NASA Astrophysics Data System (ADS)
Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira
2006-07-01
We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.
Remote Energy Monitoring System via Cellular Network
NASA Astrophysics Data System (ADS)
Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi
Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.
Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A
2018-04-26
The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.
System and method for monitoring cellular activity
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)
2002-01-01
A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.
System and method for monitoring cellular activity
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)
2004-01-01
A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.
Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.
Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A
2018-02-01
In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.
Wireless patient monitoring system for a moving-actuator type artificial heart.
Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G
2006-10-01
In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.
Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon
2016-01-01
Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351
Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon
2016-06-14
Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.
NASA Astrophysics Data System (ADS)
Ham, J. M.
2016-12-01
New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller (www.particle.io). This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak (thingspeak.com). The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.
Long-term microfluidic glucose and lactate monitoring in hepatic cell culture
Prill, Sebastian; Jaeger, Magnus S.; Duschl, Claus
2014-01-01
Monitoring cellular bioenergetic pathways provides the basis for a detailed understanding of the physiological state of a cell culture. Therefore, it is widely used as a tool amongst others in the field of in vitro toxicology. The resulting metabolic information allows for performing in vitro toxicology assays for assessing drug-induced toxicity. In this study, we demonstrate the value of a microsystem for the fully automated detection of drug-induced changes in cellular viability by continuous monitoring of the metabolic activity over several days. To this end, glucose consumption and lactate secretion of a hepatic tumor cell line were continuously measured using microfluidically addressed electrochemical sensors. Adapting enzyme-based electrochemical flat-plate sensors, originally designed for human whole-blood samples, to their use with cell culture medium supersedes the common manual and laborious colorimetric assays and off-line operated external measurement systems. The cells were exposed to different concentrations of the mitochondrial inhibitor rotenone and the cellular response was analyzed by detecting changes in the rates of the glucose and lactate metabolism. Thus, the system provides real-time information on drug-induced liver injury in vitro. PMID:24926387
A design of wireless sensor networks for a power quality monitoring system.
Lim, Yujin; Kim, Hak-Man; Kang, Sanggil
2010-01-01
Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
Rapid detection of microbial cell abundance in aquatic systems
Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...
2016-06-01
The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less
Rapid detection of microbial cell abundance in aquatic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Andrea M.; Yuan, Quan; Close, Dan M.
The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less
Novel Method for Detection of Air Pollution using Cellular Communication Networks
NASA Astrophysics Data System (ADS)
David, N.; Gao, O. H.
2016-12-01
Air pollution can lead to a wide spectrum of severe and chronic health impacts. Conventional tools for monitoring the phenomenon do not provide a sufficient monitoring solution in a global scale since they are, for example, not representative of the larger space or due to limited deployment as a result of practical limitations, such as: acquisition, installation, and ongoing maintenance costs. Near ground temperature inversions are directly identified with air pollution events since they suppress vertical atmospheric movement and trap pollutants near the ground. Wireless telecommunication links that comprise the data transfer infrastructure in cellular communication networks operate at frequencies of tens of GHz and are affected by different atmospheric phenomena. These systems are deployed near ground level across the globe, including in developing countries such as India, countries in Africa, etc. Many cellular providers routinely store data regarding the received signal levels in the network for quality assurance needs. Temperature inversions cause atmospheric layering, and change the refractive index of the air when compared to standard conditions. As a result, the ducts that are formed can operate, in essence, as atmospheric wave guides, and cause interference (signal amplification / attenuation) in the microwaves measured by the wireless network. Thus, this network is in effect, an existing system of environmental sensors for monitoring temperature inversions and the episodes of air pollution identified with them. This work presents the novel idea, and demonstrates it, in operation, over several events of air pollution which were detected by a standard cellular communication network during routine operation. Reference: David, N. and Gao, H.O. Using cellular communication networks to detect air pollution, Environmental Science & Technology, 2016 (accepted).
Low, Karen; Wong, Lauren Y; Maldonado, Maricela; Manjunath, Chetas; Horner, Christopher B; Perez, Mark; Myung, Nosang V; Nam, Jin
2017-05-09
Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Goshima, Yoshio; Hida, Tomonobu; Gotoh, Toshiyuki
2012-01-01
Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.
An improved sample loading technique for cellular metabolic response monitoring under pressure
NASA Astrophysics Data System (ADS)
Gikunda, Millicent Nkirote
To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.
Influence of digital and analogue cellular telephones on implanted pacemakers.
Altamura, G; Toscano, S; Gentilucci, G; Ammirati, F; Castro, A; Pandozi, C; Santini, M
1997-10-01
The aim of this study was to find out whether digital and analogue cellular 'phones affect patients with pacemakers. The study comprised continuous ECG monitoring of 200 pacemaker patients. During the monitoring certain conditions caused by interference created by the telephone were looked for: temporary or prolonged pacemaker inhibition; a shift to asynchronous mode caused by electromagnetic interference; an increase in ventricular pacing in dual chamber pacemakers, up to the programmed upper rate. The Global System for Mobile Communications system interfered with pacing 97 times in 43 patients (21.5%). During tests on Total Access of Communication System telephones, there were 60 cases of pacing interference in 35 patients (17.5%). There were 131 interference episodes during ringing vs 26 during the on/off phase; (P < 0.0001); 106 at maximum sensitivity level vs 51 at the 'base' value; P < 0.0001). Prolonged pacing inhibition (> 4 s) was seen at the pacemaker 'base' sensing value in six patients using the Global system but in only one patient using Total Access. Cellular 'phones may be dangerous for pacemaker patients. However, they can be used safely if patients do not carry the 'phone close to the pacemaker, which is the only place where high risk interference has been observed.
Kwak, Minsuk; Mu, Luye; Lu, Yao; Chen, Jonathan J.; Brower, Kara; Fan, Rong
2013-01-01
Secreted proteins including cytokines, chemokines, and growth factors represent important functional regulators mediating a range of cellular behavior and cell–cell paracrine/autocrine signaling, e.g., in the immunological system (Rothenberg, 2007), tumor microenvironment (Hanahan and Weinberg, 2011), or stem cell niche (Gnecchi etal., 2008). Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically identical cell population can give rise to diverse phenotypic differences (Niepel etal., 2009). Non-genetic heterogeneity is also emerging as a potential barrier to accurate monitoring of cellular immunity and effective pharmacological therapies (Cohen etal., 2008; Gascoigne and Taylor, 2008), but can hardly assessed using conventional approaches that do not examine cellular phenotype at the functional level. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer. PMID:23390614
Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas
2015-11-26
As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations.
Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas
2015-01-01
As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations. PMID:26608589
Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong
2015-10-01
To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.
RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing
NASA Astrophysics Data System (ADS)
Alexander, Frank A., Jr.
This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.
Hydrogen Peroxide Probes Directed to Different Cellular Compartments
Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738
A miniaturized planar patch-clamp system for transportable use.
Boussaoud, Adrien; Fonteille, Isabelle; Collier, Guilhem; Kermarrec, Frédérique; Vermont, Fabien; Tresallet, Eric; De Waard, Michel; Arnoult, Christophe; Picollet-D'hahan, Nathalie
2012-02-15
In the last decade, planar patch-clamp (PPC) has emerged as an innovative technology allowing parallel recordings of cellular electrophysiological activity on planar substrates. If PPC is widely adopted by the pharmaceutical sector, it remains poorly extended to other areas (i.e. environment and safety organizations) probably because of the large, expensive and non-easily transportable format of those commercial equipments. The present work describes for the first time a new compact and transportable planar patch-clamp system (named Toxint'patch or TIP, for Toxin detection with integrated patch-clamp) focusing on environmental matters and meant to be used in coastal laboratories, for direct on-site monitoring of the seawater and shellfish quality. The TIP system incorporates silicon chips tailored to monitor cellular ionic currents from cultured cells stably expressing a phycotoxin molecular target. The functionality of this novel briefcase-sized PPC system is described in terms of fluidic control, electronic performances with amplifying and filtering boards and of user interface for data acquisition and control implemented on a computer. Copyright © 2011 Elsevier B.V. All rights reserved.
Berezowska, Sabina; Galván, José A
2017-01-01
Autophagy is a highly conserved cellular mechanism of "self digestion," ensuring cellular homeostasis, and playing a role in many diseases including cancer. As a stress response mechanism, it may also be involved in cellular response to therapy.LC3 and Sequestosome 1 (p62/SQSTM1) are among the most widely used markers to monitor autophagy, and can be visualized in formalin-fixed and paraffin-embedded tissue by immunohistochemistry. Here we describe a validated staining protocol using an automated staining system available in many routine pathology laboratories, enabling high-throughput staining under standardized conditions.
AMON: a wearable multiparameter medical monitoring and alert system.
Anliker, Urs; Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Dolveck, François; Baer, Michel; Keita, Fatou; Schenker, Eran B; Catarsi, Fabrizio; Coluccini, Luca; Belardinelli, Andrea; Shklarski, Dror; Alon, Menachem; Hirt, Etienne; Schmid, Rolf; Vuskovic, Milica
2004-12-01
This paper describes an advanced care and alert portable telemedical monitor (AMON), a wearable medical monitoring and alert system targeting high-risk cardiac/respiratory patients. The system includes continuous collection and evaluation of multiple vital signs, intelligent multiparameter medical emergency detection, and a cellular connection to a medical center. By integrating the whole system in an unobtrusive, wrist-worn enclosure and applying aggressive low-power design techniques, continuous long-term monitoring can be performed without interfering with the patients' everyday activities and without restricting their mobility. In the first two and a half years of this EU IST sponsored project, the AMON consortium has designed, implemented, and tested the described wrist-worn device, a communication link, and a comprehensive medical center software package. The performance of the system has been validated by a medical study with a set of 33 subjects. The paper describes the main concepts behind the AMON system and presents details of the individual subsystems and solutions as well as the results of the medical validation.
Condition monitoring of 3G cellular networks through competitive neural models.
Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo
2005-09-01
We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.
Claudino, Wederson Marcos; Quattrone, Alessandro; Biganzoli, Laura; Pestrin, Marta; Bertini, Ivano; Di Leo, Angelo
2007-07-01
Metabolomics is the newest "omics" science. It is a dynamic portrait of the metabolic status of living systems. Metabolomics has brought new insights on metabolic fluxes and a more comprehensive and holistic understanding of a cell's environment. This burgeoning field promises to be a potential tool to fill the gap between genotype and phenotype. As its preceding "omics" sciences (ie, genomics and proteomics), metabolomics' aim is to dredge information hidden in a sea of data. This technology permits simultaneous monitoring of many hundreds, or thousands, of macro- and small molecules, as well as functional monitoring of multiple pivotal cellular pathways. In addition, elucidation of cellular responses to molecular damage, including evolutionarily conserved inducible molecular defense systems, could be achieved with metabolomics and could lead to the discovery of new biomarkers of molecular responses to functional perturbations. If metabolomic information could be translated into diagnostic tests, it might have the potential to impact on clinical practice, and it might lead to the supplementation of traditional biomarkers of cellular integrity, cell and tissue homeostasis, and morphological alterations that result from cell damage or death. In this review the concept and characteristics of metabolomics are introduced. Main current applications of metabolomics in cancer research are reviewed, including its potential in the drug discovery field, and, last but not least, its potential impact in the field of monitoring response and toxicity to anticancer agents. In the last section, research projects ongoing at our institution and future challenges for metabolomics will be presented and briefly discussed.
Magnetic levitation of single cells
Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan
2015-01-01
Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131
A Wireless Emergency Telemedicine System for Patients Monitoring and Diagnosis
Abo-Zahhad, M.; Ahmed, Sabah M.; Elnahas, O.
2014-01-01
Recently, remote healthcare systems have received increasing attention in the last decade, explaining why intelligent systems with physiology signal monitoring for e-health care are an emerging area of development. Therefore, this study adopts a system which includes continuous collection and evaluation of multiple vital signs, long-term healthcare, and a cellular connection to a medical center in emergency case and it transfers all acquired raw data by the internet in normal case. The proposed system can continuously acquire four different physiological signs, for example, ECG, SpO2, temperature, and blood pressure and further relayed them to an intelligent data analysis scheme to diagnose abnormal pulses for exploring potential chronic diseases. The proposed system also has a friendly web-based interface for medical staff to observe immediate pulse signals for remote treatment. Once abnormal event happened or the request to real-time display vital signs is confirmed, all physiological signs will be immediately transmitted to remote medical server through both cellular networks and internet. Also data can be transmitted to a family member's mobile phone or doctor's phone through GPRS. A prototype of such system has been successfully developed and implemented, which will offer high standard of healthcare with a major reduction in cost for our society. PMID:24883059
Wearable vital parameters monitoring system
NASA Astrophysics Data System (ADS)
Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina
2015-02-01
The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär
2018-03-09
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Elsner, Dorothea; Fomin, Anette
2002-01-01
A biological testing system for the monitoring of stack gas condensates of municipal waste incinerators has been developed using Euglena gracilis as a test organism. The motility, velocity and cellular form of the organisms were the endpoints, calculated by an image analysis system. All endpoints showed statistically significant changes in a short time when organisms were exposed to samples collected during combustion situations with increased pollutant concentrations. The velocity of the organisms proved to be the most appropriate endpoint. A semi-continuous system with E. gracilis for monitoring stack gas condensate is proposed, which could result in an online system for testing stack gas condensates in the future.
Cellular Telephones Measure Activity and Lifespace in Community-Dwelling Adults: Proof of Principle
Schenk, Ana Katrin; Witbrodt, Bradley C.; Hoarty, Carrie A.; Carlson, Richard H.; Goulding, Evan H.; Potter, Jane F.; Bonasera, Stephen J.
2011-01-01
OBJECTIVES To describe a system that uses off-the-shelf sensor and telecommunication technologies to continuously measure individual lifespace and activity levels in a novel way. DESIGN Proof of concept involving three field trials of 30, 30, and 21 days. SETTING Omaha, Nebraska, metropolitan and surrounding rural region. PARTICIPANTS Three participants (48-year-old man, 33-year-old woman, and 27-year-old male), none with any functional limitations. MEASUREMENTS Cellular telephones were used to detect in-home position and in-community location and to measure physical activity. Within the home, cellular telephones and Bluetooth transmitters (beacons) were used to locate participants at room-level resolution. Outside the home, the same cellular telephones and global positioning system (GPS) technology were used to locate participants at a community-level resolution. Physical activity was simultaneously measured using the cellular telephone accelerometer. RESULTS This approach had face validity to measure activity and lifespace. More importantly, this system could measure the spatial and temporal organization of these metrics. For example, an individual’s lifespace was automatically calculated across multiple time intervals. Behavioral time budgets showing how people allocate time to specific regions within the home were also automatically generated. CONCLUSION Mobile monitoring shows much promise as an easily deployed system to quantify activity and lifespace, important indicators of function, in community-dwelling adults. PMID:21288235
Monitoring ATP dynamics in electrically active white matter tracts
Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes
2017-01-01
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271
Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W
2018-05-17
Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.
Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor
Mukherjee, Amarnath; Castanares, Mark; Hedayati, Mohammad; Wabler, Michele; Trock, Bruce; Kulkarni, Prakash; Rodriguez, Ronald; Getzenberg, Robert H; DeWeese, Theodore L; Ivkov, Robert; Lupold, Shawn E
2014-01-01
Aim To develop and apply a heat-responsive and secreted reporter assay for comparing cellular response to nanoparticle (NP)- and macroscopic-mediated sublethal hyperthermia. Materials & methods Reporter cells were heated by water bath (macroscopic heating) or iron oxide NPs activated by alternating magnetic fields (nanoscopic heating). Cellular responses to these thermal stresses were measured in the conditioned media by secreted luciferase assay. Results & conclusion Reporter activity was responsive to macroscopic and nanoparticle heating and activity correlated with measured macroscopic thermal dose. Significant cellular responses were observed with NP heating under doses that were insufficient to measurably change the temperature of the system. Under these conditions, the reporter response correlated with proximity to cells loaded with heated nanoparticles. These results suggest that NP and macroscopic hyperthermia may be distinctive under conditions of mild hyperthermia. PMID:24547783
Wu, Zhiqiang; Zhao, Jinlin; Qiu, Minghan; Mi, Zeyun; Meng, Maobin; Guo, Yu; Wang, Hui; Yuan, Zhiyong
2018-04-19
Accurately identifying and quantifying cellular autophagy is very important as the significance of autophagy in physiological and pathological processes becomes increasingly evident. Ectopically expressed fluorescent-tagged microtubule-associated protein light chain 3B (MAP1LC3B, LC3) is the most widely used reporter for monitoring autophagy activity thus far. However, this approach ignores the influence of constitutively overexpressed LC3 on autophagy itself and autophagy-related processes and its accuracy in indicating autophagy is questionable. Here, we generated a knock-in GFP-LC3 reporter via the CRISPR/Cas9 system in 293FT cells to add GFP to the N-terminal of and in frame with endogenous LC3. We proved that this knock-in GFP-LC3 was expressed at biological level driven by the endogenous transcriptional regulatory elements as the wild type alleles. Compared with the ectopically expressed GFP-LC3, the endogenous knock-in reporter exhibited much higher sensitivity and signal-to-noise ratio of GFP-LC3 puncta upon the induction or inhibition of autophagy at certain step for monitoring autophagy activity. Thus, according to the previous reported concerning and the results presented here, we suggest that this knock-in GFP-LC3 reporter is better for bona fide monitoring cellular autophagy and should be employed for further study of autophagy in vitro and in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A sensor monitoring system for telemedicine, safety and security applications
NASA Astrophysics Data System (ADS)
Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka
2017-02-01
A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.
Katterman, Matthew E; Birchard, Stephanie; Seraphin, Supapan; Riley, Mark R
2007-01-01
There is increasing interest in continual monitoring of air for the presence of inhalation health hazards, such as particulate matter, produced through combustion of fossil fuels. Currently there are no means to rapidly evaluate the relative toxicity of materials or to reliably predict potential health impact due to the complexity of the composition, size, and physical properties of particulate matter. This research evaluates the feasibility of utilizing cell cultures as the biological recognition element of an inhalation health monitoring system. The response of rat lung type II epithelial (RLE-6TN) cells to a variety of combustion derived particulates and their components has been evaluated. The focus of the current work is an evaluation of how particles are delivered to a cellular sensing array and to what degree does washing or grinding of the particles impacts the cellular response. There were significant differences in the response of these lung cells to PM's of varying sources. Mechanical grinding or washing was found to alter the toxicity of some of these particulates; however these effects were strongly dependent on the fuel source. Washing reduced toxicity of oil PM's, but had little effect on those from diesel or coal. Mechanical grinding could significantly increase the toxicity of coal PM's, but not for oil or diesel.
76 FR 75492 - Atlantic Highly Migratory Species; Vessel Monitoring Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... and fishing gears possessed to be made by phone. Some small fishing vessels remain within cell phone... terminals represent a more reliable means of communication than cellular phones because they use satellites rather than cell towers as the principle means of transmitting data. Furthermore, vessels need to provide...
Evaluation of nanoparticles as endocytic tracers in cellular microbiology
NASA Astrophysics Data System (ADS)
Zhang, Yuying; Hensel, Michael
2013-09-01
The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology.The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01550e
Electrochemical microsensor system for cancer research on photodynamic therapy in vitro
NASA Astrophysics Data System (ADS)
Marzioch, J.; Kieninger, J.; Sandvik, J. A.; Pettersen, E. O.; Peng, Q.; Urban, G.
2016-10-01
An electrochemical microsensor system to investigate photodynamic therapy of cancer cells in vitro was developed and applied to monitor the cellular respiration during and after photodynamic therapy. The redox activity and therefore influence of the photodynamic drug on the sensor performance was investigated by electrochemical characterization. It was shown, that appropriate operation conditions avoid cross-sensitivity of the sensors to the drug itself. The presented system features a cell culture chamber equipped with microsensors and a laser source to photodynamically treat the cells while simultaneous monitoring of metabolic parameter in situ. Additionally, the optical setup allows to read back fluorescence signals from the photosensitizer itself or other marker molecules parallel to the microsensor readings.
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer, Hagit
2015-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.
Spencer, Amy C; Torre, Paola; Mansy, Sheref S
2013-10-21
As interest shifts from individual molecules to systems of molecules, an increasing number of laboratories have sought to build from the bottom up cellular mimics that better represent the complexity of cellular life. To date there are a number of paths that could be taken to build compartmentalized cellular mimics, including the exploitation of water-in-oil emulsions, microfluidic devices, and vesicles. Each of the available options has specific advantages and disadvantages. For example, water-in-oil emulsions give high encapsulation efficiency but do not mimic well the permeability barrier of living cells. The primary advantage of the methods described herein is that they are all easy and cheap to implement. Transcription-translation machinery is encapsulated inside of phospholipid vesicles through a process that exploits common instrumentation, such as a centrifugal evaporator and an extruder. Reactions are monitored by fluorescence spectroscopy. The protocols can be adapted for recombinant protein expression, the construction of cellular mimics, the exploration of the minimum requirements for cellular life, or the assembly of genetic circuitry.
Spencer, Amy C.; Torre, Paola; Mansy, Sheref S.
2013-01-01
As interest shifts from individual molecules to systems of molecules, an increasing number of laboratories have sought to build from the bottom up cellular mimics that better represent the complexity of cellular life. To date there are a number of paths that could be taken to build compartmentalized cellular mimics, including the exploitation of water-in-oil emulsions, microfluidic devices, and vesicles. Each of the available options has specific advantages and disadvantages. For example, water-in-oil emulsions give high encapsulation efficiency but do not mimic well the permeability barrier of living cells. The primary advantage of the methods described herein is that they are all easy and cheap to implement. Transcription-translation machinery is encapsulated inside of phospholipid vesicles through a process that exploits common instrumentation, such as a centrifugal evaporator and an extruder. Reactions are monitored by fluorescence spectroscopy. The protocols can be adapted for recombinant protein expression, the construction of cellular mimics, the exploration of the minimum requirements for cellular life, or the assembly of genetic circuitry. PMID:24192867
Mahoney, Diane M F; Mutschler, Phyllis H; Tarlow, Barbara; Liss, Ellen
2008-04-01
The objective of this research was to determine the feasibility of and receptivity to the first computerized workplace-based direct caregiver intervention and to assess the effects on businesses, working family caregivers, and their elderly relatives. Working family caregivers, with at least one health and/or safety concern related to an elder residing alone at home during the workday, were recruited from five companies (n = 27). Caregivers received free computer access to the Worker Interactive Networking (WIN) Internet online caregiver support group and a remote elder monitoring system at home for 6 months. The remote monitoring system provided Web-based status reports and e-mail/pager alerts when individualized parameters were exceeded. Motion sensor signals were transmitted to a transponder that uploaded via wireless cellular communications to the project server, thereby not interfering with elders' telephone use. Formative qualitative analyses clarified acceptance and implementation issues. Summative quantitative evaluation determined pilot intervention effects and was conducted by external evaluators. Despite interoperability and cellular reception issues, the system was successfully deployed across four states to a variety of businesses and housing types. Positive results occurred on worker morale, productivity, and reduction of caregiver stress. Participants found it easy to learn and use. Elders did not find the technology "intrusive" or "isolating." Contrary to their expectations, managers reported no abuse of Internet access. Workers expressed a willingness to pay for a similar system in the future ranging from $10 to $130, depending on the features. They would pay the most for the option involving a geriatric nurse coach. The WIN system innovatively tailored to users' wants, and provided users customized control and personalized support. Use of the system was associated with positive outcomes. Enrollment response suggests a specific niche market for remote home monitoring, making it a manageable employee benefit.
Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects
Gammella, Elena; Recalcati, Stefania; Cairo, Gaetano
2016-01-01
Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings. PMID:27006749
Cellular telephone interference with medical equipment.
Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P
2005-10-01
To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2007-04-01
Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a controlled manipulation of individual molecules and atoms that can interact with the human body at sub-cellular level. The recent progress in microelectronics and nanosensors crates very powerful tools for the early detection and diagnosis. The nanowire integrated potassium and dopamine sensors are ideal for the monitoring and control of many cardiovascular diseases and neurological disorders. Selected movies illustrating the applications of nanodevices to patients will be shown at the talk.
Yeast prions are useful for studying protein chaperones and protein quality control.
Masison, Daniel C; Reidy, Michael
2015-01-01
Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.
Dependence of Impedance of Embedded Single Cells on Cellular Behaviour.
Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen
2008-02-21
Non-invasive single cell analyses are increasingly required for the medicaldiagnostics of test substances or the development of drugs and therapies on the single celllevel. For the non-invasive characterisation of cells, impedance spectroscopy whichprovides the frequency dependent electrical properties has been used. Recently,microfludic systems have been investigated to manipulate the single cells and tocharacterise the electrical properties of embedded cells. In this article, the impedance ofpartially embedded single cells dependent on the cellular behaviour was investigated byusing the microcapillary. An analytical equation was derived to relate the impedance ofembedded cells with respect to the morphological and physiological change ofextracellular interface. The capillary system with impedance measurement showed afeasibility to monitor the impedance change of embedded single cells caused bymorphological and physiological change of cell during the addition of DMSO. By fittingthe derived equation to the measured impedance of cell embedded at different negativepressure levels, it was able to extrapolate the equivalent gap and gap conductivity betweenthe cell and capillary wall representing the cellular behaviour.
Encapsulated Optically Responsive Cell Systems: Toward Smart Implants in Biomedicine.
Boss, Christophe; Bouche, Nicolas; De Marchi, Umberto
2018-04-01
Managing increasingly prevalent chronic diseases will require close continuous monitoring of patients. Cell-based biosensors may be used for implantable diagnostic systems to monitor health status. Cells are indeed natural sensors in the body. Functional cellular systems can be maintained in the body for long-term implantation using cell encapsulation technology. By taking advantage of recent progress in miniaturized optoelectronic systems, the genetic engineering of optically responsive cells may be combined with cell encapsulation to generate smart implantable cell-based sensing systems. In biomedical research, cell-based biosensors may be used to study cell signaling, therapeutic effects, and dosing of bioactive molecules in preclinical models. Today, a wide variety of genetically encoded fluorescent sensors have been developed for real-time imaging of living cells. Here, recent developments in genetically encoded sensors, cell encapsulation, and ultrasmall optical systems are highlighted. The integration of these components in a new generation of biosensors is creating innovative smart in vivo cell-based systems, bringing novel perspectives for biomedical research and ultimately allowing unique health monitoring applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit
2016-03-01
Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.
Single-cell-based system to monitor carrier driven cellular auxin homeostasis
2013-01-01
Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Aggarwal, Kamal; Yang, Mimi X.; Parizi, Kokab B.; Xu, Xiaoqing; Akin, Demir; Poon, Ada S. Y.; Wong, H.-S. Philip
2017-07-01
We report the design, analysis, and characterization of a three-inductor radio-frequency identification (RFID) and transceiver system for potential applications in individual cell tracking and monitoring. The RFID diameter is 22 μ m and can be naturally internalized by living cells. Using magnetic resonance coupling, the system shows resonance shifts when the RFID is present and also when the RFID loading capacitance changes. It operates at 60 GHz with a high signal magnitude up to -50 dB and a sensitivity of 0.2. This miniaturized RFID with a high signal magnitude is a promising step toward continuous, real-time monitoring of activities at cellular levels.
Multichamber Multipotentiostat System for Cellular Microphysiometry.
Lima, Eduardo A; Snider, Rachel M; Reiserer, Ronald S; McKenzie, Jennifer R; Kimmel, Danielle W; Eklund, Sven E; Wikswo, John P; Cliffel, David E
2014-12-01
Multianalyte microphysiometry is a powerful technique for studying cellular metabolic flux in real time. Monitoring several analytes concurrently in a number of individual chambers, however, requires specific instrumentation that is not available commercially in a single, compact, benchtop form at an affordable cost. We developed a multipotentiostat system capable of performing simultaneous amperometric and potentiometric measurements in up to eight individual chambers. The modular design and custom LabVIEW™ control software provide flexibility and allow for expansion and modification to suit different experimental conditions. Superior accuracy is achieved when operating the instrument in a standalone configuration; however, measurements performed in conjunction with a previously developed multianalyte microphysiometer have shown low levels of crosstalk as well. Calibrations and experiments with primary and immortalized cell cultures demonstrate the performance of the instrument and its capabilities.
Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA
2011-06-07
An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, Markus; Howgate, John; Schmid, Martin
Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriatemore » sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.« less
Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol
2012-10-15
Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system.
Romeo, Agostino; Tarabella, Giuseppe; D'Angelo, Pasquale; Caffarra, Cristina; Cretella, Daniele; Alfieri, Roberta; Petronini, Pier Giorgio; Iannotta, Salvatore
2015-06-15
We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics. To qualify the device, we used a human lung adenocarcinoma cell line (A549) that was cultivated on the micro-porous membrane of a Transwell (Twell) support, and exposed to the anticancer drug doxorubicin. Time-dependent and dose-dependent dynamics of A549 cells exposed to doxorubicin are evaluated by monitoring cell death upon exposure to a range of doses and times that fully covers the protocols used in cancer treatment. The demonstrated ability to directly monitor cell stress and death dynamics upon drug exposure using simple electronic devices and, possibly, achieving selectivity to different cell dynamics is of great interest for several application fields, including toxicology, pharmacology, and therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.
What must be the accuracy and target of optical sensor systems for patient monitoring?
NASA Astrophysics Data System (ADS)
Frank, Klaus H.; Kessler, Manfred D.
2002-06-01
Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.
Madeira, Diana; Vinagre, Catarina; Mendonça, Vanessa; Diniz, Mário Sousa
2017-07-15
Knowledge on baseline values of stress biomarkers in natural conditions is urgent due to the need of reference values for monitoring purposes. Here we assessed the cellular stress response of the chiton Chaetopleura angulata in situ. Biomarkers commonly used in environmental monitoring (heat shock protein 70kDa, total ubiquitin, catalase, glutathione-S-transferase, superoxide-dismutase, lipid peroxidation) were analyzed in the digestive system, gills and muscle of C. angulata, under spring and summer conditions in order to assess seasonal tissue-specific responses. Season had an effect on all targeted organs, especially affecting the digestive system which displayed clear seasonal clusters. The respective Integrated Biomarker Response (IBR) showed a 7.2-fold seasonal difference. Muscle and gills showed similar IBRs between seasons making them appropriate organs to monitor chemical pollution as they were less responsive to seasonal variation. The most stable biomarkers in these organs were ubiquitin and superoxide-dismutase thus being reliable for monitoring purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T; Haynes, Christy L
2014-04-15
The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system's components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell-cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell-fluid, cell-cell, cell-tissue, tissue-tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics.
DR5 as a reporter system to study auxin response in Populus.
Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B
2013-03-01
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Environmental Monitoring using Measurements from Cellular Network Infrastructure
NASA Astrophysics Data System (ADS)
David, N.; Gao, O. H.
2015-12-01
Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various atmospheric phenomena using current and future planned frequencies of cellular network infrastructure will be introduced.
Thoracic organ transplantation: laboratory methods.
Patel, Jignesh K; Kobashigawa, Jon A
2013-01-01
Although great progress has been achieved in thoracic organ transplantation through the development of effective immunosuppression, there is still significant risk of rejection during the early post-transplant period, creating a need for routine monitoring for both acute antibody and cellular mediated rejection. The currently available multiplexed, microbead assays utilizing solubilized HLA antigens afford the capability of sensitive detection and identification of HLA and non-HLA specific antibodies. These assays are being used to assess the relative strength of donor specific antibodies; to permit performance of virtual crossmatches which can reduce the waiting time to transplantation; to monitor antibody levels during desensitization; and for heart transplants to monitor antibodies post-transplant. For cell mediated immune responses, the recent development of gene expression profiling has allowed noninvasive monitoring of heart transplant recipients yielding predictive values for acute cellular rejection. T cell immune monitoring in heart and lung transplant recipients has allowed individual tailoring of immunosuppression, particularly to minimize risk of infection. While the current antibody and cellular laboratory techniques have enhanced the ability to manage thoracic organ transplant recipients, future developments from improved understanding of microchimerism and graft tolerance may allow more refined allograft monitoring techniques.
Voltage imaging to understand connections and functions of neuronal circuits.
Antic, Srdjan D; Empson, Ruth M; Knöpfel, Thomas
2016-07-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. Copyright © 2016 the American Physiological Society.
Voltage imaging to understand connections and functions of neuronal circuits
Antic, Srdjan D.; Empson, Ruth M.
2016-01-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539
McCabe, Kevin M.; Hernandez, Mark
2010-01-01
Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796
Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.
Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta
2018-01-01
Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.
Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle
2018-01-01
ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060
Theranostic Imaging of Cancer Gene Therapy.
Sekar, Thillai V; Paulmurugan, Ramasamy
2016-01-01
Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.
Remote Arrhythmia Monitoring System Developed
NASA Technical Reports Server (NTRS)
York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.
2004-01-01
Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.
A GPS-based Real-time Road Traffic Monitoring System
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent; Beghuin, Didier
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALMmore » ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.« less
Schulz, Craig M; Scampavia, Louis; Ruzicka, Jaromir
2002-12-01
Microsequential injection (microST) provides microfluidic operations that are ideally suited for cellular function studies and as a means of validating targets for drug discovery. MicroSI carried out within the lab-on-valve (LOV) manifold, is an ideal platform for spectroscopic studies on living cells that are grown on microcarrier beads and kept thermostated while their metabolism is probed in real-time. In this paper a microbioreactor is integrated into the LOV manifold allowing measurement of cellular lactate extrusion and glucose consumption rates of a cell culture that is automatically renewed prior to each measurement. Glucose consumption and lactate extrusion are monitored using NAD-linked enzymatic assays. The microSI-LOV setup has demonstrated a linear analysis range of 0.05-1.00 mM for lactate and 0.1-5.6 mM for glucose. These assays were conducted in a serial fashion requiring 3 microL of cellular perfusate and 10 s for glucose determination and 30 s for the lactate assay. Overall waste generated per lactate/glucose assay is < 200 microL. This work was performed using two different transfected hepatocyte cell lines, which adhere to Cytopore microcarrier beads. This novel approach to metabolic screening allows for the rapid evaluation of the effects of dosing cells with chemical agents.
Dependence of Impedance of Embedded Single Cells on Cellular Behaviour
Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen
2008-01-01
Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour. PMID:27879760
Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology
2015-01-01
Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell–cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell–fluid, cell–cell, cell–tissue, tissue–tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics. PMID:24555566
Optical monitoring of spinal cord subcellular damage after acute spinal cord injury
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.
2018-02-01
Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.
Makela, Ashley V; Murrell, Donna H; Parkins, Katie M; Kara, Jenna; Gaudet, Jeffrey M; Foster, Paula J
2016-10-01
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
CAM: A high-performance cellular-automaton machine
NASA Astrophysics Data System (ADS)
Toffoli, Tommaso
1984-01-01
CAM is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update rate, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive experimentation. Machines of this kind can open up novel fields of research, and in this context it is important that results be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional simplicity, high flexibility, and moderate production cost. We expect that many research groups will be able to own their own copy of the machine to do research with.
Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping
NASA Astrophysics Data System (ADS)
Kalinina, Sviatlana; Schaefer, Patrick; Breymayer, Jasmin; Bisinger, Dominik; Chakrabortty, Sabyasachi; Rueck, Angelika
2018-02-01
Otical imaging techniques based on time correlated single photon counting (TCSPC) has found wide applications in medicine and biology. Non-invasive and information-rich fluorescence lifetime imaging microscopy (FLIM) is successfully used for monitoring fluorescent intrinsic metabolic coenzymes as NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) and FAD+ (flavin adenine dinucleotide) in living cells and tissues. The ratio between proteinbound and free coenzymes gives an information about the balance between oxidative phosphorylation and glycolysis in the cells. The changes of the ratio reflects major cellular disorders. A correlation exists between metabolic activity, redox ratio and fluorescence lifetime during stem cell differentiation, neurodegenerative diseases, and carcinogenesis. A multichannel FLIM detection system was designed for monitoring the redox state of NAD(P)H and FAD+ and other intrinsic fluorophores as protoporphyrin IX. In addition, the unique upgrade is useful to perform FLIM and PLIM (phosphorescence lifetime imaging microscopy) simultaneously. PLIM is a promising method to investigate oxygen sensing in biomedical samples. In detail, the oxygen-dependent quenching of phosphorescence of some compounds as transition metal complexes enables measuring of oxygen partial pressure (pO2). Using a two-channel FLIM/PLIM system we monitored intrinsic pO2 by PLIM simultaneously with NAD(P)H by FLIM providing complex metabolic and redox imaging of living cells. Physico-chemical properties of oxygen sensitive probes define certain parameters including their localisation. We present results of some ruthenium based complexes including those specifically bound to mitochondria.
A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, S.; Zhou, P.
The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cellmore » maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.« less
Deep-brain stimulator and control of Parkinson's disease
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.
2004-07-01
The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.
NASA Astrophysics Data System (ADS)
Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel
2012-10-01
Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
Schulz, William H.; Ellis, William L.
2007-01-01
The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.
Rehder, Dieter; Haupt, Erhard T K; Müller, Achim
2008-01-01
Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.
Targeted delivery of polyoxometalate nanocomposites.
Geisberger, Georg; Paulus, Susann; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R
2011-10-04
Polyoxometalate/carboxymethyl chitosan nanocomposites with an average diameter of 130 nm are synthesized and labeled with fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring approach. [Eu(β(2) -SiW(11) O(39) )(2) ](13-) /CMC nanospheres as a representative example do not display cytotoxicity for POM concentrations up to 2 mg mL(-1) . Cellular uptake of fluoresecently labelled {EuSiW(11) O(39) }/FITC-CMC nanoparticles is monitored with confocal laser scanning microscopy. Nanoparticle uptake occurs after incubation times of around 1 h and no cyctotoxic effects are observed upon prolonged treatment. The preferential location of the POM/CMC nanocomposites in the perinuclear region is furthermore verified with transmission electron microscopy investigations on unlabeled nanoparticles. Therefore, this approach is a promising dual strategy for the safe cellular transfer and monitoring of bioactive POMs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nakanishi, Hayao; Hara, Masayasu; Ikehara, Yuzuru; Tatematsu, Masae
2007-02-01
We have developed an in vivo imaging system consisting of GFP- and DsRed-tagged human colonic cancer cell line, which has peritoneal and lymph node metastatic potential and show high sensitivity to EGFR targeting drugs, and convenient detection devices for GFP and DsRed. The latter includes a small handy fluorescence detection device for external monitoring of the therapeutic effect of the drug and a convenient stereo fluorescent microscope for internal visualization of micrometastases. We applied this imaging system to investigate anti-metastatic effects of EGFR targeting drugs such as gefitinib (Iressa). This system allowed sensitive detection of the development of peritoneal and lymph node metastases from the micrometastasis stage at the cellular level and also permited noninvasive, non-anesthetic monitoring of anti-metastatic effect of the drug in an animal facility without any pretreatment. Significant decreases in the intraabdominal metastatic tumor growth and prevention of inguinal lymph node metastasis by gefitinib treatment could be clearly monitored. These results suggest that convenient, low-cost, true real-time monitoring of therapeutic effect using such a fluorescence-mediated whole body imaging system seems to enhance the speed of preclinical study for novel anti-cancer agents and will allow us to understand the action mechanism of molecular targeting drugs.
A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.
Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua
2015-12-01
In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.
The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.
Stürner, Elisabeth; Behl, Christian
2017-01-01
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.
2013-01-01
SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera
NASA Astrophysics Data System (ADS)
Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.
Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D
2013-07-25
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Invited review article: Advanced light microscopy for biological space research.
De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
Invited Review Article: Advanced light microscopy for biological space research
NASA Astrophysics Data System (ADS)
De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Advanced 3D Printers for Cellular Solids
2016-06-30
2211 3d printing , cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...quality 3D printing and rapid prototyping in a fraction of the time taken by traditional 3D printers, using eco-friendly, inexpensive office paper and...STL file, which then can be used in printing the 3D model. Mechanical performance using compressive crushing of the 3D printed part will be studied
Live single cell functional phenotyping in droplet nano-liter reactors
NASA Astrophysics Data System (ADS)
Konry, Tania; Golberg, Alexander; Yarmush, Martin
2013-11-01
While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.
Novel method for fog monitoring using cellular networks infrastructures
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2012-08-01
A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.
Field performance of an acoustic scour-depth monitoring system
Mason, Jr., Robert R.; Sheppard, D. Max
1994-01-01
The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.
NASA Astrophysics Data System (ADS)
Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.
2012-01-01
Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.
Enders, Jeffrey R.; Marasco, Christina C.; Kole, Ayeeshik; Nguyen, Bao; Sundarapandian, Sevugarajan; Seale, Kevin T.; Wikswo, John P.; McLean, John A.
2014-01-01
The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels, and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental setup and control parameters and on-line desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signaling pathways. PMID:21073240
Optical monitoring of thermal effects in RPE during heating
NASA Astrophysics Data System (ADS)
Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.
2005-04-01
Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.
Monitoring developmental force distributions in reconstituted embryonic epithelia.
Przybyla, L; Lakins, J N; Sunyer, R; Trepat, X; Weaver, V M
2016-02-01
The way cells are organized within a tissue dictates how they sense and respond to extracellular signals, as cues are received and interpreted based on expression and organization of receptors, downstream signaling proteins, and transcription factors. Part of this microenvironmental context is the result of forces acting on the cell, including forces from other cells or from the cellular substrate or basement membrane. However, measuring forces exerted on and by cells is difficult, particularly in an in vivo context, and interpreting how forces affect downstream cellular processes poses an even greater challenge. Here, we present a simple method for monitoring and analyzing forces generated from cell collectives. We demonstrate the ability to generate traction force data from human embryonic stem cells grown in large organized epithelial sheets to determine the magnitude and organization of cell-ECM and cell-cell forces within a self-renewing colony. We show that this method can be used to measure forces in a dynamic hESC system and demonstrate the ability to map intracolony protein localization to force organization. Copyright © 2015 Elsevier Inc. All rights reserved.
Mobile messaging services-based personal electrocardiogram monitoring system.
Tahat, Ashraf A
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.
Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System
Tahat, Ashraf A.
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531
Pettersen, Trond R; Fålun, Nina; Norekvål, Tone M
2014-12-01
In-hospital telemetry monitoring is important for diagnosis and treatment of patients at risk of developing life-threatening arrhythmias. It is widely used in critical and non-critical care wards. Nurses are responsible for correct electrode placement, thus ensuring optimal quality of the monitoring. The aims of this study were to determine whether a complex educational intervention improves (a) optimal electrode placement, (b) hygiene, and (c) delivery of critical information to patients (reason for monitoring, limitations in cellular phone use, and not to leave the ward without informing a member of staff). A prospective interventional study design was used, with data collection occurring over two six-week periods: before implementation of the intervention (n=201) and after the intervention (n=165). Standard abstraction forms were used to obtain data on patients' clinical characteristics, and 10 variables related to electrode placement and attachment, hygiene and delivery of critical information. At pre-intervention registration, 26% of the electrodes were misplaced. Twelve per cent of the patients received information about limiting their cellular phone use while monitored, 70% were informed of the purpose of monitoring, and 71% used a protective cover for their unit. Post-intervention, outcome measures for the three variables improved significantly: use of protective cover (p<0.001), information about the purpose of monitoring (p=0.005) and information about limitations in cellular phone use (p=0.003). Nonetheless, 23% of the electrodes were still misplaced. The study highlights the need for better, continued education for in-hospital telemetry monitoring in coronary care units, and other units that monitor patients with telemetry. © The European Society of Cardiology 2013.
The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease
Stürner, Elisabeth; Behl, Christian
2017-01-01
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate. PMID:28680391
Jahnke, Heinz-Georg; Steel, Daniella; Fleischer, Stephan; Seidel, Diana; Kurz, Randy; Vinz, Silvia; Dahlenborg, Kerstin; Sartipy, Peter; Robitzki, Andrea A.
2013-01-01
Unexpected adverse effects on the cardiovascular system remain a major challenge in the development of novel active pharmaceutical ingredients (API). To overcome the current limitations of animal-based in vitro and in vivo test systems, stem cell derived human cardiomyocyte clusters (hCMC) offer the opportunity for highly predictable pre-clinical testing. The three-dimensional structure of hCMC appears more representative of tissue milieu than traditional monolayer cell culture. However, there is a lack of long-term, real time monitoring systems for tissue-like cardiac material. To address this issue, we have developed a microcavity array (MCA)-based label-free monitoring system that eliminates the need for critical hCMC adhesion and outgrowth steps. In contrast, feasible field potential derived action potential recording is possible immediately after positioning within the microcavity. Moreover, this approach allows extended observation of adverse effects on hCMC. For the first time, we describe herein the monitoring of hCMC over 35 days while preserving the hCMC structure and electrophysiological characteristics. Furthermore, we demonstrated the sensitive detection and quantification of adverse API effects using E4031, doxorubicin, and noradrenaline directly on unaltered 3D cultures. The MCA system provides multi-parameter analysis capabilities incorporating field potential recording, impedance spectroscopy, and optical read-outs on individual clusters giving a comprehensive insight into induced cellular alterations within a complex cardiac culture over days or even weeks. PMID:23861955
Yousef, Jasemian; Lars, A N
2005-06-22
This paper validates the integration of a generic real-time wireless telemedicine system utilising Global System for Mobile Communications (GSM), BLUETOOTH protocol and General Packet Radio Service (GPRS) for cellular network in clinical practice. In the first experiment, the system was tested on 24 pacemaker patients at Aalborg Hospital (Denmark), in order to see if the pacemaker implant would be affected by the system. I the second experiment, the system was tested on 15 non risky arrhythmia heart patients, in order to evaluate and validate the system application in clinical practice, for patient monitoring. Electrocardiograms were selected as the continuously monitored parameter in the present study. The results showed that the system had no negative effects on the pacemaker implants. The experiment results showed, that in a realistic environment for the patients, the system had 96.1 % up-time, 3.2 (kbps) throughput, 10(-3) (packet/s) Packet Error Rate and 10(-3) (packet/s) Packet Lost Rate. During 24 hours test the network did not respond for 57 minutes, from which 83.1 % was in the range of 0-3 minutes, 15.4 % was in the range of 3-5 minutes, and only 0.7 % of the down-time was > or = 5 and < or = 6 minutes. By a subjective evaluation, it was demonstrated that the system is applicable and the patients as well as the healthcare personals were highly confident with the system. Moreover, the patients had high degree of mobility and freedom, employing the system. In conclusion, this generic telemedicine system showed a high reliability, quality and performance, and the design can provide a basic principle for real-time wireless remote monitoring systems used in clinical practice.
2016-01-01
Immunomodulatory drugs—agents regulating the immune response—are commonly used for treating immune system disorders and minimizing graft versus host disease in persons receiving organ transplants. At the cellular level, immunosuppressant drugs are used to inhibit pro-inflammatory or tissue-damaging responses of cells. However, few studies have so far precisely characterized the cellular-level effect of immunomodulatory treatment. The primary challenge arises due to the rapid and transient nature of T-cell immune responses to such treatment. T-cell responses involve a highly interactive network of different types of cytokines, which makes precise monitoring of drug-modulated T-cell response difficult. Here, we present a nanoplasmonic biosensing approach to quantitatively characterize cytokine secretion behaviors of T cells with a fine time-resolution (every 10 min) that are altered by an immunosuppressive drug used in the treatment of T-cell-mediated diseases. With a microfluidic platform integrating antibody-conjugated gold nanorod (AuNR) arrays, the technique enables simultaneous multi-time-point measurements of pro-inflammatory (IL-2, IFN-γ, and TNF-α) and anti-inflammatory (IL-10) cytokines secreted by T cells. The integrated nanoplasmonic biosensors achieve precise measurements with low operating sample volume (1 μL), short assay time (∼30 min), heightened sensitivity (∼20–30 pg/mL), and negligible sensor crosstalk. Data obtained from the multicytokine secretion profiles with high practicality resulting from all of these sensing capabilities provide a comprehensive picture of the time-varying cellular functional state during pharmacologic immunosuppression. The capability to monitor cellular functional response demonstrated in this study has great potential to ultimately permit personalized immunomodulatory treatment. PMID:27478873
Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël
2013-06-01
How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.
Gas Main Sensor and Communications Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen Schempf
Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less
Low Cost Real Time Autonomous Remote Monitoring Platform
NASA Astrophysics Data System (ADS)
Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.
2016-02-01
Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.
Lichtenauer, Anton Michael; Herzog, Rebecca; Tarantino, Silvia; Aufricht, Christoph; Kratochwill, Klaus
2014-05-01
Peritoneal dialysis effluent (PDE) represents a rich pool of potential biomarkers for monitoring disease and therapy. Until now, proteomic studies have been hindered by the plasma-like composition of the PDE. Beads covered with a peptide library are a promising approach to remove high abundant proteins and concentrate the sample in one step. In this study, a novel approach for proteomic biomarker identification in PDEs consisting of a depletion and concentration step followed by 2D gel based protein quantification was established. To prove this experimental concept a model system of artificial PDEs was established by spiking unused peritoneal dialysis (PD) fluids with cellular proteins reflecting control conditions or cell stress. Using this procedure, we were able to reduce the amount of high abundant plasma proteins and concentrate low abundant proteins while preserving changes in abundance of proteins with cellular origin. The alterations in abundance of the investigated marker for cell stress, the heat shock proteins, showed similar abundance profiles in the artificial PDE as in pure cell culture samples. Our results demonstrate the efficacy of this system in detecting subtle changes in cellular protein expression triggered by unphysiological stress stimuli typical in PD, which could serve as biomarkers. Further studies using patients' PDE will be necessary to prove the concept in clinical PD and to assess whether this technique is also informative regarding enriching low abundant plasma derived protein biomarker in the PDE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum
2011-01-03
We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
Dual-channel (green and red) fluorescence microendoscope with subcellular resolution
NASA Astrophysics Data System (ADS)
de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.
2018-02-01
Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.
NASA Astrophysics Data System (ADS)
Unruh, Eckehardt; Hansen, Peter-Diedrich
Hemocytes are the primary defence of the Blue Mussel against invading microorganisms and foreign particles. The hemocytes of mussels as part of the immune system of invertebrates has not been studied so far in space. The choice of the phagocytes from invertebrates is justified by the claim to study the universal validity of innate immune responses. The hemocytes of mussels have a lot in common with macrophages of higher organisms. They are able to detect the presence of microorganisms and kill these microorganisms by phagocytosis. The phagocy-tosis related production of ROS will be stimulated with opsonised zymosan. The hemocytes will be stored frozen and reconstituted in-flight for the experiment. The signals of the im-muno cellular responses are translated into luminescence as a rapid optical reporter system. The primary aim of Triplelux B is to investigate under space flight conditions the effect of microgravity on the ability of isolated Blue Mussel hemocytes to perform phagocytosis. As a secondery objectiv, the results expected will allow to conclude whether the observed responses are caused by microgravity and/or radiation (change in permeability, endpoints in genotoxicity: DNA unwinding). The TRIPLELUX-B Experiment contributes to risk assessment concerning immunotoxicity under space flight conditions. The components of the fully automated AEC (Advanced Experimental Containment) will be demonstrated. The AEC of the TRIPLELUX-B experiment will contribute to a real time operational monitoring for immunotoxicity testing for earth. Blue mussels have been used repeatedly for monitoring imunotoxicity and genotoxicity in coastal waters. Based on the AEC an automatet measuring device will allow "real time monitoring" providing observations of immunotoxicity in coastal and inland waters.
Live single cell functional phenotyping in droplet nano-liter reactors.
Konry, Tania; Golberg, Alexander; Yarmush, Martin
2013-11-11
While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surface and secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.
Monitoring the synthesis of biomolecules using mass spectrometry.
Miyagi, Masaru; Kasumov, Takhar
2016-10-28
The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).
Monitoring the synthesis of biomolecules using mass spectrometry
2016-01-01
The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput ‘omics’ studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water (2H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644976
Monitoring of environmental UV radiation by biological dosimeters
NASA Astrophysics Data System (ADS)
Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.
As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.
Use of Lightweight Cellular Mats to Reduce the Settlement of Structure on Soft Soil
NASA Astrophysics Data System (ADS)
Ganasan, R.; Lim, A. J. M. S.; Wijeyesekera, D. C.
2016-07-01
Construction of structures on soft soils gives rise to some difficulties in Malaysia and other country especially in settlement both in short and long term. The focus of this research is to minimize the differential and non-uniform settlement on peat soil with the use of an innovative cellular mat. The behaviour and performance of the lightweight geo-material (in block form) is critically investigated and in particular the use as a fill in embankment on soft ground. Hemic peat soil, sponge and innovative cellular mat will be used as the main material in this study. The monitoring in settlement behavior from this part of research will be done as laboratory testing only. The uneven settlement in this problem was uniquely monitored photographically using spot markers. In the end of the research, it is seen that the innovative cellular mat has reduce the excessive and differential settlement up to 50% compare to flexible and rigid foundations. This had improve the stiffness of soils as well as the porous contain in cellular structure which help in allowing water/moisture to flow through in or out thus resulting in prevent the condition of floating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the 900 MHz...
Implementation of a WAP-based telemedicine system for patient monitoring.
Hung, Kevin; Zhang, Yuan-Ting
2003-06-01
Many parties have already demonstrated telemedicine applications that use cellular phones and the Internet. A current trend in telecommunication is the convergence of wireless communication and computer network technologies, and the emergence of wireless application protocol (WAP) devices is an example. Since WAP will also be a common feature found in future mobile communication devices, it is worthwhile to investigate its use in telemedicine. This paper describes the implementation and experiences with a WAP-based telemedicine system for patient-monitoring that has been developed in our laboratory. It utilizes WAP devices as mobile access terminals for general inquiry and patient-monitoring services. Authorized users can browse the patients' general data, monitored blood pressure (BP), and electrocardiogram (ECG) on WAP devices in store-and-forward mode. The applications, written in wireless markup language (WML), WMLScript, and Perl, resided in a content server. A MySQL relational database system was set up to store the BP readings, ECG data, patient records, clinic and hospital information, and doctors' appointments with patients. A wireless ECG subsystem was built for recording ambulatory ECG in an indoor environment and for storing ECG data into the database. For testing, a WAP phone compliant with WAP 1.1 was used at GSM 1800 MHz by circuit-switched data (CSD) to connect to the content server through a WAP gateway, which was provided by a mobile phone service provider in Hong Kong. Data were successfully retrieved from the database and displayed on the WAP phone. The system shows how WAP can be feasible in remote patient-monitoring and patient data retrieval.
NASA Astrophysics Data System (ADS)
Milani, Marziale; Ballerini, Monica; Ferraro, Lorenzo; Marelli, E.; Mazza, Francesca; Zabeo, Matteo
2002-06-01
Our work is devoted to the study of Saccharomyces cerevisiae and human lymphocytes cellular metabolism in order to develop a reference model to assess biological systems responses to chemical or physical agents exposure. CO2 variations inside test-tubes are measured by differential pressure sensors; pressure values are subsequently converted in voltage. The system allows to test up to 16 samples at the same time. Sampling manages up to 100 acquisitions per second. Values are recorded by a data acquisition card connected to a computer. This procedure leads to a standard curve (pressure variation versus time), typical of the cellular line, that describe cellular metabolism. The longest time lapse used is of 170 h. Different phases appear in this curve: an initial growth up to a maximum, followed by a decrement that leads to a typical depression (pressure value inside the test-tubes is lower than the initial one) after about 35 h from the beginning of yeast cells. The curve is reproducible within an experimental error of 4%. The analysis of many samples and the low cost of the devices allow a good statistical significance of the data. In particular as a test we will compare two sterilizing agents effects: UV radiation and amuchina.
Integrated electronics and fluidic MEMS for bioengineering
NASA Astrophysics Data System (ADS)
Fok, Ho Him Raymond
Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8 pedestals. This approach also allows the in-vitro model to mimic the three-dimensionality of the cellular mitotic spindle that is absent in previous work. The second application of an integrated bioengineering system discussed in this dissertation is to design and fabricate active electronics and sensors for an in-vivo application to monitor neural activity at the cellular level. Temperature sensors were chosen for a first demonstration. In order for temperature sensors to be able to be implanted into brain interfaces, it is necessary for these devices to be fabricated using processes that are compatible with bio-compatible substrates such as glass and plastic. This dissertation addresses this challenge by developing temperature sensors integrated with biasing circuitry using zinc oxide thin film transistors (TFTs) fabricated on polyimide substrates. The integrated sensors show good temperature sensitivity, which is critical for monitoring neural temperature at the cellular level. This dissertation also describes the unique requirements of encapsulating implantable electronics. For instance, encapsulation schemes must be designed in such a way that they both protect electronic devices from extracellular fluids and also do not interfere with the functionality of these devices. In this work, SU-8 is used as a convenient and effective encapsulation layer. Thermal engineering to prevent active electronics from overheating and to ensure accurate temperature measurement from temperature sensors is also discussed, and a synergistic encapsulation and thermal engineering combination is presented.
Kim, Seok Joo; Cho, Hye Rim; Cho, Kyoung Won; Qiao, Shutao; Rhim, Jung Soo; Soh, Min; Kim, Taeho; Choi, Moon Kee; Choi, Changsoon; Park, Inhyuk; Hwang, Nathaniel S; Hyeon, Taeghwan; Choi, Seung Hong; Lu, Nanshu; Kim, Dae-Hyeong
2015-03-24
While several functional platforms for cell culturing have been proposed for cell sheet engineering, a soft integrated system enabling in vitro physiological monitoring of aligned cells prior to their in vivo applications in tissue regeneration has not been reported. Here, we present a multifunctional, soft cell-culture platform equipped with ultrathin stretchable nanomembrane sensors and graphene-nanoribbon cell aligners, whose system modulus is matched with target tissues. This multifunctional platform is capable of aligning plated cells and in situ monitoring of cellular physiological characteristics during proliferation and differentiation. In addition, it is successfully applied as an in vitro muscle-on-a-chip testing platform. Finally, a simple but high-yield transfer printing mechanism is proposed to deliver cell sheets for scaffold-free, localized cell therapy in vivo. The muscle-mimicking stiffness of the platform allows the high-yield transfer printing of multiple cell sheets and results in successful therapies in diseased animal models. Expansion of current results to stem cells will provide unique opportunities for emerging classes of tissue engineering and cell therapy technologies.
A new protein-protein interaction sensor based on tripartite split-GFP association.
Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-10-04
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.
A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association
Cabantous, Stéphanie; Nguyen, Hau B.; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A.; Favre, Gilles; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2013-01-01
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. PMID:24092409
Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András
2017-01-01
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.
Lee, Jonghwan; Kim, Soonhag
2016-01-01
The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.
Fluorine (19F) MRS and MRI in biomedicine
Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.
2011-01-01
Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758
Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh
2016-01-01
Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658
A mini-microscope for in situ monitoring of cells.
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali
2012-10-21
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.
A mini-microscope for in situ monitoring of cells†‡
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.
2013-01-01
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426
47 CFR 22.901 - Cellular service requirements and limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.901 Cellular service requirements and limitations. The licensee of each cellular system is responsible for ensuring that its cellular system operates in compliance with this section. (a) Each cellular system must provide either mobile service...
Eldawud, Reem; Wagner, Alixandra; Dong, Chenbo; Rojansakul, Yon; Dinu, Cerasela Zoica
2016-01-01
Single-walled carbon nanotubes (SWCNTs) implementation in a variety of biomedical applications from bioimaging, to controlled drug delivery and cellular-directed alignment for muscle myofiber fabrication, has raised awareness of their potential toxicity. Nanotubes structural aspects which resemble asbestos, as well as their ability to induce cyto and genotoxicity upon interaction with biological systems by generating reactive oxygen species or inducing membrane damage, just to name a few, have led to focused efforts aimed to assess associated risks prior their user implementation. In this study, we employed a non-invasive and real-time electric cell impedance sensing (ECIS) platform to monitor behavior of lung epithelial cells upon exposure to a library of SWCNTs with user-defined physicochemical properties. Using the natural sensitivity of the cells, we evaluated SWCNT-induced cellular changes in relation to cell attachment, cell–cell interactions and cell viability respectively. Our methods have the potential to lead to the development of standardized assays for risk assessment of other nanomaterials as well as risk differentiation based on the nanomaterials surface chemistry, purity and agglomeration state. PMID:25913448
Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun
2018-01-01
In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.
Khan, Muhammad Sadiq Ali; Yousuf, Sidrah
2016-03-01
Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.
Monitoring of seismic time-series with advanced parallel computational tools and complex networks
NASA Astrophysics Data System (ADS)
Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.
2012-04-01
Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic understanding of the possible triggering mechanisms as arrived from the adequately monitoring and modelling of the regional earthquake phenomena.
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetics
Glancy, Brian; Balaban, Robert S.
2012-01-01
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca2+ ion membrane gradients make Ca2+ signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca2+ regulates many cellular ATP consuming reactions such as muscle contraction, exocytosis, biosynthesis and neuronal signaling. Thus, Ca2+ becomes a logical candidate as a signaling molecule to modulate ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca2+ gradient across their inner membrane providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial [Ca2+], identification of transport mechanisms as well as proximity of mitochondria to Ca2+ release sites further supports the notion that Ca2+ can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca2+ plays a role in the regulation of ATP generation and potentially contributes to the orchestration of the cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca2+, which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca2+ on mitochondrial energy conversion. Numerous non-invasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption and workloads suggest significant Ca2+ effects on other elements of NADH generation as well as downstream elements of oxidative phosphorylation including the F1FO-ATPase and the cytochrome chain. These other potential elements of Ca2+ modification of mitochondrial energy conversion will be the focus of this review. Though most of specific molecular mechanisms have yet to be elucidated, it is clear that Ca2+ provides a balanced activation of mitochondrial energy metabolism which exceeds the alteration of dehydrogenases alone. PMID:22443365
Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†
Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.
2011-01-01
Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240
Rasid, Mohd Fadlee A; Woodward, Bryan
2005-03-01
One of the emerging issues in m-Health is how best to exploit the mobile communications technologies that are now almost globally available. The challenge is to produce a system to transmit a patient's biomedical signals directly to a hospital for monitoring or diagnosis, using an unmodified mobile telephone. The paper focuses on the design of a processor, which samples signals from sensors on the patient. It then transmits digital data over a Bluetooth link to a mobile telephone that uses the General Packet Radio Service. The modular design adopted is intended to provide a "future-proofed" system, whose functionality may be upgraded by modifying the software.
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
Riley, Mark R; Lucas, Pierre; Le Coq, David; Juncker, Christophe; Boesewetter, Dianne E; Collier, Jayne L; DeRosa, Diana M; Katterman, Matthew E; Boussard-Plédel, Catherine; Bureau, Bruno
2006-11-05
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations. (c) 2006 Wiley Periodicals, Inc.
The effect of cosmic rays on biological systems - an investigation during GLE events
NASA Astrophysics Data System (ADS)
Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Vashenuyk, E. V.
2012-01-01
In this study, first direct and circumstantial evidences of the effects of cosmic rays (CR) on biological systems are presented. A direct evidence of biological effects of CR is demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA). A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. The circumstantial evidence was obtained by statistical analysis of cases of congenital malformations (CM) at two sites in the Murmansk region. The number of cases of all classes of CM reveals a significant correlation with the number of GLE events. The number of cases of CM with pronounced chromosomal abnormalities clearly correlates with the GLE events that occurred a year before the birth of a child. We have found a significant correlation between modulations of the water properties and daily background variations of CR intensity. We believe that the effects of CR on biological systems can be also mediated by fluctuations in water properties, considered as one of possible mechanisms controlling the effects of CRs on biological systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...
Brain physiological state evaluated by real-time multiparametric tissue spectroscopy in vivo
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Barbiro-Michaely, Efrat; Kutai-Asis, Hofit; Deutsch, Assaf; Jaronkin, Alex
2004-07-01
The significance of normal mitochondrial function in cellular energy homeostasis as well as its involvement in acute and chronic neurodegenerative disease was reviewed recently (Nicholls & Budd. Physiol Rev. 80: 315-360, 2000). Nevertheless, monitoring of mitochondrial function in vivo and real time mode was not used by many investigators and is very rare in clinical practice. The main principle tool available for the evaluation of mitochondrial function is the monitoring of NADH fluorescence. In order to interpret correctly the changes in NADH redox state in vivo, it is necessary to correlate this signal to other parameters, reflecting O2 supply to the brain. Therefore, we have developed and applied a multiparametric optical monitoring system, by which microcirculatory blood flow and hemoglobin oxygenation is measured, together with mitochondrial NADH fluorescence. Since the calibration of these signals is not in absolute units, the simultaneous monitoring provide a practical tool for the interpretation of brain functional state under various pathophysiological conditions. The monitoring system combines a time-sharing fluorometer-reflectometer for the measurement of NADH fluorescence and hemoglobin oxygenation as well as a laser Doppler flowmeter for the recording of microcirculatory blood flow. A combined fiber optic probe was located on the surface of the brain using a skull cemented cannula. Rats and gerbils were exposed to anoxia, ischemia and spreading depression and the functional state of the brain was evaluated. The results showed a clear correlation between O2 supply/demand as well as, energy balance under the various pathophysiological conditions. This monitoring approach could be adapted to clinical monitoring of tissue vitality.
Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events.
Lussier, Félix; Brulé, Thibault; Vishwakarma, Medhavi; Das, Tamal; Spatz, Joachim P; Masson, Jean-François
2016-06-08
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
Hirano, Yu; Kodama, Mikie; Shibuya, Masahiro; Maki, Yoshiyuki; Komatsu, Yasuo
2014-02-15
The contractile behavior of cardiomyocytes can be monitored by measuring their action potentials, and the analysis is essential for screening the safety of potential drugs. However, immobilizing cardiac cells on a specific electrode is considerably complicated. In this study, we demonstrate that scanning electrochemical microscopy (SECM) can be used to analyze rapid topographic changes in beating cardiomyocytes in a standard culture dish. Various cardiomyocyte contraction parameters and oxygen consumption based on cell respiration could be determined from SECM data. We also confirmed that cellular changes induced by adding the cardiotonic agent digoxin were conveniently monitored by this SECM system. These results show that SECM can be a potentially powerful tool for use in drug development for cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas
2016-09-01
Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New tools for redox biology: From imaging to manipulation.
Bilan, Dmitry S; Belousov, Vsevolod V
2017-08-01
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators. Copyright © 2016 Elsevier Inc. All rights reserved.
Fluorine (19F) MRS and MRI in biomedicine.
Ruiz-Cabello, Jesús; Barnett, Brad P; Bottomley, Paul A; Bulte, Jeff W M
2011-02-01
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. Copyright © 2010 John Wiley & Sons, Ltd.
The role of thermodynamics in biochemical engineering
NASA Astrophysics Data System (ADS)
von Stockar, Urs
2013-09-01
This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.
Niehoff, Ann-Christin; Moosmann, Aline; Söbbing, Judith; Wiehe, Arno; Mulac, Dennis; Wehe, Christoph A; Reifschneider, Olga; Blaske, Franziska; Wagner, Sylvia; Sperling, Michael; von Briesen, Hagen; Langer, Klaus; Karst, Uwe
2014-01-01
In this study, the cellular uptake of the second generation photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) was investigated using laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) at a spatial resolution of 10 μm. To achieve high sensitivity, the photosensitizer was tagged with palladium. As a tumor model system, a 3D cell culture of the TKF-1 cell line was used. These tumor spheroids were incubated with the Pd-tagged photosensitizer embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to investigate the efficiency of nanoparticle based drug delivery. An accumulation of the drug in the first cell layers of the tumor spheroid was observed. In the case of nanoparticle based drug delivery, a significantly more homogeneous distribution of the photosensitizer was achieved, compared to tumor spheroids incubated with the dissolved photosensitizer without the nanoparticular drug delivery system. The infiltration depth of the Pd-tagged photosensitizer could not be increased with rising incubation time, which can be attributed to the adsorption of the photosensitizer onto cellular components.
Barnard, Emma; McFerran, Neil V; Trudgett, Alan; Nelson, John; Timson, David J
2008-05-01
An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisiae JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment.
NASA Astrophysics Data System (ADS)
Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham
2011-03-01
Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).
Microfluidic Systems for Biosensing
Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang
2010-01-01
In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570
Impedance-based cellular assay technologies: recent advances, future promise.
McGuinness, Ryan
2007-10-01
Cell-based assays are continuing to grow in importance in the drug discovery workflow. Their early introduction holds the promise of limiting attrition in the later, more costly phases of the process. This article reviews recent advances in the development of impedance technologies for label-free cell-based assays. These systems are capable of monitoring endogenous receptor activation, and thus generate more physiologically relevant measures of pharmacological endpoints. Primary cells can be investigated as well, thus producing disease relevant information. Label-free assays significantly decrease assay development efforts and avoid many complications inherent in recombinant readout systems. Impedance-based systems have great potential to advance the utility of cell-based assays as they are applied to drug discovery and pharmacology.
Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott
2015-01-01
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849
Application of Microchip Electrophoresis for Clinical Tests
NASA Astrophysics Data System (ADS)
Yatsushiro, Shouki; Kataoka, Masatoshi
Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.
Chen, Chun-Nan; Chen, You-Tzung; Yang, Tsung-Lin
2017-12-01
Tumor satellite formation is an indicator of cancer invasiveness and correlates with recurrence, metastasis, and poorer prognosis. By analyzing pathological specimens, tumor satellites formed at the tumor-host interface reflect the phenomena of epithelial-mesenchymal transition. It is impossible to reveal the dynamic processes and the decisive factors of tumor satellite formation using clinicopathological approaches alone. Therefore, establishment of an in vitro system to monitor the phenomena is important to explicitly elucidate underlying mechanisms. In this study, we explored the feasibility of creating an in vitro three-dimensional collagen culture system to recapitulate the process of tumor satellite formation. This data presented here are referred to the research article (Chen et al., 2017) [1]. Using this model, the dynamic process of tumor satellite formation could be recapitulated in different types of human cancer cells. Induced by calcium deprivation, the treated cells increased the incidence and migratory distance of tumor satellites. E-cadherin internalization and invadopodia formation were enhanced by calcium deprivation and were associated with cellular dynamic change during tumor satellite formation. The data confirmed the utility of this culture system to recapitulate dynamic cellular alteration and to explore the potential mechanisms of tumor satellite formation.
Portable real-time fluorescence cytometry of microscale cell culture analog devices
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.
2006-02-01
A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.
An automated digital imaging system for environmental monitoring applications
Bogle, Rian; Velasco, Miguel; Vogel, John
2013-01-01
Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.
Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria
2012-01-01
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014
Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria
2012-01-01
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.
"Internet of Things" Real-Time Free Flap Monitoring.
Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan
2018-01-01
Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.
Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi
Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have notmore » responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.« less
Nanobodies and recombinant binders in cell biology.
Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich
2015-06-08
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.
A Study on Cognitive Radio Coexisting with Cellular Systems
NASA Astrophysics Data System (ADS)
Tandai, Tomoya; Horiguchi, Tomoya; Deguchi, Noritaka; Tomizawa, Takeshi; Tomioka, Tazuko
Cognitive Radios (CRs) are expected to perform more significant role in the view of efficient utilization of the spectrum resources in the future wireless communication networks. In this paper, a cognitive radio coexisting with cellular systems is proposed. In the case that a cellular system adopts Frequency Division Duplex (FDD) as a multiplexing scheme, the proposed CR terminals communicate in local area on uplink channels of the cellular system with transmission powers that don't interfere with base stations of the cellular system. Alternatively, in the case that a cellular system adopts Time Division Duplex (TDD), the CR terminals communicate on uplink slots of the cellular system. However if mobile terminals in the cellular system are near the CR network, uplink signals from the mobile terminals may interfere with the CR communications. In order to avoid interference from the mobile terminals, the CR terminal performs carrier sense during a beginning part of uplink slot, and only when the level of detected signal is below a threshold, then the CR terminal transmits a signal during the remained period of the uplink slot. In this paper, both the single carrier CR network that uses one frequency channel of the cellular system and the multicarrier CR network that uses multiple frequency channels of the cellular system are considered. The probabilities of successful CR communications, the average throughputs of the CR communications according to the positions of the CR network, and the interference levels from cognitive radio network to base stations of the cellular system are evaluated in the computer simulation then the effectiveness of the proposed network is clarified.
NASA Astrophysics Data System (ADS)
Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay
A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.
NASA Astrophysics Data System (ADS)
Leung, Michael Ka Kit
Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor's vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.
Sanni, Steinar; Björkblom, Carina; Jonsson, Henrik; Godal, Brit F; Liewenborg, Birgitta; Lyng, Emily; Pampanin, Daniela M
2017-04-01
The aim of this study was to determine a suitable set of biomarker based methods for environmental monitoring in sub-arctic and temperate offshore areas using scientific knowledge on the sensitivity of fish species to dispersed crude oil. Threshold values for environmental monitoring and risk assessment were obtained based on a quantitative comparison of biomarker responses. Turbot, halibut, salmon and sprat were exposed for up to 8 weeks to five different sub-lethal concentrations of dispersed crude oil. Biomarkers assessing PAH metabolites, oxidative stress, detoxification system I activity, genotoxicity, immunotoxicity, endocrine disruption, general cellular stress and histological changes were measured. Results showed that PAH metabolites, CYP1A/EROD, DNA adducts and histopathology rendered the most robust results across the different fish species, both in terms of sensitivity and dose-responsiveness. The reported results contributed to forming links between biomonitoring and risk assessment procedures by using biomarker species sensitivity distributions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Real-time metabolome profiling of the metabolic switch between starvation and growth.
Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe
2015-11-01
Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.
Vostiar, Igor; Tkac, Jan; Mandenius, Carl-Fredrik
2004-07-15
A surface plasmon resonance (SPR) biosensor was used to monitor the profiles of the heat-shock protein (DnaK) and the expression of a heterologous protein to map the dynamics of the cellular stress response in Escherichia coli. As expression system was used an E. coli strain overproducing human recombinant superoxide dismutase (rhSOD). Expression of DnaK showed complex patterns differing with strength of induction. The strong up-regulation of DnaK expression was observed in all cultivations which over-produced of rhSOD. Similar patterns were not observed in non-induced reference cultures. Differences in DnaK concentration profiles were correlated with induction strength. Presented data, carried out in shake flask and glucose limited fed-batch cultivation, show a good consistency with previously published transcriptional profiling results and provide complementary information to understand stress response related to overproduction of recombinant protein. The study also demonstrates the feasibility of using the SPR as a two channel protein array for monitoring of intracellular components.
47 CFR 22.923 - Cellular system configuration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Cellular system configuration. 22.923 Section 22.923 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations...
47 CFR 22.923 - Cellular system configuration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Cellular system configuration. 22.923 Section 22.923 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations...
Cellular Strategies of Protein Quality Control
Chen, Bryan; Retzlaff, Marco; Roos, Thomas; Frydman, Judith
2011-01-01
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation. PMID:21746797
Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.
Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F
2007-11-01
Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.
Imaging approaches for the study of cell based cardiac therapies
Lau, Joe F.; Anderson, Stasia A.; Adler, Eric; Frank, Joseph A.
2009-01-01
Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the last five years. PMID:20027188
Multi-channel Auto-dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes
NASA Astrophysics Data System (ADS)
Barr, J. L.; Amonette, J. E.
2008-12-01
We describe a novel field instrument that takes input from up to 27 soil flux chambers and measures flux using the steady-state method. CO2 concentrations are determined with an infrared gas analyzer (IRGA, 0- 3000 ppmv range) with corrections for temperature, barometric pressure, and moisture content. The concentrations are monitored during data collection and, if they exceed the range of the IRGA, a stepped dilution program is automatically implemented that allows up to 50-fold dilution of the incoming gas stream with N2 supplied by boil-off from a large dewar. The upper concentration limit of the system with dilution is extended to at least 150,000 ppmv CO2. The data are stored on a datalogger having a cellular modem connection that allows remote control of the system as well as transmittal of data. The system is designed to operate for six weeks with no on-site maintenance required. Longer periods are possible with modifications to allow on-site generation of N2 from air. Example data from a recent CO2 test injection at the Zero- Emission Research and Technology (ZERT) field site in Bozeman, MT are presented.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K
2014-05-21
Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the 900 MHz Business/Industrial Land Transportation Pool. 90.672 Section 90.672 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...
Agrawal, Sonali; Parkash, Om; Palaniappan, Alangudi Natarajan; Bhatia, Ashok Kumar; Kumar, Santosh; Chauhan, Devendra Singh; Madhan Kumar, M.
2018-01-01
Treatment monitoring is an essential aspect for tuberculosis (TB) disease management. Sputum smear microscopy is the only available tool for monitoring, but it suffers from demerits. Therefore, we sought to evaluate markers and cellular subsets of T regulatory (Treg) cells and T helper (Th) 17 cells in pulmonary TB patients (PTB) for TB treatment monitoring. Peripheral blood mononuclear cells (PBMCs) were stimulated in vitro (with purified protein derivative (PPD)) overnight which was followed by a polychromatic flow cytometry approach to study Treg and Th17 markers and cellular subsets in PTB (n = 12) undergoing antituberculous treatment (ATT). The baseline levels of these markers and cellular subsets were evaluated in normal healthy subjects (NHS). We observed a significant decrease in the expression of CD25 (p<0.01) marker and percentage of T-cell subsets like CD4+CD25+ (p<0.001) and CD4+CD25+CD39+ (p<0.05) at the end of intensive phase (IP) as well as in the continuation phase (CP) of ATT. A decrease in CD25 marker expression and percentage of CD4+CD25+ T cell subset showed a positive correlation to sputum conversion both in high and low sputum positive PTB. In eight PTB with cavitary lesions, only CD4+CD25+FoxP3 Treg subset manifested a significant decrease at the end of CP. Thus, results of this study show that CD25 marker and CD4+CD25+ T cells can serve as better markers for monitoring TB treatment efficacy. The Treg subset CD4+CD25+FoxP3 may be useful for prediction of favorable response in PTB with extensive lung lesions. However, these findings have to be evaluated in a larger patient cohort. PMID:29472922
Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use
Tenuta, Tiziana; Monopoli, Marco P.; Kim, JongAh; Salvati, Anna; Dawson, Kenneth A.; Sandin, Peter; Lynch, Iseult
2011-01-01
Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm. PMID:21998668
Tura, Andrea; Sbrignadello, Stefano; Cianciavicchia, Domenico; Pacini, Giovanni; Ravazzani, Paolo
2010-01-01
In recent years there has been considerable interest in the study of glucose-induced dielectric property variations of human tissues as a possible approach for non-invasive glycaemia monitoring. We have developed an electromagnetic sensor, and we tested in vitro its ability to estimate variations in glucose concentration of different solutions with similarities to blood (sodium chloride and Ringer-lactate solutions), differing though in the lack of any cellular components. The sensor was able to detect the effect of glucose variations over a wide range of concentrations (∼78–5,000 mg/dL), with a sensitivity of ∼0.22 mV/(mg/dL). Our proposed system may thus be useful in a new approach for non-invasive and non-contact glucose monitoring. PMID:22219665
Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.
Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R
2007-09-01
Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.
Weight and structural analysis of four structural concepts for a land mobile satellite system
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Wright, R. L.; Farmer, J. T.
1982-01-01
The present study is concerned with a Land Mobile Satellite System (LMSS) which can provide mobile communications for commercial and government applications in nonmetropolitan areas of the continental U.S. and Canada as an augmentation to existing and planned terrestrial systems. The satellite system would provide 'narrow band' telecommunications services, thin-route fixed telephone and data services in the 806-890 MHz band, and continuous emergency beacon monitoring in the 406-406.1 MHz band. It is pointed out that a satellite system operating in concert with terrestrial cellular systems could provide truly ubiquitous mobile communications services in the U.S. and Canada. A single shuttle shuttle launch could place the LMSS spacecraft in geosynchronous orbit over the continental U.S. in 1995 with a 10-year lifetime. Attention is given to the structural concepts, a weight analysis, and a structural analysis.
Parenting by Cell Phone: Parental Monitoring of Adolescents and Family Relations
ERIC Educational Resources Information Center
Weisskirch, Robert S.
2009-01-01
Cellular phones provide a means for parents to monitor and request information about whereabouts, associates, and current activities from adolescents. Simultaneously, adolescents can communicate with parents to inform them of activities and to solicit support or they can also choose to nondisclose. The frequency, duration, and nature of calls may…
Understanding the cancer cell phenotype beyond the limitations of current omics analyses.
Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara
2016-01-01
Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.
SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment
NASA Astrophysics Data System (ADS)
Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.
2011-12-01
We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field-test new or exploratory features before deployment. Side-by-side validation data collected in the field using SoundProof and state-of-the-art wildlife monitoring solutions, including the Cornell ARU and Wildlife Acoustic's Songmeter, demonstrate that acoustic signals collected with cellphones provide sufficient data integrity for measuring the success of bird conservation efforts, measuring bird relative abundance and detecting elusive species. We are extending this platform to numerous other areas of environmental monitoring. Recent developments such as the Android Open Accessory, the IOIO Board, MicroBridge, Amarino, and Cellbots enable microcontrollers to talk with Android applications, making it affordable and feasible to extend our platform to operate with the most common sensors.
Label free cell tracking in 3D tissue engineering constructs with high resolution imaging
NASA Astrophysics Data System (ADS)
Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.
2014-02-01
Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.
Mercier, Luc; Böhm, Johann; Fekonja, Nina; Allio, Guillaume; Lutz, Yves; Koch, Marc; Goetz, Jacky G.; Laporte, Jocelyn
2016-01-01
ABSTRACT Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction. Second harmonic generation was combined with vital dyes and fluorescent-coupled molecules. Skin pigmentation, although limiting, did not prevent intravital imaging. Using this versatile toolbox on the Mtm1 knockout mouse, a model for myotubular myopathy which is a severe congenital myopathy in human, we identified several hallmarks of the disease such as defects in fiber size and neuromuscular junction shape. Intravital imaging of the neuromuscular system paves the way for the follow-up of disease progression or/and disease amelioration upon therapeutic tests. It has also the potential to reduce the number of animals needed to reach scientific conclusions. PMID:28243519
Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics.
Lee, Min Hee; Sharma, Amit; Chang, Min Jung; Lee, Jinju; Son, Subin; Sessler, Jonathan L; Kang, Chulhun; Kim, Jong Seung
2018-01-02
Theranostic systems are receiving ever-increasing attention due to their potential therapeutic utility, imaging enhancement capability, and promise for advancing the field of personalized medicine, particularly as it relates to the diagnosis, staging, and treatment of cancer. In this Tutorial Review, we provide an introduction to the concepts of theranostic drug delivery effected via use of conjugates that are able to target cancer cells selectively, provide cytotoxic chemotherapeutics, and produce readily monitored imaging signals in vitro and in vivo. The underlying design concepts, requiring the synthesis of conjugates composed of imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands, are discussed. Particular emphasis is placed on highlighting the potential benefits of fluorogenic reaction-based targeted systems that are activated for both imaging and therapy by cellular entities, e.g., thiols, reactive oxygen species and enzymes, which are present at relatively elevated levels in tumour environments, physiological characteristics of cancer, e.g., hypoxia and acidic pH. Also discussed are systems activated by an external stimulus, such as light. The work summarized in this Tutorial Review will help define the role fluorogenic reaction-based, cancer-targeting theranostics may have in advancing drug discovery efforts, as well as improving our understanding of cellular uptake and drug release mechanisms.
A real-time measurement system for parameters of live biology metabolism process with fiber optics
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhao, Hui; Liu, Zemin; Cheng, Jinke; Cai, Rong
2010-08-01
Energy metabolism is one of the basic life activities of cellular in which lactate, O2 and CO2 will be released into the extracellular environment. By monitoring the quantity of these parameters, the mitochondrial performance will be got. A continuous measurement system for the concentration of O2, CO2 and PH value is introduced in this paper. The system is made up of several small-sized fiber optics biosensors corresponding to the container. The setup of the system and the principle of measurement of several parameters are explained. The setup of the fiber PH sensor based on principle of light absorption is also introduced in detail and some experimental results are given. From the results we can see that the system can measure the PH value precisely suitable for cell cultivation. The linear and repeatable accuracies are 3.6% and 6.7% respectively, which can fulfill the measurement task.
NASA Astrophysics Data System (ADS)
Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui
2016-10-01
Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.
Modems for emerging digital cellular-mobile radio system
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.
Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space
NASA Technical Reports Server (NTRS)
Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)
2002-01-01
This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.
Mammalian Cell-Based Sensor System
NASA Astrophysics Data System (ADS)
Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.
Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.
NASA Astrophysics Data System (ADS)
Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard
2012-07-01
There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Kirchhoff, Johanna; Tannert, Astrid; Samek, Ota; Zemánek, Pavel
2018-01-01
Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments. PMID:29783713
Metabolic gene regulation in a dynamically changing environment.
Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff
2008-08-28
Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.
Deep brain optical measurements of cell type-specific neural activity in behaving mice.
Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M
2014-01-01
Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.
Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example
NASA Astrophysics Data System (ADS)
Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.
2003-04-01
The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana
2013-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.
Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin
2014-01-01
Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.
Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro
Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun
2009-01-01
Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470
2015-01-01
Functional nucleic acid (FNA)-based sensing systems have been developed for efficient detection of a wide range of biorelated analytes by employing DNAzymes or aptamers as recognition units. However, their intracellular delivery has always been a concern, mainly in delivery efficiency, kinetics, and the amount of delivered FNAs. Here we report a DNA dendrimer scaffold as an efficient nanocarrier to deliver FNAs and to conduct in situ monitoring of biological molecules in living cells. A histidine-dependent DNAzyme and an anti-ATP aptamer were chosen separately as the model FNAs to make the FNA dendrimer. The FNA-embedded DNA dendrimers maintained the catalytic activity of the DNAzyme or the aptamer recognition function toward ATP in the cellular environment, with no change in sensitivity or specificity. Moreover, these DNA dendrimeric nanocarriers show excellent biocompatibility, high intracellular delivery efficiency, and sufficient stability in a cellular environment. This FNA dendrimeric nanocarrier may find a broad spectrum of applications in biomedical diagnosis and therapy. PMID:24806614
Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE
Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca
2016-01-01
Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271
IT-based diagnostic instrumentation systems for personalized healthcare services.
Chun, Honggu; Kang, Jaemin; Kim, Ki-Jung; Park, Kwang Suk; Kim, Hee Chan
2005-01-01
This paper describes recent research and development activities on the diagnostic instruments for personalized healthcare services in Seoul National University. Utilizing the state-of-the-art information technologies (IT), various diagnostic medical instruments have been integrated into a personal wearable device and a home telehealthcare system. We developed a wrist-worn integrated health monitoring device (WIHMD) which performs the measurements of non-invasive blood pressure (NIBP), pulse oximetry (SpO2), electrocardiogram (ECG), respiration rate, heart rate, and body surface temperature and the detection of falls to determine the onset of emergency situation. The WIHMD also analyzes the acquired bio-signals and transmits the resultant data to a healthcare service center through a commercial cellular phone. Two different kinds of IT-based blood glucometer have been developed using a cellular phone and PDA(personal digital assistant) as a main unit. A blood glucometer was also integrated within a wrist pressure measurement module which is interfaced with a cellular phone via Telecommunications Technology Association (TTA) standard in order to provide users with easiness in measuring and handling two important health parameters. Non-intrusive bio-signal measurement systems were developed for the ease of home use. One can measure his ECG on a bed while he is sleeping; measure his ECG, body temperature, bodyfat ratio and weight on a toilet seat; measure his ECG on a chair; and estimate the degree of activity by motion analysis using a camera. Another integrated diagnostic system for home telehealthcare services has been developed to include a 12 channels ECG, a pressure meter for NIBP, a blood glucometer, a bodyfat meter and a spirometer. It is an expert system to analyze the measured health data and based on the diagnostic result, the system provides an appropriate medical consultation. The measured data can be either stored on the system or transmitted to the central server through the internet. We have installed the developed systems on a model house for the performance evaluation and confirmed the possibility of the system as an effective tool for the personalized healthcare services.
In situ sensing and modeling of molecular events at the cellular level
NASA Astrophysics Data System (ADS)
Yang, Ruiguo
We developed the Atomic Force Microscopy (AFM) based nanorobot in combination with other nanomechanical sensors for the investigation of cell signaling pathways. The AFM nanorobotics hinge on the superior spatial resolution of AFM in imaging and extends it into the measurement of biological processes and manipulation of biological matters. A multiple input single output control system was designed and implemented to solve the issues of nanomanipulation of biological materials, feedback, response frequency and nonlinearity. The AFM nanorobotic system therefore provide the human-directed position, velocity and force control with high frequency feedback, and more importantly it can feed the operator with the real-time imaging of manipulation result from the fast-imaging based local scanning. The use of the system has taken the study of cellular process at the molecular scale into a new level. The cellular response to the physiological conditions can be significantly manifested in cellular mechanics. Dynamic mechanical property has been regarded as biomarkers, sometimes even regulators of the signaling and physiological processes, thus the name mechanobiology. We sought to characterize the relationship between the structural dynamics and the molecular dynamics and the role of them in the regulation of cell behavior. We used the AFM nanorobotics to investigate the mechanical properties in real-time of cells that are stimulated by different chemical species. These reagents could result in similar ion channel responses but distinctive mechanical behaviors. We applied these measurement results to establish a model that describes the cellular stimulation and the mechanical property change, a "two-hit" model that comprises the loss of cell adhesion and the initiation of cell apoptosis. The first hit was verified by functional experiments: depletion of Calcium and nanosurgery to disrupt the cellular adhesion. The second hit was tested by a labeling of apoptotic markers that were revealed by flow cytometry. The model would then be able to decipher qualitatively the molecular dynamics infolded in the regulation of cell behavior. To decipher the signaling pathway quantitatively, we employed a nanomechanical sensor at the bottom of the cell, quartz crystal microbalance with energy dissipation monitoring (QCM-D) to monitor the change at the basal area of the cell. This would provide the real time focal adhesion information and would be used in accordance with the AFM measurement data on the top of the cell to build a more complete mechanical profile during the antibody induced signaling process. We developed a model from a systematic control perspective that considers the signaling cascade at certain stimulation as the controller and the mechanical and structural interaction of the cell as the plant. We firstly derived the plant model based on QCM-D and AFM measurement processes. A signaling pathway model was built on a grey box approach where part of the pathway map was delineated in detail while others were condensed into a single reaction. The model parameters were obtained by extracting the mechanical response from the experiment. The model refinements were conducted by testing a series of inhibition mechanisms and comparing the simulation data with the experimental data. The model was then used to predict the existences of certain reactions that are qualitatively reported in the literature.
Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre
2010-01-01
Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays. PMID:26517371
NASA Astrophysics Data System (ADS)
Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.
1994-12-01
Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.
Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.
2013-01-01
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645
Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.
2015-01-01
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841
Monitoring of human populations for early markers of cadmium toxicity: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Bruce A.
2009-08-01
Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.« less
Monitoring of human populations for early markers of cadmium toxicity: a review.
Fowler, Bruce A
2009-08-01
Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.
Real-Time Monitoring of Cellular Bioenergetics with a Multi-Analyte Screen-Printed Electrode
McKenzie, Jennifer R.; Cognata, Andrew C.; Davis, Anna N.; Wikswo, John P.; Cliffel, David E.
2016-01-01
Real-time monitoring of changes to cellular bioenergetics can provide new insights into mechanisms of action for disease and toxicity. This work describes the development of a multi-analyte screen-printed electrode for the detection of analytes central to cellular bioenergetics: glucose, lactate, oxygen, and pH. Platinum screen-printed electrodes were designed in-house and printed by Pine Research Instrumentation. Electrochemical plating techniques were used to form quasi-reference and pH electrodes. A Dimatix materials inkjet printer was used to deposit enzyme and polymer films to form sensors for glucose, lactate, and oxygen. These sensors were evaluated in bulk solution and microfluidic environments, and found to behave reproducibly and possess a lifetime of up to six weeks. Linear ranges and limits of detection for enzyme-based sensors were found to have an inverse relationship with enzyme loading, and iridium oxide pH sensors were found to have super-Nernstian responses. Preliminary measurements where the sensor was enclosed within a microfluidic channel with RAW 264.7 macrophages were performed to demonstrate the sensors’ capabilities for performing real-time microphysiometry measurements. PMID:26125545
GPS and GPRS Based Telemonitoring System for Emergency Patient Transportation
Satyanarayana, K.; Sarma, A. D.; Sravan, J.; Malini, M.; Venkateswarlu, G.
2013-01-01
Telemonitoring during the golden hour of patient transportation helps to improve medical care. Presently there are different physiological data acquisition and transmission systems using cellular network and radio communication links. Location monitoring systems and video transmission systems are also commercially available. The emergency patient transportation systems uniquely require transmission of data pertaining to the patient, vehicle, time of the call, physiological signals (like ECG, blood pressure, a body temperature, and blood oxygen saturation), location information, a snap shot of the patient, and voice. These requirements are presently met by using separate communication systems for voice, physiological data, and location that result in a lot of inconvenience to the technicians, maintenance related issues, in addition to being expensive. This paper presents design, development, and implementation of such a telemonitoring system for emergency patient transportation employing ARM 9 processor module. This system is found to be very useful for the emergency patient transportation being undertaken by organizations like the Emergency Management Research Institute (EMRI). PMID:27019844
Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro
Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping
2012-01-01
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708
A microfluidic co-culture system to monitor tumor-stromal interactions on a chip
Menon, Nishanth V.; Cao, Bin; Lim, Mayasari; Kang, Yuejun
2014-01-01
The living cells are arranged in a complex natural environment wherein they interact with extracellular matrix and other neighboring cells. Cell-cell interactions, especially those between distinct phenotypes, have attracted particular interest due to the significant physiological relevance they can reveal for both fundamental and applied biomedical research. To study cell-cell interactions, it is necessary to develop co-culture systems, where different cell types can be cultured within the same confined space. Although the current advancement in lab-on-a-chip technology has allowed the creation of in vitro models to mimic the complexity of in vivo environment, it is still rather challenging to create such co-culture systems for easy control of different colonies of cells. In this paper, we have demonstrated a straightforward method for the development of an on-chip co-culture system. It involves a series of steps to selectively change the surface property for discriminative cell seeding and to induce cellular interaction in a co-culture region. Bone marrow stromal cells (HS5) and a liver tumor cell line (HuH7) have been used to demonstrate this co-culture model. The cell migration and cellular interaction have been analyzed using microscopy and biochemical assays. This co-culture system could be used as a disease model to obtain biological insight of pathological progression, as well as a tool to evaluate the efficacy of different drugs for pharmaceutical studies. PMID:25553194
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging.
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny; Coudreuse, Damien
2016-08-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. © 2016 The Authors.
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny
2016-01-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. PMID:27512142
An ultra-sensitive biophysical risk assessment of light effect on skin cells.
Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho
2017-07-18
The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.
Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert
2014-09-01
This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.
Path planning on cellular nonlinear network using active wave computing technique
NASA Astrophysics Data System (ADS)
Yeniçeri, Ramazan; Yalçın, Müstak E.
2009-05-01
This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.
Hu, Xue-Bo; Liu, Yan-Ling; Wang, Wen-Jie; Zhang, Hai-Wei; Qin, Yu; Guo, Shan; Zhang, Xin-Wei; Fu, Lei; Huang, Wei-Hua
2018-01-16
Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform. Herein, we developed a 3-aminophenylboronic acid (APBA) functionalized graphene foam (GF) network, which combines the biomimetic property of APBA with the mechanical and electrochemical properties of GF. Hence, the GF network can serve as a 3D scaffold to culture cells for a long period with high viability and simultaneously as an electrode for highly sensitive electrochemical sensing. This allows monitoring of gaseous messengers H 2 S released from the cells cultured on the 3D scaffold in real time. This work represents considerable progress in fabricating 3D cell culture scaffold with electrochemical properties, thereby facilitating future studies of physiologically relevant processes.
NASA Astrophysics Data System (ADS)
Luo, Teng; Levchenko, Svitlana M.; Pliss, Artem; Peng, Xiao; Yan, Wei; Prasad, Paras N.; Liu, Liwei; Qu, Junle
2018-02-01
We present our recent work on the applications of fluorescence lifetime imaging microscopy(FLIM), including the monitoring of macromolecule dynamic changes in the nucleolar compartments and the auxiliary diagnosis of H and E-stained sections. We demonstrated the capability of FLIM to measure protein concentration in the specific cellular compartments in live cells. We proposed to use FLIM to monitor changes in intracellular protein concentration caused by various factors e.g. cell cycle progression, drug treatment etc. In the future, FLIM technology is expected to be combined with super-resolution optical imaging. FLIM with molecular resolution will have the potential to serve as a powerful tool for discovering new phenomena and revealing new mechanisms in biomedical research, which will effectively promote the development of life science.
Optical imaging characterizing brain response to thermal insult in injured rodent
NASA Astrophysics Data System (ADS)
Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.
2018-02-01
We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.
Martinez-Serra, Jordi; Gutierrez, Antonio; Muñoz-Capó, Saúl; Navarro-Palou, María; Ros, Teresa; Amat, Juan Carlos; Lopez, Bernardo; Marcus, Toni F; Fueyo, Laura; Suquia, Angela G; Gines, Jordi; Rubio, Francisco; Ramos, Rafael; Besalduch, Joan
2014-01-01
The xCELLigence system is a new technological approach that allows the real-time cell analysis of adherent tumor cells. To date, xCELLigence has not been able to monitor the growth or cytotoxicity of nonadherent cells derived from hematological malignancies. The basis of its technology relies on the use of culture plates with gold microelectrodes located in their base. We have adapted the methodology described by others to xCELLigence, based on the pre-coating of the cell culture surface with specific substrates, some of which are known to facilitate cell adhesion in the extracellular matrix. Pre-coating of the culture plates with fibronectin, compared to laminin, collagen, or gelatin, significantly induced the adhesion of most of the leukemia/lymphoma cells assayed (Jurkat, L1236, KMH2, and K562). With a fibronectin substrate, nonadherent cells deposited in a monolayer configuration, and consequently, the cell growth and viability were robustly monitored. We further demonstrate the feasibility of xCELLigence for the real-time monitoring of the cytotoxic properties of several antineoplastic agents. In order to validate this technology, the data obtained through real-time cell analysis was compared with that obtained from using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. This provides an excellent label-free tool for the screening of drug efficacy in nonadherent cells and discriminates optimal time points for further molecular analysis of cellular events associated with treatments, reducing both time and costs.
Integration of mobile satellite and cellular systems
NASA Technical Reports Server (NTRS)
Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.
Integration of mobile satellite and cellular systems
NASA Astrophysics Data System (ADS)
Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.
Assessing the weather monitoring capabilities of cellular microwave link networks
NASA Astrophysics Data System (ADS)
Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch
2016-04-01
Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.
Biomedical digital assistant for ubiquitous healthcare.
Lee, Tae-Soo; Hong, Joo-Hyun; Cho, Myeong-Chan
2007-01-01
The concept of ubiquitous healthcare service, which emerged as one of measures to solve healthcare problems in aged society, means that patients can receive services such as prevention, diagnosis, therapy and prognosis management at any time and in any place with the help of advanced information and communication technology. This service requires not only biomedical digital assistant that can monitor continuously the patients' health condition regardless of time and place, but also wired and wireless communication devices and telemedicine servers that provide doctors with data on patients' present health condition. In order to implement a biomedical digital assistant that is portable and wearable to patients, the present study developed a device that minimizes size, weight and power consumption, measures ECG and PPG signals, and even monitors moving patients' state. The biomedical sensor with the function of wireless communication was designed to be highly portable and wearable, to be operable 24 hours with small-size batteries, and to monitor the subject's heart rate, step count and respiratory rate in his daily life. The biomedical signal receiving device was implemented in two forms, PDA and cellular phone. The movement monitoring device embedded in the battery pack of a cellular phone does not have any problem in operating 24 hours, but the real-time biomedical signal receiving device implemented with PDA operated up to 6 hours due to the limited battery capacity of PDA. This problem is expected to be solved by reducing wireless communication load through improving the processing and storage functions of the sensor. The developed device can transmit a message on the patient's emergency to the remote server through the cellular phone network, and is expected to play crucial roles in the health management of chronic-aged patients in their daily life.
Novel method for water vapour monitoring using wireless communication networks measurements
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2009-04-01
We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.
Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A
2016-10-01
This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.
Angelides, Kimon; Matsunami, Risë K.; Engler, David A.
2015-01-01
Background: We evaluated the accuracy, precision, and linearity of the In Touch® blood glucose monitoring system (BGMS), a new color touch screen and cellular-enabled blood glucose meter, using a new rapid, highly precise and accurate 13C6 isotope-dilution liquid chromatography-mass spectrometry method (IDLC-MS). Methods: Blood glucose measurements from the In Touch® BGMS were referenced to a validated UPLC-MRM standard reference measurement procedure previously shown to be highly accurate and precise. Readings from the In Touch® BGMS were taken over the blood glucose range of 24-640 mg/dL using 12 concentrations of blood glucose. Ten In Touch® BGMS and 3 lots of test strips were used with 10 replicates at each concentration. A lay user study was also performed to assess the ease of use. Results: At blood glucose concentrations <75 mg/dL 100% of the measurements are within ±8 mg/dL from the true reference standard; at blood glucose levels >75 mg/dL 100% of the measurements are within ±15% of the true reference standard. 100% of the results are within category A of the consensus grid. Within-run precision show CV < 3.72% between 24-50 mg/dL and CV<2.22% between 500 and 600 mg/dL. The results show that the In Touch® meter exceeds the minimum criteria of both the ISO 15197:2003 and ISO 15197:2013 standards. The results from a user panel show that 100% of the respondents reported that the color touch screen, with its graphic user interface (GUI), is well labeled and easy to navigate. Conclusions: To our knowledge this is the first touch screen glucose meter and the first study where accuracy of a new BGMS has been measured against a true primary reference standard, namely IDLC-MS. PMID:26002836
Inexpensive automated paging system for use at remote research sites
Sargent, S.L.; Dey, W.S.; Keefer, D.A.
1998-01-01
The use of a flow-activated automatic sampler at a remote research site required personnel to periodically visit the site to collect samples and reset the automatic sampler. To reduce site visits, a cellular telephone was modified for activation by a datalogger. The purpose of this study was to demonstrate the use and benefit of the modified telephone. Both the power switch and the speed-dial button on the telephone were bypassed and wired to a relay driver. The datalogger was programmed to compare values of a monitored environmental parameter with a target value. When the target value was reached or exceeded, the datalogger pulsed a relay driver, activating power to the telephone. A separate relay activated the speed dial, dialing the number of a tone-only pager. The use of this system has saved time and reduced travel costs by reducing the number of trips to the site, without the loss of any data.The use of a flow-activated automatic sampler at a remote research site required personnel to periodically visit the site to collect samples and reset the automatic sampler. To reduce site visits, a cellular telephone was modified for activation by a datalogger. The purpose of this study was to demonstrate the use and benefit of the modified telephone. Both the power switch and the speed-dial button on the telephone were bypassed and wired to a relay driver. The datalogger was programmed to compare values of a monitored environmental parameter with a target value. When the target value was reached or exceeded, the datalogger pulsed a relay driver, activating power to the telephone. A separate relay activated the speed dial, dialing the number of a tone-only pager. The use of this system has saved time and reduced travel costs by reducing the number of trips to the site, without the loss of any data.
NASA Astrophysics Data System (ADS)
Holman, Hoi-Ying N.; Goth-Goldstein, Regine; Blakely, Elanor A.; Bjornstad, Kathy; Martin, Michael C.; McKinney, Wayne R.
2000-05-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in the individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR-FTIR microscopy probes intact living cells providing a composite view of all of the molecular response and the ability to monitor the response over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low- doses of chemicals. In this study we used the high spatial - resolution SR-FTIR vibrational spectromicroscopy as a sensitive analytical tool to detect chemical- and radiation- induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of dioxin. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio- compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Supporting performance and configuration management of GTE cellular networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ming; Lafond, C.; Jakobson, G.
GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teller, E; Leith, C; Canavan, G
2001-11-13
We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}more » $$10{sup 2} B annual savings dwarf the <$$1 B costs of operating a rational, long-range weather prediction system of the type proposed.« less
DOE R&D Accomplishments Database
Teller, E.; Leith, C.; Canavan, G.; Wood, L.
2001-11-13
We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.
Stockwell, B R; Haggarty, S J; Schreiber, S L
1999-02-01
Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.
NASA Astrophysics Data System (ADS)
Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.
2016-06-01
Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.
NASA Astrophysics Data System (ADS)
Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.
2016-03-01
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Lu, Songjian; Jin, Bo; Cowart, L Ashley; Lu, Xinghua
2013-01-01
Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal; and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in the MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed."
Bioreactor Technology in Cardiovascular Tissue Engineering
NASA Astrophysics Data System (ADS)
Mertsching, H.; Hansmann, J.
Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.
Endermologie New Aproach in the Medicine Treatment
NASA Astrophysics Data System (ADS)
Mezencevová, Viktória; Torok, Jozef; Czánová, Tatiana; Zajac, Ján
2017-10-01
Using the effect of mechanical forces affecting cellular response in the treatment of post-traumatic, postoperative, post-imlantation conditions through the application of Endermologie®- mechanotransduction represents a revolutionary solution in tissue-rehabilitation and positive target tissue influencing, with faster regeneration (1). Endermologie® is a noninvasive, painless, natural method of treatments of all connective tissue transformations, muscle and circulation pathologies. The aim of our study is investigation and explanation the mechanism of action by observing the physiological effects of Endermologie® based on human studies. The paper is focused on monitoring of possitive effect tissue regeneration using endermologie as a tools mechanostimulation improvements of systems integridy and health improvement.
Rundo, Francesco; Ortis, Alessandro
2018-01-01
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG “combo” pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting “clean” PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach. PMID:29385774
Rundo, Francesco; Conoci, Sabrina; Ortis, Alessandro; Battiato, Sebastiano
2018-01-30
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.
The nucleolus—guardian of cellular homeostasis and genome integrity.
Grummt, Ingrid
2013-12-01
All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.
Ciccocioppo, Rachele; Dos Santos, Claudia C; Baumgart, Daniel C; Cangemi, Giuseppina C; Cardinale, Vincenzo; Ciacci, Carolina; De Coppi, Paolo; Haldar, Debashis; Klersy, Catherine; Nostro, M Cristina; Ott, Michael; Piemonti, Lorenzo; Tomei, Alice A; Uygun, Basak; Vetrano, Stefania; Orlando, Giuseppe
2018-03-01
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Ultrasensitive detection of protein translocated through toxin pores in droplet-interface bilayers
Fischer, Audrey; Holden, Matthew A.; Pentelute, Brad L.; Collier, R. John
2011-01-01
Many bacterial toxins form proteinaceous pores that facilitate the translocation of soluble effector proteins across cellular membranes. With anthrax toxin this process may be monitored in real time by electrophysiology, where fluctuations in ionic current through these pores inserted in model membranes are used to infer the translocation of individual protein molecules. However, detecting the minute quantities of translocated proteins has been a challenge. Here, we describe use of the droplet-interface bilayer system to follow the movement of proteins across a model membrane separating two submicroliter aqueous droplets. We report the capture and subsequent direct detection of as few as 100 protein molecules that have translocated through anthrax toxin pores. The droplet-interface bilayer system offers new avenues of approach to the study of protein translocation. PMID:21949363
NASA Astrophysics Data System (ADS)
Cottrell, William J.
Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen concentrations. High irradiance and/or photosensitizer levels cause inefficient treatment from oxygen depletion in preclinical models. This trial established the irradiance-dependence of patient tolerability to ALA-PDT of sBCC and a pain-threshold irradiance, below which patients did not experience significant pain or require anesthetic. The irradiance-dependence of sensitizer photobleaching was also used to determine an optimal irradiance that maximized treatment efficiency. The optimal fluence at a single low irradiance is yet to be determined. We additionally report the design, construction, and initial characterization of two optical systems used for cellular scattering measurements: a forward scattering white-light spectroscopy system used to characterize lysosomal refractive index and a multifunctional scattering and fluorescence microscope that exploited an angle-resolved forward-scattering geometry. The multifunctional scattering and fluorescence microscope employed brightfield, Fourier-filtered darkfield, direct imaging of the Fourier plane, angle-resolved scattering, and white-light scattering spectroscopy while preserving a fluorescence imaging channel. Lastly, we report on the development of a microscope-based system used for high-powered, focal laser photolysis. This system was used with cell-permeable caged messenger molecules and analyte specific fluorophores to provide local stimulation of intact cells and subsequent analyte monitoring. This provided a high-precision, non-invasive means for studying Ca2+ dynamics between cell types and between sub-cellular regions within a single cell type. The resulting studies compared the mechanisms underlying the Ca2+ signal globalization in these individual exocrine cell types and under regional messenger release.
In vitro bio-functionality of gallium nitride sensors for radiation biophysics.
Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan
2012-07-27
There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification. Copyright © 2012 Elsevier Inc. All rights reserved.
Self-monitoring has potential for home exercise programmes in patients with haemophilia.
Goto, M; Takedani, H; Haga, N; Kubota, M; Ishiyama, M; Ito, S; Nitta, O
2014-03-01
Haemophiliacs who have had to keep a physically inactive lifestyle due to bleeding during childhood are likely to have little motivation for exercise. The purpose of this study is to clarify the effectiveness of the self-monitoring of home exercise for haemophiliacs. A randomized controlled trial was conducted with intervention over 8 weeks at four hospitals in Japan. Subjects included 32 male outpatients aged 26-64 years without an inhibitor who were randomly allocated to a self-monitoring group and a control group. Individual exercise guidance with physical activity for improvement of their knee functions was given to both groups. The self-monitoring materials included an activity monitor and a feedback system so that the self-monitoring group could send feedback via the Internet and cellular phone. The self-monitoring was performed by checking exercise adherence and physical activity levels, bleeding history and injection of a coagulation factor. Both groups showed significant improvements in exercise adherence (P < 0.001) and physical function such as the strength of knee extension (P < 0.001), range of knee extension (P < 0.001), range of ankle dorsiflexion (P < 0.01), a modified Functional Reach (P < 0.05) and 10 metre gait time (P < 0.01). In particular, improvements in exercise adherence (P < 0.05), self-efficacy (P < 0.05), and strength of knee extension (P < 0.05) were significant in the self-monitoring group compared with those in the control group. No increase in bleeding frequency and pain scale was noted. The self-monitoring of home exercise for haemophilic patients is useful for the improvement of exercise adherence, self-efficacy and knee extension strength. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abdolahad
2015-01-01
Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06102k
Liu, Jiao; Yao, Changhong; Meng, Yingying; Cao, Xupeng; Wu, Peichun; Xue, Song
2018-01-01
Triacylglycerol (TAG) from photosynthetic microalgae is a sustainable feedstock for biodiesel production. Physiological stress triggers microalgal TAG accumulation. However excessive physiological stress will impair the photosynthesis system seriously thus decreasing TAG productivity because of the low biomass production. Hence, it is critical to quantitatively and timely monitor the degree of the stress while the microalgal cells growing so that the optimal TAG productivity can be obtained. The lack of an on-line monitored indicator has limited our ability to gain knowledge of cellular "health status" information regarding high TAG productivity. Therefore, to monitor the degree of nitrogen stress of the cells, we investigated the correlation between the photosynthetic system II (PS II) quantum yield and the degree of stress based on the high relevancy between photosynthetic reduction and nitrogen stress-induced TAG accumulation in microalgal cells. Δ F/F m ', which is the chlorophyll fluorescence parameter that reflects the effective capability of PS II, was identified to be a critical factor to indicate the degree of stress of the cells. In addition, the concept of a nitrogen stress index has been defined to quantify the degree of stress. Based on this index and by monitoring Δ F/F m ' and guiding the supply of nitrogen in culture medium to maintain a stable degree of stress, a stable and efficient semi-continuous process for TAG production has been established. The results indicate that the semi-continuous cultivation process with a controlled degree of stress by monitoring the Δ F/F m ' indicator will have a significant impact on microalgal TAG production, especially for the outdoor controllable cultivation of microalgae on a large scale.
Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies
2015-01-01
Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652
Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M
2016-06-23
Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.
Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia
2011-01-01
The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551
Molecular imaging and sensing using plasmonic nanoparticles
NASA Astrophysics Data System (ADS)
Crow, Matthew James
Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression distribution and potential increased multiplexing capability.
Kilic, Tugba; Zhang, Yu Shrike; Avci, Huseyin; Hu, Ning; Kim, Duckjin; Branco, Cristina; Aleman, Julio; Massa, Solange; Silvestri, Antonia; Kang, Jian; Desalvo, Anna; Hussaini, Mohammed Abdullah; Chae, Su‐Kyoung; Polini, Alessandro; Bhise, Nupura; Hussain, Mohammad Asif; Lee, HeaYeon
2017-01-01
Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label‐free microfluidic electrochemical (EC) biosensor with a unique built‐in on‐chip regeneration capability for continual measurement of cell‐secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver‐on‐a‐chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme‐linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long‐term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms. PMID:28546915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy
2013-06-03
In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used tomore » track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.« less
47 CFR 22.923 - Cellular system configuration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 22.923 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations communicate with and through base transmitters only. Base transmitters communicate with mobile stations...
Molecular Imaging of Phosphorylation Events for Drug Development
Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.
2014-01-01
Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345
Liu, Haiyun; Tian, Tian; Ji, Dandan; Ren, Na; Ge, Shenguang; Yan, Mei; Yu, Jinghua
2016-11-15
In situ imaging of miRNA in living cells could help us to monitor the miRNA expression in real time and obtain accurate information for studying miRNA related bioprocesses and disease. Given the low-level expression of miRNA, amplification strategies for intracellular miRNA are imperative. Here, we propose an amplification strategy with a non-destructive enzyme-free manner in living cells using catalyzed hairpin assembly (CHA) based on graphene oxide (GO) for cellular miRNA imaging. The enzyme-free CHA exhibits stringent recognition and excellent signal amplification of miRNA in the living cells. GO is a good candidate as a fluorescence quencher and cellular carrier. Taking the advantages of the CHA and GO, we can monitor the miRNA at low level in living cells with a simple, sensitive and real-time manner. Finally, imaging of miRNAs in the different expression cells is realized. The novel method could supply an effective tool to visualize intracellular low-level miRNAs and help us to further understand the role of miRNAs in cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Marschall, Robert; Tudzynski, Paul
2014-10-01
Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté
2015-12-15
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Ho, Mengfei; Mettouchi, Amel; Wilson, Brenda A; Lemichez, Emmanuel
2018-05-03
Alterations of the cellular proteome over time due to spontaneous or toxin-mediated enzymatic deamidation of glutamine (Gln) and asparagine (Asn) residues contribute to bacterial infection and might represent a source of aging-related diseases. Here, we put into perspective what is known about the mode of action of the CNF1 toxin from pathogenic E. coli, a paradigm of bacterial deamidases that activate Rho GTPases, to illustrate the importance of determining whether exposure to these factors are risk factors in the etiology age-related diseases, such as cancer. In particular, through in silico analysis of the distribution of the CNF1-like deamidase active site Gly-Cys-(Xaa)n-His sequence motif in bacterial genomes, we unveil the wide distribution of the super-family of CNF-like toxins and CNF-like deamidase domains among members of the enterobacteriacae and in association with a large variety of toxin delivery systems. We extent our discussion with recent findings concerning cellular systems that control activated Rac1 GTPase stability and provide protection against cancer. These findings point to the urgency for developing holistic approaches toward personalized medicine that include monitoring for asymptomatic carriage of pathogenic toxin-producing bacteria and that ultimately might lead to improved public health and increased lifespans.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...
Code of Federal Regulations, 2012 CFR
2012-10-01
...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...
Code of Federal Regulations, 2011 CFR
2011-10-01
...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...
Code of Federal Regulations, 2013 CFR
2013-10-01
...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...
47 CFR 22.947 - Five year build-out period.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MOBILE SERVICES Cellular Radiotelephone Service § 22.947 Five year build-out period. Except for systems...-out period, the licensee of the first cellular system on each channel block in each market may enter...-out period begins on the date the initial authorization for the first cellular system is granted, and...
Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay
Nickson, Catherine M.; Parsons, Jason L.
2014-01-01
Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20–50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A–DDB1–STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair capacity. PMID:25076968
The Development of a Mathematical Foundation for Cellular Image Processing.
1984-02-01
PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR. 407 6&. NAME OF PERFORMING ORGANIZATION 5b. OFFICE...SYMBOL 7s. NAME OF MONITORING ORGANIZATION University of Florida (it appicable) Air Force Office of Scientific Research 6c. ADDRESS (City. State and ZIP...Bolling AFB DC 20332 84. NAME OF FUNDING/SPONSORING IBb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION J(If applicablej FS
Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun
2018-05-01
In situ monitoring of hydrogen peroxide (H 2 O 2 ) secreted from live cells plays a critical role in elucidating many cellular signaling pathways, and it is a significant challenge to selectively detect these low levels of endogenous H 2 O 2 . To address this challenge, we report the establishment of a trimetallic hybrid nanoflower-decorated MoS 2 nanosheet-modified sensor for in situ monitoring of H 2 O 2 secreted from live MCF-7 cancer cells. The Au-Pd-Pt nanoflower-dispersed MoS 2 nanosheets are synthesized by a simple wet-chemistry method, and the resulting nanosheet composites exhibit significantly enhanced catalytic activity toward electrochemical reduction of H 2 O 2 , due to the synergistic effect of the highly dispersed trimetallic hybrid nanoflowers and the MoS 2 nanosheets, thereby resulting in ultrasensitive detection of H 2 O 2 with a subnanomolar level detection limit in vitro. Also the immobilization of the laminin glycoproteins on the surface of the nanocomposites increases its biocompatibility for cell adhesion and growth, which enables in situ electrochemical monitoring of H 2 O 2 directly secreted from live cells for potential application of such sensor in cellular biology, clinical diagnosis, and pathophysiology.
Laboratory testing of a building envelope segment based on cellular concrete
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2016-07-01
Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.
Isolation and analysis of linker histones across cellular compartments
Harshman, Sean W.; Chen, Michael M.; Branson, Owen E.; Jacob, Naduparambil K.; Johnson, Amy J.; Byrd, John C.; Freitas, Michael A.
2013-01-01
Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2–H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. PMID:24013129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de; Wagner, Silvia; Buerkle, Alexander
Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin didmore » not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.« less
NASA Astrophysics Data System (ADS)
Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong
2016-04-01
Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications. Electronic supplementary information (ESI) available: Experimental details and characterization data for all new compounds. See DOI: 10.1039/c6nr00369a
Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe
NASA Technical Reports Server (NTRS)
Roy, Rudy A.
2005-01-01
Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.
The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs
NASA Astrophysics Data System (ADS)
Giannone, Richard J.; Liu, Yie; Wang, Yisong
Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.
Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L
2016-08-01
In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yu, Han; Qi, Zhijiang; Zhao, Lianxing; Shao, Rui; Fang, Yingying; Li, Chunsheng
2016-12-01
Sepsis is a life-threatening response to infection with a high mortality rate. In order to explore the prognostic value of dynamic monitoring of cellular immunity during late severe sepsis, we assessed levels of Tlymphocyte subsets, the human leukocyte antigen D-related (HLA-DR), and the high mobility group box-1 (HMGB1) protein. Study participants included 247 consecutive severe sepsis patients who were admitted to Beijing ChaoYang Hospital's Emergency Intensive Care Unit. Patients were divided into survivors and non-survivors based on 90-day survival rates, and clinical data were collected. T-lymphocyte subsets on days 1 and 7, HLA-DR on days 1 and 12, and HMGB1 on days 1, 3, 5, 7, and 12 were analyzed. Counts of CD3+, CD3+CD4+, and CD3+CD8+ T cells on day 1 in non-survivors were lower than those in survivors. By day 7, counts of all three types of T cells had increased in both survivors and non-survivors, but CD3+ and CD3+CD8+ T cells remained lower in non-survivors than in survivors. There was no significant difference in HLA-DR levels between survivors and non-survivors on day 1, but HLA-DR levels increased in survivors and decreased in non-survivors by day 12. In contrast, over days 1 - 12, HMGB1 levels increased in non-survivors and decreased in survivors. Patients with severe sepsis present with cellular immune dysfunction and persistent chronic inflammation, both of which may lead to death in the late phase of severe sepsis. Dynamic monitoring of indicators of cellular immunity and HMGB1 is useful for evaluating the immune status, chronic inflammation processes, and prognoses of patients with severe sepsis.
Tang, Catherine; Russell, Pamela J; Martiniello-Wilks, Rosetta; J Rasko, John E; Khatri, Aparajita
2010-01-01
Ineffective treatment and poor patient management continue to plague the arena of clinical oncology. The crucial issues include inadequate treatment efficacy due to ineffective targeting of cancer deposits, systemic toxicities, suboptimal cancer detection and disease monitoring. This has led to the quest for clinically relevant, innovative multifaceted solutions such as development of targeted and traceable therapies. Mesenchymal stem cells (MSCs) have the intrinsic ability to “home” to growing tumors and are hypoimmunogenic. Therefore, these can be used as (a) “Trojan Horses” to deliver gene therapy directly into the tumors and (b) carriers of nanoparticles to allow cell tracking and simultaneous cancer detection. The camouflage of MSC carriers can potentially tackle the issues of safety, vector, and/or transgene immunogenicity as well as nanoparticle clearance and toxicity. The versatility of the nanotechnology platform could allow cellular tracking using single or multimodal imaging modalities. Toward that end, noninvasive magnetic resonance imaging (MRI) is fast becoming a clinical favorite, though there is scope for improvement in its accuracy and sensitivity. In that, use of superparamagnetic iron-oxide nanoparticles (SPION) as MRI contrast enhancers may be the best option for tracking therapeutic MSC. The prospects and consequences of synergistic approaches using MSC carriers, gene therapy, and SPION in developing cancer diagnostics and therapeutics are discussed. STEM CELLS 2010; 28:1686–1702. PMID:20629172
A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells.
Bassett, Andrew R; Kong, Lesheng; Liu, Ji-Long
2015-06-20
The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Peng, Fei; Wu, Hua; Zheng, Yadong; Xu, Xiqiang; Yu, Jizhe
2012-05-01
Mesenchymal stem cells (MSCs) are promising for use in regenerative medicine. Low-level light irradiation (LLLI) has been shown to modulate various processes in different biological systems. The aim of our study was to investigate the effect of red light emitted from a light-emitting diode (LED) on bone marrow MSCs with or without osteogenic supplements. MSCs both with and without osteogenic supplements were divided into four groups, and each group was irradiated at doses of 0, 1, 2 and 4 J/cm(2). Cellular proliferation was evaluated using WST-8 and 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining. The alkaline phosphatase activity, mineralization, and expression of osteoblast master genes (Col1α1, Alpl, Bglap and Runx2) were monitored as indicators of MSC differentiation towards osteoblasts. In groups without osteogenic supplements, red light at all doses significantly stimulated cellular proliferation, whereas the osteogenic phenotype of the MSCs was not enhanced. In groups with osteogenic supplements, red light increased alkaline phosphatase activity and mineralized nodule formation, and stimulated the expression of Bglap and Runx2, but decreased cellular proliferation. In conclusion, nonconherent red light can promote proliferation but cannot induce osteogenic differentiation of MSCs in normal media, while it enhances osteogenic differentiation and decreases proliferation of MSCs in media with osteogenic supplements.
NASA Astrophysics Data System (ADS)
Beljebbar, Abdelilah; Sockalingum, Ganesh D.; Morjani, Hamid; Manfait, Michel
1999-04-01
Raman spectroscopy has been sued to differentiate between sensitive and MDR-resistant cells using Raman spectral imaging with a 632.8 nm excitation wavelength. The comparison between two spectral images allowed to quantify the differences between sensitive and resistant cell lines in term of proteins, lipids when MDR phenotype is expressed. SER spectroscopy has become a powerful and non-invasive probe for investigating the molecular and cellular interaction of drugs with their targets. The comparison between these models allow to elucidate the biological effect of the drugs. The development of new types of SERS- active substrates has extended the applicability of this technique to medical diagnosis. Two kinds of SERS active substrates, characterized as 'bio-compatible' systems, can be used for investigation on single living cells: colloid suspensions and microelectrodes and island films. This methodology is used for the study of cell membrane components in interaction with the SERS substrates with the aim to understand the resistance mechanism. The constitution of a data bank will allow the follow-up of cancer and future monitoring of therapeutic intervention.
Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow
NASA Astrophysics Data System (ADS)
Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan
2016-12-01
Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.
Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy.
Lucas, Pierre; Le Coq, David; Juncker, Christophe; Collier, Jayne; Boesewetter, Dianne E; Boussard-Plédel, Catherine; Bureau, Bruno; Riley, Mark R
2005-01-01
Biochemical changes in living cells are detected using a fiber probe system composed of a single chalcogenide fiber acting as both the sensor and transmission line for infrared optical signals. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber. We spectroscopically monitored the effects of the surfactant Triton X-100, which serves as a toxic agent simulant on a transformed human lung carcinoma type II epithelial cell line (A549). We observe spectral changes between 2800-3000 cm(-1) in four absorptions bands, which are assigned to hydrocarbon vibrations of methylene and methyl groups in membrane lipids. Comparison of fiber and transmission spectra shows that the present technique allows one to locally probe the cell plasma membrane in the lipid spectral region. These optical responses are correlated with cellular metabolic activity measurements and LDH (lactate dehydrogenase) release assays that indicate a loss of cellular function and membrane integrity as would be expected in response to the membrane solubilizing Triton. The spectroscopic technique shows a significantly greater detection resolution in time and concentration.
Molecular imaging of labile iron(II) pools in living cells with a turn-on fluorescent probe.
Au-Yeung, Ho Yu; Chan, Jefferson; Chantarojsiri, Teera; Chang, Christopher J
2013-10-09
Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe(2+) pools in aqueous solution and living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C-O bond cleavage reaction to achieve a selective turn-on response to Fe(2+) over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe(2+) detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development.
Code of Federal Regulations, 2010 CFR
2010-10-01
... relocation agreement. Sprint Nextel and relocating incumbents may agree to conduct face-to-face negotiations...-55. Sprint Nextel and relocating incumbents may agree to conduct face-to-face negotiations or either... in order to separate cellular systems from non-cellular systems. 90.677 Section 90.677...
Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level
Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.
2017-01-01
A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499
Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E
1979-01-01
To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.
NASA Astrophysics Data System (ADS)
Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
Dekeyser, Manon; François, Hélène; Beaudreuil, Séverine; Durrbach, Antoine
2015-01-01
In renal transplantation, BK-virus (BKV)-associated nephropathy has emerged as a major complication, with a prevalence of 1–10% and graft loss in >50% of cases. BKV is a member of the polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BKV-specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BKV-associated nephropathy. PMID:26136745
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy
Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao
2015-01-01
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658
Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation
Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina
2016-01-01
Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
Du, Shuoren; Hernández-Gil, Javier; Dong, Hao; Zheng, Xiaoyu; Lyu, Guangming; Bañobre-López, Manuel; Gallo, Juan; Sun, Ling-Dong; Yan, Chun-Hua; Long, Nicholas J
2017-10-17
pH homeostasis is strictly controlled at a subcellular level. A deregulation of the intra/extra/subcellular pH environment is associated with a number of diseases and as such, the monitoring of the pH state of cells and tissues is a valuable diagnostic tool. To date, only a few tools have been developed to measure the pH in living cells with the spatial resolution needed for intracellular imaging. Among the techniques available, only optical imaging offers enough resolution and biocompatibility to be proposed for subcellular pH monitoring. We present herein a ratiometric probe based on upconversion nanoparticles modified with a pH sensitive moiety for the quantitative imaging of pH at the subcellular level in living cells. This system provides the properties required for live cell quantitative imaging i.e. positive cellular uptake, biocompatibility, long wavelength excitation, sensitive response to pH within a biologically relevant range, and self-referenced signal.
Biosensor for remote monitoring of airborne toxins
NASA Astrophysics Data System (ADS)
Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn
1999-12-01
The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang
2016-03-01
The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.
Quantifying the Dynamics of Bacterial Secondary Metabolites by Spectral Multi-Photon Microscopy
Sullivan, Nora L.; Tzeranis, Dimitrios S.; Wang, Yun; So, Peter T.C.; Newman, Dianne
2011-01-01
Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a non-invasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multi-photon fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly-fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities. PMID:21671613
ECALS: loading studies interim report July 2013
Klymus, Katy E.; Richter, Catherine A.; Chapman, Duane C.; Paukert, Craig P.
2013-01-01
Since the initial detection of Asian carp moving up the Mississippi Basin, the potential for invasion of the Great Lakes by Silver Carp and Bighead Carp has been a major concern to stakeholders. To combat this problem, sampling for environmental DNA (eDNA) is used to monitor the waterways near Lake Michigan. This monitoring area includes the Chicago Area Waterways System (CAWS) and the Des Plaines River. By sampling waters that may be inhabited by Asian carp, the extraction and amplification of carp DNA from the collected cellular debris is possible. This technique has been successfully used in several other contexts (Ficetola et al., 2008; Foote et al., 2008) and is believed to be a highly sensitive method for species detection (Dejean et al., 2012). Compared to traditional methods for surveying aquatic invasive species (fishing, rotenone application, and electrofishing), the increased sensitivity of this method could be a valuable asset. Early detection could lead to a more rapid response to the threat of a Great Lakes invasion by Asian carp.
Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata
NASA Astrophysics Data System (ADS)
Zeng, Y. N.; Yu, M. M.; Li, S. N.
2018-04-01
Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.
Sub-micron opto-chemical probes for studying living neurons
NASA Astrophysics Data System (ADS)
Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.
2017-02-01
We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori
2016-04-01
Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
Combining QD-FRET and microfluidics to monitor DNA nanocomplex self-assembly in real-time.
Ho, Yi-Ping; Chen, Hunter H; Leong, Kam W; Wang, Tza-Huei
2009-08-26
Advances in genomics continue to fuel the development of therapeutics that can target pathogenesis at the cellular and molecular level. Typically functional inside the cell, nucleic acid-based therapeutics require an efficient intracellular delivery system. One widely adopted approach is to complex DNA with a gene carrier to form nanocomplexes via electrostatic self-assembly, facilitating cellular uptake of DNA while protecting it against degradation. The challenge lies in the rational design of efficient gene carriers, since premature dissociation or overly stable binding would be detrimental to the cellular uptake and therapeutic efficacy. Nanocomplexes synthesized by bulk mixing showed a diverse range of intracellular unpacking and trafficking behavior, which was attributed to the heterogeneity in size and stability of nanocomplexes. Such heterogeneity hinders the accurate assessment of the self-assembly kinetics and adds to the difficulty in correlating their physical properties to transfection efficiencies or bioactivities. We present a novel convergence of nanophotonics (i.e. QD-FRET) and microfluidics to characterize the real-time kinetics of the nanocomplex self-assembly under laminar flow. QD-FRET provides a highly sensitive indication of the onset of molecular interactions and quantitative measure throughout the synthesis process, whereas microfluidics offers a well-controlled microenvironment to spatially analyze the process with high temporal resolution (~milliseconds). For the model system of polymeric nanocomplexes, two distinct stages in the self-assembly process were captured by this analytic platform. The kinetic aspect of the self-assembly process obtained at the microscale would be particularly valuable for microreactor-based reactions which are relevant to many micro- and nano-scale applications. Further, nanocomplexes may be customized through proper design of microfludic devices, and the resulting QD-FRET polymeric DNA nanocomplexes could be readily applied for establishing structure-function relationships.
Uzarski, Joseph S.; Bijonowski, Brent M.; Wang, Bo; Ward, Heather H.; Wandinger-Ness, Angela
2015-01-01
Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is validated for primary and immortalized cells, and the design of each bioreactor is scalable to accommodate any three-dimensional scaffold (e.g., synthetic or naturally derived matrix) that contains conduits for nutrient perfusion to deliver media to growing cells and monitor noninvasive parameters during scaffold repopulation, broadening the applicability of these bioreactor systems. PMID:25929317
Uzarski, Joseph S; Bijonowski, Brent M; Wang, Bo; Ward, Heather H; Wandinger-Ness, Angela; Miller, William M; Wertheim, Jason A
2015-10-01
Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is validated for primary and immortalized cells, and the design of each bioreactor is scalable to accommodate any three-dimensional scaffold (e.g., synthetic or naturally derived matrix) that contains conduits for nutrient perfusion to deliver media to growing cells and monitor noninvasive parameters during scaffold repopulation, broadening the applicability of these bioreactor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H.; Chen, K.; Jusko, M.
The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking andmore » item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system integration is technically feasible and reliable with the existing RFID and Qualcomm satellite equipment. In terms of web application, improvements in mapping, tracking, data presentation, and post-incident spatial query reporting were implemented in ARG-US, the application software that manages the dataflow among the RFID tags, readers, and servers. These features were tested in the MiniDemo and found to be satisfactory. The resulting web application is both informative and user-friendly. A joint developmental project is being planned between the PCP and the DOE TRANSCOM that uses the Qualcomm gear in vehicles for tracking and communication of radioactive material shipments across the country. Adding an RFID interface to TRANSCOM is a significant enhancement to the DOE infrastructure for tracking and monitoring shipments of radioactive materials.« less
Digital biology and chemistry.
Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F
2014-09-07
This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and cellular analysis. Microfluidics will impact digital biology and chemistry and will also benefit from them if it becomes massively distributed.
Utilities bullish on meter-reading technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, W.L.
1995-01-15
By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less
NASA Astrophysics Data System (ADS)
Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.
2005-05-01
Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.
Novel method for water vapour monitoring using wireless communication networks measurements
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2010-09-01
We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).
Modem transmission of data for 3D fracture modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, S.A.; Rodgerson, J.L.; Martinez, A.D.
1996-06-01
Hydraulic fracturing treatments require measurement of numerous parameters, including surface rates and pressures, to quantify fluids, proppant, and additives. Computers are used to acquire data for the purpose of calculating bottomhole pressure (BHP), compiling quality-control data, generating diagnostic plots, and, often, for modeling fracture geometry in real time. In the recent past, modems have been routinely used in conjunction with cellular phone systems to transmit field-monitored data to a remote office. More recently, these data have been used at the remote site to perform 3D fracture modeling for design verification and adjustment. This paper describes data-transmission technology and discusses themore » related cost and reliability.« less
ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations
NASA Technical Reports Server (NTRS)
Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.
2001-01-01
The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.
Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.
2012-01-01
One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
47 CFR 22.907 - Coordination of channel usage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in the... to suggest extensive changes to or redesign other licensees' cellular systems. Licensees must make reasonable efforts to avoid blocking the growth of other cellular systems that are likely to need additional...
47 CFR 22.951 - Minimum coverage requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MOBILE SERVICES Cellular Radiotelephone Service § 22.951 Minimum coverage requirement. Applications for authority to operate a new cellular system in an unserved area, other than those filed by the licensee of an... toward the minimum coverage requirement. Applications for authority to operate a new cellular system in...
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
Cherian, Ajeesh Koshy; Briski, Karen P
2011-07-01
Cellular metabolic stasis is monitored in discrete brain sites, including the dorsal vagal complex (DVC), where A2 noradrenergic neurons perform this sensory function. Single-cell qPCR and high-sensitivity immunoblotting were used to determine if A2 neurons adapt to chronic hypoglycemia by increasing substrate fuel transporter expression, and whether such adjustments coincide with decreased cellular energy instability during this systemic metabolic stress. Tyrosine hydroxylase-immunolabeled neurons were laser-microdissected from the caudal DVC 2 hr after single or serial neutral protamine Hagedorn insulin (NPH) dosing. Preceding hypoglycemia suppressed basal A2 MCT2, GLUT3, and GLUT4 profiles and diminished MCT2, GLUT4, and glucokinase responses to recurring hypoglycemia. Acute NPH caused a robust increase in A2 phospho-AMPK protein levels; baseline phospho-AMPK expression was elevated after 3 days of insulin treatment but only slight augmented after a fourth NPH injection. Transcripts encoding the catecholamine biosynthetic enzyme dopamine-β-hydroxylase were unaffected by acute NPH but were diminished by serial insulin dosing. This evidence for diminished basal A2 glucose and lactate uptake and attenuated phospho-AMPK-mediated detection of hypoglycemia-associated energy deficits suggests that these cells acclimate to chronic hypoglycemia by adopting a new metabolic steady state characterized by energy paucity and reduced sensitivity to hypoglycemia. Because dopamine-β-hydroxylase mRNA was reduced after serial, but not single NPH dosing, A2 neurotransmitter biosynthesis may be impervious to acute hypoglycemia but inhibited when posthypoglycemic metabolic deficiency is exacerbated by recurring hypoglycemia. This research suggests that chronic hypoglycemia-associated adjustments in A2-sensory neurotransmission may reflect cellular energetic debilitation rather than adaptive attenuation of cellular metabolic imbalance. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen
2014-04-01
A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP) regression are used to predict changes in the bridge behavior as a function of environmental parameters. Based on these analyses, pertinent behavioral information relevant to bridge management is autonomously extracted.
Analysis of lead toxicity in human cells.
Gillis, Bruce S; Arbieva, Zarema; Gavin, Igor M
2012-07-27
Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high zinc protoporphyrin blood levels. The results of our study defined specific changes in gene and protein expression in response to lead challenges and determined the injurious effects of exposures to lead on a cellular level. This information can be used for documenting the health effects of exposures to lead which will facilitate identifying and monitoring efficacious treatments for lead-related maladies.
Analysis of lead toxicity in human cells
2012-01-01
Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high zinc protoporphyrin blood levels. Conclusions The results of our study defined specific changes in gene and protein expression in response to lead challenges and determined the injurious effects of exposures to lead on a cellular level. This information can be used for documenting the health effects of exposures to lead which will facilitate identifying and monitoring efficacious treatments for lead-related maladies. PMID:22839698
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H. C.; Chen, K.; Liu, Y. Y.
The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (modelsmore » 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.« less
NASA Astrophysics Data System (ADS)
Su, L.; Chen, Y.; Zhang, G. N.; Wang, L. H.; Shen, A. G.; Zhou, X. D.; Wang, X. H.; Hu, J. M.
2013-04-01
Raman spectroscopy is capable of studying time-resolved information of selected biomolecular distributions inside individual cells without labeling. In this study, Raman spectroscopy was for the first time utilized to in vivo and in situ monitor the cellular response to nitric oxide (NO) in single oral squamous cell carcinoma (OSCC) cells over a period of 24 h. Sodium nitroprusside (SNP) was chosen as a NO donor to be incubated with the OSCC cell line (TCA8113) for certain time intervals. In vivo and in situ Raman analysis revealed that the degradation and conformational changes of nucleic acids, lipids and proteins could be directly observed by changes in the characteristic Raman bands. In comparison with conventional flow cytometric analysis, Raman spectroscopy not only detected more subtle NO-induced chemical changes of cells, where the SNP concentration could be even less than 1 mM, but also provided a full view of the whole chemical components of single cells. Raman spectroscopy therefore is an important candidate for label-free, nondestructive and in situ monitoring of cellular changes in response to chemotherapeutic agents, which could potentially be used in rapid screening of novel drugs.
NASA Astrophysics Data System (ADS)
Jiang, Peidong; Zhang, Jingxue
The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Chaney, Eric J.; Criley, Jennifer M.; Spillman, Darold R.; Hutchison, Phaedra B.; Li, Joanne; Marjanovic, Marina; Frey, Steve; Cook, Steven; Boppart, Stephen A.; Arp, Zane A.
2017-02-01
Currently there is a lack of in vivo techniques to evaluate the spatial bio-distribution of dermal drugs over time without the need to take multiple serial biopsies. To address this gap, we investigated the use of multi-photon optical imaging methods to non-invasively track drug distribution on miniature pig (Species: Sus scrofa, Strain: Göttingen) skin in vivo. Minipig skin is the standard comparative research model to human skin, and is anatomically and functionally similar. We employed fluorescence lifetime imaging microscopy (FLIM) to visualize the spatial distribution and residency time of a topically applied experimental dermatological cream. This was made possible by the endogenous fluorescent optical properties of the experimental drug (fluorescence lifetime > 3000 ps). Two different drug formulations were applied on 2 minipigs for 7 consecutive days, with the control creams applied on the contralateral side, followed by 7 days of post-application monitoring using a multi-modal optical imaging system (MPTflex-CARS, JenLab, Germany). FLIM images were obtained from the treated regions 24 hr post-application from day 1 to day 14 that allowed visualization of cellular and sub-cellular features associated with different dermal layers non-invasively to a depth of 200 µm. Five punch biopsies per animal were obtained from the corresponding treated regions between days 8 and 14 for bioanalytical analysis and comparison with results obtained using FLIM. In conclusion, utilization of non-invasive optical biopsy methods for dermal drug evaluation can provide true longitudinal monitoring of drug spatial distribution, remove sampling limitations, and be more time-efficient compared to traditional methods.
Optical control and study of biological processes at the single-cell level in a live organism
NASA Astrophysics Data System (ADS)
Feng, Zhiping; Zhang, Weiting; Xu, Jianmin; Gauron, Carole; Ducos, Bertrand; Vriz, Sophie; Volovitch, Michel; Jullien, Ludovic; Weiss, Shimon; Bensimon, David
2013-07-01
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on ‘single-cell physiology’ (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Saravanan, Manoharan; Karthika, Subramanian; Malarvizhi, Annamalai; Ramesh, Mathan
2011-11-15
Investigation on the toxic effects of pharmaceutical drugs namely clofibric acid (CA) and diclofenac (DCF) were studied in a common carp Cyprinus carpio at different concentrations such as 1, 10 and 100 μg L(-1) for a short-term period of 96 h under static bioassay method. At all concentrations, red blood cell (RBC), plasma sodium (Na(+)), potassium (K(+)), and glutamate oxaloacetate transaminase (GOT) levels were decreased in fish treated with CA and DCF. Contrastingly, white blood cell (WBC), plasma glucose, protein, lactate dehydrogenase (LDH) and gill Na(+)/K(+)-ATPase level were increased. However, a mixed trend was observed in hemoglobin (Hb), hematocrit (Hct), plasma chloride (Cl(-)), mean cellular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC) and glutamate pyruvate transaminase (GPT) levels. There was a significant (P<0.01 and P<0.05) change in all parameters measured in fish exposed to different concentrations of CA and DCF. In summary, the alterations in hematological, biochemical, ionoregulatory and enzymological parameters can be used as biomarkers in monitoring the toxicity of CA and DCF in aquatic environment. However, more detailed studies on using of specific biomarkers to monitor the human pharmaceuticals are needed. Copyright © 2011 Elsevier B.V. All rights reserved.
IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE
Hamrah, Pedram
2014-01-01
Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045
Integration of Mobil Satellite and Cellular Systems
NASA Technical Reports Server (NTRS)
Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X
2017-03-22
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential
NASA Astrophysics Data System (ADS)
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.
2017-03-01
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.
The architecture and conservation pattern of whole-cell control circuitry.
McAdams, Harley H; Shapiro, Lucy
2011-05-27
The control circuitry that directs and paces Caulobacter cell cycle progression involves the entire cell operating as an integrated system. This control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates orderly activation of cell cycle subsystems and Caulobacter's asymmetric cell division. The proteins of the Caulobacter cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. This pattern is similar to that observed for the "kernels" of the regulatory networks that regulate development of metazoan body plans. The Caulobacter cell cycle control system has been exquisitely optimized as a total system for robust operation in the face of internal stochastic noise and environmental uncertainty. When sufficient details accumulate, as for Caulobacter cell cycle regulation, the system design has been found to be eminently rational and indeed consistent with good design practices for human-designed asynchronous control systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Advances in targeted proteomics and applications to biomedical research
Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.
2016-01-01
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376
Advances in targeted proteomics and applications to biomedical research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Song, Ehwang; Nie, Song
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications inmore » human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.« less
Systems microscopy: an emerging strategy for the life sciences.
Lock, John G; Strömblad, Staffan
2010-05-01
Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, T.; Borevitz, J. O.; Zimmermann, C.
2010-12-01
We have a developed a camera system that can record hourly, gigapixel (multi-billion pixel) scale images of an ecosystem in a 360x90 degree panorama. The “Gigavision” camera system is solar-powered and can wirelessly stream data to a server. Quantitative data collection from multiyear timelapse gigapixel images is facilitated through an innovative web-based toolkit for recording time-series data on developmental stages (phenology) from any plant in the camera’s field of view. Gigapixel images enable time-series recording of entire landscapes with a resolution sufficient to record phenology from a majority of individuals in entire populations of plants. When coupled with next generation sequencing, quantitative population genomics can be performed in a landscape context linking ecology and evolution in situ and in real time. The Gigavision camera system achieves gigapixel image resolution by recording rows and columns of overlapping megapixel images. These images are stitched together into a single gigapixel resolution image using commercially available panorama software. Hardware consists of a 5-18 megapixel resolution DSLR or Network IP camera mounted on a pair of heavy-duty servo motors that provide pan-tilt capabilities. The servos and camera are controlled with a low-power Windows PC. Servo movement, power switching, and system status monitoring are enabled with Phidgets-brand sensor boards. System temperature, humidity, power usage, and battery voltage are all monitored at 5 minute intervals. All sensor data is uploaded via cellular or 802.11 wireless to an interactive online interface for easy remote monitoring of system status. Systems with direct internet connections upload the full sized images directly to our automated stitching server where they are stitched and available online for viewing within an hour of capture. Systems with cellular wireless upload an 80 megapixel “thumbnail” of each larger panorama and full-sized images are manually retrieved at bi-weekly intervals. Our longer-term goal is to make gigapixel time-lapse datasets available online in an interactive interface that layers plant-level phenology data with gigapixel resolution images, genomic sequence data from individual plants with weather and other abitotic sensor data. Co-visualization of all of these data types provides researchers with a powerful new tool for examining complex ecological interactions across scales from the individual to the ecosystem. We will present detailed phenostage data from more than 100 plants of multiple species from our Gigavision timelapse camera at our “Big Blowout East” field site in the Indiana Dunes State Park, IN. This camera has been recording three to four 700 million pixel images a day since February 28, 2010. The camera field of view covers an area of about 7 hectares resulting in an average image resolution of about 1 pixel per centimeter over the entire site. We will also discuss some of the many technological challenges with developing and maintaining these types of hardware systems, collecting quantitative data from gigapixel resolution time-lapse data and effectively managing terabyte-sized datasets of millions of images.
NASA Astrophysics Data System (ADS)
Davies-Shaw, Dana; Huser, Thomas R.
2008-02-01
We report on the successful development of a custom in vitro system that provides a physiologically relevant means of demonstrating optical methodologies for the calibration and validation of oxygen delivery and hemoglobin oxygen binding dynamics in the brain. While measured optical signals have generally been equated to heme absorbance values that are, in turn, presumed to correspond to oxygen delivery, there has been little specific study of the sigmoidal oxygen binding dynamics of hemoglobin, a tetrameric protein, within physiologically relevant parameters. Our development of this novel analytical device addresses this issue, and is a significant step towards the minimally invasive and real-time monitoring of spatially resolved cognitive processes. As such, it is of particular interest for the detection of autistic brain activity in infants and young children. Moreover, our device and approach bring with them the ability to quantify and spatially resolve oxygen delivery down to volumes relevant to individual cell oxygen uptake, without any oxygen consumption, and with a temporal resolution that is physically unachievable by any oxygen tracking modality such as fMRI etc. Such a capability opens up myriad possibilities for further investigation, such as real-time tumor biopsy and resection; the tracking and quantification of cellular proliferation, as well as metabolic measures of tissue viability, to name but a few. Our system has also been engineered to be synergistic with virtually all imaging techniques, optical and otherwise.
NASA Astrophysics Data System (ADS)
Martin, Michael C.; Holman, Hoi-Ying N.; Blakely, Eleanor A.; Goth-Goldstein, Regine; McKinney, Wayne R.
2000-03-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR FTIR microscopy probes intact living cells providing a composite view of all of the molecular responses and the ability to monitor the responses over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low-doses of radiation and chemicals. In this study we used high spatial-resolution SR FTIR vibrational spectromicroscopy at ALS Beamline 1.4.3 as a sensitive analytical tool to detect chemical- and radiation-induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of oxidative stresses: bleomycin, hydrogen peroxide, and X-rays. We observe spectral changes that are unique to each exogenous stressor. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio-compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Capacity on wireless quantum cellular communication system
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Lacroix, C; Duvieilbourg, E; Guillou, N; Guyomarch, J; Bassoulet, C; Moraga, D; Chapalain, G; Auffret, M
2017-08-01
Coastal waters corresponding to macrotidal systems are among the most variable marine biotopes. Sessile animals as bivalve mollusks may however be found forming intertidal beds at high densities, as allowed by full adaptation to local conditions. A better knowledge of adaptive responses to environmental factors is required to foresee possible adverse effects of global change. At the sub-cellular level, transcriptional responses are among the earliest signals of environmental disturbances and they can reveal subtle and meaningful changes in organism exposed to stress. Three blue mussel (Mytilus spp.) populations inhabiting the Bay of Brest (France) in sites exposed to different levels of chronic pollution, from low to moderate, were surveyed upon a seasonal schedule, with special attention to the reproductive cycle. Major seawater parameters were monitored over a full-year in the framework of the S!RANO project, based on an automatic high frequency acquisition system installed aboard a ship of opportunity. The health status of mussels has been assessed by measuring a condition index and gametogenesis has been followed by histology. Selected biological responses to environmental stress were detected using a multimarker approach including expression of genes involved in chemical stress response and energetic metabolism, and cellular immune parameters. Environmental parameters showed deep seasonal variations which differed among sites. Most biological responses followed a seasonal pattern. Late winter and spring corresponded to an active reproduction period in the Bay of Brest. Earlier spawning was observed in harbor areas compared to the oceanic site and an altered physiological state was assumed in commercial harbor mussels during the reproductive period, suggesting that their health is compromised at this time of year. However, no signs of severe chemical stress were detected in both harbor mussel populations, which could reflect adaptive responses to adverse environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physically-Induced Cytoskeleton Remodeling of Cells in Three-Dimensional Culture
Lee, Sheng-Lin; Nekouzadeh, Ali; Butler, Boyd; Pryse, Kenneth M.; McConnaughey, William B.; Nathan, Adam C.; Legant, Wesley R.; Schaefer, Pascal M.; Pless, Robert B.
2012-01-01
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension. PMID:23300512
Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.
Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan
2017-10-31
A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.
Efficacy of adoptive cellular therapy in patients with gastric cancer: a meta-analysis.
Shen, Dong; Liu, Zhi-Hao; Xu, Jia-Ning; Xu, Fang; Lin, Qin-Feng; Lin, Feng; Mao, Wei-Dong
2016-07-01
To systemically evaluate the efficacy and safety of adoptive cellular therapy for the treatment of gastric cancer (GC). We performed a systemic review and meta-analysis of nine eligible trials with GC and evaluated the effect of adoptive cellular therapy on the overall survival (OS) rate, T-cell subsets and adverse events. Overall, 829 patients were involved in the analysis. Adoptive cellular therapy significantly improved the OS rate compared with the control group. Meanwhile, we observed greatly increased percentages of CD3(+), CD4(+) and CD4(+)/CD8(+) in cellular therapy groups. Adoptive cellular therapy combined with adjuvant therapy resulted in significantly better OS rates, progression-free survival and T-lymphocyte responses in patients with GC.
MSAT and cellular hybrid networking
NASA Astrophysics Data System (ADS)
Baranowsky, Patrick W., II
Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.
A microfluidic in-line ELISA for measuring secreted protein under perfusion.
Luan, Qiyue; Cahoon, Stacey; Wu, Agnes; Bale, Shyam Sundhar; Yarmush, Martin; Bhushan, Abhinav
2017-11-11
Recent progress in the development of microfluidic microphysiological systems such as 'organs-on-chips' and microfabricated cell culture is geared to simulate organ-level physiology. These tissue models leverage microengineering technologies that provide capabilities of presenting cultured cells with input signals in a more physiologically relevant context such as perfused flow. Proteins that are secreted from cells have important information about the health of the cells. Techniques to quantify cellular proteins include mass spectrometry to ELISA (enzyme-linked immunosorbent assay). Although our capability to perturb the cells in the microphysiological systems with varying inputs is well established, we lack the tools to monitor in-line the cellular responses. User intervention for sample collection and off-site is cumbersome, causes delays in obtaining results, and is especially expensive because of collection, storage, and offline processing of the samples, and in many case, technically impractical to carry out because of limitated sample volumes. To address these shortcomings, we report the development of an ELISA that is carried out in-line under perfusion within a microfluidic device. Using this assay, we measured the albumin secreted from perfused hepatocytes without and under stimulation by IL-6. Since the method is based on a sandwich ELISA, we envision broad application of this technology to not just organs-on-chips but also to characterizing the temporal release and measurement of soluble factors and response to drugs.
NASA Technical Reports Server (NTRS)
Kitaya, Y.; Azuma, H.; Kiyota, M.
2005-01-01
Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.
Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro
Hayes, Amanda; Bakand, Shahnaz
2013-01-01
Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5 μm which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30–60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
Development of a wide-field fluorescence imaging system for evaluation of wound re-epithelialization
NASA Astrophysics Data System (ADS)
Franco, Walfre; Gutierrez-Herrera, Enoch; Purschke, Martin; Wang, Ying; Tam, Josh; Anderson, R. Rox; Doukas, Apostolos
2013-03-01
Normal skin barrier function depends on having a viable epidermis, an epithelial layer formed by keratinocytes. The transparent epidermis, which is less than a 100 mum thick, is nearly impossible to see. Thus, the clinical evaluation of re-epithelialization is difficult, which hinders selecting appropriate therapy for promoting wound healing. An imaging system was developed to evaluate epithelialization by detecting endogenous fluorescence emissions of cellular proliferation over a wide field of view. A custom-made 295 nm ultraviolet (UV) light source was used for excitation. Detection was done by integrating a near-UV camera with sensitivity down to 300 nm, a 12 mm quartz lens with iris and focus lock for the UV regime, and a fluorescence bandpass filter with 340 nm center wavelength. To demonstrate that changes in fluorescence are related to cellular processes, the epithelialization of a skin substitute was monitored in vitro. The skin substitute or construct was made by embedding microscopic live human skin tissue columns, 1 mm in diameter and spaced 1 mm apart, in acellular porcine dermis. Fluorescence emissions clearly delineate the extent of lateral surface migration of keratinocytes and the total surface covered by the new epithelium. The fluorescence image of new epidermis spatially correlates with the corresponding color image. A simple, user-friendly way of imaging the presence of skin epithelium would improve wound care in civilian burns, ulcers and surgeries.
A full computation-relevant topological dynamics classification of elementary cellular automata.
Schüle, Martin; Stoop, Ruedi
2012-12-01
Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."
NASA Astrophysics Data System (ADS)
Stojicic, Nevena; Walrafen, David; Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Weisshaar, Maria-Paz; Horneck, Gerda
Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SOS-LUX test, which represents the radiobiological part of the German space experiment "Gene, immune and cellular responses to single and combined space flight conditions (TRIPLE-LUX)" which has been selected by the IDI/USRA Peer Review Panel for NASA/ESA to be performed on the International Space Station (ISS). It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). The luminescent/fluorescent bioassay SWITCH (SWITCH: Salmonella Weighting of Induced Toxicity Cyto/GenoTox for Human Health) as successor of the SOS-LUX test for rapid toxicity (genotoxicity and cytotoxicity) testing, makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-LUX test and the LAC- Fluoro test. The SWITCH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage-dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of β-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation of various qualities (from UVC to UVA) have given insights into cellular mechanisms relevant for estimation of health risks, resulting from exposure of astronauts to the extraordinary radiation environment of space.
Systems biology of cellular membranes: a convergence with biophysics.
Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini
2017-09-01
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L
2017-03-01
Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.
Qiu, Feng; Wang, Dali; Zhu, Qi; Zhu, Lijuan; Tong, Gangsheng; Lu, Yunfeng; Yan, Deyue; Zhu, Xinyuan
2014-04-14
Chemotherapy is one of the major systemic treatments for cancer, in which the drug release kinetics is a key factor for drug delivery. In the present work, a versatile fluorescence-based real-time monitoring system for intracellular drug release has been developed. First, two kinds of star-conjugated copolymers with different connections (e.g., pH-responsive acylhydrazone and stable ether) between a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms were synthesized. Owing to the amphiphilic three-dimensional architecture, the star-conjugated copolymers could self-assemble into multimicelle aggregates from unimolecular micelles with excellent emission performance in the aqueous medium. When doxorubicin (DOX) as a model drug was encapsulated into copolymer micelles, the emission of star-conjugated copolymer and DOX was quenched. In vitro biological studies revealed that fluorescent intensities of both star-conjugated copolymer and DOX were activated when the drug was released from copolymeric micelles, resulting in the enhanced cellular proliferation inhibition against cancer cells. Importantly, pH-responsive feature of the star-conjugated copolymer with acylhydrazone linkage exhibited accelerated DOX release at a mildly acidic environment, because of the fast breakage of acylhydrazone in endosome or lysosome of tumor cells. Such fluorescent star-conjugated copolymers may open up new perspectives to real-time study of drug release kinetics of polymeric drug delivery systems for cancer therapy.
Radio-frequency energy harvesting for wearable sensors.
Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko
2015-02-01
The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaofei; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036; Deng, Ping
Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings themore » split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.« less
Learning to swim, again: Axon regeneration in fish.
Rasmussen, Jeffrey P; Sagasti, Alvaro
2017-01-01
Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental Monitoring Using Sensor Networks
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.
2008-12-01
Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired sensor system and the WSN-based wireless sensor system. The RFG also supports remote manipulation of the devices in the field such as the SBC, datalogger, and WSN. Sensor data collected from the distributed monitoring stations are stored in a database (DB) Server. The CDC Server acts as an intermediate component to hide the heterogeneity of different devices and support data validation required by the DB Server. Daemon programs running on the CDC Server pre-process the data before it is inserted into the database, and periodically perform synchronization tasks. A SWE-compliant data repository is installed to enable data exchange, accepting data from both internal DB Server and external sources through the OGC web services. The web portal, i.e. TEO Online, serves as a user-friendly interface for data visualization, analysis, synthesis, modeling, and K-12 educational outreach activities. It also provides useful capabilities for system developers and operators to remotely monitor system status and remotely update software and system configuration, which greatly simplifies the system debugging and maintenance tasks. We also implement Sensor Observation Services (SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The standard SensorML/O&M data representation makes it easy to integrate our sensor data into the existing Geographic Information Systems (GIS) web services and exchange the data with other organizations.
Wires, Emily S; Henderson, Mark J; Yan, Xiaokang; Bäck, Susanne; Trychta, Kathleen A; Lutrey, Molly H; Harvey, Brandon K
2017-01-01
The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Faro, Alberto; Giordano, Daniela; Spampinato, Concetto
2008-06-01
This paper proposes a traffic monitoring architecture based on a high-speed communication network whose nodes are equipped with fuzzy processors and cellular neural network (CNN) embedded systems. It implements a real-time mobility information system where visual human perceptions sent by people working on the territory and video-sequences of traffic taken from webcams are jointly processed to evaluate the fundamental traffic parameters for every street of a metropolitan area. This paper presents the whole methodology for data collection and analysis and compares the accuracy and the processing time of the proposed soft computing techniques with other existing algorithms. Moreover, this paper discusses when and why it is recommended to fuse the visual perceptions of the traffic with the automated measurements taken from the webcams to compute the maximum traveling time that is likely needed to reach any destination in the traffic network.
Advances in microfluidic devices made from thermoplastics used in cell biology and analyses.
Gencturk, Elif; Mutlu, Senol; Ulgen, Kutlu O
2017-09-01
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Research of Pedestrian Crossing Safety Facilities Based on the Video Detection
NASA Astrophysics Data System (ADS)
Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun
Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.
Hetmann, Anna; Wujak, Magdalena; Bolibok, Paulina; Zięba, Wojciech; Wiśniewski, Marek; Roszek, Katarzyna
2018-07-01
In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved. Copyright © 2018 Elsevier B.V. All rights reserved.
Ladner, Tobias; Flitsch, David; Schlepütz, Tino; Büchs, Jochen
2015-10-09
During the past years, new high-throughput screening systems with capabilities of online monitoring turned out to be powerful tools for the characterization of microbial cell cultures. These systems are often easy to use, offer economic advantages compared to larger systems and allow to determine many important process parameters within short time. Fluorescent protein tags tremendously simplified the tracking and observation of cellular activity in vivo. Unfortunately, interferences between established fluorescence based dissolved oxygen tension (DOT) measurement techniques and fluorescence-based protein tags appeared. Therefore, the applicability of new oxygen-sensitive nanoparticles operated within the more suitable infrared wavelength region are introduced and validated for DOT measurement. The biocompatibility of the used dispersed oxygen-sensitive nanoparticles was proven via RAMOS cultivations for Hansenula polymorpha, Gluconobacter oxydans, and Escherichia coli. The applicability of the introduced DOT measurement technique for online monitoring of cultivations was demonstrated and successfully validated. The nanoparticles showed no disturbing effect on the online measurement of the fluorescence intensities of the proteins GFP, mCherry and YFP measured by a BioLector prototype. Additionally, the DOT measurement was not influenced by changing concentrations of these proteins. The kLa values for the applied cultivation conditions were successfully determined based on the measured DOT. The introduced technique appeared to be practically as well as economically advantageous for DOT online measuring in microtiter plates. The disadvantage of limited availability of microtiter plates with immobilized sensor spots (optodes) does not apply for this introduced technique. Due to the infrared wavelength range, used for the DOT measurement, no interferences with biogenic fluorescence or with expressed fluorescent proteins (e.g. YFP, GFP or mCherry) occur.
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law
Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo
2006-01-01
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283
Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems
Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.
2014-01-01
Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092
Selfish cellular networks and the evolution of complex organisms.
Kourilsky, Philippe
2012-03-01
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development
Koto, Akiko; Kuranaga, Erina
2009-01-01
The caspases comprise a family of cysteine proteases that function in various cellular processes, including apoptosis. However, how the balance is struck between the caspases’ role in cell death and their nonapoptotic functions is unclear. To address this issue, we monitored the protein turnover of an endogenous caspase inhibitor, Drosophila IAP1 (DIAP1). DIAP1 is an E3 ubiquitin ligase that promotes the ubiquitination of caspases and thereby prevents caspase activation. For this study, we developed a fluorescent probe to monitor DIAP1 turnover in the external sensory organ precursor (SOP) lineage of living Drosophila. The SOP divides asymmetrically to make the shaft, socket, and sheath cells, and the neuron that comprise each sensory organ. We found that the quantity of DIAP1 changed dramatically depending on the cell type and maturity, and that the temporal regulation of DIAP1 turnover determines whether caspases function nonapoptotically in cellular morphogenesis or cause cell death. PMID:19822670
Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking
NASA Astrophysics Data System (ADS)
Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata
2016-12-01
A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.
Ibarra-Meneses, Ana V; Ghosh, Prakash; Hossain, Faria; Chowdhury, Rajashree; Mondal, Dinesh; Alvar, Jorge; Moreno, Javier; Carrillo, Eugenia
2017-01-01
New biomarkers are needed for monitoring the effectiveness of treatment for visceral leishmaniasis (VL). They might also improve the detection of the asymptomatic population in Leishmania- endemic areas. This paper examines the IL-2, IFN-γ, IFN-γ-induced protein 10 (IP-10), and monokine-induced-by-IFN-γ (MIG) levels in whole blood-stimulated in vitro with soluble Leishmania antigen (SLA)-taken from asymptomatic individuals and patients treated for VL living in a post-outbreak ( Leishmania infantum ) area in Spain, and in an endemic ( Leishmania donovani ) area of Bangladesh. IP-10 was found to be an accurate global marker of asymptomatic subjects with positive cellular/humoral tests, while MIG was found to be a better marker of contact with L. donovani than IL-2 but no for those with L. infantum . Determining IP-10, MIG, and IFN-γ levels proved useful in monitoring the cellular immune response following treatment for active disease caused by L. infantum .
Ibarra-Meneses, Ana V.; Ghosh, Prakash; Hossain, Faria; Chowdhury, Rajashree; Mondal, Dinesh; Alvar, Jorge; Moreno, Javier; Carrillo, Eugenia
2017-01-01
New biomarkers are needed for monitoring the effectiveness of treatment for visceral leishmaniasis (VL). They might also improve the detection of the asymptomatic population in Leishmania-endemic areas. This paper examines the IL-2, IFN-γ, IFN-γ-induced protein 10 (IP-10), and monokine-induced-by-IFN-γ (MIG) levels in whole blood—stimulated in vitro with soluble Leishmania antigen (SLA)—taken from asymptomatic individuals and patients treated for VL living in a post-outbreak (Leishmania infantum) area in Spain, and in an endemic (Leishmania donovani) area of Bangladesh. IP-10 was found to be an accurate global marker of asymptomatic subjects with positive cellular/humoral tests, while MIG was found to be a better marker of contact with L. donovani than IL-2 but no for those with L. infantum. Determining IP-10, MIG, and IFN-γ levels proved useful in monitoring the cellular immune response following treatment for active disease caused by L. infantum. PMID:28620584
Biomarkers for immunotherapy in genitourinary malignancies.
Slovin, Susan F
2016-04-01
Immunotherapy for genitourinary malignancies such as prostate, renal, and bladder cancers has experienced a resurgence since the development of 3 novel strategies: the autologous cellular product therapy, Sipuleucel-T for prostate cancer, the checkpoint inhibitors, anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4), anti-programmed cell death ligand 1 (anti-PD1), and anti-programmed cell death ligand 1), respectively. These agents have led to strikingly durable responses in several of these solid tumors, but their efficacy has been inconsistent. Why all solid tumors are not equal in their response to these therapies is unclear. More importantly, changes in humoral or cellular responses which may reflect changes in a tumor's biology have been limited due to differences in immune monitoring and lack of consistency in established reliable immunologic endpoints. How to design immunologic end points that reflect a meaningful effect on the cancer remains a challenge for clinical trial development. The issues faced by clinical investigators and the current state of immune monitoring are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Monitoring Autophagy in Lysosomal Storage Disorders
Raben, Nina; Shea, Lauren; Hill, Victoria; Plotz, Paul
2009-01-01
Lysosomes are the final destination of the autophagic pathway. It is in the acidic milieu of the lysosomes that autophagic cargo is metabolized and recycled. One would expect that diseases with primary lysosomal defects would be among the first systems in which autophagy would be studied. In reality, this is not the case. Lysosomal storage diseases, a group of more than 60 diverse inherited disorders, have only recently become a focus of autophagic research. Studies of these clinically severe conditions promise not only to clarify pathogenic mechanisms, but also to expand our knowledge of autophagy itself. In this chapter, we will describe the lysosomal storage diseases in which autophagy has been explored, and present the approaches used to evaluate this essential cellular pathway. PMID:19216919
Carbon monoxide – physiology, detection and controlled release
Heinemann, Stefan H.; Hoshi, Toshinori; Westerhausen, Matthias
2014-01-01
Carbon monoxide (CO) is increasingly recognized as a cell-signalling molecule akin to nitric oxide (NO). CO has attracted particular attention as a potential therapeutic agent because of its reported anti-hypertensive, anti-inflammatory and cell-protective effects. We discuss recent progress in identifying new effector systems and elucidating the mechanisms of action of CO on, e.g., ion channels, as well as the design of novel methods to monitor CO in cellular environments. We also report on recent developments in the area of CO-releasing molecules (CORMs) and materials for controlled CO application. Novel triggers for CO release, metal carbonyls and degradation mechanisms of CORMs, are highlighted. In addition, potential formulations of CORMs for targeted CO release are discussed. PMID:24556640
The neurogenetic frontier--lessons from misbehaving zebrafish.
Burgess, Harold A; Granato, Michael
2008-11-01
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.
The neurogenetic frontier—lessons from misbehaving zebrafish
Granato, Michael
2008-01-01
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
NASA Technical Reports Server (NTRS)
Siconolfi, Steven F. (Inventor)
2000-01-01
Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.
Shirasaki, Yoshitaka; Yamagishi, Mai; Shimura, Nanako; Hijikata, Atsushi; Ohara, Osamu
2013-01-01
The immune system is a very complex and dynamic cellular system, and its intricacies are considered akin to those of human society. Disturbance of homeostasis of the immune system results in various types of diseases; therefore, the homeostatic mechanism of the immune system has long been a subject of great interest in biology, and a lot of information has been accumulated at the cellular and the molecular levels. However, the sociological aspects of the immune system remain too abstract to address because of its high complexity, which mainly originates from a large number and variety of cell-cell interactions. As long-range interactions mediated by cytokines play a key role in the homeostasis of the immune system, cytokine secretion analyses, ranging from analyses of the micro level of individual cells to the macro level of a bulk of cell ensembles, provide us with a solid basis of a sociological viewpoint of the immune system. In this review, as the first step toward a comprehensive understanding of immune cell sociology, cytokine secretion of immune cells is surveyed with a special emphasis on the single-cell level, which has been overlooked but should serve as a basis of immune cell sociology. Now that it has become evident that large cell-to-cell variations in cytokine secretion exist at the single-cell level, we face a tricky yet interesting question: How is homeostasis maintained when the system is composed of intrinsically noisy agents? In this context, we discuss how the heterogeneity of cytokine secretion at the single-cell level affects our view of immune cell sociology. While the apparent inconsistency between homeostasis and cell-to-cell heterogeneity is difficult to address by a conventional reductive approach, comparison and integration of single-cell data with macroscopic data will offer us a new direction for the comprehensive understanding of immune cell sociology. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.
Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W
2016-11-15
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.
Little, William C.; Smith, Michael L.; Ebneter, Urs; Vogel, Viola
2013-01-01
In response to growing needs for quantitative biochemical and cellular assays that address whether the extracellular matrix (ECM) acts as a mechanochemical signal converter to co-regulate cellular mechanotransduction processes, a new assay is presented where plasma fibronectin fibers are manually deposited onto elastic sheets, while force-induced changes in protein conformation are monitored by fluorescence resonance energy transfer (FRET). Fully relaxed assay fibers can be stretched at least 5–6 fold, which involves Fn domain unfolding, before the fibers break. In native fibroblast ECM, this full range of stretch-regulated conformations coexists in every field of view confirming that the assay fibers are physiologically relevant model systems. Since alterations of protein function will directly correlate with their extension in response to force, the FRET vs. strain curves presented herein enable the mapping of fibronectin strain distributions in 2D and 3D cell cultures with high spatial resolution. Finally, cryptic sites for fibronectin’s N-terminal 70-kD fragment were found to be exposed at relatively low strain, demonstrating the assay’s potential to analyze stretch-regulated protein-rotein interactions. PMID:18417335
Fridman, Yulia; Holland, Neta; Elbaum, Rivka; Savaldi-Goldstein, Sigal
2016-05-10
Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth.
Tissue vascularization through 3D printing: Will technology bring us flow?
Paulsen, S J; Miller, J S
2015-05-01
Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.
Fridman, Yulia; Holland, Neta; Elbaum, Rivka; Savaldi-Goldstein, Sigal
2016-01-01
Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth. PMID:27214583
Diffusion MRI in early cancer therapeutic response assessment
Galbán, C. J.; Hoff, B. A.; Chenevert, T. L.; Ross, B. D.
2016-01-01
Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. PMID:26773848
Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage
NASA Astrophysics Data System (ADS)
Krüger, Harald R.; Nagel, Gregor; Wedepohl, Stefanie; Calderón, Marcelo
2015-02-01
Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening.Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening. Electronic supplementary information (ESI) available: Including detailed synthetic procedures of the dye and conjugate synthesis, as well as cellular uptake and inhibitor studies. See DOI: 10.1039/c4nr04467c
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.
2016-12-01
A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.
2017-12-01
A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.
Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research
Stuker, Florian; Ripoll, Jorge; Rudin, Markus
2011-01-01
Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495
Quantification of mammalian tumor cell state plasticity with digital holographic cytometry
NASA Astrophysics Data System (ADS)
Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.
2018-02-01
Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.
Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz
2007-05-01
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.
Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz
2007-01-01
Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541
NASA Astrophysics Data System (ADS)
Gibbs, Summer L.; O'Hara, Julia A.; Hoopes, P. Jack; Pogue, Brian W.
2007-02-01
The Aminolevulinic Acid (ALA) - Protoporphyrin IX (PpIX) system is unique in the world of photosensitizers in that the prodrug ALA is enzymatically transformed via the tissue of interest into fluorescently detectable levels of PpIX. This system can be used to monitor cellular metabolism of tumor tissue for applications such as therapy monitoring. Detecting PpIX fluorescence noninvasively has proven difficult due to the high levels of PpIX produced in the skin compared to other tissue both with and without ALA administration. In the current study, methods to decrease skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration have been examined. Use of a purified diet is found to decrease both skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration, while addition of a broad spectrum antibiotic to the water shows little effect. Following ALA administration, improved brain tumor detection is seen when skin PpIX fluorescence is photobleached via blue light prior to transmission spectroscopic measurements of tumor bearing and control animals. Both of these methods to decrease skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration are shown to have a large effect on the ability to detect tumor tissue PpIX fluorescence noninvasively in vivo.
Advancing ovarian folliculometry with selective plane illumination microscopy
NASA Astrophysics Data System (ADS)
Lin, Hsiao-Chun Amy; Dutta, Rahul; Mandal, Subhamoy; Kind, Alexander; Schnieke, Angelika; Razansky, Daniel
2016-12-01
Determination of ovarian status and follicle monitoring are common methods of diagnosing female infertility. We evaluated the suitability of selective plane illumination microscopy (SPIM) for the study of ovarian follicles. The large field of view and fast acquisition speed of our SPIM system enables rendering of volumetric image stacks from intact whole porcine ovarian follicles, clearly visualizing follicular features including follicle volume and average diameter (70 μm-2.5 mm), their spherical asymmetry parameters, size of developing cumulus oophorus complexes (40 μm-110 μm), and follicular wall thickness (90 μm-120 μm). Follicles at all developmental stages were identified. A distribution of the theca thickness was measured for each follicle, and a relationship between these distributions and the stages of follicular development was discerned. The ability of the system to non-destructively generate sub-cellular resolution 3D images of developing follicles, with excellent image contrast and high throughput capacity compared to conventional histology, suggests that it can be used to monitor follicular development and identify structural abnormalities indicative of ovarian ailments. Accurate folliculometric measurements provided by SPIM images can immensely help the understanding of ovarian physiology and provide important information for the proper management of ovarian diseases.
Light-sheet microscopy for quantitative ovarian folliculometry
NASA Astrophysics Data System (ADS)
Lin, Hsiao-Chun Amy; Dutta, Rahul; Mandal, Subhamoy; Kind, Alexander; Schnieke, Angelika; Razansky, Daniel
2017-02-01
Determination of ovarian status and follicle monitoring are common methods of diagnosing female infertility. We evaluated the suitability of selective plane illumination microscopy (SPIM) for the study of ovarian follicles. Owing to the large field of view and fast acquisition speed of our newly developed SPIM system, volumetric image stacks from entire intact samples of pig ovaries have been rendered demonstrating clearly discernible follicular features like follicle diameters (70 μm - 2.5 mm), size of developing Cumulus oophorus complexes (COC ) (40 μm - 110 μm), and follicular wall thicknesses (90 μm-120 μm). The observation of clearly distinguishable COCs protruding into the follicular antrum was also shown possible, and correlation with the developmental stage of the follicles was determined. Follicles of all developmental stages were identified, and even the small primordial follicle clusters forming the egg nest could be observed. The ability of the system to non-destructively generate sub-cellular resolution 3D images of developing follicles, with excellent image contrast and high throughput capacity compared to conventional histology, suggests that it can be used to monitor follicular development and identify structural abnormalities indicative of ovarian ailments. Accurate folliculometric measurements provided by SPIM images can immensely help the understanding of ovarian physiology and provide important information for the proper management of ovarian diseases.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Kosztin, Ioan
2013-03-01
Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.
Li, Dong; Zheng, Wei; Qu, Jianan Y
2008-10-15
A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.
Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.
2016-01-01
Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296
Traffic dynamics of an on-ramp system with a cellular automaton model
NASA Astrophysics Data System (ADS)
Li, Xin-Gang; Gao, Zi-You; Jia, Bin; Jiang, Rui
2010-06-01
This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.
Marquina, Maribel; Collado, Javier A; Pérez-Cruz, Magdiel; Fernández-Pernas, Pablo; Fafián-Labora, Juan; Blanco, Francisco J; Máñez, Rafael; Arufe, María C; Costa, Cristina
2017-01-01
Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions.
Research and Development of An In-situ Real-time Coastal Monitoring System
NASA Astrophysics Data System (ADS)
Deponte, D.; Cecco, R.; Laterza, R.; Medeot, N.; Nair, R.; Viezzoli, D.
The coastal area is a complex system in which the effects of the forcing terms on the circulation and mixing present a marked space-time variability on widely differing scales. In order to study such a system, it is necessary to monitor continuously, at high frequency, oceanographic and meteorological variables. To meet this need, the OGS has developed a coastal meteo-oceanographic buoy, called MAMBO, constituted by a float, a hull, a tripod and a powering system based on batteries recharged by so- lar panels that have been expressly designed and assembled by an in-house technical team. The buoy is equipped with a mechanical winch driving a multi-parametric pro- filing probe which provides data on pressure, temperature, salinity, dissolved oxygen, chlorophyll, pH and turbidity over the entire water column. Meteorological data (air temperature, barometric pressure and wind) are also measured. Data are acquired ev- ery 3 hours and transmitted via GSM cellular phone to a receiving station at the OGS in real-time where they are automatically subjected to a first level quality-check and made available to the public at the OGS web site. The buoy also serves as a convenient platform for a separate OGS-developed controller that manages an upward-looking ADCP-600kHz positioned on the sea floor close to the buoy. This controller regu- lates the ADCP power supply and permits the real-time transmission of pressure and current data to land via GSM cellular phone. Since there are no limitations due to bat- teries or memory capacity, currents can be sampled at high spatial and time resolution. Moreover, the controller permits to remotely change the configuration of the instru- ment in order to increase, for example, vertical resolution, and eventually, to record wave data. The first buoy of this type has been operating in the Gulf of Trieste (North Adriatic Sea) since 1998, and it is being continually improved. Two others, supplied additionally with a GPS, a radiometer and a hygrometer and improved with respect to some mechanical parts, have been deployed since June 2000, in the coastal area to the north of Sardinia (Tyrrhenian Sea). The development of an effective quality control procedure, that can be applied in real-time to the acquired data and that can permit the design of an efficient maintenance program for the buoy sensors, is in progress.
Marquina, Maribel; Collado, Javier A.; Pérez-Cruz, Magdiel; Fernández-Pernas, Pablo; Fafián-Labora, Juan; Blanco, Francisco J.; Máñez, Rafael; Arufe, María C.; Costa, Cristina
2017-01-01
Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions. PMID:29163532
NASA Astrophysics Data System (ADS)
Cohen, Luchino
Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.
Nieder, Michael L; McDonald, George B; Kida, Aiko; Hingorani, Sangeeta; Armenian, Saro H; Cooke, Kenneth R; Pulsipher, Michael A; Baker, K Scott
2011-11-01
Long-term complications after hematopoietic cell transplantation (HCT) have been studied in detail. Although virtually every organ system can be adversely affected after HCT, the underlying pathophysiology of these late effects remain incompletely understood. This article describes our current understanding of the pathophysiology of late effects involving the gastrointestinal, renal, cardiac, and pulmonary systems, and discusses post-HCT metabolic syndrome studies. Underlying diseases, pretransplantation exposures, transplantation conditioning regimens, graft-versus-host disease, and other treatments contribute to these problems. Because organ systems are interdependent, long-term complications with similar pathophysiologic mechanisms often involve multiple organ systems. Current data suggest that post-HCT organ complications result from cellular damage that leads to a cascade of complex events. The interplay between inflammatory processes and dysregulated cellular repair likely contributes to end-organ fibrosis and dysfunction. Although many long-term problems cannot be prevented, appropriate monitoring can enable detection and organ-preserving medical management at earlier stages. Current management strategies are aimed at minimizing symptoms and optimizing function. There remain significant gaps in our knowledge of the pathophysiology of therapy-related organ toxicities disease after HCT. These gaps can be addressed by closely examining disease biology and identifying those patients at greatest risk for adverse outcomes. In addition, strategies are needed for targeted disease prevention and health promotion efforts for individuals deemed at high risk because of their genetic makeup or specific exposure profile. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Immunological monitoring for prediction of clinical response to antitumor vaccine therapy.
Mikhaylova, Irina N; Shubina, Irina Zh; Chkadua, George Z; Petenko, Natalia N; Morozova, Lidia F; Burova, Olga S; Beabelashvili, Robert Sh; Parsunkova, Kermen A; Balatskaya, Natalia V; Chebanov, Dmitrii K; Pospelov, Vadim I; Nazarova, Valeria V; Vihrova, Anastasia S; Cheremushkin, Evgeny A; Molodyk, Alvina A; Kiselevsky, Mikhail V; Demidov, Lev V
2018-05-11
Immunotherapy has shown promising results in a variety of cancers, including melanoma. However, the responses to therapy are usually heterogeneous, and understanding the factors affecting clinical outcome is still not achieved. Here, we show that immunological monitoring of the vaccine therapy for melanoma patients may help to predict the clinical course of the disease. We studied cytokine profile of cellular Th1 (IL-2, IL-12, IFN-γ) and humoral Th2 (IL-4, IL-10) immune response, vascular endothelial growth factor (VEGFA), transforming growth factor-β 2 (TGF-β 2), S100 protein (S100A1B and S100BB), adhesion molecule CD44 and serum cytokines β2-microglobulin to analyze different peripheral blood mononuclear cell subpopuations of patients treated with dendritic vaccines and/or cyclophosphamide in melanoma patients in the course of adjuvant treatment. The obtained data indicate predominance of cellular immunity in the first adjuvant group of patients with durable time to progression and shift to humoral with low cellular immunity in patients with short-term period to progression (increased levels of IL-4 and IL- 10). Beta-2 microglobulin was differentially expressed in adjuvant subgroups: its higher levels correlated with shorter progression-free survival and the total follow-up time. Immunoregulatory index was overall higher in patients with disease progression compared to the group of patients with no signs of disease progression.
Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema
2017-01-01
Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773
A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.
Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin
2014-08-07
All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics
Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J.; Yoshida, Mari; Cronin, Leroy
2015-01-01
Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves. PMID:26558389
Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua
2018-02-01
This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.
A nanotube based electron microbeam cellular irradiator for radiobiology research
Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha
2008-01-01
A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1–100 Gy∕s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development. PMID:19123587
Arduino, Daniela M; Esteves, A Raquel; Silva, Diana F F; Martins-Branco, Diogo; Santos, Daniel; Pimentel, Diana F Gomes; Cardoso, Sandra M
2011-01-01
Cellular homeostasis relies on quality control systems so that damaged biologic structures are either repaired or degraded and entirely replaced by newly formed proteins or even organelles. The clearance of dysfunctional cellular structures in long-lived postmitotic cells, like neurons, is essential to eliminate, per example, defective mitochondria, lipofuscin-loaded lysosomes and oxidized proteins. Short-lived proteins are degraded mainly by proteases and proteasomes whether most long-lived proteins and all organelles are digested by autophagy in the lysosomes. Recently, it an interplay was established between the ubiquitin-proteasome system and macroautophagy, so that both degradative mechanisms compensate for each other. In this article we describe each of these clearance systems and their contribution to neuronal quality control. We will highlight some of the findings that provide evidence for the dysfunction of these systems in Alzheimer's and Parkinson's diseases. Ultimately, we provide an outline on potential therapeutic interventions based on the modulation of cellular degradative systems.
Macías, M T; Navarro, T; Lavara, A; Robredo, L M; Sierra, I; Lopez, M A
2003-01-01
The radioisotope techniques used in molecular and cellular biology involve external and internal irradiation risk. The personal dosemeter may be a reasonable indicator for external irradiation. However, it is necessary to control the possible internal contamination associated with the development of these techniques. The aim of this project is to analyse the most usual techniques and to establish programmes of internal monitoring for specific radionuclides (32P, 35S, 14C, 3H, 125I and 131I). To elaborate these programmes it was necessary to analyse the radioisotope techniques. Two models have been applied (NRPB and IAEA) to the more significant techniques, according to the physical and chemical nature of the radionuclides, their potential importance in occupational exposure and the possible injury to the genetic material of the cell. The results allowed the identification of the techniques with possible risk of internal contamination. It was necessary to identify groups of workers that require individual monitoring. The risk groups have been established among the professionals exposed, according to different parameters: the general characteristics of receptor, the radionuclides used (the same user can work with one, two or three radionuclides at the same time) and the results of the models applied. Also a control group was established. The study of possible intakes in these groups has been made by urinalysis and whole-body counter. The theoretical results are coherent with the experimental results. They have allowed guidance to individual monitoring to be proposed. Basically, the document shows: (1) the analysis of the radiosotopic techniques, taking into account the special containment equipment; (2) the establishment of the need of individual monitoring; and (3) the required frequency of measurements in a routine programme.
Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride
Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.
2013-01-01
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.
1994-01-01
Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.
NASA Astrophysics Data System (ADS)
Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe
2015-03-01
Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.
Jiao, Wan; Hagler, Gayle S W; Williams, Ronald W; Sharpe, Robert N; Weinstock, Lewis; Rice, Joann
2015-05-19
Continuous, long-term, and time-resolved measurement of outdoor air pollution has been limited by logistical hurdles and resource constraints. Measuring air pollution in more places is desired to address community concerns regarding local air quality impacts related to proximate sources, to provide data in areas lacking regional air monitoring altogether, or to support environmental awareness and education. This study integrated commercially available technologies to create the Village Green Project (VGP), a durable, solar-powered air monitoring park bench that measures real-time ozone, PM2.5, and meteorological parameters. The data are wirelessly transmitted via cellular modem to a server, where automated quality checks take place before data are provided to the public nearly instantaneously. Over 5500 h of data were successfully collected during the first ten months of pilot testing in Durham, North Carolina, with about 13 days (5.5%) of downtime because of low battery power. Additional data loss (4-14% depending on the measurement) was caused by infrequent wireless communication interruptions and instrument maintenance. The 94.5% operational time via solar power was within 1.5% of engineering calculations using historical solar data for the location. The performance of the VGP was evaluated by comparing the data to nearby air monitoring stations operating federal equivalent methods (FEM), which exhibited good agreement with the nearest benchmark FEMs for hourly ozone (r(2) = 0.79) and PM2.5 (r(2) = 0.76).
DOT National Transportation Integrated Search
2012-05-01
Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transport...
DOT National Transportation Integrated Search
2012-05-01
Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Tr...
2011-01-01
Background Numerous engineered nanomaterials (ENMs) exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB), uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf). We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs). Results We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs) (benign substances) or SWCNT (3-150 μg/ml) in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 μg/ml) treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots was linearly SWCNT-dose dependent. Lastly, the frequency never reversed at high dose SWCNT (100-150 μg/ml), and apoptosis/necrosis was documented in conventional 24 and 48 hr-assays. Conclusion These data suggest that the new QCMB detects and provides unique information about peak, sub-lethal and toxic exposures of living cells to ENMs before they are detected using conventional cell assays. PMID:21266033
NASA Astrophysics Data System (ADS)
Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto
2018-04-01
In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.
Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc
2013-01-01
Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536
Smartphone-based imaging of the corneal endothelium at sub-cellular resolution
NASA Astrophysics Data System (ADS)
Toslak, Devrim; Thapa, Damber; Erol, Muhammet Kazim; Chen, Yanjun; Yao, Xincheng
2017-07-01
This aim of this study was to test the feasibility of smartphone-based specular microscopy of the corneal endothelium at a sub-cellular resolution. Quantitative examination of endothelial cells is essential for evaluating corneal disease such as determining a diagnosis, monitoring progression and assessing treatment. Smartphone-based technology promises a new opportunity to develop affordable devices to foster quantitative examination of endothelial cells in rural and underserved areas. In our study, we incorporated an iPhone 6 and a slit lamp to demonstrate the feasibility of smartphone-based microscopy of the corneal endothelium at a sub-cellular resolution. The sub-cellular resolution images allowed quantitative calculation of the endothelial cell density. Comparative measurements revealed a normal endothelial cell density of 2978 cells/mm2 in the healthy cornea, and a significantly reduced cell density of 1466 cells/mm2 in the diseased cornea with Fuchs' dystrophy. Our ultimate goal is to develop a smartphone-based telemedicine device for low-cost examination of the corneal endothelium, which can benefit patients in rural areas and underdeveloped countries to reduce health care disparities.
47 CFR 27.2 - Permissible communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... bands. Operators in the 775-776 MHz and 805-806 MHz bands may not employ a cellular system architecture. A cellular system architecture is defined, for purposes of this part, as one that consists of many...
47 CFR 27.2 - Permissible communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... bands. Operators in the 775-776 MHz and 805-806 MHz bands may not employ a cellular system architecture. A cellular system architecture is defined, for purposes of this part, as one that consists of many...
Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation
Baker, Nicholas E.
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals. PMID:23472166
A cellular perspective on brain energy metabolism and functional imaging.
Magistretti, Pierre J; Allaman, Igor
2015-05-20
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. Copyright © 2015 Elsevier Inc. All rights reserved.
Developmental regulation of nucleolus size during Drosophila eye differentiation.
Baker, Nicholas E
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
The Transcription Factor EB Links Cellular Stress to the Immune Response
Nabar, Neel R.; Kehrl, John H.
2017-01-01
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB’s function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation. PMID:28656016
The Transcription Factor EB Links Cellular Stress to the Immune Response .
Nabar, Neel R; Kehrl, John H
2017-06-01
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.
Jacomin, Anne-Claire; Nezis, Ioannis P
2016-01-01
Oogenesis is a fundamental biological process for the transmission of genetic information to the next generations. Drosophila has proven to be a valuable model for elucidating the molecular and cellular mechanisms involved in this developmental process. It has been shown that autophagy participates in the maturation of the egg chamber. Here we provide a protocol for monitoring and quantification of the autophagic process in the Drosophila germline cells using the fluorescent reporters mCherry-DmAtg8a and GFP-mCherry-DmAtg8a.
IRE1: ER stress sensor and cell fate executor
Chen, Yani; Brandizzi, Federica
2013-01-01
Cells operate a signaling network termed unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). IRE1 is an ER transmembrane sensor that activates UPR to maintain ER and cellular function. While mammalian IRE1 promotes cell survive, it can initiate apoptosis via decay of anti-apoptotic microRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research. PMID:23880584
SABRE: a bio-inspired fault-tolerant electronic architecture.
Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M
2013-03-01
As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; BéruBé, K.; Krebs, T.
2016-12-01
Combustion emissions cause health effects. The HICE-Aerosol and Health project team studies the physicochemical properties as well as biological and toxicological effects on lung cells of combustion particle emissions. The chemical composition and physical parameters thoroughly characterized. Human lung cells are exposed to the diluted combustion exhaust fumes at the air-liquid interface (ALI), allowing a realistic lung-cell exposure by simulation of the lung situation. After exposure, cellular responses of the exposed lung cells are studied by multi-omics molecular biological analyses on transcriptomic, proteomic and metabolomic level. Emissions of wood combustion (log wood, pellet heater), ship diesel engines and car gasoline engines are addressed. Special field deployable ALI-exposition systems in a mobile S2-biological laboratory were set up and applied. Human alveolar epithelial cells (A549, BEAS2B and primary cells) as well as murine macrophages were ALI-exposed to diluted emissions. The cellular effects were then comprehensively characterized (viability, cyto-toxicology, multi-omics effects monitoring) and put in context with the chemical and physical aerosol data. The following order of overall cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions. Interestingly the effects-strength for log-wood and pellet burner emissions are similar, although PM-concentrations are much higher for the log-wood heater. Similar mild biological effects are observed for the gasoline car emissions. The ship diesel engine emissions induced the most intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions showed lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emission contain high concentrations of known toxicants (transition metals, polycyclic aromatics). This result was recently confirmed by experiments with murine RAW macrophages. Detailed analyses of the activated cellular response pathways, such as pro-inflammatory responses, xenobiotic metabolism, phagocytosis and oxidative stress were performed. The data is suggesting a large difference in relative toxicity for different combustion sources.
47 CFR 27.2 - Permissible communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Operators in the 775-776 MHz and 805-806 MHz bands may not employ a cellular system architecture. A cellular system architecture is defined, for purposes of this part, as one that consists of many small areas or...
47 CFR 27.2 - Permissible communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Operators in the 775-776 MHz and 805-806 MHz bands may not employ a cellular system architecture. A cellular system architecture is defined, for purposes of this part, as one that consists of many small areas or...
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew
2011-01-01
Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.
An optofluidic channel model for in vivo nanosensor networks in human blood
NASA Astrophysics Data System (ADS)
Johari, Pedram; Jornet, Josep M.
2017-05-01
In vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprece- dented sensing and actuation capabilities, which are able to operate inside the human body. iWNSNs are a disruptive technology that enables the monitoring and control of biological processes at the cellular and sub- cellular levels. Compared to ex vivo measurements, which are conducted on samples extracted from the human body, iWNSNs can track (sub) cellular processes when and where they occur. Major progress in the field of na- noelectronics, nanophotonics and wireless communication is enabling the interconnection of nanosensors. Among others, plasmonic nanolasers with sub-micrometric footprint, plasmonic nano-antennas able to confine light in nanometric structures, and single-photon detectors with unrivaled sensitivity, enable the communication among implanted nanosensors in the near infrared and optical transmission windows. Motivated by these results, in this paper, an optofluidic channel model is developed to investigate the communication properties and temporal dynamics between a pair of in vivo nanosensors in the human blood. The developed model builds upon the authors' recent work on light propagation modeling through multi-layered single cells and cell assemblies and takes into account the geometric, electromagnetic and microfluidic properties of red blood cells in the human circulatory system. The proposed model guides the development of practical communication strategies among nanosensors, and paves the way through new nano-biosensing strategies able to identify diseases by detecting the slight changes in the channel impulse response, caused by either the change in shape of the blood cells or the presence of pathogens.
Ju, Hee; Shim, Yumi; Arumugam, Parthasarathy; Song, Joon Myong
2016-01-22
Cancer stem cells (CSCs), known as tumor initiating cells, have become a critically important issue for cancer therapy. Although much research has demonstrated the induction of hepato cellular carcinoma by aflatoxin B1, the formation of hepatocellular CSCs and their quantitative determination is hardly reported. In this work, it was found that hepatocellular CSCs were produced from HepG2 cells by aflatoxin B1-induced mutation, and their amount was quantitatively determined using crosstalk-eliminated multicolor cellular imaging based on quantum dot (Qdot) nanoprobes and an acousto-optical tunable filter (AOTF). Hepatocellular CSCs were acquired via magnetic bead-based sorting and observed using concurrent detection of three different markers: CD133, CD44, and aldehyde dehydrogenase1 (ALDH1). The DNA mutation of HepG2 cells caused by aflatoxin B1 was quantitatively observed via absorbance spectra of aflatoxin B1-8, 9-epoxide-DNA adducts. The percentages of hepatocellular CSCs formed in the entire HepG2 cells were determined to be 9.77±0.65%, 10.9±1.39%, 11.4±1.32%, and 12.8±0.7%, respectively, at 0 μM, 5 μM, 10 μM, and 20 μM of aflatoxin B1. The results matched well with those obtained utilizing flow cytometry. This study demonstrates that aflatoxin mediated mutation induced the conversion of hepatic cancer cell to hepatic CSCs by using a Qdot based constructed multicolor cellular imaging system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew
2011-01-01
Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced substantially by combining it with other technologies for automated, miniaturized, high-throughput biological measurements, such as fast sequencing, protein identification (proteomics) and metabolite profiling (metabolomics). Thus, the system can be integrated with other biomedical instruments in order to support and enhance telemedicine capability onboard ISS. NASA's mission includes sustained investment in critical research leading to effective countermeasures to minimize the risks associated with human spaceflight, and the use of appropriate technology to sustain space exploration at reasonable cost. Our integrated microarray technology is expected to fulfill these two critical requirements and to enable the scientific community to better understand and monitor the effects of the space environment on microorganisms and on the astronaut, in the process leveraging current capabilities and overcoming present limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.
We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.
Calcium and ROS: A mutual interplay
Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga
2015-01-01
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
[THE SYSTEMIC IMMUNITY CELLULAR LINK REACTION IN PATIENTS WITH TRAUMATIC ILLNESS].
Plehutsa, I M; Sydorchuk, R I; Plehutsa, O M
2015-01-01
The effect of trauma on parameters of cellular immunity changes is studied. The study includes 52 patients with various forms of traumatic illness, aged 18-69 years (37.91-4.28). The control group consisted of 16 patients who underwent routine surgery not related to the pathology of musculoskeletal system. All patients of the main group were divided into 3 groups according to severity of the condition. Analysis of parameters of cellular link of immune system was performed by defining subpopulations of T-lymphocytes in indirect immunofluorescence method using a panel of monoclonal antibodies for CD3, CD4, CD8, CD22 lymphocytes' receptors and calculation of integrated indicators. The highest expression (immune disorders of II-III grades) of changes of cellular immunity observed in patients with severe traumatic: illness (expand clinical picture). Surgical intervention, even without traumatic injury significantly impact cellular immunity, but in patients with traumatic illness immunity violation were significantly higher than in comparison groups patients except immunoregulatory index.
Payne, Kyle K; Bear, Harry D; Manjili, Masoud H
2014-08-01
The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.
Prevalent Glucocorticoid and Androgen Activity in US Water Sources
Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki S.; Iwanowicz, Luke R.; Hager, Gordon L.
2012-01-01
Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations. PMID:23226835
Prevalent glucocorticoid and androgen activity in US water sources.
Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L
2012-01-01
Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.
3D/4D multiscale imaging in acute lymphoblastic leukemia cells: visualizing dynamics of cell death
NASA Astrophysics Data System (ADS)
Sarangapani, Sreelatha; Mohan, Rosmin Elsa; Patil, Ajeetkumar; Lang, Matthew J.; Asundi, Anand
2017-06-01
Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d'Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d'Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.
Magnetic effect for electrochemically driven cellular convection.
Nakabayashi, S; Inokuma, K; Karantonis, A
1999-06-01
Hydrodynamic instability analogous to Rayleigh-Bénard convection is observed in an electrolytic solution between two parallel copper wire electrodes. The laser interferometric technique can reveal the dissipation structure created by the motion of the fluid, which is controlled electrochemically. It is shown that under the presence of horizontal magnetic field the roll cells move horizontally along the electrodes. The electrochemically driven convection is simply controlled and monitored by setting and measuring the electrochemical parameters and forms many kinds of spatiotemporal patterns, especially under the magnetic field. The phenomenon is modeled by considering a Boussinesq fluid under a concentration gradient. The stability of the resulting equations is studied by linear stability analysis. The time dependent nonlinear system is investigated numerically and the main features of the experimental response are reproduced.
Stensberg, Matthew Charles; Wei, Qingshan; McLamore, Eric Scott; Porterfield, David Marshall; Wei, Alexander; Sepúlveda, Marĺa Soledad
2012-01-01
Silver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization. We include several proposed mechanisms of cytotoxicity based on such studies, as well as new opportunities for investigating the uptake and fate of Ag NPs in living systems. PMID:21793678
The Endoplasmic Reticulum-Associated Degradation Pathways of Budding Yeast
Thibault, Guillaume; Ng, Davis T.W.
2012-01-01
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast. PMID:23209158
Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.
Dekker, Linda; Polizzi, Karen M
2017-10-01
Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prevalent flucocorticoid and androgen activity in US water sources
Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.
2012-01-01
Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.
HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation
Lawag, Abdalla A.; Napper, Jennifer M.; Hunter, Caroline A.; Bacon, Nickolas A.; Deskins, Seth; El-hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C.
2017-01-01
Abstract Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%–90% of the cells die when placed in medium where the major growth factor is granulocyte–macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer. PMID:28910138
HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation.
Lawag, Abdalla A; Napper, Jennifer M; Hunter, Caroline A; Bacon, Nickolas A; Deskins, Seth; El-Hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C; Sollars, Vincent E
2017-10-01
Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer.
47 CFR 32.5003 - Cellular mobile revenue.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Cellular mobile revenue. 32.5003 Section 32.5003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5003 Cellular...
47 CFR 32.5003 - Cellular mobile revenue.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Cellular mobile revenue. 32.5003 Section 32.5003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5003 Cellular...
Big data in wildlife research: remote web-based monitoring of hibernating black bears.
Laske, Timothy G; Garshelis, David L; Iaizzo, Paul A
2014-12-11
Numerous innovations for the management and collection of "big data" have arisen in the field of medicine, including implantable computers and sensors, wireless data transmission, and web-based repositories for collecting and organizing information. Recently, human clinical devices have been deployed in captive and free-ranging wildlife to aid in the characterization of both normal physiology and the interaction of animals with their environment, including reactions to humans. Although these devices have had a significant impact on the types and quantities of information that can be collected, their utility has been limited by internal memory capacities, the efforts required to extract and analyze information, and by the necessity to handle the animals in order to retrieve stored data. We surgically implanted miniaturized cardiac monitors (1.2 cc, Reveal LINQ™, Medtronic Inc.), a newly developed human clinical system, into hibernating wild American black bears (N = 6). These devices include wireless capabilities, which enabled frequent transmissions of detailed physiological data from bears in their remote den sites to a web-based data storage and management system. Solar and battery powered telemetry stations transmitted detailed physiological data over the cellular network during the winter months. The system provided the transfer of large quantities of data in near-real time. Observations included changes in heart rhythms associated with birthing and caring for cubs, and in all bears, long periods without heart beats (up to 16 seconds) occurred during each respiratory cycle. For the first time, detailed physiological data were successfully transferred from an animal in the wild to a web-based data collection and management system, overcoming previous limitations on the quantities of data that could be transferred. The system provides an opportunity to detect unusual events as they are occurring, enabling investigation of the animal and site shortly afterwards. Although the current study was limited to bears in winter dens, we anticipate that future systems will transmit data from implantable monitors to wearable transmitters, allowing for big data transfer on non-stationary animals.
Rokitta, Sebastian D; Von Dassow, Peter; Rost, Björn; John, Uwe
2014-12-02
Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.
Bioeffectiveness of Cosmic Rays Near the Earth Surface
NASA Astrophysics Data System (ADS)
Belisheva, N. K.
2014-10-01
Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October, 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA).A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. Calculations of the total flux of particles with the greatest bioeffectiveness and ambient dose equivalent neutron fluxes in different energy ranges showed that taking into account the duration of all cases GLE (19, 22, 24 October 1989), the cellular cultures were irradiated by ambient dose equivalent equal 217 microSv cm^2, which corresponds to a little less than half of the radiation dose astronauts during the day in Earth orbit (Reitz et.all, 2005; Semkova et al, 2012) and more than the average dose received by pilots per flying hour in 1997 (2.96 mSv h -1) (Langner et all, 2004). These doses are sufficient to cause genetic damages as material for the variability and the subsequent evolution of biological systems. Results of experiments conducted on cellular cultures during a great solar proton events showed that the main damages of the genetic material in the cellular nuclei appeared with increasing of the spectral hardness of solar protons that corresponded to the arrival of the particles with energies > 850 MeV in the near Earth space. The analysis shows that the prevalence of certain forms of congenital malformations in children (CDF) at high latitudes was associated with increases in fluxes of CR and with solar proton events accompanied by GLE cases. Furthermore, the frequency of incidence of all forms of congenital malformations in children increased in the years with low solar activity associated with an increase in the intensity of Cosmic rays. We found that the incidence of certain diseases of children and adults in Arctic region were higher in the year with high intensity of cosmic rays ( Belisheva, Talykova, Melnik, 2011). The results show that the GLE cases, associated with increase in particle fluxes of hard energy spectrum, can trigger DNA damage in human cells, as in the case of cellular cultures during solar proton events. These results are of basic importance for the recognition of the biological effectiveness of the background fluctuations of Cosmic rays
NASA Astrophysics Data System (ADS)
Caylor, K. K.; Wolf, A.; Siegfried, B.
2014-12-01
Models in the environmental sciences are repositories in a sense of the current state of understanding of critical processes. However, as our understanding of these processes (and their accompanying models) become more granular, the data requirements to parameterize them become more limiting. In addition, as these models become more useful, they are often pressed into service for decision support, meaning that they cannot accept the data latency typical of most environmental observations. Finally, the vast majority of environmental data is generated at highly-instrumented, infrastructure-rich "mega sites" in the US/Europe, while many of the most pressing environmental issues are in rural locales and in the developing world. Cellular-based environmental sensing is a promising means to provide granular data in real time from remote locales to improve model-based forecasting using data assimilation. Applications we are working on include drought forecasting and food security; forest and crop responses to weather and climate change; and rural water usage. Over the past two years, we have developed a suite of integrated hardware, firmware, and backend APIs that accommodates an unlimited variety of sensors, and propagates these data onto the internet over mobile networks. Scientific data holds a unique role for demanding well-characterized information on sensor error and our design attempts to balance error reduction with low costs. The result is a deployment system that undercuts competing commercial products by as much as 90%, allowing more ubiquitous deployment with lower risks associated with sensor loss. Enclosure design and power management are critical ingredients for remote deployments under variable environmental conditions. Sensors push data onto cloud storage and make this data available via public API's via a backend server that accommodates additional metadata essential for interpreting observations, particularly their measurement errors. The data these pods collect can expand weather monitoring, but more crucially can monitor otherwise unobserved biological (including human) responses to environmental drivers. These data in turn can be assimilated into models, as a means to contextualize and distill these noisy observations into actionable knowledge.
NASA Astrophysics Data System (ADS)
Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.
2008-02-01
Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.
Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.
2017-01-01
ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405
Wireless microsensor network solutions for neurological implantable devices
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.
2005-05-01
The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.
Monitoring Astronaut Health at the Nanoscale Cellular Level Through the Eye
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Singh, Bhim S.; Rovati, Luigi; Docchio, Franco; Sebag, Jerry
2000-01-01
A user friendly goggles-like head-mounted device equipped with a suite of instruments for several non-invasive and quantitative medical evaluation of the eye, skin, and brain is desired for monitoring the health of astronauts during space travel and exploration of neighboring and distant planets. Real-time non-invasive evaluation of the different structures within the above organs can provide indices of the health of not just these organs, but the entire body. The techniques such as dynamic light scattering (for the early detection of uveitis, cholesterol levels, cataract, changes in the vitreous and possibly Alzheimer's disease), corneal autofluorescence (to assess extracellular matrix biology e.g., in diabetes), optical activity measurements (of anterior ocular fluid to evaluate blood-glucose levels), laser Doppler velocimetry (to assess retinal, optic nerve, and choroidal blood flow), reflectometry/oximetry (for assessing ocular and central nervous system oxygen metabolism), optical coherence tomography (to determine retinal tissue microstructure) and possibly scanning laser technology (for intraocular tissue imaging and scanning) will he integrated into this compact device. Skin sensors will also be mounted on the portion of the device in contact with the periocular region. This will enable monitoring of body temperature, EEG, and electrolyte status. This device will monitor astronaut health during long-duration space travel by detecting aberrations from pre-established "nonns", enabling prompt diagnosis and possibly the initiation of early preventative/curative therapy. The non-invasive nature of the device technologies permits frequent repetition of tests, enabling real-time complete crew health monitoring. This device may ultimately be useful in tele-medicine to bring modern healthcare to under-served areas on Earth as well as in so-called "advanced" care settings (e.g. diabetes in the USA).
Advances in biomarker development have improved our ability to detect early changes at the molecular, cellular, and pre-clinical level that are often predictive of adverse health outcomes. Biomarkers for monitoring the underlying molecular mechanisms of disease are of increasing...
Establishment and characterization of American elm cell suspension cultures
Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy
2000-01-01
Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...
Traffic Driven Analysis of Cellular and WiFi Networks
ERIC Educational Resources Information Center
Paul, Utpal Kumar
2012-01-01
Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…
Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury.
Reis, Cesar; Akyol, Onat; Araujo, Camila; Huang, Lei; Enkhjargal, Budbazar; Malaguit, Jay; Gospodarev, Vadim; Zhang, John H
2017-01-11
Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. The electroencephalographic activity starts to change as well. Although increased intracranial pressure (ICP) is not a direct result of cardiac arrest, it can still occur due to hypoxic-ischemic encephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG), ICP (intracranial pressure), and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians' decision making in terms of which treatments to pursue.
Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.
Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda
2010-01-01
Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.
Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M
2014-10-01
Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2) = 0.80) and the metabolic activity of the cells (R(2) = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring. © 2014 Wiley Periodicals, Inc.
47 CFR 32.5003 - Cellular mobile revenue.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular mobile revenue. 32.5003 Section 32... mobile revenue. This account shall include message revenue derived from cellular mobile telecommunications systems connected to the public switched network placed between mobile units and other stations...
Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin
2016-01-20
The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.
Design and evaluation of cellular power converter architectures
NASA Astrophysics Data System (ADS)
Perreault, David John
Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed. This cellular system implements entirely distributed control, and achieves performance levels unattainable with an equivalent single converter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
The investigation of using 5G millimeter-wave communications links for environmental monitoring
NASA Astrophysics Data System (ADS)
Han, Congzheng
2017-04-01
There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.
Intrinsic fluorescence biomarkers in cells treated with chemopreventive drugs
NASA Astrophysics Data System (ADS)
Kirkpatrick, Nathaniel D.; Brands, William R.; Zou, Changping; Brewer, Molly A.; Utzinger, Urs
2005-03-01
Non-invasive monitoring of cellular metabolism offers promising insights into areas ranging from biomarkers for drug activity to cancer diagnosis. Fluorescence spectroscopy can be utilized in order to exploit endogenous fluorophores, typically metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), and estimate the redox status of the sample. Fluorescence spectroscopy was applied to follow metabolic changes in epithelial ovarian cells as well as bladder epithelial cancer cells during treatment with a chemopreventive drug that initiates cellular quiescence. Fluorescence signals consistent with NADH, FAD, and tryptophan were measured to monitor cellular activity, redox status, and protein content. Cells were treated with varying concentrations of N-4-(hydroxyphenyl) retinamide (4-HPR) and measured in a stable environment with a sensitive fluorescence spectrometer. A subset of measurements was completed on a low concentration of cells to demonstrate feasibility for medical application such as in bladder or ovary washes. Results suggest that all of the cells responded with similar dose dependence but started at different estimated redox ratio baseline levels correlating with cell cycle, growth inhibition, and apoptosis assays. NADH and tryptophan related fluorescence changed significantly while FAD related fluorescence remained unaltered. Fluorescence data collected from approximately 1000 - 2000 cells, comparable to a bladder or ovary wash, was measurable and useful for future experiments. This study suggests that future intrinsic biomarker measurements may need to be most sensitive to changes in NADH and tryptophan related fluorescence while using FAD related fluorescence to help estimate the baseline redox ratio and predict response to chemopreventive agents.