a built-in counter-ion, as also proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter-transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases, and show at the same time structural features of the extracellular release pathway that resemble the PII-type ATPases such as the sarco(endo)plasmic reticulum Ca2+-ATPase4,5 (SERCA) and Na+,K+-ATPase6. PMID:25132545

  10. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli.

    PubMed

    Ohtsu, Iwao; Kawano, Yusuke; Suzuki, Marina; Morigasaki, Susumu; Saiki, Kyohei; Yamazaki, Shunsuke; Nonaka, Gen; Takagi, Hiroshi

    2015-01-01

    Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (Km = 1.1 μM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (Km = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.

  11. Subcellular distribution of Lck during CD4 T-cell maturation in the thymic medulla regulates the T-cell activation threshold.

    PubMed

    Stephen, Tom Li; Wilson, Bridget S; Laufer, Terri M

    2012-05-08

    Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.

  12. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.

    PubMed

    Becirovic, Elvir; Nguyen, O N Phuong; Paparizos, Christos; Butz, Elisabeth S; Stern-Schneider, Gabi; Wolfrum, Uwe; Hauck, Stefanie M; Ueffing, Marius; Wahl-Schott, Christian; Michalakis, Stylianos; Biel, Martin

    2014-11-15

    Outer segments (OSs) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate, which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit, we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in vivo co-immunoprecipitation and fluorescence resonance energy transfer (FRET), we found that the tetraspanin peripherin-2 links CNGB1a to the light-detector rhodopsin. Using immunoelectron microscopy, we found that this peripherin-2/rhodopsin/CNG channel complex localizes to the contact region between the disk rims and the plasma membrane. FRET measurements revealed that the fourth transmembrane domain (TM4) of peripherin-2 is required for the interaction with rhodopsin. Quantitatively, the binding affinity of the peripherin-2/rhodopsin interaction was in a similar range as that observed for rhodopsin dimers. Finally, we demonstrate that the p.G266D retinitis pigmentosa mutation found within TM4 selectively abolishes the binding of peripherin-2 to rhodopsin. This finding suggests that the specific disruption of the rhodopsin/peripherin-2 interaction in the p.G266D mutant might contribute to the pathophysiology in affected persons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Ligand and membrane-binding behavior of the phosphatidylinositol transfer proteins PITPα and PITPβ.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Cockcroft, Shamshad; Atkinson, Jeffrey

    2016-12-01

    Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPβ had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPβ has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPβ demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.

  14. Interactions of anesthetics with the membrane-water interface

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Cieplak, P.; Wilson, M. A.

    1996-01-01

    Although the potency of conventional anesthetics correlates with lipophilicity, an affinity to water also is essential. It was recently found that compounds with very low affinities to water do not produce anesthesia regardless of their lipophilicity. This finding implies that clinical anesthesia might arise because of interactions at molecular sites near the interface of neuronal membranes with the aqueous environment and, therefore, might require increased concentrations of anesthetic molecules at membrane interfaces. As an initial test of this hypothesis, we calculated in molecular dynamics simulations the free energy profiles for the transfer of anesthetic 1,1,2-trifluoroethane and nonanesthetic perfluoroethane across water-membrane and water-hexane interfaces. Consistent with the hypothesis, it was found that trifluoroethane, but not perfluoroethane, exhibits a free energy minimum and, therefore, increased concentrations at both interfaces. The transfer of trifluoroethane from water to the nonpolar hexane or interior of the membrane is accompanied by a considerable, solvent-induced shift in the conformational equilibrium around the C-C bond.

  15. Characterization of Bufo arenarum oocyte plasma membrane proteins that interact with sperm.

    PubMed

    Coux, Gabriela; Cabada, Marcelo O

    2006-04-28

    Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.

  16. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    PubMed

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale.

    PubMed

    Inoue, Yasuhiro; Adachi, Taiji

    2011-07-01

    Membrane protrusion is a mechanochemical process of active membrane deformation driven by actin polymerization. Previously, Brownian ratchet (BR) was modeled on the basis of the underlying molecular mechanism. However, because the BR requires a priori load that cannot be determined without information of the cell shape, it cannot be effective in studies in which resultant shapes are to be solved. Other cellular-scale models describing the protrusion have also been suggested for modeling a whole cell; however, these models were not developed on the basis of coarse-grained physics representing the underlying molecular mechanism. Therefore, to express the membrane protrusion on the cellular scale, we propose a novel mathematical model, the coarse-grained BR (CBR), which is derived on the basis of nonequilibrium thermodynamics theory. The CBR can reproduce the BR within the limit of the quasistatic process of membrane protrusion and can estimate the protrusion velocity consistently with an effective elastic constant that represents the state of the energy of the membrane. Finally, to demonstrate the applicability of the CBR, we attempt to perform a cellular-scale simulation of migrating keratocyte in which the proposed CBR is used for the membrane protrusion model on the cellular scale. The results show that the experimentally observed shapes of the leading edge are well reproduced by the simulation. In addition, The trend of dependences of the protrusion velocity on the curvature of the leading edge, the temperature, and the substrate stiffness also agreed with the other experimental results. Thus, the CBR can be considered an appropriate cellular-scale model to express the membrane protrusion on the basis of its underlying molecular mechanism.

  18. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion

    PubMed Central

    Zhang, Chao; Knyazev, Denis G.; Vereshaga, Yana A.; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter

    2012-01-01

    Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile GH+ adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) × 10-5 cm2 s-1. Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120

  19. Characterization of rodent liver and kidney AVP receptors: pharmacologic evidence for species differences.

    PubMed

    Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A

    1999-10-22

    Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.

  20. Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions.

    PubMed

    Johnson, Rachel M; Rath, Arianna; Melnyk, Roman A; Deber, Charles M

    2006-07-18

    Interactions between transmembrane helices are mediated by the concave Gly-xxx-Gly motif surface. Whether Gly residues per se are sufficient for selection of this motif has not been established. Here, we used the in vivo TOXCAT assay to measure the relative affinities of all 18 combinations of Gly, Ala, and Ser "small-xxx-small" mutations in glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP) homodimers. Affinity values were compared with the accessibility to a methylene-sized probe of the total surface area of each helix monomer as a measure of solvation by membrane components. A strong inverse correlation was found between nonpolar-group lipid accessibility and dimer affinity (R = 0.75 for GpA, p = 0.013, and R = 0.81 for MCP, p = 0.004), suggesting that lipid as a poor membrane protein solvent, conceptually analogous to water in soluble protein folding, can contribute to dimer stability and help to define helix-helix interfaces.

  1. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R; Shen, Han-Ming; Lin, Qingsong

    2016-02-26

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ(TM) quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis(TM) (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death.

  2. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  3. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    PubMed

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  4. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations.

    PubMed

    Pucelik, Barbara; Gürol, Ilke; Ahsen, Vefa; Dumoulin, Fabienne; Dąbrowski, Janusz M

    2016-11-29

    A fluorinated phthalocyanine and its non-fluorinated analogue were selected to evaluate the potential enhancement of fluorination on photophysical, photochemical and redox properties as well as on biological activity in cellular and animal models. Due to the pharmacological relevance, the affinity of these phthalocyanines towards biological membranes (logP ow ) as well as their primary interaction with human serum albumin (HSA) or low-density lipoprotein (LDL) were determined. Water-dispersible drug formulation of phthalocyanines via Pluronic ® -based triblock copolymer micelles was prepared to avoid self-aggregation effects and to improve their delivery. The obtained results demonstrate that phthalocyanines incorporation into tunable-polymeric micelles significantly enhanced their cellular uptake and their photocytotoxicity. The improved biodistribution and photodynamic efficacy of the phthalocyanines-triblock copolymer conjugates was also confirmed in vivo in CT26 bearing BALB/c mice. PDT with both compounds led to tumor growth inhibition in all treated animals. Fluorinated phthalocyanine 2 turned out to be the most effective anticancer agent as the tumors of 20% of mice treated regressed completely and did not appear for over one year after treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase.

    PubMed

    Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan; Trnka, Jan

    2016-01-01

    Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70-4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes.

  6. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase

    PubMed Central

    Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan

    2016-01-01

    Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70–4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes. PMID:27537184

  7. Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides

    PubMed Central

    Arnusch, Christopher J.; Pieters, Roland J.; Breukink, Eefjan

    2012-01-01

    Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted. PMID:22768121

  8. Detection of glycoproteins in the Acanthamoeba plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presencemore » of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.« less

  9. Anti-P-glycoprotein conjugated nanoparticles for targeting drug delivery in cancer treatment.

    PubMed

    Iangcharoen, Pantiwa; Punfa, Wanisa; Yodkeeree, Supachai; Kasinrerk, Watchara; Ampasavate, Chadarat; Anuchapreeda, Songyot; Limtrakul, Pornngarm

    2011-10-01

    Targeting therapeutics to specific sites can enhance the efficacy of drugs, reduce required doses as well as unwanted side effects. In this work, using the advantages of the specific affinity of an immobilized antibody to membrane P-gp in two different nanoparticle formulations were thus developed for targeted drug delivery to multi-drug resistant cervical carcinoma (KB-V1) cells. Further, this was compared to the human drug sensitive cervical carcinoma cell line (KB-3-1) cells. The two nanoparticle preparations were: NP1, anti-P-gp conjugated with poly (DL-lactic-coglycolic acid) (PLGA) nanoparticle and polyethylene glycol (PEG); NP2, anti-P-gp conjugated to a modified poloxamer on PLGA nanoparticles. The cellular uptake capacity of nanoparticles was confirmed by fluorescent microscopy. Comparing with each counterpart core particles, there was a higher fluorescence intensity of the targeted nanoparticles in KBV1 cells compared to KB-3-1 cells suggesting that the targeted nanoparticles were internalized into KB-V1 cells to a greater extent than KB-3-1 cell. The results had confirmed the specificity and the potential of the developed targeted delivery system for overcoming multi-drug resistance induced by overexpression of P-gp on the cell membrane.

  10. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang

    2016-12-01

    Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.

  11. The monoclonal antibodies Elec-39, HNK-1 and NC-1 recognize common structures in the nervous system and muscles of vertebrates.

    PubMed

    Mailly, P; Younès-Chennouft, A B; Bon, S

    1989-01-01

    The IgM monoclonal antibodies, Elec-39, HNK-1 and NC-1, recognize the same subset of Torpedo electric organ acetylcholinesterase (AChE). We show that they react against a glycosphingolipid (SGPG) containing a sulfated glucuronic acid (SGA). The three antibodies appear essentially identical in their specificity but differ in their affinity for the antigens. We have examined their binding in the CNS, nerves and muscles of several vertebrate species, at the optical and in some cases at the electron microscope level. All three antibodies label the same structures: they show diffuse staining around neuromuscular endplates and label the plasma membrane of the Schwann cells, surrounding the outer layer of myelin sheaths. In the adult rat CNS, the antibodies label certain defined structures, notably extracellular material in the habenula and in the CA2 layer of the hippocampus. In the cortex and cerebellum, they label the surface of neural processes and terminals apposed to large multipolar neurons and Purkinje cells, as well as membranous material contained in inclusions dispersed in the cytoplasm of these neurons. These localizations are consistent with the suggestion that the SGA-antigens may be involved in cellular interactions.

  12. [Expression of Dengue virus type 2 nonstructural protein 3 and isolation of host proteins interacting with it].

    PubMed

    Weng, Daihui; Lei, Yingfeng; Dong, Yangchao; Han, Peijun; Ye, Chuantao; Yang, Jing; Wang, Yuan; Yin, Wen

    2015-12-01

    To construct the plasmid expressing the fusion protein of Dengue virus type 2 (DENV2) nonstructural protein 3 (NS3) with affinity tag, and isolate the cellular proteins interacting with NS3 protein using tandem affinity purification (TAP) assay. Primers for amplifying NS3 gene were designed according to the sequence of DENV2 genome and chemically synthesized. The NS3 fragments, after amplified by PCR with DENV2 cDNA as template, were digested and cloned into the mammalian eukaryotic expression vector pCI-SF with the tandem affinity tag (FLAG-StrepII). The recombinant pCI-NS3-SF was transiently transformed by Lipofectamine(TM) 2000 into HEK293T cells, and the expression of the fusion protein was confirmed by Western blotting. Cellular proteins that interacted with NS3 were isolated and purified by TAP assay. The eukaryotic expression vector expressing NS3 protein was successfully constructed. The host proteins interacting with NS3 protein were isolated by TAP system. TAP is an efficient method to isolate the cellular proteins interacting with DENV2 NS3.

  13. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    PubMed

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  14. Functional domains of the T lymphocyte plasma membrane: characterization of the polypeptide composition.

    PubMed

    Szamel, M; Kaever, V; Resch, K

    1987-01-01

    Highly purified plasma membranes from calf thymocytes were fractionated by affinity chromatography on Concanavalin A-Sepharose into two subfractions, one eluting freely from the affinity column (MF1) and a second being specifically retained (MF2). SDS-polyacrylamide-gel-electrophoresis revealed different polypeptide patterns of the two plasma membrane subfractions. Polypeptides of apparent molecular weights of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2. In contrast, several proteins in the 55-65 kDa range were preferentially recovered in the non-adherent fraction. Five Five of the six polypeptides, preferentially recovered in MF2 proved to be glycoproteins, the 39 kDa peptide was non-glycosilated. The differences in the amounts of the polypeptides specifically enriched in the adherent fraction MF2 became even more clear-cut when plasma membranes solubilized with non-ionic detergents (lysolecithin, ET-18-2H, Triton-X-100) were separated by affinity chromatography on Concanavalin A-Sepharose. The non-glycosilated peptide of apparent molecular weight of 39 kDa was recovered together with several glycoproteins in the adherent fraction, MF2, suggesting that not single glycoproteins, but plasma membrane domains were separated by Concanavalin A-Sepharose. Although the glycoproteins of the non-adherent fraction MF1 bound significant amounts of Concanavalin A, the major Concanavalin A binding glycoproteins were recovered in the adherent fraction, MF2. The plasma membrane subfractions showed also different functional properties, the specific activities [Na+ + K+]AT-Pase, Ca2+ ATPase and lysolecithin acyltransferase were several-fold enriched in the adherent fraction, MF2, as compared to MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of thymocytes consisting of a different set of proteins, among others the major Concanavalin A binding glycoproteins with some membrane bound enzymes, probably implicated in the initiation of lymphocyte activation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatinmore » for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.« less

  16. Trypanosoma brucei eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids.

    PubMed

    Mathieu, Christoph; González Salgado, Amaia; Wirdnam, Corina; Meier, Stefan; Grotemeyer, Marianne Suter; Inbar, Ehud; Mäser, Pascal; Zilberstein, Dan; Sigel, Erwin; Bütikofer, Peter; Rentsch, Doris

    2014-10-01

    Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the up-take of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter.

  17. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S

    PubMed Central

    Sezgin, Erdinc; Can, Fatma Betul; Schneider, Falk; Clausen, Mathias P.; Galiani, Silvia; Stanly, Tess A.; Waithe, Dominic; Colaco, Alexandria; Honigmann, Alf; Wüstner, Daniel; Platt, Frances; Eggeling, Christian

    2016-01-01

    Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics. PMID:26701325

  18. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane.

    PubMed

    Monsellier, Elodie; Bousset, Luc; Melki, Ronald

    2016-01-13

    Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain.

  19. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane

    PubMed Central

    Monsellier, Elodie; Bousset, Luc; Melki, Ronald

    2016-01-01

    Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain. PMID:26757959

  20. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    PubMed

    Gonzalez, Gaëlle; Vituret, Cyrielle; Di Pietro, Attilio; Chanson, Marc; Boulanger, Pierre; Hong, Saw-See

    2012-01-01

    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  1. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

  2. Using cell membrane chromatography and HPLC-TOF/MS method for in vivo study of active components from roots of Aconitum carmichaeli

    PubMed Central

    Cao, Yan; Chen, Xiao-Fei; Lü, Di-Ya; Dong, Xin; Zhang, Guo-Qing; Chai, Yi-Feng

    2012-01-01

    An offline two-dimensional system combining a rat cardiac muscle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high Performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis ofthe analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc.) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the System suggest that the CMC can be applied to in vivo study. PMID:29403691

  3. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    PubMed Central

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  4. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    PubMed

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  5. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    PubMed

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid.

    PubMed

    Ogawa, Rina; Nagao, Kohjiro; Taniuchi, Kentaro; Tsuchiya, Masaki; Kato, Utako; Hara, Yuji; Inaba, Takehiko; Kobayashi, Toshihide; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Watanabe-Takahashi, Miho; Nishikawa, Kiyotaka; Umeda, Masato

    2015-01-01

    We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.

  7. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, E.; Trifilieff, A.; Landry, Y.

    1991-01-01

    The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin inmore » an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.« less

  8. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.

    PubMed

    Chen, Baoyu; Chou, Hui-Ting; Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas; Rosen, Michael K

    2017-09-26

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly.

  9. Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes

    PubMed Central

    Chuang, Jen-Zen; Vega, Carrie; Jun, Wenjin; Sung, Ching-Hwa

    2004-01-01

    Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous degenerative eye disease. Mutations at Arg135 of rhodopsin are associated with a severe form of autosomal dominant RP. This report presents evidence that Arg135 mutant rhodopsins (e.g., R135L, R135G, and R135W) are hyperphosphorylated and bind with high affinity to visual arrestin. Mutant rhodopsin recruits the cytosolic arrestin to the plasma membrane, and the rhodopsin-arrestin complex is internalized into the endocytic pathway. Furthermore, the rhodopsin-arrestin complexes alter the morphology of endosomal compartments and severely damage receptor-mediated endocytic functions. The biochemical and cellular defects of Arg135 mutant rhodopsins are distinct from those previously described for class I and class II RP mutations, and, hence, we propose that they be named class III. Impaired endocytic activity may underlie the pathogenesis of RP caused by class III rhodopsin mutations. PMID:15232620

  10. Nonequilibrium fluctuations during diffusion in liquid layers

    NASA Astrophysics Data System (ADS)

    Brogioli, Doriano; Vailati, Alberto

    2017-07-01

    Theoretical analysis and experiments have provided compelling evidence of the presence of long-range nonequilibrium concentration fluctuations during diffusion processes in fluids. In this paper, we investigate the dependence of the features of the fluctuations from the dimensionality of the system. In three-dimensional fluids the amplitude of nonequilibrium fluctuations can become several orders of magnitude larger than that of equilibrium fluctuations. Notwithstanding that, the amplitude of nonequilibrium fluctuations remains small with respect to the concentration difference driving the diffusion process. By extending the theory to two-dimensional systems, such as liquid monolayers and bilayers, we show that the amplitude of the fluctuations becomes much stronger than in three-dimensional systems. We investigate the properties of the fronts of diffusion and show that they have a self-affine structure characterized by a Hurst exponent H =1 . We discuss the implications of these results for diffusion in liquid crystals and in cellular membranes of living organisms.

  11. Nonequilibrium fluctuations during diffusion in liquid layers.

    PubMed

    Brogioli, Doriano; Vailati, Alberto

    2017-07-01

    Theoretical analysis and experiments have provided compelling evidence of the presence of long-range nonequilibrium concentration fluctuations during diffusion processes in fluids. In this paper, we investigate the dependence of the features of the fluctuations from the dimensionality of the system. In three-dimensional fluids the amplitude of nonequilibrium fluctuations can become several orders of magnitude larger than that of equilibrium fluctuations. Notwithstanding that, the amplitude of nonequilibrium fluctuations remains small with respect to the concentration difference driving the diffusion process. By extending the theory to two-dimensional systems, such as liquid monolayers and bilayers, we show that the amplitude of the fluctuations becomes much stronger than in three-dimensional systems. We investigate the properties of the fronts of diffusion and show that they have a self-affine structure characterized by a Hurst exponent H=1. We discuss the implications of these results for diffusion in liquid crystals and in cellular membranes of living organisms.

  12. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.

  13. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  14. Basis for changes in the auxin-sensitivity of Avena sativa (oat) leaf-sheath pulvini during the gravitropic response

    NASA Technical Reports Server (NTRS)

    Kim, D.; Kaufman, P. B.

    1995-01-01

    During the gravitropic response, auxin-sensitivity of the lower flanks of leaf-sheath pulvini of Avena sativa (oat) is at least 1000-fold higher than those of the upper flanks and non-gravistimulated pulvini. When the pulvini are treated with 1 mM Ca2+, a 10-fold increase in auxin-sensitivity of the pulvini is observed. Related to this difference in auxin-sensitivity, in vitro activation of the vanadate-sensitive H(-)-ATPase by IAA was observed. Results show that the activation of the H(+)-ATPase by IAA is probably mediated by soluble protein factors and that the H(+)-ATPase prepared from the lower flanks is activated by IAA with a 1000-fold higher auxin-sensitivity as compared with that from the upper flanks of the graviresponding pulvini. Ammonium sulfate fractionation experiments show that these soluble protein factors are in the 30 to 60% fraction. Auxin-binding assays reveal that lower flanks contain more high-affinity soluble auxin-binding sites (kD; on the order of 10(-9) M) and less low-affinity soluble auxin-binding sites (kD; on the order of 10(-6) M) than upper flanks. It is concluded that differential auxin-sensitivity of graviresponding oat-shoot pulvini is achieved by the modulation of affinities of auxin-binding sites in upper and lower flanks of the pulvini, that Ca2+ is involved in such modulation, and that one of the probable cellular functions of these auxin binding sites is the activation of the proton pump on the plasma membranes.

  15. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  16. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  17. Amphipathic peptide affects the lateral domain organization of lipid bilayers.

    PubMed

    Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M

    1997-09-04

    Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.

  18. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets

    PubMed Central

    Arango, Daniel; Morohashi, Kengo; Yilmaz, Alper; Kuramochi, Kouji; Parihar, Arti; Brahimaj, Bledi; Grotewold, Erich; Doseff, Andrea I.

    2013-01-01

    Flavonoids constitute the largest class of dietary phytochemicals, adding essential health value to our diet, and are emerging as key nutraceuticals. Cellular targets for dietary phytochemicals remain largely unknown, posing significant challenges for the regulation of dietary supplements and the understanding of how nutraceuticals provide health value. Here, we describe the identification of human cellular targets of apigenin, a flavonoid abundantly present in fruits and vegetables, using an innovative high-throughput approach that combines phage display with second generation sequencing. The 160 identified high-confidence candidate apigenin targets are significantly enriched in three main functional categories: GTPase activation, membrane transport, and mRNA metabolism/alternative splicing. This last category includes the heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2), a factor involved in splicing regulation, mRNA stability, and mRNA transport. Apigenin binds to the C-terminal glycine-rich domain of hnRNPA2, preventing hnRNPA2 from forming homodimers, and therefore, it perturbs the alternative splicing of several human hnRNPA2 targets. Our results provide a framework to understand how dietary phytochemicals exert their actions by binding to many functionally diverse cellular targets. In turn, some of them may modulate the activity of a large number of downstream genes, which is exemplified here by the effects of apigenin on the alternative splicing activity of hnRNPA2. Hence, in contrast to small-molecule pharmaceuticals designed for defined target specificity, dietary phytochemicals affect a large number of cellular targets with varied affinities that, combined, result in their recognized health benefits. PMID:23697369

  19. The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal

    PubMed Central

    Vergis, James M.; Wiener, Michael C.

    2011-01-01

    Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919

  20. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    PubMed

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  1. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  2. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  3. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions

    PubMed Central

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2017-01-01

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10–40 nm range. Similarly, a 30–150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. PMID:28283574

  4. The Safety Dance: Biophysics of Membrane Protein Folding and Misfolding in a Cellular Context

    PubMed Central

    Schlebach, Jonathan P.; Sanders, Charles R.

    2015-01-01

    Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine. PMID:25420508

  5. Cellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, E.E.

    1984-01-01

    In vascular and other smooth muscles, occurrence of intracellular Ca stores which can be mobilized to support contraction may be a general phenomenon. The Ca stores are characterized by the requirement for release by high concentrations of agonists acting on plasma membrane receptors, by the failure of the released Ca2+ to recycle to the store, by the occurrence of rapid refilling of the store from the extracellular space, and by disappearance of the store when the plasma membrane is made leaky by saponin. In contrast to agonist-released Ca stores, those released by caffeine to support contraction in Ca2+-free solutions aremore » more slowly lost and refilled, are not always emptied when the agonist-related store is emptied, and do not disappear after saponin treatment. Stores released by agonists have been suggested to be in the endoplasmic reticulum near the plasma membrane or at the inner aspect of the plasma membrane related to high affinity, pH-dependent Ca-binding sites. Caffeine-released stores are assumed to be in endoplasmic reticulum. Continued exposure of some tissues to Ca2+-free solutions unmasks what is considered to be a recycling Ca store releasable by agonists. Release of Ca2+ and its reaccumulation in this store appear to be slower than at the nonrecycling store. The contractions which persist for many hours in Ca2+-free solution are inhibited temporarily by Ca2+ restoration. Existence of a recycling store of releasable Ca2+ requires occurrence of mechanisms to abolish Ca2+ extrusion or leak-out of the cell and to ensure recycling to the same store.« less

  6. Two-dimensional protein crystals (S-layers): fundamentals and applications.

    PubMed

    Sleytr, U B; Sára, M; Messner, P; Pum, D

    1994-10-01

    Two-dimensional crystalline surface layers (S-layers) composed of protein or glycoprotein subunits are one of the most commonly observed prokaryotic cell envelope structures. Isolated S-layer subunits are endowed with the ability to assemble into monomolecular arrays in suspension, on surfaces or interfaces by an entropy-driven process. S-layer lattices are isoporous structures with functional groups located on the surface in an identical position and orientation. These characteristic features have already led to applications of S-layers as (1) ultrafiltration membranes with well-defined molecular weight cut-offs and excellent antifouling characteristics, (2) immobilization matrices for functional molecules as required for affinity and enzyme membranes, affinity microcarriers and biosensors, (3) conjugate vaccines, (4) carriers for Langmuir-Blodgett films and reconstituted biological membranes, and (5) patterning elements in molecular nanotechnology.

  7. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    PubMed

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  8. Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis

    PubMed Central

    Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.

    2016-01-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648

  9. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Biodynsensing: Sensing Through Dynamics of Hybrid Affinity/Cellular Platforms; Towards Appraisal of Environmental and Biological Risks of Nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.

    Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related to cellular mechanisms involved in sensing, i.e., adaptation to stimuli. This should not mean that when coping with living cells, stray effects might not also corrupt the measurement itself, introducing distinct dynamics. Besides targeted/specific process, analytical platforms might exhibit additional ones due to “stray influences” that could include the effect of, e.g.: supporting matrix, nonspecific binding and temperature variation. Stray processes interfere with the desired ones and the measured data could display a non-monotonous behavior.

  11. Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs

    PubMed Central

    Flather, Dylan; Cathcart, Andrea L.; Cruz, Casey; Baggs, Eric; Ngo, Tuan; Gershon, Paul D.; Semler, Bert L.

    2016-01-01

    Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3′ or 5′ noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication. PMID:26861382

  12. Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies

    PubMed Central

    Ramakrishnan, N.; Radhakrishnan, Ravi

    2016-01-01

    An intriguing question in cell biology is “how do cells regulate their shape?” It is commonly believed that the observed cellular morphologies are a result of the complex interaction among the lipid molecules (constituting the cell membrane), and with a number of other macromolecules, such as proteins. It is also believed that the common biophysical processes essential for the functioning of a cell also play an important role in cellular morphogenesis. At the cellular scale—where typical dimensions are in the order of micrometers—the effects arising from the molecular scale can either be modeled as equilibrium or non-equilibrium processes. In this chapter, we discuss the dynamically triangulated Monte Carlo technique to model and simulate membrane morphologies at the cellular scale, which in turn can be used to investigate several questions related to shape regulation in cells. In particular, we focus on two specific problems within the framework of isotropic and anisotropic elasticity theories: namely, (i) the origin of complex, physiologically relevant, membrane shapes due to the interaction of the membrane with curvature remodeling proteins, and (ii) the genesis of steady state cellular shapes due to the action of non-equilibrium forces that are generated by the fission and fusion of transport vesicles and by the binding and unbinding of proteins from the parent membrane. PMID:27087801

  13. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.

    PubMed

    Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine

    2017-08-16

    The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

  14. The different facets of organelle interplay-an overview of organelle interactions.

    PubMed

    Schrader, Michael; Godinho, Luis F; Costello, Joseph L; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy-a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.

  15. Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.

    PubMed

    Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua

    2012-12-01

    Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.

  16. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  17. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  18. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    PubMed

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  19. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification.

    PubMed

    Xu, Rong; Kanezashi, Masakoto; Yoshioka, Tomohisa; Okuda, Tetsuji; Ohshita, Joji; Tsuru, Toshinori

    2013-07-10

    Bis(triethoxysilyl)ethylene (BTESEthy) was used as a novel precursor to develop a microporous organosilica membrane via the sol-gel technique. Water sorption measurements confirmed that ethenylene-bridged BTESEthy networks had a higher affinity for water than that of ethane-bridged organosilica materials. High permeance of CO2 with high CO2/N2 selectivity was explained relative to the strong CO2 adsorption on the network with π-bond electrons. The introduction of polarizable and rigid ethenylene bridges in the network structure led to improved water permeability and high NaCl rejection (>98.5%) in reverse osmosis (RO). Moreover, the aqueous ozone modification promoted significant improvement in the water permeability of the membrane. After 60 min of ozone exposure, the water permeability reached 1.1 × 10(-12) m(3)/(m(2) s Pa), which is close to that of a commercial seawater RO membrane. Meanwhile, molecular weight cutoff measurements indicated a gradual increase in the effective pore size with ozone modification, which may present new options for fine-tuning of membrane pore sizes.

  20. High affinity 3H-Phe uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBMVw)

    USDA-ARS?s Scientific Manuscript database

    Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to s...

  1. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    PubMed

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  2. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  3. Alpha-actinin binding kinetics modulate cellular dynamics and force generation

    PubMed Central

    Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.

    2015-01-01

    The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384

  4. Celastrol Analogs as Inducers of the Heat Shock Response. Design and Synthesis of Affinity Probes for the Identification of Protein Targets

    PubMed Central

    Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.

    2012-01-01

    The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712

  5. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    PubMed

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.

  6. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.

    PubMed

    Di Scala, Coralie; Baier, Carlos J; Evans, Luke S; Williamson, Philip T F; Fantini, Jacques; Barrantes, Francisco J

    2017-01-01

    Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution. © 2017 Elsevier Inc. All rights reserved.

  7. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.T.; Ullman, B.

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labelingmore » of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.« less

  8. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  9. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  10. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method.

    PubMed

    Szlinder-Richert, Joanna; Cybulska, Barbara; Grzybowska, Jolanta; Bolard, Jacques; Borowski, Edward

    2004-04-01

    Amphotericin B (AMB) derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME) retains the broad antifungal spectrum and potency of the parent antibiotic, whereas its toxicity towards mammalian cells is reduced by about two orders of magnitude. The purpose of this work was to find out whether the differences observed in the toxicity of MFAME and native AMB are due to the differential drugs affinity to fungal and mammalian cell membranes. Comparative studies on AMB and MFAME biological activity and their affinity to fungal, mammalian and bacterial cells were performed. The interaction of AMB and MFAME with cells have been studied by fluorescence method based on the energy transfer between membrane fluorescent probe (donor) and the polyenic chromophore of the antibiotic (acceptor) simultaneously present in the cell membrane. The amount of the antibiotic bound to cells was indicated by the extent of fluorescence quenching of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) or 1,6-diphenyl-1,3,5-hexatriene (DPH) by polyenic chromophore of the antibiotic. The results obtained indicate that binding extent and characteristics for both antibiotics are comparable in the three types of cells studied. Dramatically lower toxicity of MFAME as compared to AMB towards mammalian cells is not related to the antibiotic-cell affinity, but rather to different consequences of these interactions for cells, reflected in membrane permeabilization. MFAME is definitely less effective than parent AMB in the permeabilizing species formation in mammalian cell membrane.

  11. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device.

    PubMed

    Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A

    2014-03-21

    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.

  12. Driving mechanisms of passive and active transport across cellular membranes as the mechanisms of cell metabolism and development as well as the mechanisms of cellular distance reactions on hormonal expression and the immune response.

    PubMed

    Ponisovskiy, M R

    2011-01-01

    The article presents mechanisms of cell metabolism, cell development, cell activity, and maintenance of cellular stability. The literature is reviewed from the point of view of these concepts. The balance between anabolic and catabolic processes induces chemical potentials in the extracellular and intracellular media. The chemical potentials of these media are defined as the driving forces of both passive and active transport of substances across cellular membranes. The driving forces of substance transport across cellular membranes as in cellular metabolism and in immune responses and hormonal expressions are considered in the biochemical and biophysical models, reflecting the mechanisms for maintenance of stability of the internal medium and internal energy of an organism. The interactions of passive transport and active transport of substances across cellular walls promote cell proliferation, as well as the mechanism of cellular capacitors, promoting remote reactions across distance for hormonal expression and immune responses. The offered concept of cellular capacitors has given the possibility to explain the mechanism of remote responses of cells to new situations, resulting in the appearance of additional agents. The biophysical model develops an explanation of some cellular functions: cellular membrane action have been identified with capacitor action, based on the similarity of the structures and as well as on similarity of biophysical properties of electric data that confirm the action of the compound-specific interactions of cells within an organism, promoting hormonal expressions and immune responses to stabilize the thermodynamic system of an organism. Comparison of a cellular membrane action to a capacitor has given the possibility for the explanations of exocytosis and endocytosis mechanisms, internalization of the receptor-ligand complex, selection as a receptor reaction to a ligand by immune responses or hormonal effects, reflecting cellular distance reactions on the hormonal expressions, immune responses, and specificity of the mechanisms of immune reactions. Reviewing current research of cell activity, explanations are presented of mechanisms of apoptosis, autophagy, hormonal expression, and immune responses from the point of view of described cellular mechanisms. Thermodynamic laws are used to confirm the importance of the actions of these mechanisms for maintenance of stability of the internal medium and internal energy of an organism.

  13. Membrane rupture generates single open membrane sheets during vaccinia virus assembly.

    PubMed

    Chlanda, Petr; Carbajal, Maria Alejandra; Cyrklaff, Marek; Griffiths, Gareth; Krijnse-Locker, Jacomine

    2009-07-23

    The biogenesis and dynamics of cellular membranes are governed by fusion and fission processes that ensure the maintenance of closed compartments. These principles also apply to viruses during acquisition of their envelope. Based on conventional electron microscopy (EM), however, it has been proposed that poxviruses assemble from membranes made de novo with "free" ends in the cytoplasm. Here, we analyze the origin and structure of poxvirus membranes in a close-to-native state and in three dimensions by using cryopreservation and electron tomography (ET). By cryo-EM, the precursor membrane of poxviruses appears as an open membrane sheet stabilized by a protein scaffold. ET shows that this membrane is derived from pre-existing cellular membranes that rupture to generate an open compartment, rather than being made de novo. Thus, poxvirus infection represents an excellent system to study how cytoplasmic membranes can form open sheets by a process distinct from well-defined mechanisms of membrane biogenesis.

  14. Rewiring of cellular membrane homeostasis by picornaviruses.

    PubMed

    Belov, George A; Sztul, Elizabeth

    2014-09-01

    Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. PMID:21559494

  16. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis.

    PubMed

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-03-07

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.

  17. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534

  18. Different efflux rates may determine the cellular accumulation of various bis(guanylhydrazones).

    PubMed Central

    Alhonen-Hongisto, L; Fagerström, R; Laine, R; Elo, H; Jänne, J

    1984-01-01

    Three bis(guanylhydrazones) (those of methylglyoxal, glyoxal and ethylglyoxal) were compared for their affinity for the putative polyamine carrier and for their cellular retention in L1210 mouse leukaemia cells. All the bis(guanylhydrazones) inhibited equally effectively the uptake of spermidine by the tumour cells, indicating that the compounds had roughly equal affinity for the polyamine carrier. The fact that methylglyoxal bis(guanylhydrazone) and glyoxal bis(guanylhydrazone) were much more effectively concentrated in the animal cells than was ethylglyoxal bis(guanylhydrazone) was obviously attributable to the finding that the efflux rate of ethylglyoxal bis(guanylhydrazone) greatly exceeded that of the other bis(guanylhydrazones). The rate of efflux of the drugs was slowed down if the tumour cells were treated with 2-difluoromethylornithine before exposure to the bis(guanylhydrazones). These results suggest that intracellular binding of the bis(guanylhydrazones) determines their cellular accumulation. PMID:6431972

  19. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.

  20. Essential Tremor: What We Can Learn from Current Pharmacotherapy.

    PubMed

    Ondo, William

    2016-01-01

    The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  1. Small-molecule inducers of Aβ-42 peptide production share a common mechanism of action.

    PubMed

    Bettayeb, Karima; Oumata, Nassima; Zhang, Yuanyuan; Luo, Wenjie; Bustos, Victor; Galons, Hervé; Greengard, Paul; Meijer, Laurent; Flajolet, Marc

    2012-12-01

    The pathways leading specifically to the toxic Aβ42 peptide production, a key event in Alzheimer's disease (AD), are unknown. While searching for pathways that mediate pathological increases of Aβ42, we identified Aftin-4, a new compound that selectively and potently increases Aβ42 compared to DMSO (N2a cells: 7-fold; primary neurons: 4-fold; brain lysates: 2-fold) with an EC(50) of 30 μM. These results were confirmed by ELISA and IP-WB. Using affinity chromatography and mass spectrometry, we identified 3 proteins (VDAC1, prohibitin, and mitofilin) relevant to AD that interact with Aftin-4, but not with a structurally similar but inactive molecule. Electron microscopy studies demonstrated that Aftin-4 induces a reversible mitochondrial phenotype reminiscent of the one observed in AD brains. Sucrose gradient fractionation showed that Aftin-4 perturbs the subcellular localization of γ-secretase components and could, therefore, modify γ-secretase specificity by locally altering its membrane environment. Remarkably, Aftin-4 shares all these properties with two other "AD accelerator" compounds. In summary, treatment with three Aβ42 raising agents induced similar biochemical alterations that lead to comparable cellular phenotypes in vitro, suggesting a common mechanism of action involving three structural cellular targets.

  2. Imprinting the Fate of Antigen-Reactive B Cells through the Affinity of the B Cell Receptor

    PubMed Central

    O'Connor, Brian P.; Vogel, Laura A.; Zhang, Weijun; Loo, William; Shnider, Danielle; Lind, Evan F.; Ratliff, Michelle; Noelle, Randolph J.; Erickson, Loren D.

    2010-01-01

    Long-lived plasma cells (PCs) and memory B cells (Bmem) constitute the cellular components of enduring humoral immunity, whereas short-lived PCs that rapidly produce Ig correspond to the host's need for immediate protection against pathogens. In this study we show that the innate affinity of the BCR for Ag imprints upon naive B cells their differentiation fate to become short-or long-lived PCs and Bmem. Using BCR transgenic mice with varying affinities for Ag, naive B cells with high affinity lose their capacity to form germinal centers (GCs), develop neither Bmem nor long-lived PCs, and are destined to a short-lived PC fate. Moderate affinity interactions result in hastened GC responses, and differentiation to long-lived PCs, but Bmem remain extinct. In contrast, lower affinity interactions show tempered GCs, producing Bmem and affinity-matured, long-lived PCs. Thus, a continuum of elementary to comprehensive humoral immune responses exists that is controlled by inherent BCR affinity. PMID:17114443

  3. Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus

    PubMed Central

    Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula

    2011-01-01

    Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. PMID:22145031

  4. Identification of stepped changes of binding affinity during interactions between the disintegrin rhodostomin and integrin αIIbβ3 in living cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Fen; Chang, Bo-Jui; Pai, Chyi-Huey; Chen, Hsuan-Yi; Chi, Sien; Hsu, Long; Tsai, Jin-Wu; Lin, Chi-Hung

    2004-10-01

    Integrin receptors serve as both mechanical links and signal transduction mediators between the cell and its environment. Experimental evidence demonstrates that conformational changes and lateral clustering of the integrin proteins may affect their binding to ligands and regulate downstream cellular responses; however, experimental links between the structural and functional correlations of the ligand-receptor interactions are not yet elucidated. In the present report, we utilized optical tweezers to measure the dynamic binding between the snake venom rhodostomin, coated on a microparticle and functioned as a ligand, and the membrane receptor integrin alpha(IIb)beta(3) expressed on a Chinese Hamster Ovary (CHO) cell. A progressive increase of total binding affinity was found between the bead and CHO cell in the first 300 sec following optical tweezers-guided contact. Further analysis of the cumulative data revealed the presence of "unit binding force" presumably exerted by a single rhodostomin-integrin pair. Interestingly, two such units were found. Among the measurements of less total binding forces, presumably taken at the early stage of ligand-receptor interactions, a unit of 4.15 pN per molecule pair was derived. This unit force dropped to 2.54 pN per molecule pair toward the later stage of interactions when the total binding forces were relatively large. This stepped change of single molecule pair binding affinity was not found when mutant rhodostomin proteins were used as ligands (a single unit of 1.81 pN per pair was found). These results were interpreted along with the current knowledge about the conformational changes of integrins during the "molecule activation" process.

  5. Selection of Single Domain Antibodies from Immune Libraries Displayed on the Surface of E. coli Cells with Two β-Domains of Opposite Topologies

    PubMed Central

    Martínez-Arteaga, Rocio; Ruano-Gallego, David; Fraile, Sofía; Margolles, Yago; Teira, Xema; Gutierrez, Carlos; Bodelón, Gustavo; Fernández, Luis Ángel

    2013-01-01

    Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions. PMID:24086454

  6. Fragment Screening of Human Aquaporin 1

    PubMed Central

    To, Janet; Torres, Jaume

    2016-01-01

    Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 “fragments”, i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface. PMID:27023529

  7. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    PubMed

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  8. Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems.

    PubMed

    Conde, Artur; Diallinas, George; Chaumont, François; Chaves, Manuela; Gerós, Hernâni

    2010-06-01

    The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1

    PubMed Central

    Walensky, Loren D.; Gascard, Philippe; Field, Michael E.; Blackshaw, Seth; Conboy, John G.; Mohandas, Narla; Snyder, Solomon H.

    1998-01-01

    We have identified a novel generally expressed homologue of the erythrocyte membrane cytoskeletal protein 4.1, named 4.1G, based on the interaction of its COOH-terminal domain (CTD) with the immunophilin FKBP13. The 129-amino acid peptide, designated 4.1G–CTD, is the first known physiologic binding target of FKBP13. FKBP13 is a 13-kD protein originally identified by its high affinity binding to the immunosuppressant drugs FK506 and rapamycin (Jin, Y., M.W. Albers, W.S. Lane, B.E. Bierer, and S.J. Burakoff. 1991. Proc. Natl. Acad. Sci. USA. 88:6677– 6681); it is a membrane-associated protein thought to function as an ER chaperone (Bush, K.T., B.A. Henrickson, and S.K. Nigam. 1994. Biochem. J. [Tokyo]. 303:705–708). We report the specific association of FKBP13 with 4.1G–CTD based on yeast two-hybrid, in vitro binding and coimmunoprecipitation experiments. The histidyl-proline moiety of 4.1G–CTD is required for FKBP13 binding, as indicated by yeast experiments with truncated and mutated 4.1G–CTD constructs. In situ hybridization studies reveal cellular colocalizations for FKBP13 and 4.1G–CTD throughout the body during development, supporting a physiologic role for the interaction. Interestingly, FKBP13 cofractionates with the red blood cell homologue of 4.1 (4.1R) in ghosts, inside-out vesicles, and Triton shell preparations. The identification of FKBP13 in erythrocytes, which lack ER, suggests that FKBP13 may additionally function as a component of membrane cytoskeletal scaffolds. PMID:9531554

  10. Placental membrane aging and HMGB1 signaling associated with human parturition.

    PubMed

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-02-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.

  11. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis

    PubMed Central

    Levental, Kandice R.; Surma, Michal A.; Skinkle, Allison D.; Lorent, Joseph H.; Zhou, Yong; Klose, Christian; Chang, Jeffrey T.; Hancock, John F.; Levental, Ilya

    2017-01-01

    Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling. PMID:29134198

  12. Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles.

    PubMed

    Hutchison, Jaime B; Karunanayake Mudiyanselage, Aruni P K K; Weis, Robert M; Dinsmore, Anthony D

    2016-02-28

    The binding affinity of a curvature-sensing protein domain (N-BAR) is measured as a function of applied osmotic stress while the membrane curvature is nearly constant. Varying the osmotic stress allows us to control membrane tension, which provides a probe of the mechanism of binding. We study the N-BAR domain of the Drosophila amphiphysin and monitor its binding on 50 nm-radius vesicles composed of 90 mol% DOPC and 10 mol% PIP. We find that the bound fraction of N-BAR is enhanced by a factor of approximately 6.5 when the tension increases from zero to 2.6 mN m(-1). This tension-induced response can be explained by the hydrophobic insertion mechanism. From the data we extract a hydrophobic domain area that is consistent with known structure. These results indicate that membrane stress and strain could play a major role in the previously reported curvature-affinity of N-BAR.

  13. Bean peptides have higher in silico binding affinities than ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 Like-1.

    PubMed

    Real Hernandez, Luis M; Gonzalez de Mejia, Elvira

    2017-04-01

    Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (-7.2 to -7.0kcal/mol) and the cowpea bean dipeptide Lys-Asp (-7.0kcal/mol) had higher binding affinities than ezetimibe (-6.6kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (-7.2kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  15. Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarovici, P.; Yavin, E.

    1986-11-04

    The pharmacokinetic interaction of an affinity-purified /sup 125/I-labeled tetanotoxin fraction with guinea pig brain synaptosomal preparations was investigated. Binding of tetanotoxin was time- and temperature-dependent, was proportional to protein concentration, and was saturable at about 8 x 10/sup -9/ M as estimated by a solid-surface binding assay. Binding was optimal at pH 6.5 under low ionic strength buffer and was almost entirely blocked by gangliosides or antitoxin. In analogy to intact nerve cells, binding of toxin to membranes resulted in a tight association operationally defined as sequestration. Binding and sequestration were abolished after membrane pretreatment with sialidase. The enzyme couldmore » not dissociate the membrane-bound toxin formed at 4 or 37/sup 0/C under low ionic strength conditions, which is in part compatible with internalization as defined in nerve cell cultures. In the latter system the toxin could be removed at 4/sup 0/C but not at 37/sup 0/C. Binding was significantly reduced upon pretreatment of guinea pig brain membranes by a variety of hydrolytic enzymes. It is proposed that, in addition to a ganglioside, interaction of tetanotoxin with synaptic membranes is facilitated by a protein and may also require an appropriate lipid environment. These latter membrane constituents may play a pivotal role in the sequestration of the toxin.« less

  16. Evidence of paired M2 muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less

  17. Affinity immunoblotting - High resolution isoelectric focusing analysis of antibody clonotype distribution

    NASA Technical Reports Server (NTRS)

    Knisley, Keith A.; Rodkey, L. Scott

    1986-01-01

    A sensitive and specific method is proposed for the analysis of specific antibody clonotype changes occurring during an immune response and for comparing multiple sera for antibody clonotype similarities. Polyclonal serum antibodies separated by isoelectric focusing (IEF) were analyzed by an affinity immunoblotting method using antigen-coated nitrocellulose membranes. Antibodies present on the surface of the acrylamide gels following IEF bind the antigen on the nitrocellulose when the coated nitrocellulose is laid over the gels. The technique has been used to analyze Ig clonotypes specific for five protein antigens and two carbohydrate antigens. Optimal antigen concentrations for coating the nitrocellulose membranes were found to range from 10-100 microgram/ml.

  18. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.

  19. Investigations of the inhibitory effects of tocopherol (vitamin E) on free radical deterioration of cellular membranes

    NASA Technical Reports Server (NTRS)

    Richardson, D.

    1975-01-01

    The inhibitory effects are investigated of d,1-alpha-tocopherol and d,1-alpha-tocopheryl acetate on the free radical deterioration of cellular membranes. The level of toxicity of d,1-alpha-tocopherol and d,1-alpha-tocopheryl acetate in mice is determined.

  20. Are phloem sieve tubes leaky conduits supported by numerous aquaporins?

    PubMed

    Stanfield, Ryan C; Hacke, Uwe G; Laur, Joan

    2017-05-01

    Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. We studied histological sections of balsam poplar ( Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem. © 2017 Botanical Society of America.

  1. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  2. Reciprocal Regulation of Endocytosis and Metabolism

    PubMed Central

    Antonescu, Costin N.; McGraw, Timothy E.; Klip, Amira

    2014-01-01

    The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe3+, K+) or efflux (e.g., Na+) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis. PMID:24984778

  3. Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions: A biological membrane separates a plasmatic from a non-plasmatic phase.

    PubMed

    Moog, Daniel; Maier, Uwe G

    2017-08-01

    Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.

  4. Flotillin proteins recruit sphingosine to membranes and maintain cellular sphingosine-1-phosphate levels

    PubMed Central

    Riento, Kirsi; Zhang, Qifeng; Clark, Jonathan; Begum, Farida; Stephens, Elaine; Wakelam, Michael J.

    2018-01-01

    Sphingosine-1-phosphate (S1P) is an important lipid signalling molecule. S1P is produced via intracellular phosphorylation of sphingosine (Sph). As a lipid with a single fatty alkyl chain, Sph may diffuse rapidly between cellular membranes and through the aqueous phase. Here, we show that the absence of microdomains generated by multimeric assemblies of flotillin proteins results in reduced S1P levels. Cellular phenotypes of flotillin knockout mice, including changes in histone acetylation and expression of Isg15, are recapitulated when S1P synthesis is perturbed. Flotillins bind to Sph in vitro and increase recruitment of Sph to membranes in cells. Ectopic re-localisation of flotillins within the cell causes concomitant redistribution of Sph. The data suggest that flotillins may directly or indirectly regulate cellular sphingolipid distribution and signalling. PMID:29787576

  5. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.

    PubMed

    Okamoto, K; Gotoh, N; Nishino, T

    2001-07-01

    Pseudomonas aeruginosa exhibits high intrinsic resistance to penem antibiotics such as faropenem, ritipenem, AMA3176, sulopenem, Sch29482, and Sch34343. To investigate the mechanisms contributing to penem resistance, we used the laboratory strain PAO1 to construct a series of isogenic mutants with an impaired multidrug efflux system MexAB-OprM and/or impaired chromosomal AmpC beta-lactamase. The outer membrane barrier of PAO1 was partially eliminated by inducing the expression of the plasmid-encoded Escherichia coli major porin OmpF. Susceptibility tests using the mutants and the OmpF expression plasmid showed that MexAB-OprM and the outer membrane barrier, but not AmpC beta-lactamase, are the main mechanisms involved in the high intrinsic penem resistance of PAO1. However, reducing the high intrinsic penem resistance of PAO1 to the same level as that of penem-susceptible gram-negative bacteria such as E. coli required the loss of either both MexAB-OprM and AmpC beta-lactamase or both MexAB-OprM and the outer membrane barrier. Competition experiments for penicillin-binding proteins (PBPs) revealed that the affinity of PBP 1b and PBP 2 for faropenem were about 1.8- and 1.5-fold lower, than the respective affinity for imipenem. Loss of the outer membrane barrier, MexAB, and AmpC beta-lactamase increased the susceptibility of PAO1 to almost all penems tested compared to the susceptibility of the AmpC-deficient PAO1 mutants to imipenem. Thus, it is suggested that the high intrinsic penem resistance of P. aeruginosa is generated from the interplay among the outer membrane barrier, the active efflux system, and AmpC beta-lactamase but not from the lower affinity of PBPs for penems.

  6. Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay

    PubMed Central

    Okamoto, Kiyomi; Gotoh, Naomasa; Nishino, Takeshi

    2001-01-01

    Pseudomonas aeruginosa exhibits high intrinsic resistance to penem antibiotics such as faropenem, ritipenem, AMA3176, sulopenem, Sch29482, and Sch34343. To investigate the mechanisms contributing to penem resistance, we used the laboratory strain PAO1 to construct a series of isogenic mutants with an impaired multidrug efflux system MexAB-OprM and/or impaired chromosomal AmpC β-lactamase. The outer membrane barrier of PAO1 was partially eliminated by inducing the expression of the plasmid-encoded Escherichia coli major porin OmpF. Susceptibility tests using the mutants and the OmpF expression plasmid showed that MexAB-OprM and the outer membrane barrier, but not AmpC β-lactamase, are the main mechanisms involved in the high intrinsic penem resistance of PAO1. However, reducing the high intrinsic penem resistance of PAO1 to the same level as that of penem-susceptible gram-negative bacteria such as E. coli required the loss of either both MexAB-OprM and AmpC β-lactamase or both MexAB-OprM and the outer membrane barrier. Competition experiments for penicillin-binding proteins (PBPs) revealed that the affinity of PBP 1b and PBP 2 for faropenem were about 1.8- and 1.5-fold lower, than the respective affinity for imipenem. Loss of the outer membrane barrier, MexAB, and AmpC β-lactamase increased the susceptibility of PAO1 to almost all penems tested compared to the susceptibility of the AmpC-deficient PAO1 mutants to imipenem. Thus, it is suggested that the high intrinsic penem resistance of P. aeruginosa is generated from the interplay among the outer membrane barrier, the active efflux system, and AmpC β-lactamase but not from the lower affinity of PBPs for penems. PMID:11408209

  7. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.

    PubMed

    Thomas, Franziska A; Visco, Ilaria; Petrášek, Zdeněk; Heinemann, Fabian; Schwille, Petra

    2015-11-01

    The affinity of peripheral membrane proteins for a lipid bilayer can be described using the partition coefficient (KP). Although several methods to determine KP are known, all possess limitations. To address some of these issues, we developed both: a versatile method based on single molecule detection and fluorescence imaging for determining KP, and a simple measurement standard employing hexahistidine-tagged enhanced green fluorescent protein (eGFP-His6) and free standing membranes of giant unilamellar vesicles (GUVs) functionalized with NTA(Ni) lipids as binding sites. To ensure intrinsic control, our method features two measurement modes. In the single molecule mode, fluorescence correlation spectroscopy (FCS) is applied to quantify free and membrane associated protein concentrations at equilibrium and calculate KP. In the imaging mode, confocal fluorescence images of GUVs are recorded and analyzed with semi-automated software to extract protein mean concentrations used to derive KP. Both modes were compared by determining the affinity of our standard, resulting in equivalent KP values. As observed in other systems, eGFP-His6 affinity for membranes containing increasing amounts of NTA(Ni) lipids rises in a stronger-than-linear fashion. We compared our dual approach with a FCS-based assay that uses large unilamellar vesicles (LUVs), which however fails to capture the stronger-than-linear trend for our NTA(Ni)-His6 standard. Hence, we determined the KP of the MARCKS effector domain with our FCS approach on GUVs, whose results are consistent with previously published data using LUVs. We finally provide a practical manual on how to measure KP and understand it in terms of molecules per lipid surface. Copyright © 2015. Published by Elsevier B.V.

  8. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana.

    PubMed

    Vilakazi, Cornelius S; Dubery, Ian A; Piater, Lizelle A

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphatic bacterial glycoconjugate found on the external membrane of Gram-negative bacteria. This endotoxin is considered as a microbe-associated molecular pattern (MAMP) molecule and has been shown to elicit defense responses in plants. Here, LPS-interacting proteins from Arabidopsis thaliana plasma membrane (PM)-type fractions were captured and identified in order to investigate those involved in LPS perception and linked to triggering of innate immune responses. A novel proteomics-based affinity-capture strategy coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for the enrichment and identification of LPS-interacting proteins. As such, LPS isolated from Burkholderia cepacia (LPS B.cep. ) was immobilized on three independent and distinct affinity-based matrices to serve as bait for interacting proteins from A. thaliana leaf and callus tissue. These were resolved by 1D electrophoresis and identified by mass spectrometry. Proteins specifically bound to LPS B.cep. have been implicated in membrane structure (e.g. COBRA-like and tubulin proteins), membrane trafficking and/or transport (e.g. soluble NSF attachment protein receptor (SNARE) proteins, patellin, aquaporin, PM instrinsic proteins (PIP) and H + -ATPase), signal transduction (receptor-like kinases and calcium-dependent protein kinases) as well as defense/stress responses (e.g. hypersensitive-induced response (HIR) proteins, jacalin-like lectin domain-containing protein and myrosinase-binding proteins). The novel affinity-capture strategy for the enrichment of LPS-interacting proteins proved to be effective, especially in the binding of proteins involved in plant defense responses, and can thus be used to elucidate LPS-mediated molecular recognition and disease mechanism(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  10. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  11. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.

    PubMed

    Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain

    2014-11-18

    Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.

  12. Histochemical study of lectin binding sites in fourth and fifth instar gypsy moth larval midgut epithelium

    Treesearch

    Algimantas P. Valaitis

    2011-01-01

    There is evidence that the gypsy moth, Lymantria dispar, midgut epithelial brush border membrane has membrane-bound glycoconjugates, such as BTR-270 and aminopeptidase N (APN), which function as high affinity binding sites (receptors) for the insecticidal proteins produced by Bacillus thuringiensis (Bt). As gypsy...

  13. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    PubMed

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  14. Localizing the Subunit Pool for the Temporally Regulated Polar Pili of Caulobacter crescentus.

    DTIC Science & Technology

    1987-01-01

    was determined that the cellular location for un- assembled was the cell cytoplasm. All cell membranes and regions of muclear material were poorly...to colloidal gold. It was determined that the cellular location for unassembled pilin was the cell cytoplasm. All cell membranes and regions of nuclear...to determine the cellular location of the pilin pool. Because pilin is a small (8000 m.w. ) and hydrophobic molecule (3), problems with 3 non-specific

  15. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  16. Sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.

    1985-09-25

    Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Bindingmore » of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.« less

  17. Cytosolic proteins can exploit membrane localization to trigger functional assembly

    PubMed Central

    2018-01-01

    Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559

  18. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed. PMID:28119913

  19. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    PubMed

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.

  20. Receptor heteromeric assembly-how it works and why it matters: the case of ionotropic glutamate receptors.

    PubMed

    Herguedas, Beatriz; Krieger, James; Greger, Ingo H

    2013-01-01

    The composition and spatial arrangement of subunits in ion channels are essential for their function. Diverse stoichiometries are possible in a multitude of channels. These depend upon cell type-specific subunit expression, which can be tuned in a developmentally regulated manner and in response to activity, on subunit stability in the endoplasmic reticulum, intersubunit affinities, and potentially subunit diffusion within the ER membrane. In concert, these parameters shape channel biogenesis and ultimately tune cellular response properties. The complexity of this assembly process is particularly well illustrated by the ionotropic glutamate receptors, the main mediators of excitatory neurotransmission. These tetrameric cation channels predominantly assemble into heteromers, which is "obligatory" for some iGluR subfamilies but "preferential" for others. Here, we discuss recent insights into the rules underlying these two pathways, the role of individual domains based on an ever increasing list of crystal structures, and how these assembly parameters tune assembly across diverse receptor oligomers. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    PubMed

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  2. Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains

    NASA Astrophysics Data System (ADS)

    Šachl, Radek; Bergstrand, Jan; Widengren, Jerker; Hof, Martin

    2016-03-01

    It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies.

  3. Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease

    PubMed Central

    Drolle, Elizabeth; Negoda, Alexander; Hammond, Keely; Pavlov, Evgeny

    2017-01-01

    Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD. PMID:28767712

  4. Affinity reagent technology development and application to rapid immunochromatographic pathogen detection

    NASA Astrophysics Data System (ADS)

    Sooter, Letha J.; Stratis-Cullum, Dimitra N.; Zhang, Yanting; Daugherty, Patrick S.; Soh, H. Tom; Pellegrino, Paul; Stagliano, Nancy

    2007-09-01

    Immunochromatography is a rapid, reliable, and cost effective method of detecting biowarfare agents. The format is similar to that of an over-the-counter pregnancy test. A sample is applied to one end of a cassette and then a control line, and possibly a sample line, are visualized at the other end of the cassette. The test is based upon a sandwich assay. For the control, a line of Protein A is immobilized on the membrane. Gold nanoparticle bound IgG flows through the membrane and binds the Protein A, creating a visible line on the membrane. For the sample, one epitope is immobilized on the membrane and another epitope is attached to gold nanoparticles. The sample binds gold bound epitope, travels through the membrane, and binds membrane bound epitope. The two epitopes are not cross-reactive, therefore a sample line is only visible if the sample is present. In order to efficiently screen for binders to a sample target, a novel, Continuous Magnetic Activated Cell Sorter (CMACS) has been developed on a disposable, microfluidic platform. The CMACS chip quickly sorts E. coli peptide libraries for target binders with high affinity. Peptide libraries, are composed of approximately ten million bacteria, each displaying a different peptide on their surface. The target of interest is conjugated to a micrometer sized magnetic particle. After the library and the target are incubated together to allow binding, the mixture is applied to the CMACS chip. In the presence of patterned nickel and an external magnet, separation occurs of the bead-bound bacteria from the bulk material. The bead fraction is added to bacterial growth media where any attached E. coli grow and divide. These cells are cloned, sequenced, and the peptides are assayed for target binding affinity. As a proof-of-principle, assays were developed for human C-reactive protein. More defense relevant targets are currently being pursued.

  5. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  6. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    NASA Astrophysics Data System (ADS)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.V.; Lukas, R.J.; Bennett, E.L.

    The agonist binding affinity of nicotinic acetylcholine receptor (nAChR) from Torpedo californica electroplax, as inferred from ability of agonist to inhibit specific curaremimetic neurotoxin binding to nAChR, is sensitive to the duration of exposure to agonist. The concentration of carbachol necessary to prevent one-half of toxin binding over a 30 min incubation with nAChR (K/sub 30/) is 10 ..mu..M when toxin and carbachol are simultaneously added to membrane-bound nAChR, and 3 ..mu..M when nAChR are pretreated with carbachol for 30 min prior to the addition of toxin. These alterations in agonist affinity may be mimicked by modification of nAChR thiolmore » groups. Affinity of nAChR for carbachol is decreased following treatment with dithiothreitol (DTT). Dithio-bis-nitrobenzoic acid treatment of DTT-reduced membranes yields K/sub 30/ values of 5 ..mu..M for carbachol, while N-ethylmaleimide treatment of DTT-reduced nAChR produces nAChR with reduced affinity for carbachol, reflected to K/sub 30/ values of about 400 ..mu..M. In the absence of Ca/sup + +/, K/sub 30/ values for carbachol binding to native and DTT-reduced nAChR are diminished 3 to 6 fold. These affinity alterations are not observed with d-tubocurarine (antagonist) binding to nAChR. Thus, Ca/sup + +/ and the oxidation state of nAChR thiols appear to affect the affinity of nAChR for agonists (but not antagonists), and may therefore be related to agonist-mediated events in receptor activation and/or desensitization.« less

  8. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  9. Placental membrane aging and HMGB1 signaling associated with human parturition

    PubMed Central

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-01-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence—the loss of cell division potential as a consequence of stress—is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. PMID:26851389

  10. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    PubMed

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  11. Herpes simplex virus 1 induces de novo phospholipid synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and thatmore » de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.« less

  12. Interferon Induced Transfer of Viral Resistance

    DTIC Science & Technology

    1982-02-01

    released from the cell membrane. We have also shown that CM’s activity is removed by a gelatin /sepharose affinity column which selectively binds...interferon preparation adsorbing to the WISH cells, interferon was subjected to gelatin /sepharose affinity chromatography to remove endogenous...caused an increase in the amount of H-.amnino acids incorporated into a gelatin binding protein, presumably fibronectin. This suggests that in addition to

  13. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5.

    PubMed

    Roche, Jennifer Virginia; Survery, Sabeen; Kreida, Stefan; Nesverova, Veronika; Ampah-Korsah, Henry; Gourdon, Maria; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2017-09-01

    The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser 256 , Ser 261 , Ser 264 , and Thr 269 ), of which Ser 256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes.

    PubMed

    Varela, Ana R P; Ventura, Ana E; Carreira, Ana C; Fedorov, Aleksander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C

    2016-12-21

    Glucosylceramide (GlcCer) plays an active role in the regulation of various cellular events. Moreover, GlcCer is also a key modulator of membrane biophysical properties, which might be linked to the mechanism of its biological action. In order to understand the biophysical implications of GlcCer on membranes of living cells, we first studied the effect of GlcCer on artificial membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). Using an array of biophysical methods, we demonstrate that at lower GlcCer/Chol ratios, GlcCer stabilizes SM/Chol-enriched liquid-ordered domains. However, upon decreasing the Chol content, GlcCer significantly increased membrane order through the formation of gel domains. Changes in pH disturbed the packing properties of GlcCer-containing membranes, leading to an increase in membrane fluidity and reduced membrane electronegativity. To address the biophysical impact of GlcCer in biological membranes, studies were performed in wild type and in fibroblasts treated with conduritol-B-epoxide (CBE), which causes intracellular GlcCer accumulation, and in fibroblasts from patients with type I Gaucher disease (GD). Decreased membrane fluidity was observed in cells containing higher levels of GlcCer, such as in CBE-treated and GD cells. Together, we demonstrate that elevated GlcCer levels change the biophysical properties of cellular membranes, which might compromise membrane-associated cellular events and be of relevance for understanding the pathology of diseases, such as GD, in which GlcCer accumulates at high levels.

  15. CHIP as a membrane-shuttling proteostasis sensor

    PubMed Central

    Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia

    2017-01-01

    Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030

  16. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution. Images Figure 1 Figure 2 PMID:7755574

  17. The Use of a Sensory Model to Facilitate the Study of the Biochemistry of Adhesion in Marine-Fouling Diatoms

    DTIC Science & Technology

    1993-07-30

    transported to the cell membrane in the area of the raphe canal and, following vesicular fusion with the cellular membrane, their contents are released into...the external raphe canal and become free to interact with the substratum. This leads to cellular adhesion. Continued synthesis and secretion of polymer... cellular adhesion is measured as a function of an extracellular chemical signal. Results (a) Sensory Biology. The overall question in our research

  18. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  19. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  20. Membrane bending: the power of protein imbalance.

    PubMed

    Derganc, Jure; Antonny, Bruno; Copič, Alenka

    2013-11-01

    Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can influence membrane bending in a nonspecific manner due to molecular crowding. This mechanism is physical in nature and arises from collisions between such 'mushroom-shaped' proteins. It can either facilitate or impede the action of protein coats, for example COPII, during vesicle budding. We describe the physics of how molecular crowding can influence membrane bending and discuss the implications for other cellular processes, such as sorting of glycosylphosphatidylinositol-anchored proteins (GPI-APs) and production of intraluminal vesicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  2. [Cellular architecture of papillary and nonpapillary transitional cell carcinoma].

    PubMed

    Moriyama, M

    1989-07-01

    To characterize the cellular architecture of papillary and nonpapillary transitional cell carcinoma. 2 normal ureters, 6 papillary bladder cancers and 5 nonpapillary bladder cancers were subjected to light and electron microscopic study as well as three dimensional reconstruction by 0.5 microns thick serial sections. Normal urothelium consisted of three cell layers of the basal, intermediate and superficial cells, each of which was morphologically characterized in terms of cell shape and development of cell organelles. Over 90% of the epithelial cells were proved to be connected to the uniform basement membrane directly or with long, fine cytoplasmic processes, forming hemidesmosomes at the junctional portion. Papillary tumors had, as a rule, the same cellular architecture as that of normal epithelium in terms of the regularity of cellular polarity, arrangement and differentiation, and the connection to the basement membrane. But, in G2 tumors, the connection between the intermediate and superficial cells and the basement membrane failed to be confirmed in 7 to 44% of the cells, suggesting the heterogeneity of the tumors. In contrast, nonpapillary tumors showed a high irregularity of the cellular architecture in both lesions of stromal and intra-epithelial invasion. The development of the basement membrane was indefinite, often showing thinning or disruption where occasional cytoplasmic protrusion of the tumor cells into the lamina propria was found. Nearly all of the intermediate and superficial cells in the intraepithelial lesions proved not to communicate with the basement membrane. The present results indicate distinct differences of cellular architecture between the papillary and nonpapillary urothelial tumors, which may reflect not only the growth pattern but also the biological behaviour of the individual tumors.

  3. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. [125I]2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a high-affinity radioligand selective for I1 imidazoline receptors.

    PubMed

    Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique

    2002-07-01

    The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway associated to I1R. Because [125I]LNP 911 was unable to bind to the I2 binding site and alpha2AR, our data indicate that [125I]LNP 911 is the first highly selective radioiodinated probe for I1R with a nanomolar affinity. This new tool should facilitate the molecular characterization of the I1 imidazoline receptor.

  5. Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies.

    PubMed Central

    Wendell, D L; Bisson, L F

    1993-01-01

    Characterization and quantification of the Hxt2 (hexose transport) protein of Saccharomyces cerevisiae indicate that it is one of a set of differentially expressed high-affinity glucose transporters. The protein product of the HXT2 gene was specifically detected by antibodies raised against a synthetic peptide encompassing the 13 carboxyl-terminal amino acids predicted by the HXT2 gene sequence. Hxt2 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a broad band or closely spaced doublet with an average M(r) of 47,000. Hxt2 cofractionated with the plasma membrane ATPase, Pma1, indicating that it is a plasma membrane protein. Hxt2 was not solubilized by high pH or urea but was solublized by detergents, which is characteristic of an integral membrane protein. Expression of the Hxt2 protein was measured under two different conditions that produce expression of high-affinity glucose transport: a medium shift from a high (2.0%) to a low (0.05%) glucose concentration (referred to below as high and low glucose) and growth from high to low glucose. Hxt2 as measured by immunoblotting increased 20-fold upon a shift from high-glucose to low-glucose medium, and the high-affinity glucose transport expressed had a strong HXT2-dependent component. Surprisingly, Hxt2 was not detectable when S. cerevisiae growing in high glucose approached glucose exhaustion, and the high-affinity glucose transport expressed under these conditions did not have an HXT2-dependent component. The role of Hxt2 in growth during aerobic batch culture in low-glucose medium was examined. An hxt2 null mutant grew and consumed glucose significantly more slowly than the wild type, and this phenotype correlated directly with appearance of the Hxt2 protein. Images PMID:8244939

  6. Removal of glyphosate herbicide from water using biopolymer membranes.

    PubMed

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Immunocytochemical localization of actin in epithelial cells of rat small intestine by light and electron microscopy.

    PubMed

    Hagen, S J; Trier, J S

    1988-07-01

    We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.

  8. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor.

    PubMed

    Guerrieri, Elena; Mallareddy, Jayapal Reddy; Tóth, Géza; Schmidhammer, Helmut; Spetea, Mariana

    2015-03-18

    Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Xiang, Wenqing

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry ofmore » oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.« less

  10. [Effect of amphipathic helix characteristics of FtsZ (236-245) domain on FtsZ assembly and its function in Escherichia coli strains].

    PubMed

    Ma, Qingsu; Zhang, Huijuan; Zheng, Xiaowei; Huo, Yujia; Lu, Feng

    2017-04-04

    To study the effect of amphipathic helix characteristics of FtsZ (236-245) domain on FtsZ assembly and interaction of FtsZ with FtsA in Escherichia coli strains. We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis, and purified targeted proteins using affinity chromatography. QN23-QN29 strains were constructed by linear DNA homologous recombination and P1 transduction. We observed cellular localization patterns of FtsZ and its mutants in E. coli by living cell imaging experiments, examined membrane binding properties of FtsZ mutants by membrane proteins isolation and Western blot analysis, and analyzed interaction of FtsZ/FtsZ* with FtsA by Co-immunoprecipitation and far Western blot. Native gel separation and in vitro polymerization experiments were done to check effects of FtsZ point mutation on FtsZ assembly. Yfp-labeled FtsZE237A/K and FtsZE241A/K mutant proteins failed to localize in E. coli strains, assemble into functional Z-ring structure, and had decreased function of FtsZ (wt). In vitro experiments showed that E237A/K and E241A/K mutations of FtsZ decreased the polymerization efficiency of FtsZ monomer, weakened FtsZ*-FtsA interaction and changed membrane binding properties of FtsZ. FtsZ E237 and E241 are critical amino acids that affect the amphipathic helix characteristics of FtsZ (236-245) domain, FtsZ assembly and FtsZ-FtsA interaction in E. coli strains.

  11. Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Noune A.; Neubig, Richard R.

    1998-05-01

    We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.

  12. The impact of physiological crowding on the diffusivity of membrane bound proteins.

    PubMed

    Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C

    2016-02-21

    Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.

  13. A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis

    ERIC Educational Resources Information Center

    Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari

    2012-01-01

    Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){supmore » 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.« less

  15. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C.

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance aremore » similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.« less

  16. Ninth International Workshop on Plant Membrane Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  17. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    PubMed Central

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is markedly less permeable to organic nutrients, with >20-fold lower permeability than the outer membrane of Escherichia coli. Such permeability appears to fit the cyanobacterial lifestyle, in which the diffusion pathway for inorganic solutes may suffice to sustain the autotrophic physiology, illustrating a link between outer membrane permeability and the cellular lifestyle. PMID:28696278

  18. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    PubMed

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  19. Light on fluorescent lipids in rafts: a lesson from model membranes.

    PubMed

    Kahya, Nicoletta

    2010-09-15

    Tracking fluorescent lipids in cellular membranes has been applied for decades to shed light on membrane trafficking, sorting, endocytosis and exocytosis, viral entry, and to understand the functional relevance of membrane heterogeneity, phase separation and lipid rafts. However, fluorescent probes may display different organizing behaviour from their corresponding endogenous lipids. A full characterization of these probes is therefore required for proper interpretation of fluorescence microscopy data in complex membrane systems. Model membrane studies provide essential clues that guide us to design and interpret our experiments, help us to avoid pitfalls and resolve artefacts in complex cellular environments. In the present issue of the Biochemical Journal, Juhasz, Davis and Sharom demonstrate the importance of testing lipid probes systematically in heterogeneous model membranes of specific composition and well-defined thermodynamic properties. The phase-partitioning behaviour of fluorescent probes, alone and/or in combination, cannot simply be assumed, but has to be fully characterized.

  20. A FRET sensor enables quantitative measurements of membrane charges in live cells.

    PubMed

    Ma, Yuanqing; Yamamoto, Yui; Nicovich, Philip R; Goyette, Jesse; Rossy, Jérémie; Gooding, J Justin; Gaus, Katharina

    2017-04-01

    Membrane charge has a critical role in protein trafficking and signaling. However, quantification of the effective electrostatic potential of cellular membranes has remained challenging. We developed a fluorescence membrane charge sensor (MCS) that reports changes in the membrane charge of live cells via Förster resonance energy transfer (FRET). MCS is permanently attached to the inner leaflet of the plasma membrane and shows a linear, reversible and fast response to changes of the electrostatic potential. The sensor can monitor a wide range of cellular treatments that alter the electrostatic potential, such as incorporation and redistribution of charged lipids and alterations in cytosolic ion concentration. Applying the sensor to T cell biology, we used it to identify charged membrane domains in the immunological synapse. Further, we found that electrostatic interactions prevented spontaneous phosphorylation of the T cell receptor and contributed to the formation of signaling clusters in T cells.

  1. 2,2'-Bis(monoacylglycero) PO4 (BMP), but Not 3,1'-BMP, increases membrane curvature stress to enhance α-tocopherol transfer protein binding to membranes.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey

    2015-03-01

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  2. 2,2'-Bis(monoacylglycero) PO 4 (BMP), but Not 3,1'-BMP, Increases Membrane Curvature Stress to Enhance α-Tocopherol Transfer Protein Binding to Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.

    2015-01-21

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  3. Rejection of Tetracycline and Oxytetracycline in Water by a Nanofiltration Membrane

    NASA Astrophysics Data System (ADS)

    Li, Weiying; Sun, Xiuli; Wang, Qing; Xu, Jingjing; Lu, Junyu

    2010-11-01

    The removal of tetracycline (TC) and oxytetracycline (OTC) by a nanofiltration (NF) membrane was studied using synthetic solutions. The effects of operation parameters (recovery and flux), feed concentration and salinity on the rejection of tetracyclines and their adsorption on membranes were investigated. TC was observed to show a high adsorptive affinity for the membrane. Almost 80% of TC and 70% of OTC were adsorbed on the membrane surface after stirring for 2000 min and over 50% of them had been adsorbed just 120 min after stir. High removal efficiencies (>90%) were observed for TC and OTC with NF membrane. Rejection ratio of OTC by NF was slightly higher than that of TC.

  4. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.

    PubMed

    Kuang, Guanglin; Liang, Lijun; Brown, Christian; Wang, Qi; Bulone, Vincent; Tu, Yaoquan

    2016-02-21

    The critical role of chitin synthases in oomycete hyphal tip growth has been established. A microtubule interacting and trafficking (MIT) domain was discovered in the chitin synthases of the oomycete model organism, Saprolegnia monoica. MIT domains have been identified in diverse proteins and may play a role in intracellular trafficking. The structure of the Saprolegnia monoica chitin synthase 1 (SmChs1) MIT domain has been recently determined by our group. However, although our in vitro assay identified increased strength in interactions between the MIT domain and phosphatidic acid (PA) relative to other phospholipids including phosphatidylcholine (PC), the mechanism used by the MIT domain remains unknown. In this work, the adsorption behavior of the SmChs1 MIT domain on POPA and POPC membranes was systematically investigated by molecular dynamics simulations. Our results indicate that the MIT domain can adsorb onto the tested membranes in varying orientations. Interestingly, due to the specific interactions between MIT residues and lipid molecules, the binding affinity to the POPA membrane is much higher than that to the POPC membrane. A binding hotspot, which is critical for the adsorption of the MIT domain onto the POPA membrane, was also identified. The lower binding affinity to the POPC membrane can be attributed to the self-saturated membrane surface, which is unfavorable for hydrogen-bond and electrostatic interactions. The present study provides insight into the adsorption profile of SmChs1 and additionally has the potential to improve our understanding of other proteins containing MIT domains.

  5. High affinity ligands from in vitro selection: Complex targets

    PubMed Central

    Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry

    1998-01-01

    Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188

  6. Probing the binding affinity of amyloids to reduce toxicity of oligomers in diabetes

    PubMed Central

    Smaoui, Mohamed Raef; Orland, Henri; Waldispühl, Jérôme

    2015-01-01

    Motivation: Amyloids play a role in the degradation of β-cells in diabetes patients. In particular, short amyloid oligomers inject themselves into the membranes of these cells and create pores that disrupt the strictly controlled flow of ions through the membranes. This leads to cell death. Getting rid of the short oligomers either by a deconstruction process or by elongating them into longer fibrils will reduce this toxicity and allow the β-cells to live longer. Results: We develop a computational method to probe the binding affinity of amyloid structures and produce an amylin analog that binds to oligomers and extends their length. The binding and extension lower toxicity and β-cell death. The amylin analog is designed through a parsimonious selection of mutations and is to be administered with the pramlintide drug, but not to interact with it. The mutations (T9K L12K S28H T30K) produce a stable native structure, strong binding affinity to oligomers, and long fibrils. We present an extended mathematical model for the insulin–glucose relationship and demonstrate how affecting the concentration of oligomers with such analog is strictly coupled with insulin release and β-cell fitness. Availability and implementation: SEMBA, the tool to probe the binding affinity of amyloid proteins and generate the binding affinity scoring matrices and R-scores is available at: http://amyloid.cs.mcgill.ca Contact: jeromew@cs.mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25777526

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; University of Chinese Academy of Sciences, Beijing 100049; Liu, Lianqing, E-mail: lqliu@sia.cn

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measuremore » the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.« less

  8. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen

    PubMed Central

    Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.

    2012-01-01

    B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255

  9. Interactions of lectins with plasma membrane glycoproteins of the Ehrlich ascites carcinoma cell.

    PubMed

    Nachbar, M S; Oppenheim, J D; Aull, F

    1976-02-06

    Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various lectins is Ricinus communis greater than wheat germ greater than or equal to concanavalin A greater than or equal to soybean greater than Limulus polyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites for concanavalin A and soybean lectins. Sodium deoxycholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity columns. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.

  10. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  11. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  12. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    PubMed Central

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  13. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  14. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    PubMed

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)

    PubMed Central

    Radhakrishnan, Venkatraman Srinivasan; Reddy Mudiam, Mohana Krishna; Kumar, Manish; Dwivedi, Surya Prakash; Singh, Surinder Pal; Prasad, Tulika

    2018-01-01

    Purpose A significant increase in the incidence of fungal infections and drug resistance has been observed in the past decades due to limited availability of broad-spectrum antifungal drugs. Nanomedicines have shown significant antimicrobial potential against various drug-resistant microbes. Silver nanoparticles (AgNps) are known for their antimicrobial properties and lower host toxicity; however, for clinical applications, evaluation of their impact at cellular and molecular levels is essential. The present study aims to understand the cellular and molecular mechanisms of AgNp-induced toxicity in a common fungal pathogen, Candida albicans. Methods AgNps were synthesized by chemical reduction method and characterized using UV–visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence, and zeta potential. The anti-Candida activity of AgNps was assessed by broth microdilution and spot assays. Effects of AgNps on cellular and molecular targets were assessed by monitoring the intracellular reactive oxygen species (ROS) production in the absence and presence of natural antioxidant, changes in surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergosterol, and fatty acids. Results Spherical AgNps (10–30 nm) showed minimum inhibitory concentration (minimum concentration required to inhibit the growth of 90% of organisms) at 40 μg/mL. Our results demonstrated that AgNps induced dose-dependent intracellular ROS which exerted antifungal effects; however, even scavenging ROS by antioxidant could not offer protection from AgNp mediated killing. Treatment with AgNps altered surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, ergosterol content, and fatty acid composition, especially oleic acid. Conclusion To summarize, AgNps affected multiple cellular targets crucial for drug resistance and pathogenicity in the fungal cells. The study revealed new cellular targets of AgNps which include fatty acids like oleic acid, vital for hyphal morphogenesis (a pathogenic trait of Candida). Yeast to hypha transition being pivotal for virulence and biofilm formation, targeting virulence might emerge as a new paradigm for developing nano silver-based therapy for clinical applications in fungal therapeutics. PMID:29760548

  16. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  17. Simulations of Living Cell Origins Using a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  18. Simulations of living cell origins using a cellular automata model.

    PubMed

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  19. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped clarify the role of the microtubule binding domain in anionic lipid affinity and demonstrated even "hyperphosphorylation" did not prevent interaction with anionic membranes. Additional studies investigated more complex membrane models to increase physiological relevance. These insights revealed structural changes in tau protein and lipid membranes after interaction. We observed tau's affinity for interfaces, and aggregation and compaction once tau partitions to interfaces. We observed the beginnings of beta-sheet formation in tau at anionic lipid membranes. We also examined disruption to the membrane on a molecular scale.

  20. Analysis of the interaction between membrane proteins and soluble binding partners by surface plasmon resonance.

    PubMed

    Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M

    2013-01-01

    The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.

  1. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  2. Studies of the Mu-Opioid Receptor/G-protein Complex Affinity Co-Purified and Membrane Preparations from 7315c Cells

    DTIC Science & Technology

    1989-06-09

    centrifugational sedimentation rates of the GTPys- activated and inactivated purified Gs (Birnbaumer et al., 1985). Recently, different antibodies raised against...and Membrane Preparations from 7315c Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...were shown to be fused with the 1 membranes from turkey erythrocytes that have ~-adrenergic receptors but inactive adenylyl cyclase activity due to

  3. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    PubMed

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.

  4. Essential Tremor: What We Can Learn from Current Pharmacotherapy

    PubMed Central

    Ondo, William

    2016-01-01

    Background The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. Methods We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Results Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. Discussion To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials. PMID:26989572

  5. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  6. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benyhe, S.; Varga, E.; Hepp, J.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less

  7. Amadori-glycated phosphatidylethanolamine enhances the physical stability and selective targeting ability of liposomes

    PubMed Central

    Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo

    2018-01-01

    Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844

  8. Biophysical characterization of hydrogel-core, lipid-shell nanoparticles (nanolipogels) for HIV chemoprophylaxis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Reena

    Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.

  9. Endoplasmic Reticulum-Golgi Intermediate Compartment Membranes and Vimentin Filaments Participate in Vaccinia Virus Assembly

    PubMed Central

    Risco, Cristina; Rodríguez, Juan R.; López-Iglesias, Carmen; Carrascosa, José L.; Esteban, Mariano; Rodríguez, Dolores

    2002-01-01

    Vaccinia virus (VV) has a complex morphogenetic pathway whose first steps are poorly characterized. We have studied the early phase of VV assembly, when viral factories and spherical immature viruses (IVs) form in the cytoplasm of the infected cell. After freeze-substitution numerous cellular elements are detected around assembling viruses: membranes, ribosomes, microtubules, filaments, and unidentified structures. A double membrane is clearly resolved in the VV envelope for the first time, and freeze fracture reveals groups of tubules interacting laterally on the surface of the viroplasm foci. These data strongly support the hypothesis of a cellular tubulovesicular compartment, related to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), as the origin of the first VV envelope. Moreover, the cytoskeletal vimentin intermediate filaments are found around viral factories and inside the viroplasm foci, where vimentin and the VV core protein p39 colocalize in the areas where crescents protrude. Confocal microscopy showed that ERGIC elements and vimentin filaments concentrate in the viral factories. We propose that modified cellular ERGIC membranes and vimentin intermediate filaments act coordinately in the construction of viral factories and the first VV form through a unique mechanism of viral morphogenesis from cellular elements. PMID:11799179

  10. Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors.

    PubMed

    Pediaditakis, Iosif; Iliopoulos, Ioannis; Theologidis, Ioannis; Delivanoglou, Nickoleta; Margioris, Andrew N; Charalampopoulos, Ioannis; Gravanis, Achille

    2015-01-01

    Dehydroepiandosterone (DHEA), the most abundant steroid in humans, affects multiple cellular functions of the endocrine, immune, and nervous systems. However, up to quite recently, no receptor has been described specifically for it, whereas most of its physiological actions have been attributed to its conversion to either androgens or estrogens. DHEA interacts and modulate a variety of membrane and intracellular neurotransmitter and steroid receptors. We have recently reported that DHEA protects neuronal cells against apoptosis, interacting with TrkA, the high-affinity prosurvival receptor of the neurotrophin, nerve growth factor. Intrigued by its pleiotropic effects in the nervous system of a variety of species, we have investigated the ability of DHEA to interact with the other two mammalian neurotrophin receptors, ie, the TrkB and TrkC, as well as their invertebrate counterparts (orthologs) in mollusks Lymnaea and Aplysia and in cephalochordate fish Amphioxus. Amazingly, DHEA binds to all Trk receptors, although with lower affinity by 2 orders of magnitude compared with that of the polypeptidic neurotrophins. DHEA effectively induced the first step of the TrkA and TrkC receptors activation (phosphorylation at tyrosine residues), including the vertebrate neurotrophin nonresponding invertebrate Lymnaea and Aplysia receptors. Based on our data, we hypothesize that early in evolution, DHEA may have acted as a nonspecific neurotrophic factor promoting neuronal survival. The interaction of DHEA with all types of neurotrophin receptors offers new insights into the largely unidentified mechanisms of its actions on multiple tissues and organs known to express neurotrophin receptors.

  11. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-07

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. STABILITY AND STOICHIOMETRY OF BILAYER PHOSPHOLIPID-CHOLESTEROL COMPLEXES: RELATIONSHIP TO CELLULAR STEROL DISTRIBUTION AND HOMEOSTASIS&

    PubMed Central

    Lange, Yvonne; Ali Tabei, S. M.; Ye, Jin; Steck, Theodore L.

    2013-01-01

    Does cholesterol distribute among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their ability to form stoichiometric cholesterol complexes. We tested this hypothesis by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing biological phospholipids plus varied cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly four orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested stoichiometries of association of 1:1, 2:3 or 1:2 cholesterol:phospholipid (mol:mol). Cholesterol accessibility above the threshold was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the relative stabilities of the cholesterol-phospholipid complexes and for the fractions of bilayer cholesterol not in complexes at the threshold equivalence points; predictably, the saturated phosphorylcholine species had the lowest stoichiometries and the strongest affinities for cholesterol. These results were in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the properties of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation. PMID:24000774

  13. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.

    PubMed

    Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J

    2014-07-15

    Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.

  14. Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations

    PubMed Central

    Yu, Hang; Schulten, Klaus

    2013-01-01

    Interplay between cellular membranes and their peripheral proteins drives many processes in eukaryotic cells. Proteins of the Bin/Amphiphysin/Rvs (BAR) domain family, in particular, play a role in cellular morphogenesis, for example curving planar membranes into tubular membranes. However, it is still unclear how F-BAR domain proteins act on membranes. Electron microscopy revealed that, in vitro, F-BAR proteins form regular lattices on cylindrically deformed membrane surfaces. Using all-atom and coarse-grained (CG) molecular dynamics simulations, we show that such lattices, indeed, induce tubes of observed radii. A 250 ns all-atom simulation reveals that F-BAR domain curves membranes via the so-called scaffolding mechanism. Plasticity of the F-BAR domain permits conformational change in response to membrane interaction, via partial unwinding of the domains 3-helix bundle structure. A CG simulation covering more than 350 µs provides a dynamic picture of membrane tubulation by lattices of F-BAR domains. A series of CG simulations identified the optimal lattice type for membrane sculpting, which matches closely the lattices seen through cryo-electron microscopy. PMID:23382665

  15. Interactions of Ras proteins with the plasma membrane and their roles in signaling.

    PubMed

    Eisenberg, Sharon; Henis, Yoav I

    2008-01-01

    The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.

  16. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  17. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination

    PubMed Central

    Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.

    2010-01-01

    Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766

  18. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C

    PubMed Central

    May, James M

    2011-01-01

    The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. PMID:21418192

  19. Biomimetic membranes and methods of making biomimetic membranes

    DOEpatents

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  20. Oligolysine-based saccharide clusters: synthesis and specificity.

    PubMed Central

    Frison, Natacha; Marceau, Philippe; Roche, Annie-Claude; Monsigny, Michel; Mayer, Roger

    2002-01-01

    In search of specific and highly selective sugar clusters for cell receptors, such as membrane lectins, various disaccharides were coupled to small peptide cores through an amide bond. In a first step, the reducing disaccharides, i.e. lactose and three different dimannoses, were converted into glycosyl-pyroglutamyl-beta-alanine derivatives. The free carboxylic group of these conjugates was then coupled to the alpha and epsilon amino groups of the core peptide (Lys( n )-Ala-Cys-NH2) with n =1 to 5, with complete substitution leading to homogeneous glycoclusters. The thiol group of the cysteine residue was used to tag the glycosylated oligolysines upon reaction with fluorescein iodoacetamide. The affinity of these glycoclusters towards two plant lectins was assessed by surface plasmon resonance. The selectivity of their cell uptake was investigated by flow cytometry using two types of cells: a human hepatoma cell line (HepG2 cells) expressing the plasma membrane galactose-specific lectin, and monocyte-derived dendritic cells expressing the plasma membrane mannose-specific lectin. The glycoclusters containing four or five disaccharides were shown to bind plant lectins and cell surface membrane lectins with a narrow selectivity and with a high affinity. PMID:12119048

  1. Behavior of human immunoglobulin G adsorption onto immobilized Cu(II) affinity hollow-fiber membranes.

    PubMed

    Borsoi-Ribeiro, Mariana; Bresolin, Igor Tadeu Lazzarotto; Vijayalakshmi, Mookambeswaran; Bueno, Sônia Maria Alves

    2013-10-01

    Iminodiacetic acid (IDA) and tris(2-aminoethyl)amine (TREN) chelating ligands were immobilized on poly(ethylene vinyl alcohol) (PEVA) hollow-fiber membranes after activation with epichlorohydrin or butanediol diglycidyl ether (bisoxirane). The affinity membranes complexed with Cu(II) were evaluated for adsorption of human immunoglobulin G (IgG). The effects of matrix activation and buffer system on adsorption of IgG were studied. Isotherms of batch IgG adsorption onto finely cut membranes showed that neither of the chelates, IDA-Cu(II) or TREN-Cu(II), had a Langmuirean behavior with negative cooperativity for IgG binding. A comparison of equilibrium and dynamic maximum capacities showed that the dynamic capacity for a mini-cartridge in a cross-flow filtration mode (52.5 and 298.4 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively) was somewhat higher than the equilibrium capacity (9.2 and 73.3 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively). When mini-cartridges were used, the dynamic adsorption capacity of IDA-Cu(II) was the same for both mini-cartridge and agarose gel. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Cholecystokinin octapeptide analogues stable to brain proteolysis.

    PubMed

    Knight, M; Barone, P; Tamminga, C A; Steardo, L; Chase, T N

    1985-01-01

    Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.

  3. Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule

    PubMed Central

    Nakanishi, Tsuyoshi; Ando, Eiji; Furuta, Masaru; Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru; Tsunasawa, Susumu; Nishimura, Osamu

    2007-01-01

    We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3. PMID:18166671

  4. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  5. Calcium ion as intracellular messenger and cellular toxin.

    PubMed

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-03-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Calcium ion as intracellular messenger and cellular toxin.

    PubMed Central

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-01-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2190811

  7. GRP1 PH Domain, Like AKT1 PH Domain, Possesses a Sentry Glutamate Residue Essential for Specific Targeting to Plasma Membrane PI(3,4,5)P3

    PubMed Central

    Pilling, Carissa; Landgraf, Kyle E.; Falke, Joseph J.

    2011-01-01

    During the appearance of the signaling lipid PI(3,4,5)P3, an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P3-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P2 and bind the rare PI(3,4,5)P3 target lipid with sufficiently high affinity. Our previous study of the E17K mutant of protein kinase B (AKT1) PH domain, together with evidence from Carpten et al (1), revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P2, thereby playing an essential role in specific PI(3,4,5)P3 targeting (2). The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P3-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P2 affinity and constitutive plasma membrane targeting. To test this hypothesis the present study investigates the E345 residue, a putative sentry glutamate, of General Receptor for Phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into GRP1 PH domain enhances PI(4,5)P2 affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P2 releases E345K GRP1 PH domain into the cytoplasm and the efficiency of this release increases when target Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K (1, 3). Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P3-specific binding pockets that functions to lower PI(4,5)P2 affinity. PMID:21932773

  8. Metrics of cellular and vascular infiltration of human acellular dermal matrix in ventral hernia repairs.

    PubMed

    Campbell, Kristin Turza; Burns, Nadja K; Ensor, Joe; Butler, Charles E

    2012-04-01

    Human acellular dermal matrix is used for ventral hernia repair, as it resists infection and remodels by means of surrounding tissue. However, the tissue source and impact of basement membrane on cell and vessel infiltration have not been determined. The authors hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into human acellular dermal matrix and that the basement membrane would inhibit infiltration. Fifty-six guinea pigs underwent inlay human acellular dermal matrix ventral hernia repair with the basement membrane oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, basement membrane orientation, and time. Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p = 0.01 and p < 0.0001, respectively). Cell density was greater with the basement membrane oriented toward the peritoneum at week 4 (p = 0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p < 0.0001). Orienting the basement membrane toward the peritoneum increased vessel density at week 4 (p = 0.0004). Cellular and vascular infiltration into human acellular dermal matrix for ventral hernia repairs was greater from musculofascia than from subcutaneous fat, and the basement membrane inhibited cellular and vascular infiltration. Human acellular dermal matrix should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation.

  9. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.

    PubMed

    Butler, Georgina S; Dean, Richard A; Tam, Eric M; Overall, Christopher M

    2008-08-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.

  10. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  11. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less

  12. Synthesis of n-squalenoyl cytarabine and evaluation of its affinity with phospholipid bilayers and monolayers.

    PubMed

    Sarpietro, Maria Grazia; Ottimo, Sara; Giuffrida, Maria Chiara; Rocco, Flavio; Ceruti, Maurizio; Castelli, Francesco

    2011-03-15

    Cytarabine (1-β-D-arabinofuranosylcytosine, Ara-C), a pyrimidine nucleoside analogue, is an attractive therapeutic agent for the treatment of both acute and chronic myeloblastic leukemias. 1,1',2-tris-nor-Squalene acid (squaleneCOOH) has been conjugated to cytarabine with the formation of the squalenoyl-cytarabine prodrug, in order to improve the drug lipophilicity and, consequently, the affinity towards the environment of biological membranes, as well as of lipophilic carriers. The interaction of cytarabine and its prodrug with dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and monolayers has been studied by the differential scanning calorimetry and the Langmuir-Blodgett techniques. The interaction has been evaluated considering the effect of the compounds on the DMPC MLV and monolayers behaviour. The aim was to have information on the interaction of the drug and the prodrug with the biological membranes and on the possibility to use liposomes as carriers for the prodrug. The results showed an improved affinity of the prodrug with MLV and monolayers with respect to the free drug. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations.

    PubMed Central

    Taft, W C; DeLorenzo, R J

    1984-01-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498

  14. Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.

    PubMed

    Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu

    2016-06-02

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.

  15. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    PubMed

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  16. Architecture and biogenesis of plus-strand RNA virus replication factories

    PubMed Central

    Paul, David; Bartenschlager, Ralf

    2013-01-01

    Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. PMID:24175228

  17. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part III: reagents for actin, tubulin, cellular membranes, and whole cell and cytoplasm.

    PubMed

    Kilgore, Jason A; Dolman, Nick J; Davidson, Michael W

    2014-01-02

    Non-antibody commercial fluorescent reagents for imaging of cytoskeletal structures have been limited primarily to tubulin and actin, with the main factor in choice based mainly on whether cells are live or fixed and permeabilized. A wider range of options exist for cell membrane dyes, and the choice of reagent primarily depends on the preferred localization in the cell (i.e., all membranes or only the plasma membrane) and usage (i.e., whether the protocol involves fixation and permeabilization). For whole-cell or cytoplasmic imaging, the choice of reagent is determined mostly by the length of time that the cells need to be visualized (hours or days) and by fixation status. Presented here is a discussion on choosing commercially available reagents for these cellular structures, with an emphasis on use for microscopic imaging, with a featured reagent for each structure, a recommended protocol, troubleshooting guide, and example image. Copyright © 2014 John Wiley & Sons, Inc.

  18. Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers.

    PubMed

    Syed, Aleem; Smith, Emily A

    2017-06-12

    Raman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies.

  19. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  1. Development of viral nanoparticles for efficient intracellular delivery

    NASA Astrophysics Data System (ADS)

    Wu, Zhuojun; Chen, Kevin; Yildiz, Ibrahim; Dirksen, Anouk; Fischer, Rainer; Dawson, Philip E.; Steinmetz, Nicole F.

    2012-05-01

    Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5. Electronic supplementary information (ESI) available: Experimental details and additional supporting data. See DOI: 10.1039/c2nr30366c

  2. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    PubMed

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.

  3. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    NASA Astrophysics Data System (ADS)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to negate additional effects that could cause artifacts or irregular readings such as external osmotic differences and external pressure differences. However, the experimental setup and execution faced numerous setbacks that highlighted the additional difficulty that sensors using asymmetrical ceramic membranes and the concanavalin A-dextran affinity assay may experience.

  4. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

    PubMed

    Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

    2016-05-01

    Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

  5. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    PubMed

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  6. Imaging Cell Shape Change in Living Drosophila Embryos

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2011-01-01

    The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)1-5. On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells. The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility6, but is instead fueled largely by exocytosis of membrane from internal stores7. Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle. Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using "embryo glue" to mount the embryo in a specific orientation (Table 1)8-19. In all cases, the workflow is basically the same (Figure 1). Standard methods for cloning and Drosophila transgenesis are used to prepare stable fly stocks that express a protein of interest, fused to Green Fluorescent Protein (GFP) or its variants, and these flies provide a renewable source of embryos. Alternatively, fluorescent proteins/probes are directly introduced into fly embryos via straightforward micro-injection techniques9-10. Then, depending on the developmental event and cell shape change to be imaged, embryos are collected and staged by morphology on a dissecting microscope, and finally positioned and mounted for time-lapse imaging on a confocal microscope. PMID:21490577

  7. Wet-Lay Process - A Novel Approach to Scalable Fabrication of Tissue Scaffolds and Reinforcement Membranes

    NASA Astrophysics Data System (ADS)

    Wood, Andrew

    Fibrous materials received a great deal of interest in the fields of tissue engineering and regenerative medicine due to the beneficial cell-interactions and tunable properties for various biomedical applications. These materials are highly advantageous as they provide a large surface area for cellular attachment, proliferation, high porosity values for cellular in-growth, and the ability to modify the membrane to achieve desired responses to both mechanical loading as well as environmental stimuli. A prominent method currently used to fabricate such membranes is electrospinning which uses electrostatic forces to produce fibers on the range of nanometers giving them high morphological saliency to the native extra cellular matrix (ECM). These fibers are also advantageous mechanically with strength and flexibility due to their larger aspect ratio when compared to larger diameter micro/macro fibers. While this spinning technique has many advantages and has seen the most quantity of research in recent years, it does have its own set of drawbacks. Among them is the use cytotoxic solvents during processing which must be fully removed before implantation. In addition, since the fiber produced have smaller diameters, the resulting average pore-size of the scaffold is decreased which in turn hinders cellular penetration into the bulk scaffold. In this work, we have proposed and characterized a novel method called wet-lay process for the rapid fabrication of fibrous membranes for tissue scaffolds. Wet-laying is a method common to textiles and paper industry but unexplored for tissue scaffolds. Short fibers are first suspended in an aqueous bath and homogeneously dispersed using shear force. After draining away the aqueous solution, a nonwoven fibro-porous membrane is deposited onto the draining screen. The implementation of wet-laid membranes into weak hydrogel matrices has shown a reinforcement effect for the composite. Further analyses were carried out to determine the synergistic effect that fiber-length and fiber-concentration have on the dispersion of the fibers during fabrication and cellular response as well as the mechanical reinforcement within a hydrogel matrix. Finally, a method is proposed and validated to both strengthen the as-fabricated membrane as well as to introduce a complex pore-size gradient throughout the scaffold so that cellular response on the bi-layer scaffolds can be modified according to a particular application.

  8. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    PubMed

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  9. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis?

    PubMed Central

    Chambers, H F; Moreau, D; Yajko, D; Miick, C; Wagner, C; Hackbarth, C; Kocagöz, S; Rosenberg, E; Hadley, W K; Nikaido, H

    1995-01-01

    An increase in the number of tuberculosis cases caused by multiple-drug-resistant strains of Mycobacterium tuberculosis has stimulated search for new antituberculous agents. Beta-lactam antibiotics, traditionally regarded as ineffective against tuberculosis, merit consideration. Four major penicillin-binding proteins (PBPs) with approximate molecular sizes of 94, 82, 52, and 37 kDa were detected by fluorography of [3H]penicillin-radiolabeled membrane proteins prepared from M. tuberculosis H37Ra. The presence of membrane-associated beta-lactamase precluded the use of membranes for assaying the binding affinities of beta-lactam antibiotics. Therefore, ampicillin affinity chromatography was used to purify these four PBPs from crude membranes in order to assay the binding affinities of beta-lactam antibiotics. Ampicillin, amoxicillin, and imipenem, beta-lactam antibiotics previously reported to be active in vitro against M. tuberculosis, bound to M. tuberculosis PBPs at therapeutically achievable concentrations. Binding of the 94-, 82-, and 52-kDa PBPs, but not the 37-kDa PBP, was associated with antibacterial activity, suggesting that these PBPs are the critical targets. Studies of mycobacterial cell wall permeability, which was assayed with a panel of reference cephalosporins and penicillins with different charge positivities, indicated that the rate of penetration of beta-lactam antibiotics to the target PBPs could not account for resistance. Resistance could be reversed with the beta-lactamase inhibitors clavulanate or sulbactam or could be circumvented by the use of a beta-lactamase-stable drug, imipenem, indicating that mycobacterial beta-lactamase, probably in conjunction with slow penetration, is a major determinant of M. tuberculosis resistance to beta-lactam antibiotics. These findings confirm in vitro data that M. tuberculosis is susceptible to some beta-lactam antibiotics. Further evaluation of these drugs for the treatment of tuberculosis in animal models and in clinical trials is warranted. PMID:8592990

  11. Ultrathin Transparent Membranes for Cellular Barrier and Co-Culture Models

    PubMed Central

    Carter, Robert N.; Casillo, Stephanie M.; Mazzocchi, Andrea R.; DesOrmeaux, Jon-Paul S.; Roussie, James A.; Gaborski, Thomas R.

    2017-01-01

    Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100–300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives. PMID:28140345

  12. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane.

    PubMed

    Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D

    2015-05-01

    The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.

    PubMed

    Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A

    2018-02-01

    In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.

  14. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    PubMed Central

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  15. Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length

    PubMed Central

    2017-01-01

    ABSTRACT Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis. The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage. PMID:29079613

  16. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less

  17. Super-resolution microscopy reveals protein spatial reorganization in early innate immune responses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, Bryan D.; Aaron, Jesse S.; Timlin, Jerilyn Ann

    2010-10-01

    Over the past decade optical approaches were introduced that effectively break the diffraction barrier. Of particular note were introductions of Stimulated Emission/Depletion (STED) microscopy, Photo-Activated Localization Microscopy (PALM), and the closely related Stochastic Optical Reconstruction Microscopy (STORM). STORM represents an attractive method for researchers, as it does not require highly specialized optical setups, can be implemented using commercially available dyes, and is more easily amenable to multicolor imaging. We implemented a simultaneous dual-color, direct-STORM imaging system through the use of an objective-based TIRF microscope and filter-based image splitter. This system allows for excitation and detection of two fluorophors simultaneously, viamore » projection of each fluorophor's signal onto separate regions of a detector. We imaged the sub-resolution organization of the TLR4 receptor, a key mediator of innate immune response, after challenge with lipopolysaccharide (LPS), a bacteria-specific antigen. While distinct forms of LPS have evolved among various bacteria, only some LPS variations (such as that derived from E. coli) typically result in significant cellular immune response. Others (such as from the plague bacteria Y. pestis) do not, despite affinity to TLR4. We will show that challenge with LPS antigens produces a statistically significant increase in TLR4 receptor clusters on the cell membrane, presumably due to recruitment of receptors to lipid rafts. These changes, however, are only detectable below the diffraction limit and are not evident using conventional imaging methods. Furthermore, we will compare the spatiotemporal behavior of TLR4 receptors in response to different LPS chemotypes in order to elucidate possible routes by which pathogens such as Y. pestis are able to circumvent the innate immune system. Finally, we will exploit the dual-color STORM capabilities to simultaneously image LPS and TLR4 receptors in the cellular membrane at resolutions at or below 40nm.« less

  18. High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance

    PubMed Central

    Wittenberg, Nathan J.; Im, Hyungsoon; Xu, Xiaohua; Wootla, Bharath; Watzlawik, Jens; Warrington, Arthur E.; Rodriguez, Moses; Oh, Sang-Hyun

    2012-01-01

    Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (KD ~0.9 nM) for natural autoantibodies. This is approximately one to two orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair. PMID:22762372

  19. Na⁺-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L.) Delile.

    PubMed

    Rubio, Lourdes; García-Pérez, Delia; García-Sánchez, María Jesús; Fernández, José A

    2018-05-24

    Posidonia oceanica (L.) Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO₃ - , Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO₃ - and Pi were reduced by more than 70% in the absence of Na⁺. Micromolar concentrations of NO₃ - depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics ( Km = 8.7 ± 1 μM NO₃ - ), which were not observed in the absence of Na⁺. NO₃ - induced depolarizations at increasing Na⁺ also showed saturation kinetics ( Km = 7.2 ± 2 mM Na⁺). Cytosolic Na⁺ measured in P. oceanica leaf cells (17 ± 2 mM Na⁺) increased by 0.4 ± 0.2 mM Na⁺ upon the addition of 100 μM NO₃ - . Na⁺-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO₃ - , amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na⁺-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  20. Dinuclear polypyridylruthenium(II) complexes: flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane.

    PubMed

    Li, Fangfei; Feterl, Marshall; Warner, Jeffrey M; Keene, F Richard; Collins, J Grant

    2013-12-01

    To determine the energy dependency of and the contribution of the membrane potential to the cellular accumulation of the dinuclear complexes [{Ru(phen)2}2{μ-bbn}](4+) (Rubbn) and the mononuclear complexes [Ru(Me4phen)3](2+) and [Ru(phen)2(bb7)](2+) in Staphylococcus aureus and Escherichia coli, and to examine their effect on the bacterial membrane. The accumulation of the ruthenium complexes in bacteria was determined using flow cytometry at a range of temperatures. The cellular accumulation of the ruthenium complexes was also determined in cells that had been incubated with the metal complexes in the presence or absence of metabolic stimulators or inhibitors and/or commercial dyes to determine the membrane potential or membrane permeability. The accumulation of ruthenium complexes in the two bacterial strains was shown to increase with increasing incubation temperature, with the relative increase in accumulation greater with E. coli, particularly for Rubb12 and Rubb16. No decrease in accumulation was observed for Rubb12 in ATP-inhibited cells. While carbonyl cyanide m-chlorophenyl hydrazone (CCCP) did depolarize the cell membrane, no reduction in the accumulation of Rubb12 was observed; however, all ruthenium complexes, when incubated with S. aureus at concentrations twice their MIC, depolarized the membrane to a similar extent to CCCP. Except for the mononuclear complex [Ru(Me4phen)3](2+), incubation of any of the other ruthenium complexes allowed a greater quantity of the membrane-impermeable dye TO-PRO-3 to be taken up by S. aureus. The results indicate that the potential new antimicrobial Rubbn complexes enter the cell in an energy-independent manner, depolarize the cell membrane and significantly permeabilize the cellular membrane.

  1. Investigation of Molecular Mechanism of JC virus Viroporin Activity.

    PubMed

    Suzuki, Tadaki

    2015-01-01

    Viroporins are small and hydrophobic viral proteins that form pores on host cell membranes, and their expression can increase the permeability of cellular membranes and the production of progeny virus particles. JC virus (JCV) is the causative agent of progressive multifocal leukoenchephalopathy (PML). We demonstrate that JCV Agno, which is the small and hydrophobic protein, andincreases the plasma membrane permeability and virion release, acts as a viroporin. We also demonstrate that an interaction of Agno with a host cellular protein regulates the viroporin activity of Agno. These findings indicate a new paradigm in virus-host interactions regulating viroporin activity and viral replication.

  2. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    PubMed

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  3. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  4. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  5. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.

    PubMed

    González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F

    2010-11-01

    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.

  6. Rapid characterization of a novel taspine derivative-HMQ1611 binding to EGFR by a cell membrane chromatography method.

    PubMed

    Du, Hui; Lv, Nan; Wang, Sicen; He, Langchong

    2013-05-01

    A new high-expression endothelial growth factor receptor (EGFR) cell membrane chromatography (CMC) method was applied to recognize the ligands acting on EGFR specifically, and investigate the affinity of gefitinib/HMQ1611 to EGFR. In the self and direct competitive assay, gefitinib/HMQ1611 was used as a competitor in the mobile phase to evaluate the effect of the competitor's concentrations on the retention of the ligands, respectively, and the competition between gefitinib and HMQ1611 binding to EGFR was also been examined. The retention behavior indicated that gefitinib had one type of binding sites on the EGFR, and the equilibrium dissociation constant (K(D)) was (9.11 ± 1.89) × 10(-6) M; HMQ1611 had two major binding regions on the EGFR, and the K(D) values obtained from the model were (2.39 ± 0.33) × 10(-7) and (3.87 ± 0.93) × 10(-5) M for HMQ1611 at the high- and low-affinity sites, respectively. The competition between gefitinib and HMQ1611 occurred at the low-affinity sites on the EGFR. The low-affinity sites were of higher concentrations and contributed to a much larger part of retention of HMQ1611. The results suggested that gefitinib and HMQ1611 competed for the common binding sites on the EGFR, no matter the ligand was used as an analyte or a competitor.

  7. Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Thompson, Gary L.; Roth, Caleb; Tolstykh, Gleb; Kuipers, Marjorie; Ibey, Bennett L.

    2013-02-01

    Nanosecond pulsed electric fields (nsPEFs) are known to increase cell membrane permeability to small molecules in accordance with dosages. As previous work has focused on nsPEF exposures in whole cells, electrodeformation may contribute to this induced-permeabilization in addition to other biological mechanisms. Here, we hypothesize that cellular elasticity, based upon the cytoskeleton, affects nsPEF-induced decrease in cellular viability. Young's moduli of various types of cells have been calculated from atomic force microscopy (AFM) force curve data, showing that CHO cells are stiffer than non-adherent U937 and Jurkat cells, which are more susceptible to nsPEF exposure. To distinguish any cytoskeletal foundation for these observations, various cytoskeletal reagents were applied. Inhibiting actin polymerization significantly decreased membrane integrity, as determined by relative propidium uptake and phosphatidylserine externalization, upon exposure at 150 kV/cm with 100 pulses of 10 ns pulse width. Exposure in the presence of other drugs resulted in insignificant changes in membrane integrity and 24-hour viability. However, Jurkat cells showed greater lethality than latrunculin-treated CHO cells of comparable elasticity. From these results, it is postulated that cellular elasticity rooted in actin-membrane interaction is only a minor contributor to the differing responses of adherent and non-adherent cells to nsPEF insults.

  8. Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewkunow, Vitali; Sharma, Karan P.; Diez, Gerold

    2008-02-08

    A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles mademore » of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.« less

  9. Erythrocyte disorders leading to potassium loss and cellular dehydration.

    PubMed

    Glader, B E; Sullivan, D W

    1979-01-01

    RBC K loss and cellular dehydration are associated with a variety of normal and abnormal erythrocyte conditions. In some cases (normal RBC aging, pyruvate-kinase-deficient RBCs and irreversibly sickled cells) cation and water changes are related to adenosine triphosphate (ATP) depletion and to increased RBC calcium content. In other disorders, such as hereditary xerocytosis, cation depletion and cellular hydration are not related to altered energy or calcium metabolism. Rather, this condition is thought to be due to a structural membrane defect which is manifested by imbalanced cation leaks (K less greater than Na gain) for which the active cation transport is unable to compensate. None of the disorders described here are associated with known structural membrane alterations. The fact that K loss and cellular dehydration are common to several RBC disorders suggests that this phenomenon may have a direct role in membrane injury. This hypothesis is supported by two separate observations: 1)Formation of irreversible sickled cells in vitro is prevented if K and water loss are inhibited, and these effects are independent of ATP depletion and calcium accumulation; 2) the mean critical hemolytic volume is markedly reduced in K- and water-depleted normal RBCs. RBC dehydration without intracellular cation depletion, however, is not associated with changes in mean critical hemolytic volume. These data thus indicate that K loss may have a direct role in RBC membrane injury. The mechanism by which this occurs and the associated alterations in membrane structure, however, remain to be identified.

  10. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  11. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent

    PubMed Central

    Abbassi, Feten; Humblot, Vincent; Bouceba, Tahar; Correia, Isabelle; Casale, Sandra; Foulon, Thierry; Sereno, Denis; Oury, Bruno; Ladram, Ali

    2017-01-01

    Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10−8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs. PMID:28319176

  12. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  13. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles.

    PubMed

    Schlebach, Jonathan P; Barrett, Paul J; Day, Charles A; Kim, Ji Hun; Kenworthy, Anne K; Sanders, Charles R

    2016-02-23

    The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.

  14. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    PubMed

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  15. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  16. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    PubMed

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    PubMed Central

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveals that dimeric WT PH domain possesses a one-order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically-enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each a full order of magnitude lower than dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion. PMID:23745598

  18. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies.

    PubMed

    Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J

    2013-07-16

    Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows deeper insertion of the protein into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveal that the dimeric WT PH domain possesses a one order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each 1 order of magnitude lower than those of the dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to the cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion.

  19. Effect of phloretin on the binding of 1-anilino-8-naphtalene sulfonate (ANS) to 1,2-Dimyristoyl-sn-glycero-3-phosphocoline (DMPC) vesicles in the gel and liquid-crystalline state.

    PubMed

    Cutró, Andrea C; Montich, Guillermo; Roveri, Oscar A

    2015-02-01

    Phloretin is a known modifier of the internal dipole potential of lipid membranes. We studied the interaction of phloretin with model lipid membranes and how it influences the membrane dipole organization using ANS as fluorescent probe. The fluorescence increase observed when ANS binds to DMPC liposomes in gel phase (13 °C) was 2.5 times larger in the presence of phloretin. This effect was due to an increase in ANS affinity, which can be related to the known capability of phloretin in decreasing the dipole potential. Conversely, when the experiments were carried out at 33 °C (liquid crystalline phase), phloretin completely inhibited the increase in ANS fluorescence. In addition, phloretin only affected the electrical properties of the membrane in the gel phase, whereas it modifies structural ones in the liquid-crystalline state. We postulate that phloretin was bound only to the DMPC interface in the gel phase decreasing the surface negative charge density without modifying the structural properties of the ANS binding sites. In the liquid-crystalline phase instead, it increased the accessibility of water to the ANS binding sites decreasing the intrinsic affinity and the fluorescence quantum yield of ANS.

  20. Mutation-Specific Mechanisms of Hyperactivation of Noonan Syndrome SOS Molecules Detected with Single-molecule Imaging in Living Cells.

    PubMed

    Nakamura, Yuki; Umeki, Nobuhisa; Abe, Mitsuhiro; Sako, Yasushi

    2017-10-26

    Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.

Top