Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1996-01-01
The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.
Oxidative Stress and Heart Failure in Altered Thyroid States
Mishra, Pallavi; Samanta, Luna
2012-01-01
Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy. PMID:22649319
KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress
Liu, Xingyin; Greer, Christina; Secombe, Julie
2014-01-01
Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053
Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun
2013-11-01
The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Free radicals, reactive oxygen species, oxidative stress and its classification.
Lushchak, Volodymyr I
2014-12-05
Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gel-based methods in redox proteomics.
Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip
2014-02-01
The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.
Antioxidant enzymes as redox-based biomarkers: a brief review.
Yang, Hee-Young; Lee, Tae-Hoon
2015-04-01
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease.
Walton, Paul A; Brees, Chantal; Lismont, Celien; Apanasets, Oksana; Fransen, Marc
2017-10-01
Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H 2 O 2 -mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin. Copyright © 2017 Elsevier B.V. All rights reserved.
The compound 2', 7'-dichlorodihydrofluoroscein diacetate is a probe commonly used to detect oxidative activity in live cells. Studies were undertaken to measure reactive oxygen species generated in freshly isolated rainbow trout hepatocytes exposed to a variety of redox cycling c...
Mitochondria targeting by environmental stressors: Implications for redox cellular signaling.
Blajszczak, Chuck; Bonini, Marcelo G
2017-11-01
Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact. Copyright © 2017 Elsevier B.V. All rights reserved.
Karpinska, Barbara; Alomrani, Sarah Owdah
2017-01-01
Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808105
Thioredoxin: a key regulator of cardiovascular homeostasis.
Yamawaki, Hideyuki; Haendeler, Judith; Berk, Bradford C
2003-11-28
The thioredoxin (TRX) system (TRX, TRX reductase, and NADPH) is a ubiquitous thiol oxidoreductase system that regulates cellular reduction/oxidation (redox) status. The oxidation mechanism for disease pathogenesis states that an imbalance in cell redox state alters function of multiple cell pathways. In this study, we review the essential role for TRX to limit oxidative stress directly via antioxidant effects and indirectly by protein-protein interaction with key signaling molecules, such as apoptosis signal-regulating kinase 1. We propose that TRX and its endogenous regulators are important future targets to develop clinical therapies for cardiovascular disorders associated with oxidative stress.
Antioxidant enzymes as redox-based biomarkers: a brief review
Yang, Hee-Young; Lee, Tae-Hoon
2015-01-01
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208] PMID:25560698
Oxidative stress, thiols, and redox profiles.
Harris, Craig; Hansen, Jason M
2012-01-01
Oxidative stress has been recognized as a contributing factor in the toxicity of a large number of developmental toxicants. Traditional definitions of oxidative stress state that a shift in the balance between reduced and oxidized biomolecules within cells, in favor of the latter, result in changes that are deleterious to vital cell functions and can culminate in malformations and death. The glutathione (GSH)/glutathione disulfide (GSSG) redox couple has been the traditional marker of choice for characterization of oxidative stress because of its high concentrations and direct roles as antioxidant and cellular protectant. Steady state depletion of GSH through conjugation, oxidation, or export has often been reported as the sole criteria for invoking oxidative stress and a myriad of associated deleterious consequences. Numerous other, mostly qualitative, observations have also been reported to suggest oxidative stress has occurred but it is not always clear how well they reflect the state of a cell or its functions. Our emerging understanding of redox signaling and the roles of reactive oxygen species (ROS), thiols, oxidant molecules, and cellular antioxidants, all acting as second messengers, has prompted a redefinition of oxidative stress based on changes in the real posttranslational protein thiol modifications that are central to redox regulation and control. Thiol-based redox couples such as GSH/GSSG, cysteine/cystine (cys/cySS), thioredoxin-reduced/thioredoxin-oxidized (TRX(red)/TRX(ox)) form independent signaling nodes that selectively regulate developmental events and are closely linked to changes in intracellular redox potentials. Accurate assessment of the consequences of increased free radicals in developing conceptuses should best be made using a battery of measurements including the quantitative assessment of intracellular redox potential, ROS, redox status of biomolecules, and induced changes in specific redox signaling nodes. Methods are presented for a determination of ROS production, soluble thiol oxidation, redox potential, and a proteomic approach to evaluate the thiol oxidation state of specific proteins.
Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...
Franceschelli, Sara; Gatta, Daniela Maria Pia; Pesce, Mirko; Ferrone, Alessio; Di Martino, Giuseppe; Di Nicola, Marta; De Lutiis, Maria Anna; Vitacolonna, Ester; Patruno, Antonia; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza
2018-05-01
Gastroesophageal reflux disease (GERD), a clinical condition characterized by reflux of gastroduodenal contents in the oesophagus, has proved to demonstrate a strong link between oxidative stress and the development of GERD. Proton pump inhibitors (PPIs) have been universally accepted as first-line therapy for management of GERD. The potential benefits of electrolysed reduced water (ERW), rich in molecular hydrogen, in improving symptoms and systemic oxidative stress associated with GERD was assessed. The study was performed on 84 GERD patients undergoing control treatment (PPI + tap water) or experimental treatment (PPI + ERW) for 3 months. These patients were subjected to the GERD-Health Related Quality of Life Questionnaire as well as derivatives reactive oxigen metabolites (d-ROMs) test, biological antioxidant potential (BAP) test, superoxide anion, nitric oxide and malondialdehyde assays, which were all performed as a proxy for the oxidative/nitrosative stress and the antioxidant potential status. Spearman's correlation coefficient was used to evaluate the correlation between scores and laboratory parameters. Overall results demonstrated that an optimal oxidative balance can be restored and GERD symptoms can be reduced rapidly via the integration of ERW in GERD patients. The relative variation of heartburn and regurgitation score was significantly correlated with laboratory parameters. Thus, in the selected patients, combination treatment with PPI and ERW improves the cellular redox state leading to the improvement of the quality of life as demonstrated by the correlation analysis between laboratory parameters and GERD symptoms. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.
Putker, Marrit; O'Neill, John Stuart
2016-01-01
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal
Putker, Marrit; O’Neill, John Stuart
2016-01-01
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072
Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.
Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo
2002-06-01
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.
Li, Shuyan; Sun, Yan; Qi, Xiaodan; Shi, Yan; Gao, Han; Wu, Qi; Liu, Xiucai; Yu, Haitao; Zhang, Chunjing
2014-01-01
In recent years, diabetes and its associated complications have become a major public health concern. The cardiovascular risk increases significantly in diabetes patients. It is a complex disease characterized by multiple metabolic derangements and is known to impair cardiac function by disrupting the balance between pro-oxidants and antioxidants at the cellular level. The subsequent generation of reactive oxygen species (ROS) and accompanying oxidative stress are hallmarks of the molecular mechanisms responsible for cardiovascular disease. Protein thiols act as redox-sensitive switches and are believed to be a key element in maintaining the cellular redox balance. The redox state of protein thiols is regulated by oxidative stress and redox signaling and is important to cellular functions. The potential of the thiol-disulfide oxidoreductase enzymes (thioredoxin and glutaredoxin systems) in defense against oxidative stress has been noted previously. Increasing evidence demonstrates that glutaredoxin 1 (Grx1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. This study investigates whether and how Grx1 protects coronary artery vascular endothelial cells against high glucose (HG) induced damage. Results indicate that the activation of eNOS/NO system is regulated by Grx 1 and coupled with inhibition of JNK and NF-κB signaling pathway which could alleviate the oxidative stress and apoptosis damage in coronary arteries endothelial cells induced by HG.
Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster*
Golinelli-Cohen, Marie-Pierre; Lescop, Ewen; Mons, Cécile; Gonçalves, Sergio; Clémancey, Martin; Santolini, Jérôme; Guittet, Eric; Blondin, Geneviève; Latour, Jean-Marc; Bouton, Cécile
2016-01-01
Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S]+ with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the “active state,” which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a “dormant form.” Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury. PMID:26887944
Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer.
Essick, Eric E; Sam, Flora
2010-01-01
Autophagy is a catalytic process of the bulk degradation of long-lived cellular components, ultimately resulting in lysosomal digestion within mature cytoplasmic compartments known as autophagolysosomes. Autophagy serves many functions in the cell, including maintaining cellular homeostasis, a means of cell survival during stress (e.g., nutrient deprivation or starvation) or conversely as a mechanism for cell death. Increased reactive oxygen species (ROS) production and the resulting oxidative cell stress that occurs in many disease states has been shown to induce autophagy. The following review focuses on the roles that autophagy plays in response to the ROS generated in several diseases.
Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer
Essick, Eric E
2010-01-01
Autophagy is a catalytic process of the bulk degradation of long-lived cellular components, ultimately resulting in lysosomal digestion within mature cytoplasmic compartments known as autophagolysosomes. Autophagy serves many functions in the cell, including maintaining cellular homeostasis, a means of cell survival during stress (e.g., nutrient deprivation or starvation) or conversely as a mechanism for cell death. Increased reactive oxygen species (ROS) production and the resulting oxidative cell stress that occurs in many disease states has been shown to induce autophagy. The following review focuses on the roles that autophagy plays in response to the ROS generated in several diseases. PMID:20716941
Oxidative Risk for Atherothrombotic Cardiovascular Disease
Leopold, Jane A.; Loscalzo, Joseph
2009-01-01
In the vasculature, reactive oxidant species including reactive oxygen, nitrogen, or halogenating species, and thiyl, tyrosyl, or protein radicals, may oxidatively modify lipids and proteins with deleterious consequences for vascular function. These biologically active free radical and non-radical species may be produced by increased activation of oxidant-generating sources and/or decreased cellular antioxidant capacity. Once formed, these species may engage in reactions to yield more potent oxidants that promote transition of the homeostatic vascular phenotype to a pathobiological state that is permissive for atherothrombogenesis. This dysfunctional vasculature is characterized by lipid peroxidation and aberrant lipid deposition, inflammation, immune cell activation, platelet activation, thrombus formation, and disturbed hemodynamic flow. Each of these pathobiological states is associated with an increase in the vascular burden of free radical species-derived oxidation products and, thereby, implicates increased oxidant stress in the pathogenesis of atherothrombotic vascular disease. PMID:19751821
Diamanti-Kandarakis, Evanthia; Papalou, Olga; Kandaraki, Eleni A; Kassi, Georgia
2017-02-01
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders. © 2017 European Society of Endocrinology.
Oshino, N; Chance, B
1977-01-01
The enhanced reduction of t-butyl hydroperoxide by glutathione peroxidase is accompanied by a decrease in the cellular concentration of both glutathione and NADPH in isolated liver cells, resulting in the release of GSSG (oxidized glutathione) from the perfused rat liver. This phenomenon, first reported by H. Sies, C. Gerstenecker, H. Menzel & L. Flohé (1972) (FEBS Lett. 27, 171-175), can be observed under a variety of conditions, not only with the acceleration of the glutathione peroxidase reaction by organic peroxides, but also during the oxidation of glycollate and benzylamine, during demethylation of aminopyrine in the liver of the phenobarbital-pretreated rat and during oxidation of uric acid in the liver of the starved rat pretreated with 3-amino-1,2,4-triazole. The rate of release of GSSG is altered markedly by changes in the metabolic conditions which affect the rate of hepatic NADPH generation. Thus, regardless of whether achieved by enhanced oxidation of glutathione by glutathione peroxidase or by oxidation of NADPH through other metabolic pathways, an increase in the cellular concentration of GSSG appears to facilitate its release. It has been found that, in addition to the hexose monophosphate shunt, the mitochondrial NADH-NADP+ transhydrogenase reaction plays an important role in supplying reducing equivalents to the glutathione peroxidase reaction and in maintaining the cellular oxidation-reduction state of the nicotinamide nucleotides. Spectrophotometric analysis of the steady-state concentration of the catalase-H2O2 intermediate with simultaneous measurement of the rate of release of GSSG leads to the conclusion that intracellular compartmentation of catalase in the peroxisomes and glutathione peroxidase in the cytosol and mitochondria distinguishes the reactivities of these enzymes one from the other, and facilitates their effective cooperation in hydroperoxide metabolism in the liver. PMID:17386
Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.
Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R
2016-01-01
Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.
The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo.
Erdogan, Alican J; Ali, Muna; Habich, Markus; Salscheider, Silja L; Schu, Laura; Petrungaro, Carmelina; Thomas, Luke W; Ashcroft, Margaret; Leichert, Lars I; Roma, Leticia Prates; Riemer, Jan
2018-07-01
Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.
Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru
2015-02-13
Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
The Role of Oxidative Stress in Parkinson’s Disease
Dias, Vera; Junn, Eunsung; Mouradian, M. Maral
2014-01-01
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection. PMID:24252804
Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I
2015-08-21
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.
Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.
2015-01-01
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058
Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio
2018-01-01
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.
Dihydrolipoyl dioleoylglycerol antioxidant capacity in phospholipid vesicles
USDA-ARS?s Scientific Manuscript database
Antioxidants have critical roles in maintaining cellular homeostasis and disease-state prevention. The multi-functional agent alpha-lipoic acid offers numerous beneficial effects to oxidatively stressed tissues. alpha-Lipoic acid was enzymatically incorporated into a triglyceride in conjunction wi...
Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S
2014-12-01
Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.
Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor
Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie
2007-01-01
Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689
Biophoton detection and low-intensity light therapy: a potential clinical partnership.
Tafur, Joseph; Van Wijk, Eduard P A; Van Wijk, Roeland; Mills, Paul J
2010-02-01
Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT's potential to induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress. In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain variability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive patients. The detection of biophotons, the production of which is associated with cellular redox state and the generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing further investigation into the potential clinical partnership between biophoton detection and LILT.
Biophoton Detection and Low-Intensity Light Therapy: A Potential Clinical Partnership
Van Wijk, Eduard P.A.; Van Wijk, Roeland; Mills, Paul J.
2010-01-01
Abstract Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT's potential to induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress. In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain variability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive patients. The detection of biophotons, the production of which is associated with cellular redox state and the generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing further investigation into the potential clinical partnership between biophoton detection and LILT. PMID:19754267
Fan, Yichong; Ai, Hui-wang
2016-04-01
We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.
Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging.
Mei, Qingsong; Chen, Jian; Zhao, Jun; Yang, Liang; Liu, Bianhua; Liu, Renyong; Zhang, Zhongping
2016-03-23
Graphene oxide (GO) has been widely used as a fluorescence quencher, but its luminescent properties, especially tailor-made controlling emission colors, have been seldom reported due to its heterogeneous structures. Herein, we demonstrated a novel chemical oxidative strategy to tune GO emissions from brown to cyan without changing excitation wavelength. The precise tuning is simply achieved by varying reaction times of GO nanosheets in piranha solution, but there is no need for complex chromatography separation procedures. With increasing reaction times, oxygen content on the lattice of GO nanosheets increased, accompanied by the diminution of their sizes and sp(2) conjugation system, resulting in an increase of emissive carbon cluster-like states. Thereby, the luminescent colors of GO were tuned from brown to yellow, green, and cyan, and its fluorescent quantum yields were enhanced. The obtained multicolored fluorescent GO nanosheets would open plenty of novel applications in cellular imaging and multiplex encoding analysis.
Regulation of thrombosis and vascular function by protein methionine oxidation
Gu, Sean X.; Stevens, Jeff W.
2015-01-01
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980
Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response
Kapuy, Orsolya; Papp, Diána; Bánhegyi, Gábor
2018-01-01
Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. PMID:29510589
Al-Gubory, Kaïs H
2014-07-01
Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth.
Sabatino, Maria Eugenia; Grondona, Ezequiel; Sosa, Liliana D V; Mongi Bragato, Bethania; Carreño, Lucia; Juarez, Virginia; da Silva, Rodrigo A; Remor, Aline; de Bortoli, Lucila; de Paula Martins, Roberta; Pérez, Pablo A; Petiti, Juan Pablo; Gutiérrez, Silvina; Torres, Alicia I; Latini, Alexandra; De Paul, Ana L
2018-05-20
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha
2007-05-01
Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP{sup +}). Cellular GSH levels were initially significantly decreasedmore » 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP{sup +} exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP{sup +} treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP{sup +}.« less
Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria
Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S
2014-01-01
Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908
Regulation of thrombosis and vascular function by protein methionine oxidation.
Gu, Sean X; Stevens, Jeff W; Lentz, Steven R
2015-06-18
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.
Circu, Magdalena L.; Maloney, Ronald E.
2011-01-01
Abstract We recently demonstrated that menadione (MQ), a redox cycling quinone, mediated the loss of mitochondrial glutathione/glutathione disulfide redox balance. In this study, we showed that MQ significantly disrupted cellular pyridine nucleotide (NAD+/NADH, NADP+/NADPH) redox balance that compromised cellular ATP, mitochondrial respiratory activity, and NADPH-dependent reducing capacity in colonic epithelial cells, a scenario that was exaggerated by low glucose. In the cytosol, MQ induced NAD+ loss concurrent with increased NADP+ and NAD kinase activity, but decreased NADPH. In the mitochondria, NADH loss occurred in conjunction with increased nicotinamide nucleotide transhydrogenase activity and NADP+, and decreased NADPH. These results are consistent with cytosolic NAD+-to-NADP+ and mitochondrial NADH-to-NADPH shifts, but compromised NADPH availability. Thus, despite the sacrifice of NAD+/NADH in favor of NADPH generation, steady-state NADPH levels were not maintained during MQ challenge. Impairments of cellular bioenergetics were evidenced by ATP losses and increased mitochondrial O2 dependence of pyridine nucleotide oxidation–reduction; half-maximal oxidation (P50) was 10-fold higher in low glucose, which was lowered by glutamate or succinate supplementation. This exaggerated O2 dependence is consistent with increased O2 diversion to nonmitochondrial O2 consumption by MQ-semiquinone redox cycling secondary to decreased NADPH-dependent MQ detoxication at low glucose, a situation that was corrected by glucose-sparing mitochondrial substrates. Antioxid. Redox Signal. 14, 2151–2162. PMID:21083422
Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.
Giacci, Marcus K; Bartlett, Carole A; Smith, Nicole M; Iyer, K Swaminathan; Toomey, Lillian M; Jiang, Haibo; Guagliardo, Paul; Kilburn, Matt R; Fitzgerald, Melinda
2018-06-18
Loss of function following injury to the central nervous system is worsened by secondary degeneration of neurons and glia surrounding the injury and initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semi-quantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 days after injury. Injury led to increases in DNA, protein and lipid damage in OPCs and mature oligodendrocytes at 3 days, regardless of proliferative state, associated with a decline in the numbers of OPCs at 7 days. O4+ pre-oligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8OHdG immunoreactivity were more likely to be caspase3+. By day 28, newly derived mature oligodendrocytes had significantly reduced MYRF mRNA indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridisation have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivo. SIGNIFICANCE STATEMENT Injury to the central nervous system is characterised by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridisation investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced MYRF mRNA, yet pre-existing oligodendrocytes are more likely to die. Copyright © 2018 the authors.
Regulation of cell function by methionine oxidation and reduction
Hoshi, Toshinori; Heinemann, Stefan H
2001-01-01
Reactive oxygen species (ROS) are generated during normal cellular activity and may exist in excess in some pathophysiological conditions, such as inflammation or reperfusion injury. These molecules oxidize a variety of cellular constituents, but sulfur-containing amino acid residues are especially susceptible. While reversible cysteine oxidation and reduction is part of well-established signalling systems, the oxidation and the enzymatically catalysed reduction of methionine is just emerging as a novel molecular mechanism for cellular regulation. Here we discuss how the oxidation of methionine to methionine sulfoxide in signalling proteins such as ion channels affects the function of these target proteins. Methionine sulfoxide reductase, which reduces methionine sulfoxide to methionine in a thioredoxin-dependent manner, is therefore not only an enzyme important for the repair of age- or degenerative disease-related protein modifications. It is also a potential missing link in the post-translational modification cycle involved in the specific oxidation and reduction of methionine residues in cellular signalling proteins, which may give rise to activity-dependent plastic changes in cellular excitability. PMID:11179387
Local Actions of Melatonin in Somatic Cells of the Testis
Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola
2017-01-01
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction. PMID:28561756
THE ROLE OF MEMBRANE TRANSPORTERS IN THE CELLULAR METABOLISM OF ARSENIC
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic (iAs) in humans. In this pathway iAs is converted to mono- (MAs) and dimethylated (DMAs) metabolites containing either AsIII or AsV. Because toxicities and meta...
Redox status in a model of cancer stem cells.
Zaccarin, Mattia; Bosello-Travain, Valentina; Di Paolo, Maria Luisa; Falda, Marco; Maiorino, Matilde; Miotto, Giovanni; Piccolo, Stefano; Roveri, Antonella; Ursini, Fulvio; Venerando, Rina; Toppo, Stefano
2017-03-01
Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP + couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches. Copyright © 2016 Elsevier Inc. All rights reserved.
Using ToxCast data to reconstruct dynamic cell state ...
AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging (HCI) allows multiplexed measurements of cellular phenotypic changes induced by chemical exposures. For a large chemical inventory having limited concentration-time series data, the deconvolution of cellular response profiles into transitive or irrevocable state trajectories is an important consideration. Objectives. Our goal was to analyze temporal and concentration-related cellular changes measured using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods. The effects of 976 chemicals (ToxCast Phase I and II) were evaluated using HCI as a function of concentration and time in HepG2 cells over a 72-hr exposure period to concentrations ranging from 0.4- to 200 µM. The cellular endpoints included nuclear p53 accumulation, JNK, markers of oxidative stress, cytoskeletal changes, mitochondrial energization and density, cell viability and cell cycle progression. A novel computational model was developed to interpret dynamic multidimensional system responses as cell-state trajectories. Results. Analysis of cell-state trajectories showed that HepG2 cells were resilient to the effects of 178 chemicals up to the highest co
Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4
Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao
2017-01-01
Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030
Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4
NASA Astrophysics Data System (ADS)
Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao
2017-03-01
Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.
Possible mechanisms for arsenic-induced proliferative diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A.
1996-12-31
Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hourmore » of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.« less
Classification of oxidative stress based on its intensity
Lushchak, Volodymyr I.
2014-01-01
In living organisms production of reactive oxygen species (ROS) is counterbalanced by their elimination and/or prevention of formation which in concert can typically maintain a steady-state (stationary) ROS level. However, this balance may be disturbed and lead to elevated ROS levels called oxidative stress. To our best knowledge, there is no broadly acceptable system of classification of oxidative stress based on its intensity due to which proposed here system may be helpful for interpretation of experimental data. Oxidative stress field is the hot topic in biology and, to date, many details related to ROS-induced damage to cellular components, ROS-based signaling, cellular responses and adaptation have been disclosed. However, it is common situation when researchers experience substantial difficulties in the correct interpretation of oxidative stress development especially when there is a need to characterize its intensity. Careful selection of specific biomarkers (ROS-modified targets) and some system may be helpful here. A classification of oxidative stress based on its intensity is proposed here. According to this classification there are four zones of function in the relationship between “Dose/concentration of inducer” and the measured “Endpoint”: I – basal oxidative stress (BOS); II – low intensity oxidative stress (LOS); III – intermediate intensity oxidative stress (IOS); IV – high intensity oxidative stress (HOS). The proposed classification will be helpful to describe experimental data where oxidative stress is induced and systematize it based on its intensity, but further studies will be in need to clear discriminate between stress of different intensity. PMID:26417312
Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin
2016-09-01
The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD.
Lerner, Chad A; Sundar, Isaac K; Rahman, Irfan
2016-12-01
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases
Numan, Mohamed Saber; Brown, Jacques P.; Michou, Laëtitia
2015-01-01
Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur. PMID:25690002
Burgos, Rosilene Cristina Rossetto; Zhang, Wei; van Wijk, Eduard P A; Hankemeier, Thomas; Ramautar, Rawi; van der Greef, Jan
2017-10-01
Recently, ultra-weak photon emission (UPE) was developed as a novel tool for measuring oxidative metabolic processes, as its generation is related to reactive oxygen species (ROS). Both an imbalance in ROS or the uncontrolled production of ROS can lead to oxidative stress, which is commonly associated with many diseases. In addition to playing several biological functions, the thiol amino acid glutathione has an important antioxidant function in the body's defense against ROS. Specifically, glutathione is an important endogenous antioxidant that helps maintain oxidant levels. At the cellular level, glutathione is present in its reduced form (GSH) at relatively high concentrations (in the millimolar range) and in its oxidized form (GSSG) at low concentrations (in the micromolar range). Thus, the GSH/GSSG ratio is often used as an indicator of cellular redox state. Here, we used the HL-60 cell line as a model system in order to determine whether UPE is correlated with intracellular GSH and GSSG levels. HL-60 cells were differentiated into neutrophil-like cells and then stimulated to undergo respiratory burst. We then recorded UPE in real time for 9000 seconds and used capillary electrophoresis coupled to mass spectrometry to measure GSH and GSSG levels in cell extracts. We found that although respiratory burst significantly decreased the GSH/GSSG ratio, this change was not significantly correlated with the UPE profile. Copyright © 2017 Elsevier B.V. All rights reserved.
Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric
2016-12-01
Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chu, Kung-Hui; Alvarez-Cohen, Lisa
1999-01-01
In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614
Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.
Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol
2011-10-01
The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.
Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.
2010-01-01
Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151
Redox Proteomics of Protein-bound Methionine Oxidation*
Ghesquière, Bart; Jonckheere, Veronique; Colaert, Niklaas; Van Durme, Joost; Timmerman, Evy; Goethals, Marc; Schymkowitz, Joost; Rousseau, Frederic; Vandekerckhove, Joël; Gevaert, Kris
2011-01-01
We here present a new method to measure the degree of protein-bound methionine sulfoxide formation at a proteome-wide scale. In human Jurkat cells that were stressed with hydrogen peroxide, over 2000 oxidation-sensitive methionines in more than 1600 different proteins were mapped and their extent of oxidation was quantified. Meta-analysis of the sequences surrounding the oxidized methionine residues revealed a high preference for neighboring polar residues. Using synthetic methionine sulfoxide containing peptides designed according to the observed sequence preferences in the oxidized Jurkat proteome, we discovered that the substrate specificity of the cellular methionine sulfoxide reductases is a major determinant for the steady-state of methionine oxidation. This was supported by a structural modeling of the MsrA catalytic center. Finally, we applied our method onto a serum proteome from a mouse sepsis model and identified 35 in vivo methionine oxidation events in 27 different proteins. PMID:21406390
Song, Byoung-Joon; Akbar, Mohammed; Abdelmegeed, Mohamed A.; Byun, Kyunghee; Lee, Bonghee; Yoon, Seung Kew; Hardwick, James P.
2014-01-01
Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. PMID:25465468
Ayer, Anita; Sanwald, Julia; Pillay, Bethany A.; Meyer, Andreas J.; Perrone, Gabriel G.; Dawes, Ian W.
2013-01-01
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. PMID:23762325
Reactive oxygen species-activated nanomaterials as theranostic agents.
Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M
2015-01-01
Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.
Bilz, Nicole C; Jahn, Kristin; Lorenz, Mechthild; Lüdtke, Anja; Hübschen, Judith M; Geyer, Henriette; Mankertz, Annette; Hübner, Denise; Liebert, Uwe G; Claus, Claudia
2018-06-27
The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on oxygen consumption rate, OCR) and glycolytic (based on extracellular acidification rate, ECAR) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial (Vero and A549) and endothelial (HUVEC) cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of rubella viruses to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population. Importance RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data adds viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. Additionally, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations. Copyright © 2018 American Society for Microbiology.
Desai, N P; Hubbell, J A
1992-01-01
Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.
Swaney, Danielle L; Rodríguez-Mias, Ricard A; Villén, Judit
2015-01-01
Ubiquitylation is an essential post-translational modification that regulates numerous cellular processes, most notably protein degradation. Ubiquitin can itself be phosphorylated at nearly every serine, threonine, and tyrosine residue. However, the effect of this modification on ubiquitin function is largely unknown. Here, we characterized the effects of phosphorylation of yeast ubiquitin at serine 65 in vivo and in vitro. We find this post-translational modification to be regulated under oxidative stress, occurring concomitantly with the restructuring of the ubiquitin landscape into a highly polymeric state. Phosphomimetic mutation of S65 recapitulates the oxidative stress phenotype, causing a dramatic accumulation of ubiquitylated proteins and a proteome-wide reduction of protein turnover rates. Importantly, this mutation impacts ubiquitin chain disassembly, chain linkage distribution, ubiquitin interactions, and substrate targeting. These results demonstrate that phosphorylation is an additional mode of ubiquitin regulation with broad implications in cellular physiology. PMID:26142280
Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture
Sridev Mohapatra; Rakesh Minocha; Stephanie Long
2009-01-01
While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigra × maximowiczii) differing in their PA...
Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith
2012-01-01
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880
Zhu, Li
2002-01-01
Protein-tyrosine phosphatases (PTPases) have a catalytic cysteine residue whose reduced state is integral to the reaction mechanism. Since exposure to air can artifactually oxidize this highly reactive thiol, PTPase assays have typically used potent reducing agents to reactivate the enzymes present; however, this approach does not allow for the measurement of the endogenous PTPase activity directly isolated from the in vivo cellular environment. Here we provide a method for using an anaerobic chamber to preserve the activity of the total PTPase complement in a tissue lysate or of an immunoprecipitated PTPase homolog to characterize their endogenous activation state. Comparison with a sample treated with biochemical reducing agents allows the determination of the activatable (reducible) fraction of the endogenous PTPase pool. PMID:12734574
Exogenous antioxidants—Double-edged swords in cellular redox state
Bohn, Torsten
2010-01-01
The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369
Oxidative stress and protein aggregation during biological aging.
Squier, T C
2001-09-01
Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy metabolism through the selective oxidation or nitration of critical signal transduction proteins (i.e. CaM or SERCA) is thought to maintain cellular function by minimizing protein aggregation and amyloid formation. Age-dependent increases in the rate of ROS generation or declines in cellular repair or degradation mechanisms will increase the oxidative load on the cell, resulting in corresponding increases in the concentrations of oxidized proteins and the associated formation of amyloid.
Franceschelli, Sara; Gatta, Daniela Maria Pia; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Croce, Fausto; Speranza, Lorenza
2016-01-01
It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation. PMID:27598129
Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.
Sandbichler, Adolf M; Jansen, Bianca; Peer, Bettina A; Paulitsch, Monika; Pelster, Bernd; Egg, Margit
2018-01-01
Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly oxidized nocturnal cellular environment. Of note, circadian rhythms of cytosolic H2O2 remain unaltered, while the transcriptional clock is already attenuated, as it is known to occur also under chronic hypoxia. We therefor propose that the realignment of metabolic redox oscillations might initiate the observed hypoxia induced attenuation of the transcriptional clock, based on the reduced binding affinity of the CLOCK/BMAL complex to the DNA in an oxidized environment. © 2018 The Author(s). Published by S. Karger AG, Basel.
Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.
Janero, D R; Burghardt, C; Feldman, D
1988-10-01
Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.
Responses to reductive stress in the cardiovascular system.
Handy, Diane E; Loscalzo, Joseph
2017-08-01
There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.
2016-06-01
Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.
Kim, Sun Yee; Park, Jeen-Woo
2003-03-01
Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.
Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Philipp, E E R; Abele, D
2012-08-01
Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. In late survivors low antioxidant capacity and apoptotic activity together with a fast accumulation of the age pigment lipofuscin was observed. Rates of oxygen consumption and oxidative stress markers were strongly dependent on somatic growth and reproductive state but not on temperature. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the second spawning. Superoxide dismutase activity and apoptotic cell death intensity were however higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age at the cost of fast cellular degradation in second year scallops. Copyright © 2012 Elsevier Inc. All rights reserved.
APE1 promotes antioxidant capacity by regulating Nrf-2 function through a redox-dependent mechanism.
Shan, Jin-Lu; He, Hai-Tao; Li, Meng-Xia; Zhu, Jian-Wu; Cheng, Yi; Hu, Nan; Wang, Ge; Wang, Dong; Yang, Xue-Qin; He, Yong; Xiao, Hua-Liang; Tong, Wei-Dong; Yang, Zhen-Zhou
2015-01-01
APE1 is a multifunctional protein that has recently been implicated in protecting cells from oxidative stress. In the current study, we confirmed that APE1׳s effect on cellular antioxidant capacity is related to its redox activity through the use of an APE1 functional mutant, and we investigated the mechanism through which this multifunctional protein affects the function of the transcription factor Nrf-2 in regulating oxidative stress-induced genes. Using a pair of mutants for both the redox activity and the acetylation-regulated activity of APE1, in vitro assays showed that the redox activity of APE1 is crucial for its nuclear association with Nrf-2 and subsequent activation of Nrf-2׳s transcription of several downstream genes during oxidative challenge. Important oxidative stress genes are affected by APE1 redox activity, including Hmox1, Gstm1, and Txnrd1. In addition, utilizing human non-small-cell lung cancer sample tissue as well as a nude mouse xenograft model, we determined that APE1 expression levels are inversely correlated to oxidative stress in vivo. These findings indicated that interference with these crucial functions of APE1 shows promise in preventing resistance to certain radiotherapies and that further research is necessary to understand APE1׳s complex roles in regulating both the basal redox status and the oxidative stress state of the cellular environment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?
van Wessel, T.; de Haan, A.; van der Laarse, W. J.
2010-01-01
An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111
Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.
Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne
2015-04-01
Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.
In Vitro Toxicity of Cadmium Oxide Particles in BRL 3A Rat Liver Cells
2005-03-01
cadmium oxide? What is the cellular toxicity of cadmium oxide particles? What is the effect of cell density on cadmium oxide toxicity? 1.5...cells observed, though in some cases, the percent of control cells was less than 2%. Approximately twice as many experiments as what is shown in this...question was answered in the literature review: 1. What is the cellular toxicity of cadmium oxide particles? 2. What is the effect of cell density on
Zhou, Liyi; Peng, Yongbo; Wang, Qianqian; Lin, Qinlu
2017-02-01
A variety of diseases associated with human aging, which have a strong oxidative stress, but connecting age-related diseases and oxidative stress of the basic molecular mechanisms still insufficiently understood. Oxidative stress origins from the unregulated production of reactive oxygen species (ROS), and oxidative damaging to tissues and organs from subsequent oxidation-reduction chemistry by cellular mismanagement. In particular, H 2 O 2 is a major by-product of ROS in live organisms and a common marker for oxidative stress, and its dynamic equilibrium can have various physiological and pathological consequences. H 2 O 2 is a small molecule, but it is an essential oxygen metabolite in living systems and acts as an important compound in cellular signal transduction by reversible oxidation of proteins. To quantitatively detect of H 2 O 2 in biosystems, herein, we adopted a 2-(2'-hydroxyphenyl)-4(3H)-quinazolinone (HPQ), a small organic fluorophore known for its luminescence mechanism through excited-state intramolecular proton transfer (ESIPT). HPQ was employed as a precursor to develop a turn-on probe (HPQ-H) for bioimaging applications. After cleavaging the boronic ester moiety by H 2 O 2 , HPQ-H releases a HPQ fluorophore which shows a 45-fold fluorescence intensity enhancement with high sensitivity and selectivity over other reactive oxygen species (ROS), and a high resolution imaging and large tissue-imaging depth (70-170μm) in living cells and tissues images under two-photon excitation (720nm). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo
2016-10-01
Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.
Hydrogen Peroxide Probes Directed to Different Cellular Compartments
Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738
NASA Astrophysics Data System (ADS)
Patil, Swanand D.
Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide nanoparticles reduced the cellular damages to the normal breast epithelial cell line (CRL 8798) induced by X-rays and to the Keratinocyte cell line induced by UV irradiation. Cerium oxide nanoparticles were also found to be neuroprotective to adult rat spinal cord and retinal neurons. We propose that cerium oxide nanoparticles act as free radical scavenger (via redox reactions on its surface) to decrease the ROS induced cellular damages. Additionally, UV-visible spectroscopic studies indicated that cerium oxide nanoparticles possess auto-regenerative property by switching its oxidation state between Ce3+ and Ce4+. The auto-regenerative antioxidant property of these nanoparticles appears to be a key component in all the biological applications discussed in the present study.
The cellular immunity and oxidative stress markers in early pregnancy loss.
Daglar, Korkut; Biberoglu, Ebru; Kirbas, Ayse; Dirican, Aylin Onder; Genc, Metin; Avci, Aslihan; Biberoglu, Kutay
2016-01-01
We investigated whether changes in cellular immunity and oxidative stress in pregnancy have any association with spontaneous miscarriage. Circulating adenosine deaminase (ADA) activity as a marker of cellular immunity and malondialdehyde (MDA) and catalase (CAT), glutathione peroxidase (GPx) as markers of T lymphocyte activation and parameters of oxidative stress and antioxidant defense were compared between 40 women with early pregnancy loss and another 40 women with ungoing healthy pregnancy. Women with miscarriage had higher serum ADA and GPx levels when compared with women with normal pregnancy (p = 0.034 and p < 0.001, respectively). Although serum MDA level was slightly higher in women with miscarriage, the difference was not significant (p = 0.083). CAT levels were alike in both groups. We have demonstrated an increased cellular immunity and perhaps a compensated oxidative stress related to increased antioxidant activation in women with early spontaneous pregnancy loss.
Oxidative stress, cancer, and sleep deprivation: is there a logical link in this association?
Noguti, Juliana; Andersen, Monica Levy; Cirelli, Chiara; Ribeiro, Daniel Araki
2013-09-01
Sleep disorders are associated with various human pathologies and interfere with biological processes essential for health and quality of life. On the other hand, cancer is one of the most common diseases worldwide with an average of 1,500 deaths per day in the USA. Is there a factor common to both sleep disorders and cancer that serves to link these conditions? It is a normal process for cellular metabolism to produce reactive oxidant series (ROS). However, when the production of ROS overcomes the antioxidant capacity of the cell to eliminate these products, the resulting state is called oxidative stress. Oxidative DNA damage may participate in ROS-induced carcinogenesis. Moreover, ROS are also produced in the sleep deprivation process. The aim of this article is to review pathways and mechanisms that may point to oxidative stress as a link between sleep deprivation and cancer.
Masereeuw, R; van Pelt, A P; van Os, S H; Willems, P H; Smits, P; Russel, F G
2000-09-01
The anionic drug probenecid has been traditionally used as an inhibitor of renal organic anion transport. More recently the drug was found to inhibit organic cation transport as well, and it is used to retain intracellularly loaded fluorophores. In these investigations it is implicitly assumed that probenecid performs its activity through competition for transport. Here we studied the possibility that probenecid provokes its effect through inhibition of cellular oxidative metabolism. Oxygen consumption was measured in isolated rat kidney cortex mitochondria. At concentrations of 1 mM or higher, probenecid increased the resting state (state 4) and decreased the ADP-stimulated respiration (state 3). A complete loss in respiratory control was observed at 10 mM probenecid. After incubating isolated rat kidney proximal tubular cells (PTC) for 30 min with probenecid a concentration-dependent reduction in ATP content was observed, which was significant at concentrations of 1 mM and higher. Using digital image fluorescence microscopy the membrane potential in PTC was measured with bisoxonol. The mitochondrial effects of probenecid were paralleled by a depolarization of the plasma membrane, immediately after drug addition. All events are likely to be a result of membrane disordering due to the lipophilic character of probenecid, and may explain, at least in part, the various inhibitory effects found for the drug. We recommend to be cautious with applying probenecid in cellular research.
Localization of cholesterol in sphingomyelinase-treated fibroblasts.
Pörn, M I; Slotte, J P
1995-01-01
The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution. Images Figure 1 Figure 2 PMID:7755574
Direct effects of Vaccinium myrtillus L. fruit extracts on rat heart mitochondrial functions.
Trumbeckaitė, S; Burdulis, D; Raudonė, L; Liobikas, J; Toleikis, A; Janulis, V
2013-04-01
In this study, the direct influence of bilberry (Vaccinium myrtillus) fruit extracts (aqueous and ethanolic) rich in anthocyanins on the oxidative phosphorylation of isolated rat heart mitochondria was investigated in vitro. Higher concentrations of bilberry extracts concentration-dependently inhibited mitochondrial state 3 respiration (by 23%-61%) with pyruvate plus malate, mildly (by 1.2- to 1.3-fold) uncoupled the oxidative phosphorylation, and increased (by 30%-87%) the state 4 respiration rate in the presence of exogenous cytochrome c. Succinate oxidation was less affected. Pure anthocyanins, the main components of used extracts, malvidin-3-glucoside, malvidin-3-galactoside, and cyanidin-3-galactoside, had no effect on oxidation of pyruvate plus malate. A statistically significant decrease in H2 O2 production by mitochondria was found in the presence of bilberry fruit extracts. Our findings show that bilberry fruit anthocyanin-rich extracts possess direct effects on rat heart mitochondrial function in vitro. These findings give the first insights into the mechanism(s) of their action on cellular energy metabolism. Copyright © 2012 John Wiley & Sons, Ltd.
Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells
Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard
2013-01-01
Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242
Biophysical basis of low-power-laser effects
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-06-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1995-05-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Mechanisms of interaction of monochromatic visible light with cells
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-01-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O'2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low- power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Besides explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Colín-González, Ana L.; Santana, Ricardo A.; Silva-Islas, Carlos A.; Chánez-Cárdenas, Maria E.; Santamaría, Abel; Maldonado, Perla D.
2012-01-01
Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo—in diverse experimental animal models associated to oxidative stress—and in vitro conditions—using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor—a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels. PMID:22685624
Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui
2011-02-08
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.
Foster, Meika; Samman, Samir
2010-11-15
Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.
Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis
Ivanov, Alexander V.; Valuev-Elliston, Vladimir T.; Tyurina, Daria A.; Ivanova, Olga N.; Kochetkov, Sergey N.; Bartosch, Birke; Isaguliants, Maria G.
2017-01-01
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review. PMID:27965466
Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.
Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A
2017-09-01
Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.
Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.
2015-01-01
Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666
Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E; Napolitano, Alessandra; Payne, Gregory F
2015-12-16
Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin's pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin's redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism.
González, Raúl; López-Grueso, M José; Muntané, Jordi; Bárcena, J Antonio; Padilla, C Alicia
2015-12-01
Nitric oxide (NO) plays relevant roles in signal transduction in physiopathology and its effects are dependent on several environmental factors. NO has both pro-apoptotic and anti-apoptotic functions but the molecular mechanisms responsible for these opposite effects are not fully understood. The action of NO occurs mainly through redox changes in target proteins, particularly by S-nitrosylation of reactive cysteine residues. Thioredoxin (Trx) and glutaredoxin (Grx) systems are the main cellular controllers of the thiolic redox state of proteins exerting controversial effects on apoptosis with consequences for the resistance to or the development of cancer. The aim of this study was to ascertain whether Trx and/or Grx systems mediate the antiproliferative effect of NO on hepatoblastoma cells by modulating the redox-state of key proteins. Proliferation decreased and apoptosis increased in HepG2 cells overexpressing Nitric Oxide Synthase-3 (NOS-3) as a result of multilevel cellular responses to the oxidative environment generated by NO. Enzyme levels and cysteine redox state at several metabolic checkpoints were consistent with prominence of the pentose phosphate pathway to direct the metabolic flux toward NADPH for antioxidant defense and lowering of nucleotide biosynthesis and hence proliferation. Proteins involved in cell survival pathways, proteins of the redoxin systems and phosphorylation of MAPK were all significantly increased accompanied by a shift of the thiolic redox state of Akt1, Trx1 and Grx1 to more oxidized. Silencing of Trx1 and Grx1 neutralized the increases in CD95, Akt1 and pAkt levels induced by NO and produced a marked increase in caspase-3 and -8 activities in both control and NOS-3 overexpressing cells concomitant with a decrease in the number of cells. These results demonstrate that the antiproliferative effect of NO is actually hampered by Trx1 and Grx1 and support the strategy of weakening the thiolic antioxidant defenses when designing new antitumoral therapies. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865
Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals
Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav
2008-01-01
Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581
Mapping of oxidative stress response elements of the caveolin-1 promoter.
Bartholomew, Janine N; Galbiati, Ferruccio
2010-01-01
According to the "free radical theory" of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS). ROS are known to induce cellular senescence, and senescent cells are believed to contribute to organismal aging. The molecular mechanisms that mediate the cellular response to oxidants remain to be fully identified. We have shown that oxidative stress induces cellular senescence through activation of the caveolin-1 promoter and upregulation of caveolin-1 protein expression. Here, we describe how reactive oxygen species activate the caveolin-1 promoter and how the signaling may be assayed. These approaches provide insight into the functional role of caveolin-1 and potentially allow the identification of novel ROS-regulated genes that are part of the signaling machinery regulating cellular senescence/aging.
Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.
Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana
2017-05-01
Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Eberhardt, Marian V; Kobira, Kanta; Keck, Anna-Sigrid; Juvik, John A; Jeffery, Elizabeth H
2005-09-21
Chemical measures of antioxidant activity within the plant, such as the oxygen radical absorbance capacity (ORAC) assay, have been reported for many plant-based foods. However, the extent to which chemical measures relate to cellular measures of oxidative stress is unclear. The natural variation in the phytochemical content of 22 broccoli genotypes was used to determine correlations among chemical composition (carotenoids, tocopherols and polyphenolics), chemical antioxidant activity (ORAC), and measures of cellular antioxidation [prevention of DNA oxidative damage and of oxidation of the biomarker dichlorofluorescein (DCFH) in HepG2 cells] using hydrophilic and lipophilic extracts of broccoli. For lipophilic extracts, ORAC (ORAC-L) correlated with inhibition of cellular oxidation of DCFH (DCFH-L, r = 0.596, p = 0.006). Also, DNA damage in the presence of the lipophilic extract was negatively correlated with both chemical and cellular measures of antioxidant activity as measured by ORAC-L (r = -0.705, p = 0.015) and DCFH-L (r = -0.671, p = 0.048), respectively. However, no correlations were observed for hydrophilic (-H) extracts, except between polyphenol content and ORAC (ORAC-H; r = 0.778, p < 0.001). Inhibition of cellular oxidation by hydrophilic extracts (DCFH-H) and ORAC-H were approximately 8- and 4-fold greater than DCFH-L and ORAC-L, respectively. Whether ORAC-H has more biological relevance than ORAC-L because of its magnitude or whether ORAC-L bears more biological relevance because it relates to cellular estimates of antioxidant activity remains to be determined. Chemical estimates of antioxidant capacity within the plant may not accurately reflect the complex nature of the full antioxidant activity of broccoli extracts within cells.
Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo
2014-01-01
Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401
NASA Astrophysics Data System (ADS)
Pourchez, Jérémie; Forest, Valérie; Boumahdi, Najih; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Herlin-Boime, Nathalie; Leconte, Yann; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe
2012-10-01
Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.
Biological functions of histidine-dipeptides and metabolic syndrome.
Song, Byeng Chun; Joo, Nam-Seok; Aldini, Giancarlo; Yeum, Kyung-Jin
2014-02-01
The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.
Hexavalent Chromium Causes the Oxidation of Thioredoxin in Human Bronchial Epithelial Cells
Myers, Judith M.; Antholine, William E.; Myers, Charles R.
2008-01-01
Hexavalent chromium [Cr(VI)] species such as chromates are cytotoxic. Inhalational exposure is a primary concern in many Cr-related industries and their immediate environments, and bronchial epithelial cells are directly exposed to inhaled Cr(VI). Chromates are readily taken up by cells and are reduced to reactive Cr species which may also result in the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system has a key role in the maintenance of cellular thiol redox balance and is essential for cell survival. Cells normally maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. Redox western blots were used to assess the redox status of the thioredoxins in normal human bronchial epithelial cells (BEAS-2B) incubated with soluble Na2CrO4 or insoluble ZnCrO4 for different periods of time. Both chromates caused a dose- and time-dependent oxidation of Trx2 and Trx1. Trx2 was more susceptible in that it could all be converted to the oxidized form, whereas a small amount of reduced Trx1 remained even after prolonged treatment with higher Cr concentrations. Only one of the dithiols, presumably the active site, of Trx1 was oxidized by Cr(VI). Cr(VI) did not cause significant GSH depletion or oxidation indicating that Trx oxidation does not result from a general oxidation of cellular thiols. With purified Trx and thioredoxin reductase (TrxR) in vitro, Cr(VI) also resulted in Trx oxidation. It was determined that purified TrxR has pronounced Cr(VI) reducing activity, so competition for electron flow from TrxR might impair its ability to reduce Trx. The in vitro data also suggested some direct redox interaction between Cr(VI) and Trx. The ability of Cr(VI) to cause Trx oxidation in cells could contribute to its cytotoxic effects, and could have important implications for cell survival, redox-sensitive cell signaling, and the cells' tolerance of other oxidant insults. PMID:18328613
Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism.
Tessier, Sarah; Martin-Martin, Natalia; de Thé, Hugues; Carracedo, Arkaitz; Lallemand-Breitenbach, Valérie
2017-03-20
Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.; Jensen, Pernille Rose; Lerche, Mathilde H.
2014-01-01
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments. PMID:24302737
Sun, Aizhen; Nie, Shengjun; Xing, Da
2012-01-01
The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity. PMID:22926319
Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P
2014-01-01
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880
Light Weight Biomorphous Cellular Ceramics from Cellulose Templates
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2003-01-01
Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.
Cellular membrane collapse by atmospheric-pressure plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak
2014-01-06
Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less
Yang, Eun Sun; Park, Jeen-Woo
2011-05-01
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.
Copper toxicity, oxidative stress, and antioxidant nutrients.
Gaetke, Lisa M; Chow, Ching Kuang
2003-07-15
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.
Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon
2013-06-01
To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.
Degirmenci, Sinan; Olgar, Yusuf; Durak, Aysegul; Tuncay, Erkan; Turan, Belma
2018-07-01
Intracellular labile (free) Zn 2+ -level ([Zn 2+ ] i ) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn 2+ ] i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn 2+ ] i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn 2+ ] i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn 2+ ] i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn 2+ ] i induced inhibitions in voltage-dependent K + -channel currents, such as transient outward K + -currents, I to , steady-state currents, I ss and inward-rectifier K + -currents, I K1 , reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both I ss and I K1 , while no effect on I to . However, the increased-[Zn 2+ ] i could induce marked activation in ATP-sensitive K + -channel currents, I KATP , depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn 2+ ] i with no change in mRNA level of Kv4.2, while the mRNA level of I KATP subunit, SUR2A was increased significantly with increased-[Zn 2+ ] i , being reversible with DTT. Overall we demonstrated that high-[Zn 2+ ] i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K + -currents, although activation of I KATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn 2+ ] i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress. Copyright © 2018 Elsevier GmbH. All rights reserved.
Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.
2014-01-01
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944
Adaptation of Organisms by Resonance of RNA Transcription with the Cellular Redox Cycle
NASA Technical Reports Server (NTRS)
Stolc, Viktor
2012-01-01
Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in that cell, including energy production, DNA replication, and RNA transcription. It is shown that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.
Im, Michelle; Dagnino, Lina
2018-01-01
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity. PMID:29568383
Im, Michelle; Dagnino, Lina
2018-03-02
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.
Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation
ERIC Educational Resources Information Center
Jena, Ananta Kumar
2015-01-01
Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…
Bagchi, D; Bagchi, M; Stohs, S J
2001-06-01
Chromium (VI) is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. On the contrary, chromium (III) salts such as chromium polynicotinate, chromium chloride and chromium picolinate, are used as micronutrients and nutritional supplements, and have been demonstrated to exhibit a significant number of health benefits in rodents and humans. However, the cause for the hexavalent chromium to induce cytotoxicity is not entirely understood. A series of in vitro and in vivo studies have demonstrated that chromium (VI) induces an oxidative stress through enhanced production of reactive oxygen species (ROS) leading to genomic DNA damage and oxidative deterioration of lipids and proteins. A cascade of cellular events occur following chromium (VI)-induced oxidative stress including enhanced production of superoxide anion and hydroxyl radicals, increased lipid peroxidation and genomic DNA fragmentation, modulation of intracellular oxidized states, activation of protein kinase C, apoptotic cell death and altered gene expression. In this paper, we have demonstrated concentration- and time-dependent effects of sodium dichromate (chromium (VI) or Cr (VI)) on enhanced production of superoxide anion and hydroxyl radicals, changes in intracellular oxidized states as determined by laser scanning confocal microscopy, DNA fragmentation and apoptotic cell death (by flow cytometry) in human peripheral blood mononuclear cells. These results were compared with the concentration-dependent effects of chromium (VI) on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Chromium (VI)-induced enhanced production of ROS, as well as oxidative tissue and DNA damage were observed in these cells. More pronounced effect was observed on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Furthermore, we have assessed the effect of a single oral LD50 dose of chromium (VI) on female C57BL/6Ntac and p53-deficient C57BL/6TSG p53 mice on enhanced production of superoxide anion, lipid peroxidation and DNA fragmentation in the hepatic and brain tissues. Chromium (VI)-induced more pronounced oxidative damage in p53 deficient mice. This in vivo study highlighted that apoptotic regulatory protein p53 may play a major role in chromium (VI)-induced oxidative stress and toxicity. Taken together, oxidative stress and oxidative tissue damage, and a cascade of cellular events including modulation of apoptotic regulatory gene p53 are involved in chromium (VI)-induced toxicity and carcinogenesis.
S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress
STEENBERGEN, CHARLES; MURPHY, ELIZABETH
2007-01-01
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. S-nitrosylation, the covalent attachment of an NO moiety to sulfhydryl residues of proteins, resulting in the formation of S-nitrosothiols (SNOs), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. Under physiologic conditions, protein S>-nitrosylation and SNOs provide protection preventing further cellular oxidative and nitrosative stress. However, oxidative stress and the resultant dysfunction of NO signaling have been implicated in the pathogenesis of cardiovascular diseases. PMID:16987022
Lou, Zhangrong; Li, Peng; Han, Keli
2015-01-01
Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.
Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.
Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L
2016-01-01
Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan
2017-01-01
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548
Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K
2017-01-01
Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.
Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging
Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea
2013-01-01
The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327
Oxidative damage and cellular defense mechanisms in sea urchin models of aging.
Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea
2013-10-01
The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. Copyright © 2013 Elsevier Inc. All rights reserved.
Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition.
Bräutigam, Lars; Pudelko, Linda; Jemth, Ann-Sofie; Gad, Helge; Narwal, Mohit; Gustafsson, Robert; Karsten, Stella; Carreras Puigvert, Jordi; Homan, Evert; Berndt, Carsten; Berglund, Ulrika Warpman; Stenmark, Pål; Helleday, Thomas
2016-04-15
Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR. ©2016 American Association for Cancer Research.
Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity.
Hernández, Helen; Parra, Alejandra; Tobar, Nicolas; Molina, Jessica; Kallens, Violeta; Hidalgo, Miltha; Varela, Diego; Martínez, Jorge; Porras, Omar
2018-06-01
Aerobic metabolism brings inexorably the production of reactive oxygen species (ROS), which are counterbalanced by intrinsic antioxidant defenses avoiding deleterious intracellular effects. Redox balance is the resultant of metabolic functioning under environmental inputs (i.e. diet, pollution) and the activity of intrinsic antioxidant machinery. Monitoring of intracellular hydrogen peroxide has been successfully achieved by redox biosensor advent; however, to track the intrinsic disulfide bond reduction capacity represents a fundamental piece to understand better how redox homeostasis is maintained in living cells. In the present work, we compared the informative value of steady-state measurements and the kinetics of HyPer, a H 2 O 2 -sensitive fluorescent biosensor, targeted at the cytosol, mitochondrion and endoplasmic reticulum. From this set of data, biosensor signal recovery from an oxidized state raised as a suitable parameter to discriminate reducing capacity of a close environment. Biosensor recovery was pH-independent, condition demonstrated by experiments on pH-clamped cells, and sensitive to pharmacological perturbations of enzymatic disulfide reduction. Also, ten human cell lines were characterized according their H 2 O 2 -pulse responses, including their capacity to reduce disulfide bonds evaluated in terms of their migratory capacity. Finally, cellular migration experiments were conducted to study whether migratory efficiency was associated with the disulfide reduction activity. The migration efficiency of each cell type correlates with the rate of signal recovery measured from the oxidized biosensor. In addition, HyPer-expressing cells treated with N-acetyl-cysteine had accelerated recovery rates and major migratory capacities, both reversible effects upon treatment removal. Our data demonstrate that the HyPer signal recovery offers a novel methodological tool to track the cellular impact of redox active biomolecules. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La
2015-07-01
An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.
Markers of Oxidant Stress that are Clinically Relevant in Aging and Age-related Disease
Jacob, Kimberly D.; Hooten, Nicole Noren; Trzeciak, Andrzej R.; Evans, Michele K.
2013-01-01
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant. PMID:23428415
NASA Astrophysics Data System (ADS)
Lin, Zeng; Lee, In-Seop; Choi, Yoon-Jeong; Noh, In-Sup; Chung, Sung-Min
2009-02-01
Different chemical states of titanium oxide films were deposited on commercially pure Ti (CP Ti) by electron-beam evaporation at different oxygen flow rates to examine a possibility of their applications to endovascular stents. The surface morphology, chemical composition and crystal structure of the obtained titanium oxide films were analyzed by FE-SEM, XPS and XRD, respectively. As a function of the deposition parameters employed, the obtained titanium oxide films demonstrated different mixtures of anatase phase, Ti2O3 and TiO. By the formation of titanium oxide film on the CP Ti plate, the contact angle was decreased and the cellular activity of porcine aortic smooth muscle cells was increased. Post-deposition annealing was also found to be an important factor to achieve advantageous biocompatibility. When haemocompatibility was investigated by observing adhesion of blood platelets from platelet-rich plasma, less platelet adhesion was observed on titanium oxide films. These results indicated that titanium oxide film synthesized by e-beam evaporation could be applicable to coronary stents.
NASA Astrophysics Data System (ADS)
Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo
2018-01-01
Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.
Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.
Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina
2015-01-01
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas
2015-01-01
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210
Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.
Sorokin, Andrey
2016-01-01
The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.
Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo
2015-01-01
Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962
Increased oxidative phosphorylation in response to acute and chronic DNA damage
Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R
2016-01-01
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274
Summer Prostate Cancer Research Training Program
2015-07-01
cellular resistance to oxidative stress associated with cancer therapy. His laboratory was also the first to discover that glucose deprivation...cellular resistance to oxidative stress associated with cancer therapy. His laboratory was also the first to discover that glucose deprivation...Professor & Starch Faculty Fellow in the Department of Psychology. The current focus of the Lutgendorf laboratory investigates how stress is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz
2010-11-01
This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 {mu}M concentration. It was evidenced by a statistically significant increase of both GSH{sub t} and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statisticallymore » significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH{sub t} level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: {yields}This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).« less
Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.
2010-01-01
Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717
Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan
Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less
Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge
Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan; ...
2017-07-06
Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less
Noshi, Masahiro; Yamada, Hiroki; Hatanaka, Risa; Tanabe, Noriaki; Tamoi, Masahiro; Shigeoka, Shigeru
2017-03-01
Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.
Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.
Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair
2017-08-01
Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.
Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.
Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo
2006-01-01
The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.
Du, Wei; Rani, Reena; Sipple, Jared; Schick, Jonathan; Myers, Kasiani C; Mehta, Parinda; Andreassen, Paul R; Davies, Stella M; Pang, Qishen
2012-05-03
Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.
Summer Prostate Cancer Research Training Program
2016-07-01
a large increase cellular resistance to oxidative stress associated with cancer therapy. His laboratory was also the first to discover that...genomic instability and gene amplification that resulted in a large increase cellular resistance to oxidative stress associated with cancer therapy. His... Starch Faculty Fellow in the Department of Psychology. The current focus of the Lutgendorf laboratory investigates how stress is related to
Role of resveratrol in regulation of cellular defense systems against oxidative stress.
Truong, Van-Long; Jun, Mira; Jeong, Woo-Sik
2018-01-01
Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018. © 2017 International Union of Biochemistry and Molecular Biology.
Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun
2018-05-01
Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Woodhams, Benjamin; Ansel-Bollepalli, Laura; Surmacki, Jakub; Knowles, Helena; Maggini, Laura; de Volder, Michael; Atatüre, Mete; Bohndiek, Sarah
2018-06-19
Nanodiamonds have demonstrated potential as powerful sensors in biomedicine, however, their translation into routine use requires a comprehensive understanding of their effect on the biological system being interrogated. Under normal fabrication processes, nanodiamonds are produced with a graphitic carbon shell, but are often oxidized in order to modify their surface chemistry for targeting to specific cellular compartments. Here, we assessed the biological impact of this purification process, considering cellular proliferation, uptake, and oxidative stress for graphitic and oxidized nanodiamond surfaces. We show for the first time that oxidized nanodiamonds possess improved biocompatibility compared to graphitic nanodiamonds in breast cancer cell lines, with graphitic nanodiamonds inducing higher levels of oxidative stress despite lower uptake.
Girard, Pierre-Marie; Graindorge, Dany; Smirnova, Violetta; Rigolet, Pascal; Francesconi, Stefania; Scanlon, Susan; Sage, Evelyne
2013-01-01
In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR), a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3) in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack. By non-reducing SDS-PAGE we show that many different oxidants induce hXRCC3 oxidation that is monitored in Chinese hamster ovarian (CHO) cells by increased electrophoretic mobility of the protein and in human cells by a slight decrease of its immunodetection. In both cell types, hXRCC3 oxidation was reversed in few minutes by cellular reducing systems. Depletion of intracellular glutathione prevents hXRCC3 oxidation only after UVA exposure though depending on the type of photosensitizer. In addition, we show that hXRCC3 expressed in CHO cells localizes both in the cytoplasm and in the nucleus. Mutating all hXRCC3 cysteines to serines (XR3/S protein) does not affect the subcellular localization of the protein even after exposure to camptothecin (CPT), which typically induces DNA damages that require HR to be repaired. However, cells expressing mutated XR3/S protein are sensitive to CPT, thus highlighting a defect of the mutant protein in HR. In marked contrast to CPT treatment, oxidative stress induces relocalization at the chromatin fraction of both wild-type and mutated protein, even though survival is not affected. Collectively, our results demonstrate that the DNA repair protein hXRCC3 is a target of ROS induced by environmental factors and raise the possibility that the redox environment might participate in regulating the HR pathway. PMID:24116071
Shi, Qingli; Xu, Hui; Kleinman, Wayne A.; Gibson, Gary E.
2011-01-01
Measures in autopsied brains from Alzheimer’s Disease (AD) patients reveal a decrease in the activity of α-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H2O2 and to probe the mechanism underlying these changes. Since the response to H2O2 is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one hour treatment with H2O2 decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H2O2 inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H2O2 converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H2O2 diminished glutathione to a similar level after 24 hrs. However, H2O2, but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H2O2 together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes. PMID:18206986
Broniowska, Katarzyna A.; Diers, Anne R.; Hogg, Neil
2013-01-01
Background S-Nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione and is thought to be a critical mediator of the down-stream signaling effects of nitric oxide (NO). GSNO has also been implicated as a contributor to various disease states. Scope of Review This review focuses on the chemical nature of GSNO, its biological activities, the evidence that it is an endogenous mediator of NO action, and implications for therapeutic use. Major Conclusions GSNO clearly exerts its cellular actions through both NO- and S-nitrosation-dependent mechanisms; however, the chemical and biological aspects of this compound should be placed in the context of S-nitrosation as a whole. General Significance GSNO is a central intermediate in formation and degradation of cellular S-nitrosothiols with potential therapeutic applications; thus, it remains an important molecule of study. PMID:23416062
Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.
Ipson, Brett R; Fisher, Alfred L
2016-05-01
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.
Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress
Ipson, Brett R.; Fisher, Alfred L.
2016-01-01
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer’s disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs, and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. PMID:27039887
Accelerated aging in schizophrenia patients: the potential role of oxidative stress.
Okusaga, Olaoluwa O
2014-08-01
Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.
Biological Chemistry and Functionality of Protein Sulfenic Acids and Related Thiol Modifications
Devarie-Baez, Nelmi O.; Silva Lopez, Elsa I.; Furdui, Cristina M.
2016-01-01
Selective modification of proteins at cysteine residues by reactive oxygen, nitrogen or sulfur species formed under physiological and pathological states is emerging as a critical regulator of protein activity impacting cellular function. This review focuses primarily on protein sulfenylation (-SOH), a metastable reversible modification connecting reduced cysteine thiols to many products of cysteine oxidation. An overview is first provided on the chemistry principles underlining synthesis, stability and reactivity of sulfenic acids in model compounds and proteins, followed by a brief description of analytical methods currently employed to characterize these oxidative species. The following chapters present a selection of redox-regulated proteins for which the -SOH formation was experimentally confirmed and linked to protein function. These chapters are organized based on the participation of these proteins in the regulation of signaling, metabolism and epigenetics. The last chapter discusses the therapeutic implications of altered redox microenvironment and protein oxidation in disease. PMID:26340608
Protein Oxidation: Key to Bacterial Desiccation Resistance?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Jim K.; Li, Shu-Mei W.; Gaidamakova, E.
For extremely ionizing radiation resistant bacteria, survival has been attributed to protection of proteins from oxidative damage during irradiation, with the result that repair systems survive and function with far greater efficiency during recovery than in sensitive bacteria. Here we examined the relationship between survival of dry-climate soil bacteria and the level of cellular protein oxidation induced by desiccation. Bacteria were isolated from surface soils of the shrub-steppe of the U.S. Department of Energy’s Hanford Site in Washington state. A total of 63 isolates were used for phylogenetic analysis. The majority of isolates were closely related to members of themore » genus Deinococcus, with Chelatococcus, Methylobacterium and Bosea also among the genera identified. Desiccation-resistant isolates accumulated high intracellular manganese and low iron concentrations compared to sensitive bacteria. In vivo, proteins of desiccation-resistant bacteria were protected from oxidative modifications that introduce carbonyl groups in sensitive bacteria during drying. We present the case that survival of bacteria that inhabit dry-climate soils are highly dependent on mechanisms which limit protein oxidation during dehydration.« less
Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona
2016-01-01
High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527
Spragg, R G; Hinshaw, D B; Hyslop, P A; Schraufstätter, I U; Cochrane, C G
1985-01-01
To investigate mechanisms whereby oxidant injury of cells results in cell dysfunction and death, cultured endothelial cells or P388D1 murine macrophage-like cells were exposed to oxidants including H2O2, O2-. (generated by the enzymatic oxidation of xanthine), or to stimulated polymorphonuclear leukocytes (PMN). Although Trypan Blue exclusion was not diminished before 30 min, cellular ATP was found to fall to less than 30% of control values within 3 min of exposure to 5 mM H2O2. Stimulated PMN plus P388D1 caused a 50% fall in cellular ATP levels. During the first minutes of oxidant injury, total adenylate content of cells fell by 85%. Cellular ADP increased 170%, AMP increased 900%, and an 83% loss of ATP was accompanied by a stoichiometric increase in IMP and inosine. Calculated energy charge [(ATP + 1/2 AMP)/(ATP + ADP + AMP)] fell from 0.95 to 0.66. Exposure of P388D1 to oligomycin plus 2-deoxyglucose (which inhibit oxidative and glycolytic generation of ATP, respectively) resulted in a rate of ATP fall similar to that induced by H2O2. In addition, nucleotide alterations induced by exposure to oligomycin plus 2-deoxyglucose were qualitatively similar to those induced by the oxidant. Loss of cell adenylates could not be explained by arrest of de novo purine synthesis or increased ATP consumption by the Na+-K+ ATPase or the mitochondrial F0-ATPase. These results indicate that H2O2 causes a rapid and profound fall in cellular ATP levels similar to that seen when ATP production is arrested by metabolic inhibitors. PMID:2997279
Formation and processing of DNA damage substrates for the hNEIL enzymes.
Fleming, Aaron M; Burrows, Cynthia J
2017-06-01
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek
2017-01-01
The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H2O2-induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H2O2-induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis. PMID:29081819
Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek; Heo, Ho Jin
2017-01-01
The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H 2 O 2 -induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H 2 O 2 -induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis.
A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.
Putker, Marrit; Vos, Harmjan R; van Dorenmalen, Kim; de Ruiter, Hesther; Duran, Ana G; Snel, Berend; Burgering, Boudewijn M T; Vermeulen, Michiel; Dansen, Tobias B
2015-01-01
Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.
Campos, Keila Karine Duarte; Manso, Rafaela Gontijo; Gonçalves, Evandro Guedes; Silva, Marcelo Eustáquio; de Lima, Wanderson Geraldo; Menezes, Cristiane Alves Silva; Bezerra, Frank Silva
2013-01-01
The most common factor related to the chronic obstructive pulmonary disease (COPD) development is the chronic smoking habit. Our study describes the temporal kinesis of pulmonary cellular influx through BALF analyses of mice acutely exposed to cigarette smoke (CS), the oxidative damage and antioxidative enzyme activities. Thirty-six mice (C57BL/6, 8weeks old, male) were divided in 6 groups: the control group (CG), exposed to ambient air, and the other 30 mice were exposed to CS. Mice exposed to CS presented, especially after the third day of exposure, different cellular subpopulations in BALF. The oxidative damage was significantly higher in CS exposed groups compared to CG. Our data showed that the evaluated inflammatory cells, observed after three days of CS exposure, indicate that this time point could be relevant to studies focusing on these cellular subpopulation activities and confirm the oxidative stress even in a short term CS exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion.
Horie, Masanori; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nishio, Keiko; Komaba, Lilian Kaede; Fukui, Hiroko; Nakamura, Ayako; Miyauchi, Arisa; Nakazato, Tetsuya; Kinugasa, Shinichi; Yoshida, Yasukazu; Hagihara, Yoshihisa; Morimoto, Yasuo; Iwahashi, Hitoshi
2011-11-01
Platinum nanoparticles have industrial application, for example in catalysis, and are used in consumer products such as cosmetics and supplements. Therefore, among the many nanoparticles, platinum is one of the more accessible nanoparticles for consumers. Most platinum nanoparticles that are used in cosmetics and supplements which have an anti-oxidant activity are modified particles. However, the cellular influences of pristine platinum nanoparticles are still unclear, although it has been reported that platinum nanoparticles induce oxidative stress. In this study, we investigated the cellular influences induced by pure pristine platinum nanoparticles. Platinum nanoparticles of 100% purity were dispersed in a cell culture medium and stable medium dispersion was obtained. The platinum nanoparticle medium dispersion was applied to two kinds of cultured cells, A549 and HaCaT cells, and the cellular influences were examined. Cell viability (MTT assay), cell proliferation (clonogenic assay), apoptosis induction (caspase-3 activity), intracellular ROS level (DCFH assay), and lipid peroxidation level (DPPP assay) were measured as markers of cellular influences. Transmission electron microscope observation showed cellular uptake of platinum nanoparticles. However, the platinum nanoparticles did not drive any markers. It is known that some metal oxide nanoparticles such as NiO and CuO show severe cytotoxicity via metal ion release. Compared with these toxic nanoparticles, the platinum nanoparticles used in this study did not release platinum ions into the culture media. These results suggest that the physically and chemically inactive cellular influences of platinum nanoparticles are small.
Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging
Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim
2010-01-01
Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915
Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.
Kramer, David A; Quiroga, Ariel D; Lian, Jihong; Fahlman, Richard P; Lehner, Richard
2018-06-15
During fasting, the liver increases lipid storage as a mean to reserve and provide energy for vital cellular functions. After re-feeding, hepatocytes rapidly decrease the amount of triacylglycerol that is stored in lipid droplets (LDs), visible as the size of hepatic LDs significantly decreases after re-feeding. Little is known about the changes in the liver LD proteome that occur during the fasting/re-feeding transition. This study aimed to investigate the hepatic LD proteome in fasted and re-fed conditions in the mouse. Using label-free LC-MS/MS analysis the relative abundance of 817 proteins was determined in highly purified LDs. Comparative analysis for differential protein abundance with respect to feeding states revealed 130 with higher abundance in LDs from fasted mice and 31 in LDs from re-fed mice. Among proteins observed to have higher abundance on LDs in the fasted state we found perilipin-5, and several mitochondrial and peroxisomal marker proteins, supporting the role of LDs in the provision of substrates for fatty acid oxidation. Proteins of higher abundance upon re-feeding included several peroxisomal and mitochondrial marker proteins and expand our understanding of the dynamic nature of the hepatic LD proteome according to the energetic requirements of the cell. Proteomic investigations have been revealing the complexities and dynamics of cellular LDs from a variety of cell types. As these sub-cellular structures are truly dynamic in nature, our investigations reveal that simply the feeding state of an animal leads to significant changes to the protein composition of LDs and suggest a variety of dynamic interactions with other cellular organelles, such as the mitochondria and peroxisomes. As such, the experimental design for investigations of this cellular structure must consider this dynamic baseline. Lastly our analysis on global protein abundance has revealed the unforeseen high abundance of murine major urinary proteins associated with hepatic lipid droplets, which warrants further investigations. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Sajad, Mir; Zargan, Jamil; Zargar, Mohammad Afzal; Sharma, Jyoti; Umar, Sadiq; Arora, Rajesh; Khan, Haider A
2013-05-01
Survival along with optimal proliferation of neuronal precursors determines the outcomes of the endogenous cellular repair in CNS. Cellular-oxidation based cell death has been described in several neurodegenerative disorders. Therefore, this study was aimed at the identification of the potent targets of oxidative damage to the neuronal precursors and its effective prevention by a natural flavonoid, Quercetin. Neuronal precursor cells (NPCs), Nestin+ and GFAP (Glial fibrillary acidic protein)+ were isolated and cultured from adult rat SVZ (subventricular zone). These cells were challenged with a single dose of H2O2 (50μM) and/or pre-treated with different concentrations of Quercetin. H2O2 severely limited the cellular viability and expansion of the neurospheres. Cellular-oxidation studies revealed reduction in glutathione dependent redox buffering along with depletion of enzymatic cellular antioxidants that might potentiate the nitrite (NO2(-)) and superoxide anion (O2(-)) mediated peroxynitrite (ONOO(-)) formation and irreversible protein nitration. We identified depleted PK-M2 (M2 isoform of pyruvate kinase) activity and apoptosis of NPCs revealed by the genomic DNA fragmentation and elevated PARP (poly ADP ribose polymerase) activity along with increased Caspase activity initiated by severely depolarised mitochondrial membranes. However, the pre-treatment of Quercetin in a dose-response manner prevented these changes and restored the expansion of neurospheres preferably by neutralizing the oxidative conditions and thereby reducing peroxynitrite formation, protein nitration and PK-M2 depletion. Our results unravel the potential interactions of oxidative environment and respiration in the survival and activation of precursors and offer a promise shown by a natural flavonoid in the protective strategy for neuronal precursors of adult brain. Copyright © 2013 Elsevier Inc. All rights reserved.
Cellular localization and detergent dependent oligomerization of rice allene oxide synthase-1.
Yoeun, Sereyvath; Kim, Jeong-Il; Han, Oksoo
2015-01-01
Allene oxide synthase-1 from Oryza sativa (OsAOS1) localizes to the chloroplast, but lacks a putative chloroplast targeting sequence typically found in dicot AOS. Here, kinetic parameters and the oligomerization state/subunit composition of OsAOS1 were characterized in vitro in the absence or presence of detergent micelles. The catalytic efficiency (k(cat)/K(m)) of OsAOS1 reached a maximum near the critical micelle concentration for polyoxyethylene 10 tridecyl ether. Native gel analysis showed that OsAOS1 exists as a multimer in the absence of detergent micelles. The multimeric form of OsAOS1 was stably cross-linked in the absence of detergents, while only monomeric OsAOS1 was detected in the presence of detergent micelles. Gel filtration analysis indicated that the oligomeric state of OsAOS1 depends strongly on the detergents and that the monomer becomes the predominant form in the presence of detergent micelles. These data suggest that the detergent-dependent oligomeric state of OsAOS1 is an important factor for the regulation of its catalytic efficiency.
Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia
2015-01-01
Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.
Delgado-Roche, Livan; Riera-Romo, Mario; Mesta, Fernando; Hernández-Matos, Yanet; Barrios, Juan M; Martínez-Sánchez, Gregorio; Al-Dalaien, Said M
2017-09-15
Oxidative stress and inflammation play key roles in the pathogenesis of Multiple sclerosis (MS). Different drugs have been used in the clinical practice, however, there is not a completely effective treatment. Due to its potential therapeutic action, medical ozone represents a promising approach for neurodegenerative disorders. The aim of the present study was to address the role of ozone therapy on the cellular redox state in MS patients. Ozone (20μg/ml) was administered three times per week during a month by rectal insufflation. The effect of ozone therapy on biomarkers of oxidative stress and inflammation was addressed by spectrophotometric and immunoenzymatic assays. Furthermore, we investigated the action of ozone on CK2 expression and Nrf2 phosphorylation by western blotting analysis. Medical ozone significantly improved (P < 0.05) the activity of antioxidant enzymes and increased the levels of cellular reduced glutathione. In accordance, a significant reduction (P < 0.05) of oxidative damage on lipids and proteins was observed in ozone-treated patients. As well, the levels of pro-inflammatory cytokines TNFα and IL-1β were lower after ozone treatment. Ozone therapy incremented the CK2 expression together with Nrf2 phosphorylation in mononuclear cells of MS patients. These findings suggest that ozone´s antioxidant and anti-inflammatory effects might be partially associated with an induction of Nrf2 phosphorylation and activation. These results provide new insights on the molecular events modulated by ozone, and pointed out ozone therapy as a potential therapeutic alternative for MS patients. Copyright © 2017. Published by Elsevier B.V.
Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease
Cao, Stewart Siyan
2014-01-01
Abstract Significance: The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction–oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Recent Advances: Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Critical Issues: Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. Future Directions: A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases. Antioxid. Redox Signal. 21, 396–413. PMID:24702237
Redox Proteomics Applied to the Thiol Secretome.
Ghezzi, Pietro; Chan, Philippe
2017-03-01
Secreted proteins are important both as signaling molecules and potential biomarkers. Recent Advances: Protein can undergo different types of oxidation, both in physiological conditions or under oxidative stress. Several redox proteomics techniques have been successfully applied to the identification of glutathionylated proteins, an oxidative post-translational modification consisting in the formation of a mixed disulfide between a protein cysteine and glutathione. Redox proteomics has also been used to study other forms of protein oxidation. Because of the highest proportion of free cysteines in the cytosol, redox proteomics of protein thiols has focused, so far, on intracellular proteins. However, plasma proteins, such as transthyretin and albumin, have been described as glutathionylated or cysteinylated. The present review discusses the redox state of protein cysteines in relation to their cellular distribution. We describe the various approaches used to detect secreted glutathionylated proteins, the only thiol modification studied so far in secreted proteins, and the specific problems presented in the study of the secretome. This review focusses on glutathionylated proteins secreted under inflammatory conditions and that may act as soluble mediators (cytokines). Future studies on the redox secretome (including other forms of oxidation) might identify new soluble mediators and biomarkers of oxidative stress. Antioxid. Redox Signal. 26, 299-312.
Choi, Seeyoung; Love, Paul E
2018-01-05
Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.
Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.
Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo
2015-06-01
The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin
2002-03-29
Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).
Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis
2011-01-01
Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692
Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria
Chu, Kung-Hui; Alvarez-Cohen, Lisa
1998-01-01
The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896
Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan
2012-01-01
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944
Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L
2004-09-01
To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.
Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E
2008-09-01
Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph
2018-01-20
The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Corbin, Monique V; Rockx, Davy A P; Oostra, Anneke B; Joenje, Hans; Dorsman, Josephine C
2015-12-01
Aim of this study was to explore cellular changes associated with increased resistance to atmospheric oxygen using high-resolution DNA and RNA profiling combined with functional studies. Two independently selected oxygen-resistant substrains of HeLa cells (capable of proliferating at >80% O2, i.e. hyperoxia) were compared with their parental cells (adapted to growth at 20% O2, but unable to grow at >80% O2). A striking consistent alteration found to be associated with the oxygen-resistant state appeared to be an amplified and overexpressed region on chromosome 16p13.3 harboring 21 genes. The driver gene of this amplification was identified by functional studies as NARFL, which encodes a component of the cytosolic iron-sulfur cluster assembly system. In line with this result we found the cytosolic c-aconitase activity as well as the nuclear protein RTEL1, both Fe-S dependent proteins, to be protected by NARFL overexpression under hyperoxia. In addition, we observed a protective effect of NARFL against hyperoxia-induced loss of sister-chromatid cohesion. NARFL thus appeared to be a key factor in the cellular defense against hyperoxia-induced oxidative stress in human cells. Our findings suggest that new insight into age-related degenerative processes may come from studies that specifically address the involvement of iron-sulfur proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Na; Su, Dian; Cort, John R.
Reversible disulfide oxidation between proximal cysteines in proteins represents a common regulatory control mechanism to modulate flux through metabolic pathways in response to changing environmental conditions. To enable in vivo measurements of cellular redox changes linked to disulfide bond formation, we have synthesized a cell-permeable monosubstituted cyanine dye derivatized with arsenic (i.e., TRAP_Cy3) to trap and visualize dithiols in cytosolic proteins. Alkylation of reactive thiols prior to displacement of the bound TRAP-Cy3 by ethanedithiol permits facile protein capture and mass spectrometric identification of proximal reduced dithiols to the exclusion of individual cysteines. Applying TRAP_Cy3 to evaluate cellular responses to increasesmore » in oxygen and light levels in the photosynthetic microbe Synechococcus sp. PCC 7002, we observe large decreases in the abundance of reduced dithiols in cellular proteins, which suggest redox-dependent mechanisms involving the oxidation of proximal disulfides. Under these same growth conditions that result in the oxidation of proximal thiols, there is a reduction in the abundance of post-translational oxidative modifications involving nitrotyrosine and methionine sulfoxide formation. These results suggest that the redox status of proximal cysteines respond to environmental conditions, acting to regulate metabolic flux and minimize the formation of reactive oxygen species to decrease oxidative protein damage.« less
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-01-01
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-02-16
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.
Simandan, T; Sun, J; Dix, T A
1998-01-01
DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719
Thiol-based copper handling by the copper chaperone Atox1.
Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko
2017-04-01
Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Optical monitoring of spinal cord subcellular damage after acute spinal cord injury
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.
2018-02-01
Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.
Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka
2014-01-01
We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973
Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venceslau, Sofia S.; Cort, John R.; Baker, Erin S.
2013-11-29
Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cellmore » extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.« less
Redox homeostasis: The Golden Mean of healthy living
Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay
2016-01-01
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. PMID:26820564
Dobson, Jon; Bowtell, Richard; Garcia-Prieto, Ana; Pankhurst, Quentin
2009-01-01
Background Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body. Methodology Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles. Principal Finding and Conclusions Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation. PMID:19412550
Marschall, Robert; Schumacher, Julia; Siegmund, Ulrike; Tudzynski, Paul
2016-05-01
Reactive oxygen species (ROS) are important molecules influencing intracellular developmental processes as well as plant pathogen interactions. They are produced at the infection site and affect the intracellular redox homeostasis. However, knowledge of ROS signaling pathways, their connection to other signaling cascades, and tools for the visualization of intra- and extracellular ROS levels and their impact on the redox state are scarce. By using the genetically encoded biosensor roGFP2 we studied for the first time the differences between the redox states of the cytosol, the intermembrane space of mitochondria and the ER in the filamentous fungus Botrytis cinerea. We showed that the ratio of oxidized to reduced glutathione inside of the cellular compartments differ and that the addition of hydrogen peroxide (H2O2), calcium chloride (CaCl2) and the fluorescent dye calcofluor white (CFW) have a direct impact on the cellular redox states. Dependent on the type of stress agents applied, the redox states were affected in the different cellular compartments in a temporally shifted manner. By integrating the biosensor in deletion mutants of bcnoxA, bcnoxB, bctrx1 and bcltf1 we further elucidated the putative roles of the different proteins in distinct stress-response pathways. We showed that the redox states of ΔbcnoxA and ΔbcnoxB display a wild-type pattern upon exposure to H2O2, but appear to be strongly affected by CaCl2 and CFW. Moreover, we demonstrated the involvement of the light-responsive transcription factor BcLtf1 in the maintenance of the redox state in the intermembrane space of the mitochondria. Finally, we report that CaCl2 as well as cell wall stress-inducing agents stimulate ROS production and that ΔbcnoxB produces significantly less ROS than the wild type and ΔbcnoxA. Copyright © 2016 Elsevier Inc. All rights reserved.
E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.
Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna
2016-07-01
Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.
Fujii, Shigemoto; Akaike, Takaaki
2013-10-10
Emerging evidence has revealed that nitric oxide (NO)- and reactive oxygen species (ROS)-derived electrophiles formed in cells mediate signal transduction for responses to oxidative stress. The cyclic nucleotide with a nitrated guanine moiety-8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-first identified in 2007 as a second messenger for NO and ROS-has certain unique properties that its parental cGMP lacks. For example, it can react with particular protein Cys thiols because of its electrophilicity and can cause unique post-translational modifications of redox-sensor proteins such as Keap1 and H-Ras. Site-specific S-guanylation of Keap1 at Cys434 induced NO- and ROS-mediated adaptive responses to oxidative stress. H-Ras Cys184 S-guanylation was recently found to be involved in activation of mitogen-activated protein kinase cascades as manifested by cellular senescence and heart failure in mouse cardiac hypertrophy models. The latest finding related to the concept of electrophile-based redox signaling is a potent regulatory function of endogenously produced hydrogen sulfide for redox signaling via 8-nitro-cGMP. Electrophile modification of 8-nitro-cGMP, as a second messenger for NO and ROS, by hydrogen sulfide (i.e., electrophile sulfhydration) can most likely effect physiological regulation of cellular redox signaling. Continued investigation of the precise function of cellular hydrogen sulfide that may control electrophile-dependent redox cellular signaling, most typically via 8-nitro-cGMP formation, may provide novel insights into the molecular mechanisms of oxidative stress responses, oxidative stress-related pathology and disease control, and development of therapeutics for various diseases.
Cellular Senescence, Neurological Function, and Redox State.
Maciel-Barón, Luis Ángel; Moreno-Blas, Daniel; Morales-Rosales, Sandra Lizbeth; González-Puertos, Viridiana Yazmín; López-Díazguerrero, Norma Edith; Torres, Claudio; Castro-Obregón, Susana; Königsberg, Mina
2018-06-20
Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.
Carroll, Dustin; Howard, Diana; Zhu, Haining; Paumi, Christian M; Vore, Mary; Bondada, Subbarao; Liang, Ying; Wang, Chi; St Clair, Daret K
2016-08-01
Cellular redox balance plays a significant role in the regulation of hematopoietic stem-progenitor cell (HSC/MPP) self-renewal and differentiation. Unregulated changes in cellular redox homeostasis are associated with the onset of most hematological disorders. However, accurate measurement of the redox state in stem cells is difficult because of the scarcity of HSC/MPPs. Glutathione (GSH) constitutes the most abundant pool of cellular antioxidants. Thus, GSH metabolism may play a critical role in hematological disease onset and progression. A major limitation to studying GSH metabolism in HSC/MPPs has been the inability to measure quantitatively GSH concentrations in small numbers of HSC/MPPs. Current methods used to measure GSH levels not only rely on large numbers of cells, but also rely on the chemical/structural modification or enzymatic recycling of GSH and therefore are likely to measure only total glutathione content accurately. Here, we describe the validation of a sensitive method used for the direct and simultaneous quantitation of both oxidized and reduced GSH via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) in HSC/MPPs isolated from bone marrow. The lower limit of quantitation (LLOQ) was determined to be 5.0ng/mL for GSH and 1.0ng/mL for GSSG with lower limits of detection at 0.5ng/mL for both glutathione species. Standard addition analysis utilizing mouse bone marrow shows that this method is both sensitive and accurate with reproducible analyte recovery. This method combines a simple extraction with a platform for the high-throughput analysis, allows for efficient determination of GSH/GSSG concentrations within the HSC/MPP populations in mouse, chemotherapeutic treatment conditions within cell culture, and human normal/leukemia patient samples. The data implicate the importance of the modulation of GSH/GSSG redox couple in stem cells related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.
2015-01-01
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760
Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C
2015-11-15
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Oxidative Stress and Autophagy in Cardiovascular Homeostasis
Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio
2014-01-01
Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894
Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger
2017-01-01
Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726
Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.
Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi
2014-12-01
Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.
Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries.
Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell
2008-09-01
Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development.
Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries
Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell
2008-01-01
Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development. PMID:18544560
Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio
2017-04-01
Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Role of green tea in oxidative stress prevention].
Metro, D; Muraca, U; Manasseri, L
2006-01-01
Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.
REDOX REGULATION OF SIRT1 IN INFLAMMATION AND CELLULAR SENESCENCE
Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K.; Rahman, Irfan
2013-01-01
Sirtuin1 (SIRT1) regulates inflammation, aging (lifespan and healthspan), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. SIRT1 is regulated by a NAD+-dependent DNA repair enzyme poly(ADP-ribose)-polymerase-1 (PARP-1), and subsequent NAD+ depletion by oxidative stresses may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to post-translational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65 and FOXO3, thereby enhancing the inflammatory, pro-senescent and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox post-translational modifications of SIRT1 and its role in PARP1, NF-κB activation, FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging are discussed. Furthermore, we also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. PMID:23542362
A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434
Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model
NASA Astrophysics Data System (ADS)
Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo
2016-02-01
In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08358c
Endothermy in birds: underlying molecular mechanisms.
Walter, Isabel; Seebacher, Frank
2009-08-01
Endothermy is significant in vertebrate evolution because it changes the relations between animals and their environment. How endothermy has evolved in archosaurs (birds, crocodiles and dinosaurs) is controversial especially because birds do not possess brown adipose tissue, the specialized endothermic tissue of mammals. Internal heat production is facilitated by increased oxidative metabolic capacity, accompanied by the uncoupling of aerobic metabolism from energy (ATP) production. Here we show that the transition from an ectothermic to an endothermic metabolic state in developing chicken embryos occurs by the interaction between increased basal ATP demand (Na(+)/K(+)-ATPase activity and gene expression), increased oxidative capacity and increased uncoupling of mitochondria; this process is controlled by thyroid hormone via its effect on PGC1alpha and adenine nucleotide translocase (ANT) gene expression. Mitochondria become more uncoupled during development, but unlike in mammals, avian uncoupling protein (avUCP) does not uncouple electron transport from oxidative phosphorylation and therefore plays no role in heat production. Instead, ANT is the principal uncoupling protein in birds. The relationship between oxidative capacity and uncoupling indicates that there is a continuum of phenotypes that fall between the extremes of selection for increased heat production and increased aerobic activity, whereas increased cellular ATP demand is a prerequisite for increased oxidative capacity.
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.
Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei
2017-06-18
Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.
Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress
Wilson, Andrew F.; Li, Xue
2017-01-01
ABSTRACT Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress. PMID:28475398
Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E
2017-03-01
Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the interaction of these two intestinal toxic routes was found to be synergistic.
Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center
Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert
2018-01-01
Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687
ROS-mediated redox signaling during cell differentiation in plants.
Schmidt, Romy; Schippers, Jos H M
2015-08-01
Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke
NASA Astrophysics Data System (ADS)
Johnson, Lee James
2001-08-01
The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is then shown to correlate to mitochondrial swelling, as observed with electron microscopy. The system is finally used to study mitochondrial and cellular swelling. Evidence of the susceptibility of certain hippocampal regions, CA1 and the dentate gyrus, to exhibit mitochondrial swelling as the result of oxygen and glucose deprivation is presented. In addition, for the first time, the time course of mitochondrial swelling is seen. Finally, experiments with scatter imaging and measurement of nitric oxide with carbon fiber electrodes demonstrate a clear link between nitric oxide and cellular swelling. A potential mechanism of the action of nitric oxide is evaluated. Nitric oxide appears to act to cause cellular swelling without the release of glutamate. The use of targeted nitric oxide inhibitors may be useful for the reduction of edema.
Nagahara, Noriyuki; Katayama, Akira
2005-10-14
3-Mercaptopyruvate sulfurtransferase (MST) (EC 2.8.1.2), a multifunctional enzyme, catalyzes a transsulfuration from mercaptopyruvate to pyruvate in the degradation process of cysteine. A stoichiometric concentration of hydrogen peroxide and of tetrathionate (S(4)O(6)(2-)) inhibited rat MST (k(i) = 3.3 min(-1), K(i) = 120.5 microM and k(i) = 2.5 min(-1), K(i) = 178.6 microM, respectively). The activity was completely restored by dithiothreitol or thioredoxin with a reducing system containing thioredoxin reductase and NADPH, but glutathione did not restore the activity. On the other hand, an excess molar ratio dose of hydrogen peroxide inactivated MST. Oxidation with a stoichiometric concentration of hydrogen peroxide protected the enzyme against reaction by iodoacetate, which modifies a catalytic Cys(247), suggesting that Cys(247) is a target of the oxidants. A matrix-assisted laser desorption/ionization-time-of-flight mass spectrometric analysis revealed that hydrogen peroxide- and tetrathionate-inhibited MSTs were increased in molecular mass consistent with the addition of atomic oxygen and with a thiosulfate (S(2)O(3)(-)), respectively. Treatment with dithiothreitol restored modified MST to the original mass. These findings suggested that there was no nearby cysteine with which to form a disulfide, and mild oxidation of MST resulted in formation of a sulfenate (SO(-)) at Cys(247), which exhibited exceptional stability and a lower redox potential than that of glutathione. Oxidative stress decreases MST activity so as to increase the amount of cysteine, a precursor of thioredoxin or glutathione, and furthermore, these cellular reductants restore the activity. Thus the redox state regulates MST activity at the enzymatic level, and on the other hand, MST controls redox to maintain cellular redox homeostasis.
Kim, Renaid B.; Irvin, Cameron W.; Tilva, Keval R.; Mitchell, Cassie S.
2016-01-01
Numerous sub-cellular through system-level disturbances have been identified in over 1300 articles examining the superoxide dismutase-1 guanine 93 to alanine (SOD1-G93A) transgenic mouse amyotrophic lateral sclerosis (ALS) pathophysiology. Manual assessment of such a broad literature base is daunting. We performed a comprehensive informatics-based systematic review or ‘field analysis’ to agnostically compute and map the current state of the field. Text mining of recaptured articles was used to quantify published data topic breadth and frequency. We constructed a nine-category pathophysiological function-based ontology to systematically organize and quantify the field's primary data. Results demonstrated that the distribution of primary research belonging to each category is: systemic measures an motor function, 59%; inflammation, 46%; cellular energetics, 37%; proteomics, 31%; neural excitability, 22%; apoptosis, 20%; oxidative stress, 18%; aberrant cellular chemistry, 14%; axonal transport, 10%. We constructed a SOD1-G93A field map that visually illustrates and categorizes the 85% most frequently assessed sub-topics. Finally, we present the literature-cited significance of frequently published terms and uncover thinly investigated areas. In conclusion, most articles individually examine at least two categories, which is indicative of the numerous underlying pathophysiological interrelationships. An essential future path is examination of cross-category pathophysiological interrelationships and their co-correspondence to homeostatic regulation and disease progression. PMID:25998063
Oxidative Stress and the Homeodynamics of Iron Metabolism
Bresgen, Nikolaus; Eckl, Peter M.
2015-01-01
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586
Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB.
Guadagno, Noemi A; Moriconi, Claudia; Licursi, Valerio; D'Acunto, Emanuela; Nisi, Paola S; Carucci, Nicoletta; De Jaco, Antonella; Cacci, Emanuele; Negri, Rodolfo; Lupo, Giuseppe; Miranda, Elena
2017-07-01
The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intracellular accumulation of neuroserpin polymers, we have generated transgenic neural progenitor cell (NPC) cultures from mouse foetal cerebral cortex, stably expressing the control protein GFP (green fluorescent protein), or human wild type, G392E or delta NS. We have characterised these cell lines in the proliferative state and after differentiation to neurons. Our results show that G392E NS formed polymers that were mostly retained within the ER, while wild type NS was correctly secreted as a monomeric protein into the culture medium. Delta NS was absent at steady state due to its rapid degradation, but it was easily detected upon proteasomal block. Looking at their intracellular distribution, wild type NS was found in partial co-localisation with ER and Golgi markers, while G392E NS was localised within the ER only. Furthermore, polymers of NS were detected by ELISA and immunofluorescence in neurons expressing the mutant but not the wild type protein. We used control GFP and G392E NPCs differentiated to neurons to investigate which cellular pathways were modulated by intracellular polymers by performing RNA sequencing. We identified 747 genes with a significant upregulation (623) or downregulation (124) in G392E NS-expressing cells, and we focused our attention on several genes involved in the defence against oxidative stress that were up-regulated in cells expressing G392E NS (Aldh1b1, Apoe, Gpx1, Gstm1, Prdx6, Scara3, Sod2). Inhibition of intracellular anti-oxidants by specific pharmacological reagents uncovered the damaging effects of NS polymers. Our results support a role for oxidative stress in the cellular toxicity underlying the neurodegenerative dementia FENIB. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Chuan; Zhang, Wei-Jian; Choi, Jaewoo; Frei, Balz
2016-10-01
Endothelial dysfunction due to vascular inflammation and oxidative stress critically contributes to the etiology of atherosclerosis. The intracellular redox environment plays a key role in regulating endothelial cell function and is intimately linked to cellular thiol status, including and foremost glutathione (GSH). In the present study we investigated whether and how the dietary flavonoid, quercetin, affects GSH status of human aortic endothelial cells (HAEC) and their response to oxidative stress. We found that treating cells with buthionine sulfoximine to deplete cellular GSH levels significantly reduced the capacity of quercetin to inhibit lipopolysaccharide (LPS)-induced oxidant production. Furthermore, incubation of HAEC with quercetin caused a transient decrease and then full recovery of cellular GSH concentrations. The initial decline in GSH was not accompanied by a corresponding increase in glutathione disulfide (GSSG). To the contrary, GSSG levels, which were less than 0.5% of GSH levels at baseline (0.26±0.01 vs. 64.7±1.9nmol/mg protein, respectively), decreased by about 25% during incubation with quercetin. As a result, the GSH: GSSG ratio increased by about 70%, from 253±7 to 372±23. These quercetin-induced changes in GSH and GSSG levels were not affected by treating HAEC with 500µM ascorbic acid phosphate for 24h to increase intracellular ascorbate levels. Incubation of HAEC with quercetin also led to the appearance of extracellular quercetin-glutathione conjugates, which was paralleled by upregulation of the multidrug resistance protein 1 (MRP1). Furthermore, quercetin slightly but significantly increased mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic and modifier subunits. Taken together, our results suggest that quercetin causes loss of GSH in HAEC, not because of oxidation but due to formation and cellular export of quercetin-glutathione conjugates. Induction by quercetin of GCL subsequently restores GSH levels, thereby suppressing LPS-induced oxidant production. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming
2018-02-15
Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity in tomato plants at low temperatures.
Chung, Heaseung S.; Wang, Sheng-Bing; Venkatraman, Vidya; Murray, Christopher I.; Van Eyk, Jennifer E.
2014-01-01
In the cardiovascular system, changes in the oxidative balance can affect many aspects of cellular physiology through redox-signaling. Depending on the magnitude, fluctuations in the cell's production of reactive oxygen and nitrogen species can regulate normal metabolic processes, activate protective mechanisms, or be cytotoxic. Reactive oxygen and nitrogen species can have many effects including the post-translational modification of proteins at critical cysteine (Cys) thiols. A subset can act as redox-switches, which elicit functional effects in response to changes in oxidative state. While the general concepts of redox-signaling have been established, the identity and function of many regulatory switches remains unclear. Characterizing the effects of individual modifications is the key to understanding how the cell interprets oxidative signals under physiological and pathological conditions. Here, we review the various Cys oxidative post-translational modifications (Ox-PTMs) and their ability to function as redox-switches that regulate the cell's response to oxidative stimuli. In addition, we discuss how these modifications have the potential to influence other post-translational modifications' signaling pathways though cross-talk. Finally, we review the growing number of tools being developed to identify and quantify the various Cys Ox-PTMs and how this will advance our understanding of redox-regulation. PMID:23329793
Oxidation-Induced Degradable Nanogels for Iron Chelation
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-02-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.
Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista
2015-01-01
To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450
Oxidation-Induced Degradable Nanogels for Iron Chelation
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-01-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174
Lee, Sang Jae; Kim, Dong-Gyun; Lee, Kyu-Yeon; Koo, Ji Sung; Lee, Bong-Jin
2018-05-17
Oxidative stresses, such as reactive oxygen species, reactive electrophilic species, reactive nitrogen species, and reactive chlorine species, can damage cellular components, leading to cellular malfunction and death. In response to oxidative stress, bacteria have evolved redox-responsive sensors that enable them to simultaneously monitor and eradicate potential oxidative stress. Specifically, redox-sensing transcription regulators react to oxidative stress by means of modifying the thiol groups of cysteine residues, functioning as part of an efficient survival mechanism for many bacteria. In general, oxidative molecules can induce changes in the three-dimensional structures of redox sensors, which, in turn, affects the transcription of specific genes in detoxification pathways and defense mechanisms. Moreover, pathogenic bacteria utilize these redox sensors for adaptation and to evade subsequent oxidative attacks from host immune defense. For this reason, the redox sensors of pathogenic bacteria are potential antibiotic targets. Understanding the regulatory mechanisms of thiol-based redox sensors in bacteria will provide insight and knowledge into the discovery of new antibiotics.
Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism
Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.
2015-01-01
Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798
Sharma, Anurag; Mishra, M; Shukla, A K; Kumar, R; Abdin, M Z; Chowdhuri, D Kar
2012-06-30
The effect of endosulfan (0.02-2.0μgmL(-1)) to Drosophila melanogaster (Oregon R(+)) at the cellular and organismal levels was examined. Third instar larvae of D. melanogaster and the strains transgenic for hsp70, hsp83 and hsp26 were exposed to endosulfan through food for 12-48h to examine the heat shock proteins (hsps), reactive oxygen species (ROS) generation, anti-oxidant stress markers and xenobiotic metabolism enzymes. We observed a concentration- and time-dependent significant induction of only small hsps (hsp23>hsp22) in the exposed organism in concurrence with a significant induction of ROS generation, oxidative stress and xenobiotic metabolism markers. Sub-organismal response was to be propagated towards organismal response, i.e., delay in the emergence of flies and decreased locomotor behaviour. Organisms with diminished locomotion also exhibited significantly lowered acetylcholinesterase activity. A significant positive correlation observed among ROS generation and different cellular endpoints (small hsps, oxidative stress markers, cytochrome P450 activities) in the exposed organism indicate a modulatory role of ROS in endosulfan-mediated cellular toxicity. The study thus suggests that the adverse effects of endosulfan in exposed Drosophila are manifested both at cellular and organismal levels and recommends Drosophila as an alternative animal model for screening the risk caused by environmental chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.
Cellular death, reactive oxygen species (ROS) and diabetic complications.
Volpe, Caroline Maria Oliveira; Villar-Delfino, Pedro Henrique; Dos Anjos, Paula Martins Ferreira; Nogueira-Machado, José Augusto
2018-01-25
Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the "dangerous metabolic route in diabetes". The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested-or suggested and proposed-for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death-with all of these conditions being a problem in diabetes.
RNA Recognition and Stress Granule Formation by TIA Proteins
Waris, Saboora; Wilce, Matthew Charles James; Wilce, Jacqueline Anne
2014-01-01
Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. PMID:25522169
Mitochondrial Function in Sepsis
Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.
2015-01-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665
MITOCHONDRIAL FUNCTION IN SEPSIS.
Arulkumaran, Nishkantha; Deutschman, Clifford S; Pinsky, Michael R; Zuckerbraun, Brian; Schumacker, Paul T; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A
2016-03-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high-energy adenosine triphosphate production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered, and end organ dysfunction is not only common, but also predictive of long-term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used both as a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide.
Stressor states and the cation crossroads.
Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L
2010-12-01
Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.
Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.
Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito
2003-12-12
Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.
Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik
2017-02-01
Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.
Clinical Perspective of Oxidative Stress in Sporadic ALS
D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi
2013-01-01
Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033
Dietary moderately oxidized oil activates the Nrf2 signaling pathway in the liver of pigs.
Varady, Juliane; Gessner, Denise K; Most, Erika; Eder, Klaus; Ringseis, Robert
2012-02-24
Previous studies have shown that administration of oxidized oils increases gene expression and activities of various enzymes involved in xenobiotic metabolism and stress response in the liver of rats and guinea pigs. As these genes are controlled by nuclear factor erythroid-derived 2-like 2 (Nrf2), we investigated the hypothesis that feeding of oxidized fats causes an activation of that transcription factor in the liver which in turn activates the expression of antioxidant, cytoprotective and detoxifying genes. Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil (fresh fat group) or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h (oxidized fat group). After 29 days of feeding, pigs of the oxidized fat group had a markedly increased nuclear concentration of the transcription factor Nrf2 and a higher activity of cellular superoxide dismutase and T4-UDP glucuronosyltransferase in liver than the fresh fat group (P < 0.05). In addition, transcript levels of antioxidant and phase II genes in liver, like superoxide dismutase 1, heme oxygenase 1, glutathione peroxidase 1, thioredoxin reductase 1, microsomal glutathione-S-transferase 1, UDP glucuronosyltransferase 1A1 and NAD(P)H:quinone oxidoreductase 1 in the liver were higher in the oxidized fat group than in the fresh fat group (P < 0.05). Moreover, pigs of the oxidized fat group had an increased hepatic nuclear concentration of the transcription factor NF-κB which is also an important transcription factor mediating cellular stress response. The present study shows for the first time that administration of an oxidized fat activates the Nrf2 in the liver of pigs which likely reflects an adaptive mechanism to prevent cellular oxidative damage. Activation of the NF-κB pathway might also contribute to this effect of oxidized fat.
Álvarez-Zaldiernas, Cristina; Lu, Jun; Zheng, Yujuan; Yang, Hongqian; Blasi, Juan; Solsona, Carles; Holmgren, Arne
2016-08-12
Protein misfolding is implicated in neurodegenerative diseases such as ALS, where mutations of superoxide dismutase 1 (SOD1) account for about 20% of the inherited mutations. Human SOD1 (hSOD1) contains four cysteines, including Cys(57) and Cys(146), which have been linked to protein stability and folding via forming a disulfide bond, and Cys(6) and Cys(111) as free thiols. But the roles of the cellular oxidation-reduction (redox) environment in SOD1 folding and aggregation are not well understood. Here we explore the effects of cellular redox systems on the aggregation of hSOD1 proteins. We found that the known hSOD1 mutations G93A and A4V increased the capability of the thioredoxin and glutaredoxin systems to reduce hSOD1 compared with wild-type hSOD1. Treatment with inhibitors of these redox systems resulted in an increase of hSOD1 aggregates in the cytoplasm of cells transfected with mutants but not in cells transfected with wild-type hSOD1 or those containing a secondary C111G mutation. This aggregation may be coupled to changes in the redox state of the G93A and A4V mutants upon mild oxidative stress. These results strongly suggest that the thioredoxin and glutaredoxin systems are the key regulators for hSOD1 aggregation and may play critical roles in the pathogenesis of ALS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.
Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña
2017-08-01
Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah
2016-03-25
DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Beltran-Povea, Amparo; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Martín, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R; Cahuana, Gladys M
2015-01-01
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness. PMID:25914767
Parameters of oxidative metabolism in neonates suffering from sepsis and anemia.
Sanodze, N; Uberi, N; Uberi, E; Kulumbegov, B
2006-11-01
Neonatal sepsis still remains as one of the actual problems in modern medicine due to its high morbidity and mortality rates determined by diagnostic difficulties and absence of sufficient evidence for effective therapy. Literature data have shown that essential role in pathogenesis of sepsis belongs to the cellular oxidation-reduction misballance and development of the oxidative stress. The aim of our work was to assess indices of pro- and antioxidant systems in term neonates with sepsis on the background of anemia and without it. A total of 41 neonates (17 male, 24 female) with the age range from 3 to 7 days, with early sepsis, and in 2003-2005 years treated at the department of neonates' therapy and intensive care unit of pediatric clinics of the Tbilisi State Medical University were under observation. The control group involved 17 practically healthy neonates of the same age range. In consequence of the analyses there was ascertained, that with anemia increases intensification free-radical oxidation process. At the same time, antioxidant system activity was not change significantly in the sepsis with anemia, than other one. Pathogenesis of anemia may was founded undergo hemolitic anemia results by oxidative stress. According to the results of investigations could be concluded that in case of anemia developed at neonatal sepsis supports intensify of oxidative stress and at the same time anemia is the result of the oxidative stress.
Nitric Oxide and Peroxynitrite in Health and Disease
PACHER, PÁL; BECKMAN, JOSEPH S.; LIAUDET, LUCAS
2008-01-01
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review. PMID:17237348
Chularojmontri, L.; Gerdprasert, O.; Wattanapitayakul, S. K.
2013-01-01
Citrus flavonoids have been shown to reduce cardiovascular disease (CVD) risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM) fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX-) induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid) were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH) levels. The changes in glutathione-S-transferase (GST) activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal) was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX. PMID:23401708
Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress
Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.
2015-01-01
Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. PMID:22513272
Cozzi, Anna; Santambrogio, Paolo; Privitera, Daniela; Broccoli, Vania; Rotundo, Luisa Ida; Garavaglia, Barbara; Benz, Rudolf; Altamura, Sandro; Goede, Jeroen S.; Muckenthaler, Martina U.
2013-01-01
The ubiquitously expressed iron storage protein ferritin plays a central role in maintaining cellular iron homeostasis. Cytosolic ferritins are composed of heavy (H) and light (L) subunits that co-assemble into a hollow spherical shell with an internal cavity where iron is stored. The ferroxidase activity of the ferritin H chain is critical to store iron in its Fe3+ oxidation state, while the L chain shows iron nucleation properties. We describe a unique case of a 23-yr-old female patient affected by a homozygous loss of function mutation in the L-ferritin gene, idiopathic generalized seizures, and atypical restless leg syndrome (RLS). We show that L chain ferritin is undetectable in primary fibroblasts from the patient, and thus ferritin consists only of H chains. Increased iron incorporation into the FtH homopolymer leads to reduced cellular iron availability, diminished levels of cytosolic catalase, SOD1 protein levels, enhanced ROS production and higher levels of oxidized proteins. Importantly, key phenotypic features observed in fibroblasts are also mirrored in reprogrammed neurons from the patient’s fibroblasts. Our results demonstrate for the first time the pathophysiological consequences of L-ferritin deficiency in a human and help to define the concept for a new disease entity hallmarked by idiopathic generalized seizure and atypical RLS. PMID:23940258
Sanches, Larissa Juliani; Marinello, Poliana Camila; Panis, Carolina; Fagundes, Tatiane Renata; Morgado-Díaz, José Andrés; de-Freitas-Junior, Julio Cesar Madureira; Cecchini, Rubens; Cecchini, Alessandra Lourenço; Luiz, Rodrigo Cabral
2017-03-01
Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.
Boumaza, Saliha; Belkebir, Aicha; Neggazi, Samia; Sahraoui, Hamid; Berdja, Sihem; Smail, Leila; Benazzoug, Yasmina; Kacimi, Ghoti; Aouichat Bouguerra, Souhila
In our study, we propose to analyze the effects of resveratrol (RES) and quercetin (QRC) on proliferation markers, oxidative stress, apoptosis, and inflammation of aortic fibroblasts of Psammomys obesus after induced oxidative stress by hydrogen peroxide (H2O2). Fibroblasts were incubated in RES 375 μM and QRC 0.083 μM for 24 hours after exposure to H2O2 1.2 mM for 6 hours. We performed the proliferation rate, cells viability, morphological analyses, cytochrome c, Akt, ERK1/2, and p38 MAPK quantification. The redox status was achieved by proportioning of malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl proteins, catalase, and superoxide dismutase activity. The inflammation was measured by TNFα, MCP1, and NF-kB assay. The extracellular matrix (ECM) remodeling was performed by SDS-PAGE. Stressed fibroblasts showed a decrease of cell proliferation and viability, hypertrophy and oncosis, chromatin hypercondensation and increase of cytochrome c release characteristic of apoptosis, activation of ERK1/2 and Akt pathway, and decreases in p38 MAPK pathways marking the cellular resistance. The redox state was disrupted by increased malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl protein production, catalase and superoxide dismutase activity, and a decreased production of proteins including collagens. Inflammation state was marked by MCP-1, TNFα, and NF-kB increase. Treatment of fibroblasts stressed by RES and QRC inverted the oxidative stress situation decreasing apoptosis and inflammation, and improving the altered redox status and rearrangement of disorders observed in extracellular matrix. H2O2 induced biochemical and morphological alterations leading to apoptosis. An improved general condition is observed after treatment with RES and QRC; this explains the antioxidant and antiapoptotic effects of polyphenols.
One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA
Cadet, Jean; Wagner, J. Richard; Shafirovich, Vladimir; Geacintov, Nicholas E.
2014-01-01
Purpose The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. Conclusion There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation. PMID:24369822
One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.
Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E
2014-06-01
The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.
Chemical, enzymatic and cellular antioxidant activity studies of Agaricus blazei Murrill.
Hakime-Silva, Ricardo A; Vellosa, José C R; Khalil, Najeh M; Khalil, Omar A K; Brunetti, Iguatemy L; Oliveira, Olga M M F
2013-09-01
Mushrooms possess nutritional and medicinal properties that have long been used for human health preservation and that have been considered by researchers as possible sources of free radical scavengers. In this work, the antioxidant properties of water extracts from Agaricus blazei Murill, produced by maceration and decoction, are demonstrated in vitro. Resistance to oxidation is demonstrated through three mechanisms: i) inhibition of enzymatic oxidative process, with 100% inhibition of HRP (horseradish peroxidase) and MPO (myeloperoxidase); ii) inhibition of cellular oxidative stress, with 80% inhibition of the oxidative burst of polymorphonuclear neutrophils (PMNs); and iii) direct action over reactive species, with 62% and 87% suppression of HOCl and superoxide anion radical (O2• -), respectively. From the data, it was concluded that the aqueous extract of A. blazei has significant antioxidant activity, indicating its possible application for nutraceutical and medicinal purposes.
Wu, Wei-Bin; Menon, Ramkumar; Xu, Yue-Ying; Zhao, Jiu-Ru; Wang, Yan-Lin; Liu, Yuan; Zhang, Hui-Juan
2016-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids–treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP. PMID:27958341
Gajewski, Ewa; Gaur, Shikha; Akman, Steven A.; Matsumoto, Linda; van Balgooy, Josephus N.A.; Doroshow, James H.
2009-01-01
The cellular metabolism of doxorubicin generates reactive oxygen species with significant potential to damage DNA. Such DNA damage can result in mutations if not adequately repaired by cellular DNA repair pathways. Secondary malignancies have been reported in patients who have received doxorubicin-containing chemotherapeutic regimens; however, the underlying molecular mechanism(s) to explain the development of these tumors remains under active investigation. We have previously demonstrated the presence of DNA bases modified by oxidation in the peripheral blood mononuclear cells of patients with breast cancer following treatment with doxorubicin. In those studies, doxorubicin was administered by continuous infusion over 96 hours to minimize the risk of cardiac toxicity. To evaluate potential mechanisms underlying doxorubicin-induced DNA base oxidation in non-malignant tissues, MCF-10A breast epithelial cells were cultured for 96 hours with the same doxorubicin concentration achieved in vivo (0.1 μM). During doxorubicin exposure, MCF-10A cells underwent growth arrest and apoptosis, developed elevated levels of reactive oxygen species, and demonstrated a time-dependent and significant increase in the levels of 11 oxidized DNA bases, as determined by gas chromatography/mass spectroscopy. Diminished expression of DNA repair enzymes was also observed over the same time course. Thus, clinically achievable concentrations of doxorubicin induce a level of oxidative stress in MCF-10A cells that is capable of oxidizing DNA bases and significantly altering cellular proliferation. PMID:17445777
Bankapalli, Kondalarao; Saladi, SreeDivya; Awadia, Sahezeel S.; Goswami, Arvind Vittal; Samaddar, Madhuja; D'Silva, Patrick
2015-01-01
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny. PMID:26370081
2016-01-01
Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA. PMID:25584637
Portelli, Marco; Militi, Angela; Cervino, Gabriele; Lauritano, Floriana; Sambataro, Sergio; Mainardi, Alberto; Nucera, Riccardo
2017-01-01
Oxidative stress is a pathologic event induced by a prevalence of oxidant agents on the antioxidant ones, with a consequent alteration of oxide-reducing balance. Freeradicals produce damages both in cellular and extra-cellular components; phospholipid membranes, proteins, mitochondrial and nuclear DNA, are the target of the oxidative stress, that can finally cause cellular death due to apoptosis. Orthodontic appliances such as brackets, wires, resins and soldering have some components that can be considered as potential allergen, carcinogenic, cytotoxic and gene mutation factors. The primary aim of this research is to evaluate oxidative stress in the saliva of patients treated with multibracket self-ligating vestibular orthodontic appliances; the secondary purpose is to investigate the influence of orthodontic multibracket therapy on oral hygiene and the consequent effect on oxidative stress. Salivary specimens has been collected in a sample of 23 patients were enrolled (12 Female, 11 Male) between 12 and 16 years of age (mean age 14.2). For each patient has been collected a salivary specimen at the following time points; before orthodontic bonding (T1), five weeks (T2) and ten weeks (T3) after orthodontic appliance bonding. Samples has been analysed with a photometer due to SAT Test (Salivary Antioxidant Test). Data obtained show a mean of 2971 mEq/l of anti-oxidant agents before orthodontic treatment, and after five weeks from the bonding the mean was decreased to 2909 mEq/l, instead at ten weeks was increased to 3332 mEq/l. Repeated measures ANOVA did not reveal statistically significant differences between the time points ( P = 0.1697). The study did not reveal any correlation between the level of dental hygiene and that of oxidative stress (Pearson Correlation Coefficient R = 0). Orthodontic treatment with multibrackets vestibular metallic appliance seems to be not able to affect oxidative stress during the first ten weeks of therapy.
Artifacts associated with the measurement of oxidized DNA bases.
Cadet, J; Douki, T; Ravanat, J L
1997-01-01
In this paper we review recent aspects of the measurement of oxidized DNA bases, currently a matter of debate. There has long been an interest in the determination of the level of oxidized bases in cellular DNA under both normal and oxidative stress conditions. In this respect, the situation is confusing because variations that may be as large as two orders of magnitude have been reported for the yield of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) in similar DNA samples. However, recent findings clearly show that application of several assays like gas chromatography-mass spectrometry (GC-MS) and -32P--postlabeling may lead to a significant overestimation of the level of oxidized bases in cellular DNA. In particular, the silylation step, which is required to make the samples volatile for the GC-MS analysis, has been shown to induce oxidation of normal bases at the level of about one oxidized base per 10(4) normal bases. This has been found to be a general process that applies in particular to 8-oxoGua, 8-oxo-7, 8-dihydroadenine,5-hydroxycytosine, 5-(hydroxymethyl)uracil, and 5-formyluracil. Interestingly, prepurification of the oxidized bases from DNA hydrolysate prior to the derivatization reaction prevents artefactual oxidation. Under these conditions, the level of oxidized bases measured by GC-MS is similar to that obtained by HPLC associated with electrochemical detection (HPLC-EC). It should be added that the level of 8-oxo-7,8-dihydro-2;-deoxyguanosine in control cellular DNA has been found to be about fivefold lower than in earlier HPLC-EC measurements by using appropriate conditions of extraction and enzymatic digestion of DNA. Similar conclusions were reached by measuring formamidopyrimidine-DNA glycosylase sensitive sites as revealed by the single cell gel electrophoresis (comet) assay. Images Figure 1. PMID:9349826
Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.
2010-01-01
Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production. PMID:20363881
Dietary Modulation of Oxidative Stress in Alzheimer's Disease.
Thapa, Arjun; Carroll, Nick J
2017-07-21
Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.
Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M
2013-04-01
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.
2016-01-01
A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419
Toxicological and pharmacological concerns on oxidative stress and related diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeidnia, Soodabeh; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon; Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir
2013-12-15
Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is wellmore » documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.« less
Metabolism and toxicity of arsenicals in mammals.
Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui
2016-12-01
Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world. Copyright © 2016. Published by Elsevier B.V.
McIntosh, Chelsea L; Germer, Frauke; Schulz, Rüdiger; Appel, Jens; Jones, Anne K
2011-07-27
Protein film electrochemistry (PFE) was utilized to characterize the catalytic activity and oxidative inactivation of a bidirectional [NiFe]-hydrogenase (HoxEFUYH) from the cyanobacterium Synechocystis sp. PCC 6803. PFE provides precise control of the redox potential of the adsorbed enzyme so that its activity can be monitored under changing experimental conditions as current. The properties of HoxEFUYH are different from those of both the standard uptake and the "oxygen-tolerant" [NiFe]-hydrogenases. First, HoxEFUYH is biased toward proton reduction as opposed to hydrogen oxidation. Second, despite being expressed under aerobic conditions in vivo, HoxEFUYH is clearly not oxygen-tolerant. Aerobic inactivation of catalytic hydrogen oxidation by HoxEFUYH is total and nearly instantaneous, producing two inactive states. However, unlike the Ni-A and Ni-B inactive states of standard [NiFe]-hydrogenases, both of these states are quickly (<90 s) reactivated by removal of oxygen and exposure to reducing conditions. Third, proton reduction continues at 25-50% of the maximal rate in the presence of 1% oxygen. Whereas most previously characterized [NiFe]-hydrogenases seem to be preferential hydrogen oxidizing catalysts, the cyanobacterial enzyme works effectively in both directions. This unusual catalytic bias as well as the ability to be quickly reactivated may be essential to fulfilling the physiological role in cyanobacteria, organisms expected to experience swings in cellular reduction potential as they switch between aerobic conditions in the light and dark anaerobic conditions. Our results suggest that the uptake [NiFe]-hydrogenases alone are not representative of the catalytic diversity of [NiFe]-hydrogenases, and the bidirectional heteromultimeric enzymes may serve as valuable models to understand the diverse mechanisms of tuning the reactivity of the hydrogen activating site.
Oncogene-induced senescence results in marked metabolic and bioenergetic alterations
Quijano, Celia; Cao, Liu; Fergusson, Maria M; Romero, Hector; Liu, Jie; Gutkind, Sarah; Rovira, Ilsa I; Mohney, Robert P; Karoly, Edward D
2012-01-01
Oncogene-induced senescence (OIS) is characterized by permanent growth arrest and the acquisition of a secretory, pro-inflammatory state. Increasingly, OIS is viewed as an important barrier to tumorgenesis. Surprisingly, relatively little is known about the metabolic changes that accompany and therefore may contribute to OIS. Here, we have performed a metabolomic and bioenergetic analysis of Ras-induced senescence. Profiling approximately 300 different intracellular metabolites reveals that cells that have undergone OIS develop a unique metabolic signature that differs markedly from cells undergoing replicative senescence. A number of lipid metabolites appear uniquely increased in OIS cells, including a marked increase in the level of certain intracellular long chain fatty acids. Functional studies reveal that this alteration in the metabolome reflects substantial changes in overall lipid metabolism. In particular, Ras-induced senescent cells manifest a decline in lipid synthesis and a significant increase in fatty acid oxidation. Increased fatty acid oxidation results in an unexpectedly high rate of basal oxygen consumption in cells that have undergone OIS. Pharmacological or genetic inhibition of carnitine palmitoyltransferase 1, the rate-limiting step in mitochondrial fatty acid oxidation, restores a presenescent metabolic rate and, surprisingly, selectively inhibits the secretory, pro-inflammatory state that accompanies OIS. Thus, Ras-induced senescent cells demonstrate profound alterations in their metabolic and bioenergetic profiles, particularly with regards to the levels, synthesis and oxidation of free fatty acids. Furthermore, the inflammatory phenotype that accompanies OIS appears to be related to these underlying changes in cellular metabolism. PMID:22421146
Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration
NASA Technical Reports Server (NTRS)
Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth
2017-01-01
Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.
Biological Relevance of Free Radicals and Nitroxides.
Prescott, Christopher; Bottle, Steven E
2017-06-01
Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.
Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun
2015-02-01
Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Foglia, Sabrina; Ledda, Mario; Fioretti, Daniela; Iucci, Giovanna; Papi, Massimiliano; Capellini, Giovanni; Lolli, Maria Grazia; Grimaldi, Settimio; Rinaldi, Monica; Lisi, Antonella
2017-04-19
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.
OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS
Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen
2010-01-01
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603
Kallifidas, Dimitris; Thomas, Derek; Doughty, Phillip; Paget, Mark S B
2010-06-01
Diamide is an artificial disulphide-generating electrophile that mimics an oxidative shift in the cellular thiol-disulphide redox state (disulphide stress). The Gram-positive bacterium Streptomyces coelicolor senses and responds to disulphide stress through the sigma(R)-RsrA system, which comprises an extracytoplasmic function (ECF) sigma factor and a redox-active anti-sigma factor. Known targets that aid in the protection and recovery from disulphide stress include the thioredoxin system and genes involved in producing the major thiol buffer mycothiol. Here we determine the global response to diamide in wild-type and sigR mutant backgrounds to understand the role of sigma(R) in this response and to reveal additional regulatory pathways that allow cells to cope with disulphide stress. In addition to thiol oxidation, diamide was found to cause protein misfolding and aggregation, which elicited the induction of the HspR heat-shock regulon. Although this response is sigma(R)-independent, sigma(R) does directly control Clp and Lon ATP-dependent AAA(+) proteases, which may partly explain the reduced ability of a sigR mutant to resolubilize protein aggregates. sigma(R) also controls msrA and msrB methionine sulphoxide reductase genes, implying that sigma(R)-RsrA is responsible for the maintenance of both cysteine and methionine residues during oxidative stress. This work shows that the sigma(R)-RsrA system plays a more significant role in protein quality control than previously realized, and emphasizes the importance of controlling the cellular thiol-disulphide redox balance.
Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan
2015-04-22
Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.
75 FR 994 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
..., Genomes, and Genetics Integrated Review Group; Molecular Genetics C Study Section. Date: February 4-5...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neural Oxidative Metabolism [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...
Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra
2016-01-01
Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503
Metal oxide nanoparticles (NPs) are being used in an expanding range of products and applications due to their unique physicochemical properties. In vivo biokinetic studies have demonstrated the ability of metal oxide NPs to translocate to the distal organs, including the cardiov...
Chigurupati, Srinivasulu; Mughal, Mohamed R.; Okun, Eitan; Das, Soumen; Kumar, Amit; McCaffery, Michael; Seal, Sudipta; Mattson, Mark P.
2012-01-01
Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles. PMID:23266256
[Periodonta disease in smokers, and the parameters of oxidative stress].
Golusińska-Kardach, Ewelina; Napierała, Marta; Sokalski, Jerzy; Kardachi, Hubert; Florek, Ewa
2015-01-01
Periodontal disease, periodontitis, and caries disease, are the two most common disease occurring in the mouth. They affect a large proportion of the world's population. The causes of periodontitis are varied, but the largest group are those caused by infections. The characteristic long asymptomatic period of development of periodontitis, make that patients are not aware of their condition. In-addition, it was observed that tobacco abuse affects the growth of disease and advancing disease state for periodontal diseases. Free radicals and other reactive particles are capable of destroying many cellular structures. They are produced mostly during the breathing process and the immune response or come from the environment. The evolution of living organisms ensure the proper tools to fight against reactive oxygen species after enzymatic and non-enzymatic by antioxidants. Sometimes this protection is not sufficient and the balance between antioxidants and oxidants is compromised. This condition is called oxidative stress. A number of studies looking for a link between oxidative stress, and diseases affecting human and determined that it is an important risk factor in many diseases. Evaluating the parameters of oxidative stress in the saliva allows for effective monitoring of disease progression, evaluation of the therapy and taking preventive measures in a timely manner.
Damirchi, Arsalan; Farjaminezhad, Manoochehr
2016-01-01
Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342
Oxidative Stress in the Local and Systemic Events of Apical Periodontitis
Hernández-Ríos, Patricia; Pussinen, Pirkko J.; Vernal, Rolando; Hernández, Marcela
2017-01-01
Oxidative stress is involved in the pathogenesis of a variety of inflammatory disorders. Apical periodontitis (AP) usually results in the formation of an osteolytic apical lesion (AL) caused by the immune response to endodontic infection. Reactive oxygen species (ROS) produced by phagocytic cells in response to bacterial challenge represent an important host defense mechanism, but disturbed redox balance results in tissue injury. This mini review focuses on the role of oxidative stress in the local and associated systemic events in chronic apical periodontitis. During endodontic infection, ligation of Toll-like receptors (TLRs) on phagocytes' surface triggers activation, phagocytosis, synthesis of ROS, activation of humoral and cellular responses, and production of inflammatory mediators, such as, cytokines and matrix metalloproteinases (MMPs). The increment in ROS perturbs the normal redox balance and shifts cells into a state of oxidative stress. ROS induce molecular damage and disturbed redox signaling, that result in the loss of bone homeostasis, increased pro-inflammatory mediators, and MMP overexpression and activation, leading to apical tissue breakdown. On the other hand, oxidative stress has been strongly involved in the pathogenesis of atherosclerosis, where a chronic inflammatory process develops in the arterial wall. Chronic AP is associated with an increased risk of cardiovascular diseases (CVD) and especially atherogenesis. The potential mechanisms linking these diseases are also discussed. PMID:29163211
Structure of the Deactive State of Mammalian Respiratory Complex I.
Blaza, James N; Vinothkumar, Kutti R; Hirst, Judy
2018-02-06
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T
2017-08-25
Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Bailey-Downs, Lora C.; Mitschelen, Matthew; Sosnowska, Danuta; Toth, Peter; Pinto, John T.; Ballabh, Praveen; Valcarcel-Ares, M.Noa; Farley, Julie; Koller, Akos; Henthorn, Jim C.; Bass, Caroline; Sonntag, William E.; Csiszar, Anna
2012-01-01
Recent studies demonstrate that age-related dysfunction of NF-E2–related factor-2 (Nrf2)–driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress–induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1f/f + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (∼50%). In the aortas of IGF-1–deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1–deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H2O2), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging. PMID:22021391
Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik
2015-05-07
Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.
Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.
Zhang, Xing-Hai; Weissbach, Herbert
2008-08-01
The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.
Shi, Kaixiang; Wang, Qian; Fan, Xia; Wang, Gejiao
2018-04-01
A heterotrophic arsenite [As(III)]-oxidizing bacterium Agrobacterium tumefaciens GW4 isolated from As(III)-rich groundwater sediment showed high As(III) resistance and could oxidize As(III) to As(V). The As(III) oxidation could generate energy and enhance growth, and AioR was the regulator for As(III) oxidase. To determine the related metabolic pathways mediated by As(III) oxidation and whether AioR regulated other cellular responses to As(III), isobaric tags for relative and absolute quantitation (iTRAQ) was performed in four treatments, GW4 (+AsIII)/GW4 (-AsIII), GW4-ΔaioR (+AsIII)/GW4-ΔaioR (-AsIII), GW4-ΔaioR (-AsIII)/GW4 (-AsIII) and GW4-ΔaioR (+AsIII)/GW4 (+AsIII). A total of 41, 71, 82 and 168 differentially expressed proteins were identified, respectively. Using electrophoretic mobility shift assay (EMSA) and qRT-PCR, 12 genes/operons were found to interact with AioR. These results indicate that As(III) oxidation alters several cellular processes related to arsenite, such as As resistance (ars operon), phosphate (Pi) metabolism (pst/pho system), TCA cycle, cell wall/membrane, amino acid metabolism and motility/chemotaxis. In the wild type with As(III), TCA cycle flow is perturbed, and As(III) oxidation and fermentation are the main energy resources. However, when strain GW4-ΔaioR lost the ability of As(III) oxidation, the TCA cycle is the main way to generate energy. A regulatory cellular network controlled by AioR is constructed and shows that AioR is the main regulator for As(III) oxidation, besides, several other functions related to As(III) are regulated by AioR in parallel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ketogenic diets, mitochondria, and neurological diseases
Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.
2014-01-01
The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102
Redox homeostasis: The Golden Mean of healthy living.
Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay
2016-08-01
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].
Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo
2015-06-01
The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to < 10 μm, < 25 μm and 10-25 μm by gravitational sedimentation in suspensions. We also examined the cellular effects of fine regolith simulant whose primary particle size is 5.10 μm. These regolith simulants were applied to human lung carcinoma A549 cells at concentrations of 0.1 and 1.0 mg/ml. Cytotoxicity, oxidative stress and immune response were examined after 24 h exposure. Cell membrane damage, mitochondrial dysfunction and induction of Interleukin-8 (IL-8) were observed at the concentration of 1.0 mg/ml. The cellular effects of the regolith simulant at the concentration of 0.1 mg/ml were small, as compared with crystalline silica as a positive control. Secretion of IL-1β and tumor necrosis factor-α (TNF-α) was observed at the concentration of 1.0 mg/ml, but induction of gene expression was not observed at 24 h after exposure. Induction of cellular oxidative stress was small. Although the cellular effects tended to be stronger in the < 10 μm particles, there was no remarkable difference. These results suggest that the chemical components and particle size have little relationship to the cellular effects of lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law
Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo
2006-01-01
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283
Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin
2008-09-01
Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.
Vosloo, Andre; Laas, Anél; Vosloo, Dalene
2013-01-01
Marine invertebrates have evolved multiple responses to naturally variable environmental oxygen, all aimed at either maintaining cellular oxygen homeostasis or limiting cellular damage during or after hypoxic or hyperoxic events. We assessed organismal (rates of oxygen consumption and ammonia excretion) and cellular (heat shock protein expression, anti-oxidant enzymes) responses of juvenile and adult abalone exposed to low (~83% of saturation), intermediate (~95% of saturation) and high (~115% of saturation) oxygen levels for one month. Using the Comet assay, we measured DNA damage to determine whether the observed trends in the protective responses were sufficient to prevent oxidative damage to cells. Juveniles were unaffected by moderately hypoxic and hyperoxic conditions. Elevated basal rates of superoxide dismutase, glutathione peroxidase and catalase were sufficient to prevent DNA fragmentation and protein damage. Adults, with their lower basal rate of anti-oxidant enzymes, had increased DNA damage under hypoxic and hyperoxic conditions, indicating that the antioxidant enzymes were unable to prevent oxidative damage under hypoxic and hyperoxic conditions. The apparent insensitivity of juvenile abalone to decreased and increased oxygen might be related to their life history and development in algal and diatom biofilms where they are exposed to extreme diurnal fluctuations in dissolved oxygen levels. Copyright © 2012 Elsevier Inc. All rights reserved.
Choi, Chang K; English, Anthony E; Kihm, Kenneth D; Margraves, Charles H
2007-01-01
This study quantifies the dynamic attachment and spreading of porcine pulmonary artery endothelial cells (PPAECs) on optically thin, indium tin oxide (ITO) biosensors using simultaneous differential interference contrast microscopy (DICM) and electrical microimpedance spectroscopy. A lock-in amplifier circuit monitored the impedance of PPAECs cultivated on the transparent ITO bioelectrodes as a function of frequency between 10 Hz and 100 kHz and as a function of time, while DICM images were simultaneously acquired. A digital image processing algorithm quantified the cell-covered electrode area as a function of time. The results of this study show that the fraction of the cell-covered electrode area is in qualitative agreement with the electrical impedance during the attachment phase following the cell settling on the electrode surface. The possibility of several distinctly different states of electrode coverage and cellular attachment giving rise to similar impedance signals is discussed.
Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells.
Gharun, Kourosh; Senges, Julia; Seidl, Maximilian; Lösslein, Anne; Kolter, Julia; Lohrmann, Florens; Fliegauf, Manfred; Elgizouli, Magdeldin; Vavra, Martina; Schachtrup, Kristina; Illert, Anna L; Gilleron, Martine; Kirschning, Carsten J; Triantafyllopoulou, Antigoni; Henneke, Philipp
2017-12-01
Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state. © 2017 The Authors.
Oxidative stress and mitochondrial dysfunction in Kindler syndrome.
Zapatero-Solana, Elisabeth; García-Giménez, Jose Luis; Guerrero-Aspizua, Sara; García, Marta; Toll, Agustí; Baselga, Eulalia; Durán-Moreno, Maria; Markovic, Jelena; García-Verdugo, Jose Manuel; Conti, Claudio J; Has, Cristina; Larcher, Fernando; Pallardó, Federico V; Del Rio, Marcela
2014-12-21
Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.
Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.
Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan
2012-02-01
Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stomberski, Colin T; Hess, Douglas T; Stamler, Jonathan S
2018-01-10
Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria. Antioxid. Redox Signal. 00, 000-000.
Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A
2005-01-01
Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development and sporulation was ROS responsive. Conclusion The existence of separate O22-, O2•- and GSH/GSSG responsive gene groups in a eukaryotic genome has been demonstrated. Oxidant-triggered, genome-wide transcriptional changes should be analyzed considering changes in oxidative stress-responsive physiological conditions and not correlating them directly to the chemistry and concentrations of the oxidative stress-inducing agent. PMID:16368011
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas. PMID:25674275
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas.
Oxidative stress, protein modification and Alzheimer disease.
Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan
2017-07-01
Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Kishida, Takumi; Akiyoshi, Kenji; Erdenedalai, Erdenebat; Enhetomuru, Anu; Imai, Shoji; Oyama, Yasuo
2018-09-01
The aim of this study was to investigate the effects of dibromoacetonitrile (DBAN), a by-product in water bacterial control, at sublethal concentrations on rat thymocytes, by using a cytometric technique with appropriate fluorescent dyes. By using this method, the possibility that DBAN induces cellular actions related to oxidative stress was assessed. DBAN reduced the content of cellular nonprotein thiols under Zn 2+ -free conditions. It elevated the intracellular level of Zn 2+ , being independent from external Zn 2+ . DBAN increased cell vulnerability to the cytotoxic action of hydrogen peroxide. These actions of DBAN were likely related to oxidative stress. DBAN is formed by the reaction of bromides and chlorinated oxidants during water disinfection. Hydrolysis of 2,2-dibromo-3-nitrilopropionamide, an antimicrobial used in hydraulic fracturing fluids for production of shale gas and oil, produces DBAN. Therefore, the concern regarding the levels of DBAN in industrial water systems is necessary to avoid the environmental risk to humans and wild mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mestre, Teresa C; Garcia-Sanchez, Francisco; Rubio, Francisco; Martinez, Vicente; Rivero, Rosa M
2012-11-15
Based on previous results in which oxidative metabolism was suggested as a possible inducer of blossom-end rot (BER), the main questions addressed here were whether calcium deficiency is the main factor that induces BER or whether this physiological disorder a general stress-related phenomenon? Tomato plants were grown under optimal or deficient calcium concentrations. Only the application of 0.1mM calcium resulted in BER induction, although only half of the fruits grown under this treatment had this disorder. Having fruits showing or not showing BER in the same plant and treatment provided us with a powerful tool that we used to investigate whether calcium deficiency operates alongside another mechanism in the induction of BER. Whether or not this other mechanism was the one controlling BER incidence was also investigated. We performed a complete study of the oxidative metabolism in the pericarp of healthy fruits and in the healthy portion of BER-affected fruits. Calcium deficiency led to an induction of NADPH oxidase, superoxide dismutase, dehydro- and monodehydroascorbate reductase, and to an inhibition of catalase, ascorbate peroxidase and glutathione reductase, with a concomitant accumulation of hydrogen peroxide and an increase in lipid peroxidation. While the ascorbate redox state was not affected by calcium deficiency, the glutathione redox state was markedly reduced. We conclude that calcium deficiency fundamentally affected the activity of the ascorbate-glutathione enzymes, with special importance to the inhibition of GR, which lead to a reduction of the glutathione redox state. This could cause the breakdown of cellular homeostasis, the inhibition of other enzymes responsible for H(2)O(2) detoxification, and ultimately an increase of lipid peroxidation. Therefore, BER is defined here as the visual symptom of a massive lipid peroxidation event caused by the breakdown of cellular glutathione homeostasis. Copyright © 2012 Elsevier GmbH. All rights reserved.
Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems
Go, Young-Mi; Roede, James R.; Walker, Douglas I.; Duong, Duc M.; Seyfried, Nicholas T.; Orr, Michael; Liang, Yongliang; Pennell, Kurt D.; Jones, Dean P.
2013-01-01
Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system. PMID:23946468
The osmotic/calcium stress theory of brain damage: are free radicals involved?
Pazdernik, T L; Layton, M; Nelson, S R; Samson, F E
1992-01-01
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx of calcium (i.e., calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.
Global Transcriptome Analysis of Staphylococcus aureus Response to Hydrogen Peroxide†
Chang, Wook; Small, David A.; Toghrol, Freshteh; Bentley, William E.
2006-01-01
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism. PMID:16452450
Girard, Pierre-Marie; Peynot, Nathalie; Lelièvre, Jean-Marc
2018-05-12
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H 2 O 2 ), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H 2 O 2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente
2011-04-01
Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.
Brooks, G A
1999-01-01
The "Lactate Shuttle" Hypothesis posits that lactate removal requires exchange among producing and consuming cells. The "Intra-cellular Lactate Shuttle" hypothesis posits that lactate exchange occurs among compartments within cells, and that mitochondria are the major sites of cellular lactate disposal. Thus, cells with high mitochondrial densities (cardiocytes, myocytes, hepatocytes) are those which participate in lactate clearance. The model of an Intracellular Lactate Shuttle recognizes that the Keq for LDH is 3.6 x 10(4) M-1; thus, glycolysis results in cytosolic lactate production regardless of the intracellular PO2. The model also requires presence of a mitochondrial monocarboxylate transporter (MCT) that allows uptake of lactate as well as pyruvate, and intra-mitochondrial LDH whose function is linked to the ETC, and which permits lactate-->pyruvate conversion and oxidation. Recently, we have shown that liver, heart and muscle mitochondria readily oxidize lactate and contain LDH and MCT1. Accordingly, we have concluded that lactate is the predominant monocarboxylate oxidized by mitochondria in vivo. The model of an "Intra-cellular Lactate Shuttle" is consistent with many of the observations on men at sea level and altitude. The observations include: oxidation is the primary fate of lactate disposal during rest and exercise; lactate production and oxidation occur simultaneously within resting and working muscle; increasing [lactate]a increases muscle lactate extraction, and that by increasing SaO2 acclimatization reduces blood [lactate].
Huntingtons Disease: The Value of Transcranial Meganetic Stimulation
Medina, F J; Túnez, I
2010-01-01
Huntington's disease (HD) is a genetic neurodegenerative process whose etiology is based on a localized disturbance in the short arm of chromosome 4 that encodes the huntingtin protein (Htt). The elongation of triple CAG for glutamine characterizes this change. Mutated Htt (mHtt) causes the appearance of intracellular aggregates inducing alterations in mitochondrial metabolism in the form of reactive oxygen species (ROS) and ATP depletion. The oxidative imbalance caused by mHtt leads the neurons to a state of oxidative stress resulting in damage to macromolecules and cellular death. Since the discovery of certain mechanisms underlying the pathogenesis of HD, several therapeutic procedures have been shown to delay or slow the evolution of the condition and have demonstrated the biochemical and molecular mechanism involved. The studies have reported that transcranial magnetic stimulation (TMS) may improve motor and other symptoms associated with neurodegenerative and neuropsychiatric processes such as major depression, schizophrenia, epilepsy, neuropathic pain, amyotrophic lateral sclerosis, progressive muscle atrophy, multiple sclerosis, stroke, Alzheimer's disease, Parkinson's disease or HD. This study focuses on the effect of TMS on oxidative stress and neurogenesis in studies and its possible usefulness in HD.
Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.
2011-01-01
Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. PMID:22110631
Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora
Motti, Cherie A.; Miller, David J.; van Oppen, Madeleine J. H.
2015-01-01
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction. PMID:26426118
De Bona, Karine Santos; Bonfanti, Gabriela; Bitencourt, Paula Eliete Rodrigues; da Silva, Thainan Paz; Borges, Raphaela Maleski; Boligon, Aline; Pigatto, Aline; Athayde, Margareth Lynde; Moretto, Maria Beatriz
2016-01-01
Syzygium cumini (Myrtaceae) presents antioxidant, anti-inflammatory, hypoglycemic and antibacterial effects; however, the cellular and molecular mechanisms of action in the immune system are not yet completely elucidated. This study evaluates the in vitro effect of gallic acid and aqueous S. cumini leaf extract (ASc) on adenosine deaminase (ADA) and dipeptidyl peptidase IV (DPP-IV) activities, cell viability and oxidative stress parameters in lymphocytes exposed to 2, 2'-azobis-2-amidinopropane dihydrochloride (AAPH). Lymphocytes were incubated with ASc (100 and 500 µg/ml) and gallic acid (50 and 200 µM) at 37 °C for 30 min followed by incubation with AAPH (1 mM) at 37 °C for 2 h. After the incubation time, the lymphocytes were used for determinations of ADA, DPP-IV and lactate dehydrogenase (LDH) activities, lipid peroxidation, protein thiol (P-SH) group levels and cellular viability by colorimetric methods. (i) HPLC fingerprinting of ASc revealed the presence of catechin, epicatechin, rutin, quercitrin, isoquercitrin, quercetin, kaempferol and chlorogenic, caffeic, gallic and ellagic acids; (ii) for the first time, ASc reduced the AAPH-induced increase in ADA activity, but no effect was observed on DPP-IV activity; (iii) ASc increased P-SH groups and cellular viability and decreased LDH activity, but was not able to reduce the AAPH-induced lipid peroxidation; (iv) gallic acid showed less protective effects than ASc. ASc affects the purinergic system and may modulate adenosine levels, indicating that the extract of this plant exhibits immunomodulatory properties. ASc also may potentially prevent the cellular injury induced by oxidative stress, highlighting its cytoprotective effects.
Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei
2015-01-01
Purpose Nicotinamide adenine dinucleotide (NAD), in oxidized (NAD+) or reduced (NADH) form, plays key roles in cellular metabolism. Intracellular NAD+/NADH ratio represents the cellular redox state; however, it is difficult to measure in vivo. We report here a novel in vivo 31P MRS method for noninvasive measurement of intracellular NAD concentrations and NAD+/NADH ratio in the brain. Methods It uses a theoretical model to describe the NAD spectral patterns at a given field for quantification. Standard NAD solutions and independent cat brain measurements at 9.4 T and 16.4 T were used to evaluate this method. We also measured T1 values of brain NAD. Results Model simulation and studies of solutions and brains indicate that the proposed method can quantify submillimolar NAD concentrations with reasonable accuracy if adequate 31P MRS signal-to-noise ratio and linewidth were obtained. The NAD concentrations and NAD+/NADH ratio of cat brains measured at 16.4 T and 9.4 T were consistent despite the significantly different T1 values and NAD spectra patterns at two fields. Conclusion This newly established 31P MRS method makes it possible for the first time to noninvasively study the intracellular redox state and its roles in brain functions and diseases, and it can potentially be applied to other organs. PMID:23843330
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.
2014-01-01
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E
2012-05-22
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.
Dugo, Laura; Belluomo, Maria Giovanna; Fanali, Chiara; Russo, Marina; Cacciola, Francesco
2017-01-01
Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages. PMID:28744339
Meng, Dandan; Lei, Qian; Li, Yin; Deng, Pengyi; Chen, Mingjie; Tu, Min; Lu, Xinpei; Yang, Guangxiao; He, Guangyuan
2013-01-01
Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment. PMID:24013954
Fernández, Dolores; García-Gómez, Concepción; Babín, Mar
2013-05-01
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.
Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina
2016-01-01
We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Green, Howard J; Ranney, Don; Burnett, Margaret; Galvin, Patti; Kyle, Natasha; Lounsbury, David; Ouyang, Jing; Smith, Ian C; Stewart, Riley; Tick, Heather; Tupling, A Russell
2014-11-01
This study compared both the extensor carpi radialis brevis (ECRB) and the trapezius (TRAP) muscles of women with work-related myalgia (WRM) with healthy controls (CON) to determine whether abnormalities existed in cellular energy status and the potentials of the various metabolic pathways and segments involved in energy production and substrate transport. For both the ECRB (CON, n = 6-9; WRM, n = 13) and the TRAP (CON, n = 6-7; WRM, n = 10), no differences (P > 0.05) were found for the concentrations (in millimoles per kilogram of dry mass) of ATP, PCr, lactate, and glycogen. Similarly, with one exception, the maximal activities (in moles per milligram of protein per hour) of mitochondrial enzymes representative of the citric acid cycle (CAC), the electron transport chain (ETC), and β-oxidation, as well as the cytosolic enzymes involved in high energy phosphate transfer, glycogenolysis, glycolysis, lactate oxidation, and glucose phosphorylation were not different (P > 0.05). The glucose transporters GLUT1 and GLUT4, and the monocarboxylate transporters MCT1 and MCT4, were also normal in WRM. It is concluded that, in general, abnormalities in the resting energy and substrate state, the potential of the different metabolic pathways and segments, as well as the glucose and monocarboxylate transporters do not appear to be involved in the cellular pathophysiology of WRM.
Frankenfeld, Stephan P.; Oliveira, Leonardo P.; Ortenzi, Victor H.; Rego-Monteiro, Igor CC.; Chaves, Elen A.; Ferreira, Andrea C.; Leitão, Alvaro C.; Carvalho, Denise P.; Fortunato, Rodrigo S.
2014-01-01
The abuse of anabolic androgenic steroids (AAS) may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA) on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g−1 body weight) once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX), and the activity of catalase, glutathione peroxidase (GPx) and total superoxide dismutase (SOD), as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state. PMID:25225984
Frankenfeld, Stephan P; Oliveira, Leonardo P; Ortenzi, Victor H; Rego-Monteiro, Igor C C; Chaves, Elen A; Ferreira, Andrea C; Leitão, Alvaro C; Carvalho, Denise P; Fortunato, Rodrigo S
2014-01-01
The abuse of anabolic androgenic steroids (AAS) may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA) on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g(-1) body weight) once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX), and the activity of catalase, glutathione peroxidase (GPx) and total superoxide dismutase (SOD), as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state.
Zhou, Shutong; Yu, Dongni; Ning, Shangyong; Zhang, Heli; Jiang, Lei; He, Lei; Li, Miao; Sun, Mingxiao
2015-01-01
The aim of this study was to clarify the relationship among Rac1 expression and activation, oxidative stress and β cell dysfunction in obesity. In vivo, serum levels of glucose, insulin, oxidative stress markers and Rac1 expression were compared between ob/ob mice and C57BL/6J controls. Then, these variables were rechecked after the administration of the specific Rac1 inhibitor-NSC23766 in ob/ob mice. In vitro, NIT-1 β cells were cultured in a hyperglycemic and/or hyperlipidemic state with or without NSC23766, and the differences of Rac1 expression and translocation, NADPH oxidase(Nox) enzyme activity, reactive oxygen species (ROS) and insulin mRNA were observed. ob/ob mice displayed abnormal glycometabolism, oxidative stress and excessive expression of Rac1 in the pancreas. NSC23766 injection inhibited the expression of Rac1 in the pancreas, along with amelioration of oxidative stress and glycometabolism in obese mice. Under hyperglycemic and/or hyperlipidemic conditions, Rac1 translocated to the cellular membrane, induced activation of the NADPH oxidase enzyme and oxidative stress, and simultaneously reduced the insulin mRNA expression in NIT-1 β cells. Inhibiting Rac1 activity could alleviate oxidative stress and meliorate the decline of insulin mRNA in β cells. Rac1 might contribute to oxidative stress systemically and locally in the pancreas in obesity. The excessive activation and expression of Rac1 in obesity were associated with β cell dysfunction through ROS production. © 2015 S. Karger AG, Basel.
Paredes, Jamespaul; Jones, Dean P; Wilson, Mark E; Herndon, James G
2014-04-01
Chimpanzee (Pan troglodytes) and rhesus macaque (Macaca mulatta) and humans (Homo sapiens) share physiological and genetic characteristics, but have remarkably different life spans, with chimpanzees living 50-60 % and the rhesus living 35-40 % of maximum human survival. Since oxidative processes are associated with aging and longevity, we might expect to see species differences in age-related oxidative processes. Blood and extracellular fluid contain two major thiol redox nodes, glutathione (GSH)/glutathione-disulfide (GSSG) and cysteine (Cys)/cystine (CySS), which are subject to reversible oxidation-reduction reactions and are maintained in a dynamic non-equilibrium state. Disruption of these thiol redox nodes leads to oxidation of their redox potentials (EhGSSG and EhCySS) which affects cellular physiology and is associated with aging and the development of chronic diseases in humans. The purpose of this study was to measure age-related changes in these redox thiols and their corresponding redox potentials (Eh) in chimpanzees and rhesus monkeys. Our results show similar age-related decreases in the concentration of plasma GSH and Total GSH as well as oxidation of the EhGSSG in male and female chimpanzees. Female chimpanzees and female rhesus monkeys also were similar in several outcome measures. For example, similar age-related decreases in the concentration of plasma GSH and Total GSH, as well as age-related oxidation of the EhGSSG were observed. The data collected from chimpanzees and rhesus monkeys corroborates previous reports on oxidative changes in humans and confirms their value as a comparative reference for primate aging.
Nitric oxide mediates insect cellular immunity via phospholipase A2 activation
USDA-ARS?s Scientific Manuscript database
After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...
Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio
2011-01-01
It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...
SIRT3 Links Oxidative Stress with Aging and Cancer | Center for Cancer Research
When cells produce energy, they also form reactive oxygen molecules capable of damaging proteins and DNA. Normally, these molecules are neutralized by a protein called superoxide dismutase, or SOD. However, as a cell ages, oxidative damage accumulates. The increase in oxidative cellular damage as people age may provide a mechanistic connection between aging and carcinogenesis.
Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun
2015-06-03
We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.
ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function
Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.
2009-01-01
This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608
Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S
2017-02-01
Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.
Gault, Manon; Effantin, Géraldine; Rodrigue, Agnès
2016-08-01
The biology of nickel has been widely studied in mammals because of its carcinogenic properties, whereas few studies have been performed in microorganisms. In the present work, changes accompanying stress caused by nickel were evaluated at the cellular level using RNA-Seq in Escherichia coli K-12. Interestingly, a very large number of genes were found to be deregulated by Ni stress. Iron and oxidative stress homeostasis maintenance were among the most highly enriched functional categories, and genes involved in periplasmic copper efflux were among the most highly upregulated. These results suggest that the deregulation of Fe and Cu homeostatic genes is caused by a release of free Cu and Fe ions in the cell which in turn activate the Cu and Fe homeostatic systems. The content of Cu was not significantly affected upon the addition of Ni to the growth medium, nor were the Cus and CopA Cu-efflux systems important for the survival of bacteria under Ni stress In contrast the addition of Ni slightly decreased the amount of cellular Fe and activated the transcription of Fur regulated genes in a Fur-dependent manner. Cu or Fe imbalance together with oxidative stress might affect the structure of DNA. Further experiments revealed that Ni alters the state of DNA folding by causing a relaxed conformation, a phenomenon that is reversible by addition of the antioxidant Tiron or the Fe chelator Dip. The Tiron-reversible DNA relaxation was also observed for Fe and to a lesser extent with Cu but not with Co. DNA supercoiling is well recognized as an integral aspect of gene regulation. Moreover our results show that Ni modifies the expression of several nucleoid-associated proteins (NAPs), important agents of DNA topology and global gene regulation. This is the first report describing the impact of metal-induced oxidative on global regulatory networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D
2017-05-01
Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contributes to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy. Copyright © 2016 Elsevier B.V. All rights reserved.
Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen
2018-01-01
Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.
Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah
2014-01-01
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro. PMID:24802273
Oyewole, Anne O; Wilmot, Marie-Claire; Fowler, Mark; Birch-Machin, Mark A
2014-01-01
Skin cancer and aging are linked to increased cellular reactive oxygen species (ROS), particularly following exposure to ultraviolet A (UVA) in sunlight. As mitochondria are the main source of cellular ROS, this study compared the protective effects of mitochondria-targeted and -localized antioxidants (MitoQ and tiron, respectively) with cellular antioxidants against oxidative stress-induced [UVA and hydrogen peroxide (H2O2)] mitochondrial DNA (mtDNA) damage in human dermal fibroblasts. With the use of a long quantitative PCR assay, tiron (EC50 10 mM) was found to confer complete (100%) protection (P<0.001) against both UVA- and H2O2-induced mtDNA damage, whereas MitoQ (EC50 750 nM) provided less protection (17 and 32%, respectively; P<0.05). This particular protective effect of tiron was greater than a range of cellular antioxidants investigated. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway provides cellular protection against oxidative stress. An ELISA assay for the Nrf2 target gene heme oxygenase-1 (HO-1) and studies using Nrf2 small interfering RNA both indicated that tiron's mode of action was Nrf2 independent. The comet assay showed that tiron's protective effect against H2O2-induced nuclear DNA damage was greater than the cellular antioxidants and MitoQ (P<0.001). This study provides a platform to investigate molecules with similar structure to tiron as potent and clinically relevant antioxidants.
Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan
The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlyingmore » the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR and phosphorylation of ERK.« less
Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko
2018-02-01
Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.
Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy
Lindblom, Runa; Higgins, Gavin; Coughlan, Melinda; de Haan, Judy B.
2015-01-01
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease. PMID:26676666
Waly, Mostafa I; Guizani, Nejib
2014-09-01
Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.
Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham
2007-10-01
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
GERENCSER, Akos A.; MOOKERJEE, Shona A.; JASTROCH, Martin; BRAND, Martin D.
2016-01-01
Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contribute to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. PMID:27771512
Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan
2014-06-01
In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.
Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D
2013-09-01
The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.
Circles within circles: crosstalk between protein Ser/Thr/Tyr-phosphorylation and Met oxidation
USDA-ARS?s Scientific Manuscript database
Background: Reversible posttranslational protein modifications such as phosphorylation of Ser/Thr/Tyr and Met oxidation are critical for both metabolic regulation and cellular signalling. Although these modifications are typically studied individually, herein we describe the potential for cross-talk...
Role of ROS and RNS Sources in Physiological and Pathological Conditions
Victor, Victor Manuel
2016-01-01
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis. PMID:27478531
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry
2014-06-07
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.
Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.
2011-01-01
The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634
USDA-ARS?s Scientific Manuscript database
Lipoxygenase (LOX) catalyzes oxidation of C-13 atom of C:18 polyunsaturated fatty acids and produces jasmonic acid and other oxylipins that have important biological relevance. However, the role of these important molecules in cellular metabolism is barely understood. We have used a transgenic appro...
Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc
2013-01-01
Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536
Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.
2011-01-01
Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621
Physiological effect and therapeutic application of alpha lipoic acid.
Park, Sungmi; Karunakaran, Udayakumar; Jeoung, Nam Ho; Jeon, Jae-Han; Lee, In-Kyu
2014-01-01
Reactive oxygen species and reactive nitrogen species promote endothelial dysfunction in old age and contribute to the development of cardiovascular diseases such as atherosclerosis, diabetes, and hypertension. α-Lipoic acid was identified as a catalytic agent for oxidative decarboxylation of pyruvate and α-ketoglutarate in 1951, and it has been studied intensively by chemists, biologists, and clinicians who have been interested in its role in energetic metabolism and protection from reactive oxygen species-induced mitochondrial dysfunction. Consequently, many biological effects of α-lipoic acid supplementation can be attributed to the potent antioxidant properties of α-lipoic acid and dihydro α-lipoic acid. The reducing environments inside the cell help to protect from oxidative damage and the reduction-oxidation status of α-lipoic acid is dependent upon the degree to which the cellular components are found in the oxidized state. Although healthy young humans can synthesize enough α-lipoic acid to scavenge reactive oxygen species and enhance endogenous antioxidants like glutathione and vitamins C and E, the level of α-lipoic acid significantly declines with age and this may lead to endothelial dysfunction. Furthermore, many studies have reported α-lipoic acid can regulate the transcription of genes associated with anti-oxidant and anti-inflammatory pathways. In this review, we will discuss recent clinical studies that have investigated the beneficial effects of α-lipoic acid on endothelial dysfunction and propose possible mechanisms involved.
Dietary antioxidants and exercise.
Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L
2004-01-01
Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.
Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells
Richardson, Christine; Yan, Shan; Vestal, C. Greer
2015-01-01
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease. PMID:25622253
Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.
2016-01-01
Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130
MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures.
Nierobisz, Lidia S; McFarland, Douglas C; Mozdziak, Paul E
2011-02-01
Coenzyme Q(10) (CoQ(10)) plays an essential role in determination of mitochondrial membrane potential and substrate utilization in all metabolically important tissues. The objective of the present study was to investigate the effect of Coenzyme Q analog (MitoQ(10)) on oxidative phenotype and adipogenesis in myotubes derived from fast-glycolytic Pectoralis major (PM) and slow-oxidative Anterior latissimus dorsi (ALD) muscles of the turkey (Meleagris gallopavo). The myotubes were subjected to the following treatments: fusion media alone, fusion media+125 nM MitoQ(10), and 500 nM MitoQ(10). Lipid accumulation was visualized by Oil Red O staining and quantified by measuring optical density of extracted lipid at 500 nm. Quantitative Real-Time PCR was utilized to quantify the expression levels of peroxisome proliferator-activated receptor (PPARγ) and PPARγ co-activator-1α (PGC-1α). MitoQ(10) treatment resulted in the highest (P<0.05) lipid accumulation in PM myotubes. MitoQ(10) up-regulated genes controlling oxidative mitochondrial biogenesis and adipogenesis in PM myotube cultures. In contrast, MitoQ(10) had a limited effect on adipogenesis and down-regulated oxidative metabolism in ALD myotube cultures. Differential response to MitoQ(10) treatment may be dependent on the cellular redox state. MitoQ(10) likely controls a range of metabolic pathways through its differential regulation of gene expression levels in myotubes derived from fast-glycolytic and slow-oxidative muscles. Published by Elsevier Inc.
Siriwardena, Ajith K
2014-01-01
AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895
Redox-dependent transcriptional regulation.
Liu, Hongjun; Colavitti, Renata; Rovira, Ilsa I; Finkel, Toren
2005-11-11
Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many cases, these induced genes are regulated by transcription factors whose structure, subcellular localization, or affinity for DNA is directly or indirectly regulated by the level of oxidative stress. This review summarizes the recent progress on how cellular redox status can regulate transcription-factor activity and the implications of this regulation for cardiovascular disease.
Thyroid hormone effects on mitochondrial energetics.
Harper, Mary-Ellen; Seifert, Erin L
2008-02-01
Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.
New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity
Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su-Bin; Yang, Sei-Hoon; Shim, Hyeok; Cho, Eun-Young; Kwon, Kang-Beom; Kwak, Tae Hwan; So, Hong-Seob
2016-01-01
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways. PMID:26881219
Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro
NASA Astrophysics Data System (ADS)
Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.
2007-02-01
A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.
ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS
de la Monte, Suzanne M; Wands, Jack R
2011-01-01
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035
Tuet, Wing Y; Chen, Yunle; Fok, Shierly; Gao, Dong; Weber, Rodney J; Champion, Julie A; Ng, Nga L
2017-11-09
Exposure to air pollution is a leading global health risk. Secondary organic aerosol (SOA) constitute a large portion of ambient particulate matter (PM). In this study, the water-soluble oxidative potential (OP) determined by dithiothreitol (DTT) consumption and intracellular reactive oxygen and nitrogen species (ROS/RNS) production was measured for SOA generated from the photooxidation of naphthalene in the presence of iron sulfate and ammonium sulfate seed particles. The measured intrinsic OP varied for aerosol formed using different initial naphthalene concentrations, however, no trends were observed between OP and bulk aerosol composition or seed type. For all experiments, aerosol generated in the presence of iron-containing seed induced higher ROS/RNS production compared to that formed in the presence of inorganic seed. This effect was primarily attributed to differences in aerosol carbon oxidation state [Formula: see text]. In the presence of iron, radical concentrations are elevated via iron redox cycling, resulting in more oxidized species. An exponential trend was also observed between ROS/RNS and [Formula: see text] for all naphthalene SOA, regardless of seed type or aerosol formation condition. This may have important implications as aerosol have an atmospheric lifetime of a week, over which [Formula: see text] increases due to continued photochemical aging, potentially resulting in more toxic aerosol.
Intracellular trafficking of silicon particles and logic-embedded vectors
NASA Astrophysics Data System (ADS)
Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.
2010-08-01
Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. Electronic supplementary information (ESI) available: Confocal microscopy image showing internalized negative particles, and movie of the intracellular migration of silicon particles. See DOI: 10.1039/c0nr00227e
Pirela, Sandra V.; Shaffer, Justine; Mihalchik, Amy L.; Chisholm, William P.; Andrew, Michael E.; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong
2016-01-01
Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide nanoparticle-induced cellular toxicity. PMID:26769336
Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity.
Maatouk, Mouna; Elgueder, Dorra; Mustapha, Nadia; Chaaban, Hind; Bzéouich, Imen Mokdad; Loannou, Irina; Kilani, Soumaya; Ghoul, Mohamed; Ghedira, Kamel; Chekir-Ghedira, Leila
2016-11-01
Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.
Maneb and Paraquat-Mediated Neurotoxicity: Involvement of Peroxiredoxin/Thioredoxin System
Roede, James R.; Hansen, Jason M.; Go, Young-Mi; Jones, Dean P.
2011-01-01
Epidemiological and in vivo studies have demonstrated that exposure to the pesticides paraquat (PQ) and maneb (MB) increase the risk of developing Parkinson’s disease (PD) and cause dopaminergic cell loss, respectively. PQ is a well-recognized cause of oxidative toxicity; therefore, the purpose of this study was to determine if MB potentiates oxidative stress caused by PQ, thus providing a mechanism for enhanced neurotoxicity by the combination. The results show that PQ alone at a moderately toxic dose (20–30% cell death in 24 h) caused increased reactive oxygen species (ROS) generation, oxidation of mitochondrial thioredoxin-2 and peroxiredoxin-3, lesser oxidation of cytoplasmic thioredoxin-1 and peroxiredoxin-1, and no oxidation of cellular GSH/GSSG. In contrast, MB alone at a similar toxic dose resulted in no ROS generation, no oxidation of thioredoxin and peroxiredoxin, and an increase in cellular GSH after 24 h. Together, MB increased GSH and inhibited ROS production and thioredoxin/peroxiredoxin oxidation observed with PQ alone, yet resulted in more extensive (> 50%) cell death. MB treatment resulted in increased abundance of nuclear Nrf2 and mRNA for phase II enzymes under the control of Nrf2, indicating activation of cell protective responses. The results show that MB potentiation of PQ neurotoxicity does not occur by enhancing oxidative stress and suggests that increased toxicity occurs by a combination of divergent mechanisms, perhaps involving alkylation by MB and oxidation by PQ. PMID:21402726
Ahmed, Nawal A; Radwan, Nasr M; Aboul Ezz, Heba S; Salama, Noha A
2017-01-01
Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm 2 , SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.
Different cell responses induced by exposure to maghemite nanoparticles.
Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M Concepción
2013-12-07
Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.
Detoxification of nitric oxide by Fusarium verticillioides is linked to denitrification
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) is a potent cellular signaling molecule and a byproduct of nitrogen metabolism. High concentrations of NO are a form of nitrosative stress, and to alleviate this stress, organisms utilize flavohemoglobins to convert NO into nontoxic nitrate ions. We have investigated the capacity o...
Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...
OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS
Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron ...
*OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS
Lung injury after asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron throu...
Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques
McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.
2016-01-01
Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025
Oxidative Modulation of Voltage-Gated Potassium Channels
Sahoo, Nirakar; Hoshi, Toshinori
2014-01-01
Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918
Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva
2014-06-27
Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress
2013-01-01
Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are redirected away from several other critical metabolic processes, including ribose and glutathione synthesis. These alterations lead to both a decrease in cellular proliferation and increased sensitivity to ROS. Collectively, these data reveal a role for p53 in cellular metabolic reprogramming under acidosis, in order to permit increased bioenergetic capacity and ROS neutralization. Understanding the metabolic adaptations that cancer cells make under acidosis may present opportunities to generate anti-tumor therapeutic agents that are more tumor-specific. PMID:24359630
The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction.
Netto, Luis E S; Antunes, Fernando
2016-01-01
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej
2016-09-01
The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.
Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.
Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong
2018-06-01
Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulated methionine oxidation by monooxygenases
Manta, Bruno; Gladyshev, Vadim N.
2017-01-01
Protein function can be regulated via post-translational modifications by numerous enzymatic and non-enzymatic mechanisms, including oxidation of cysteine and methionine residues. Redox-dependent regulatory mechanisms have been identified for nearly every cellular process, but the major paradigm has been that cellular components are oxidized (damaged) by reactive oxygen species (ROS) in a relatively unspecific way, and then reduced (repaired) by designated reductases. While this scheme may work with cysteine, it cannot be ascribed to other residues, such as methionine, whose reaction with ROS is too slow to be biologically relevant. However, methionine is clearly oxidized in vivo and enzymes for its stereoselective reduction are present in all three domains of life. Here, we revisit the chemistry and biology of methionine oxidation, with emphasis on its generation by enzymes from the monooxygenase family. Particular attention is placed on MICALs, a recently discovered family of proteins that harbor an unusual flavin-monooxygenase domain with an NADPH-dependent methionine sulfoxidase activity. Based on the structural and kinetic information we provide a rational framework to explain MICAL mechanism, inhibition, and regulation. Methionine residues that are targeted by MICALs are reduced back by methionine sulfoxide reductases, suggesting that reversible methionine oxidation may be a general mechanism analogous to the regulation by phosphorylation by kinases/phosphatases. The identification of new enzymes that catalyze the oxidation of methionine will open a new area of research at the forefront of redox signaling. PMID:28229915
Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I
2015-06-15
An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.
Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species
Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino
2012-01-01
This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling
As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-inducedmore » inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.« less
Xu, Yang; Hu, Dongwen; Li, Yuting; Sun, Chongde; Chen, Wei
2018-01-01
Accumulating evidence indicates that consumption of berries may exert beneficial effects against oxidative stress mediated diseases. Pelargonidin-3-O-glucoside (Pg3G), a bioactive ingredient in strawberry, has been reported to possess a potent antioxidant capacity. This study was therefore designed to develop an effective method to prepare pure Pg3G from strawberry and investigate its protective effect against H 2 O 2 -induced oxidative stress. According to our results, Pg3G occupied 85.55% of total anthocyanin content in strawberry. 240mg of Pg3G with the purity of 97.26% was finally isolated from 320g of strawberry lyophilized powder (SLP) by combination of AB-8 macroporous resin and high-speed counter-current chromatography (HSCCC) technologies. Further study unveiled that Pg3G significantly inhibited H 2 O 2 -induced ROS generation, GSH depletion and mitochondrial dysfunction, thereby ameliorating H 2 O 2 -induced oxidative stress. Overall, this study suggests that pelargonidin-3-O-glucoside can be used as a natural bioactive agent to prevent cellular oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.
The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist
Mailloux, Ryan J.; Bériault, Robin; Lemire, Joseph; Singh, Ranji; Chénier, Daniel R.; Hamel, Robert D.; Appanna, Vasu D.
2007-01-01
The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH2) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and α-ketoglutarate (KG) is a key participant in the detoxification of reactive oxygen species (ROS). Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH) and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of α-ketoglutarate dehydrogenase (KGDH), NAD-dependent isocitrate dehydrogenase (NAD-ICDH), and succinate dehydrogenase (SDH) were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing. PMID:17668068
Hernández-Arciga, Ulalume; Herrera M, L Gerardo; Ibáñez-Contreras, Alejandra; Miranda-Labra, Roxana U; Flores-Martínez, José Juan; Königsberg, Mina
2018-01-01
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
Proteostasis and REDOX state in the heart
Christians, Elisabeth S.
2012-01-01
Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans. PMID:22003057
Proteostasis and REDOX state in the heart.
Christians, Elisabeth S; Benjamin, Ivor J
2012-01-01
Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed "proteostasis." Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans.
Ibáñez-Contreras, Alejandra; Miranda-Labra, Roxana U.; Flores-Martínez, José Juan
2018-01-01
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage. PMID:29293551
NASA Technical Reports Server (NTRS)
Wang, J.; Brune, D. C.; Blankenship, R. E.
1990-01-01
The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.
Intracellular Trafficking of Silicon Particles and Logic-Embedded Vectors
Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.
2010-01-01
Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. PMID:20820744
Carson, James A; Hardee, Justin P; VanderVeen, Brandon N
2016-06-01
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.
2010-01-01
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀ = ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725
Jimenez, Ana Gabriela; Harper, James M.; Queenborough, Simon A.; Williams, Joseph B.
2013-01-01
SUMMARY A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H2O2, paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD50) from tropical birds were significantly higher for H2O2 and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD50, we found that cells from tropical birds had greater tolerance for Cd, H2O2, paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species. PMID:23264487
Jimenez, Ana Gabriela; Harper, James M; Queenborough, Simon A; Williams, Joseph B
2013-04-15
A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.
Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts.
Sitte, N; Merker, K; von Zglinicki, T; Grune, T
2000-03-01
One of the highlights of age-related changes of cellular metabolism is the accumulation of oxidized proteins. The aging process on a cellular level can be treated either as the ongoing proliferation until a certain number of cell divisions is reached (the Hayflick limit) or as the aging of nondividing cells, that is, the age-related changes in cells without proliferation. The present investigation was undertaken to reveal the changes in protein turnover, proteasome activity, and protein oxidation status during proliferative senescence. We were able to demonstrate that the activity of the cytosolic proteasomal system declines dramatically during the proliferative senescence of human MRC-5 fibroblasts. Regardless of the loss in activity, it could be demonstrated that there are no changes in the transcription and translation of proteasomal subunits. This decline in proteasome activity was accompanied by an increased concentration of oxidized proteins. Cells at higher proliferation stages were no longer able to respond with increased degradation of endogenous [(35)S]-Met-radiolabeled proteins after hydrogen peroxide- or quinone-induced oxidative stress. It could be demonstrated that oxidized proteins in senescent human MRC-5 fibroblasts are not as quickly removed as they are in young cells. Therefore, our study demonstrates that the accumulation of oxidized proteins and decline in protein turnover and activity of the proteasomal system are not only a process of postmitotic aging but also occur during proliferative senescence and result in an increased half-life of oxidized proteins.
The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.
Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote
2017-07-01
Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.
Girotti, Albert W; Korytowski, Witold
2017-12-01
Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.
Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).
Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan
2018-05-02
Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.
Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage.
Belenky, Peter; Ye, Jonathan D; Porter, Caroline B M; Cohen, Nadia R; Lobritz, Michael A; Ferrante, Thomas; Jain, Saloni; Korry, Benjamin J; Schwarz, Eric G; Walker, Graham C; Collins, James J
2015-11-03
Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Heiske, Margit; Letellier, Thierry; Klipp, Edda
2017-09-01
We developed a mathematical model of oxidative phosphorylation (OXPHOS) that allows for a precise description of mitochondrial function with respect to the respiratory flux and the ATP production. The model reproduced flux-force relationships under various experimental conditions (state 3 and 4, uncoupling, and shortage of respiratory substrate) as well as time courses, exhibiting correct P/O ratios. The model was able to reproduce experimental threshold curves for perturbations of the respiratory chain complexes, the F 1 F 0 -ATP synthase, the ADP/ATP carrier, the phosphate/OH carrier, and the proton leak. Thus, the model is well suited to study complex interactions within the OXPHOS system, especially with respect to physiological adaptations or pathological modifications, influencing substrate and product affinities or maximal catalytic rates. Moreover, it could be a useful tool to study the role of OXPHOS and its capacity to compensate or enhance physiopathologies of the mitochondrial and cellular energy metabolism. © 2017 Federation of European Biochemical Societies.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-12-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-01-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins. PMID:26615830
Biomineralization of uniform gallium oxide rods with cellular compatibility.
Yan, Danhong; Yin, Guangfu; Huang, Zhongbing; Liao, Xiaoming; Kang, Yunqing; Yao, Yadong; Hao, Baoqing; Gu, Jianwen; Han, Dong
2009-07-20
Monodispersed single crystalline alpha-GaOOH rods coated by silk fibroin (SF) have been prepared via a facile biomineralization process in the template of SF peptide. The carbon-coated alpha-Ga(2)O(3) and beta-Ga(2)O(3) rods are obtained by thermal treatment of the alpha-GaOOH rods at 600 and 800 degrees C, respectively. In vitro cytotoxicity studies of these gallium oxide rods showed no significant effect leading to restraint of cell proliferation of L929, Hela, and HaCat cells in less than 0.1 mg/mL prepared rods. On the basis of their excellent luminescence emission properties and cellular compatibilities, possible applications for bio-optoelectronic devices can be envisioned.
Mitochondrial DNA: impacting central and peripheral nervous systems
Carelli, Valerio
2014-01-01
Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co
2010-08-01
Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less
Winterbourn, Christine C
2014-02-01
Small molecule fluorescent probes are vital tools for monitoring reactive oxygen species in cells. The types of probe available, the extent to which they are specific or quantitative and complications in interpreting results are discussed. Most commonly used probes (e.g. dihydrodichlorofluorescein, dihydrorhodamine) have some value in providing information on changes to the redox environment of the cell, but they are not specific for any one oxidant and the response is affected by numerous chemical interactions and not just increased oxidant generation. These probes generate the fluorescent end product by a free radical mechanism, and to react with hydrogen peroxide they require a metal catalyst. Probe radicals can react with oxygen, superoxide, and various antioxidant molecules, all of which influence the signal. Newer generation probes such as boronates act by a different mechanism in which nucleophilic attack by the oxidant on a blocking group releases masked fluorescence. Boronates react with hydrogen peroxide, peroxynitrite, hypochlorous acid and in some cases superoxide, so are selective but not specific. They react with hydrogen peroxide very slowly, and kinetic considerations raise questions about how the reaction could occur in cells. Data from oxidant-sensitive fluorescent probes can provide some information on cellular redox activity but is widely misinterpreted. Recently developed non-redox probes show promise but are not generally available and more information on specificity and cellular reactions is needed. We do not yet have probes that can quantify cellular production of specific oxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.
Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects
2016-01-01
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882
Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.
Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I
2016-03-15
A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jamwal, Ankur; Naderi, Mohammad; Niyogi, Som
2016-02-01
The present study evaluated the ameliorative properties of selenium (Se) against cadmium (Cd)-induced oxidative stress, using isolated rainbow trout (Oncorhynchus mykiss) hepatocytes in primary culture as the model experimental system. Cadmium (Cd) is known to induce cytotoxic effects by disrupting cellular oxidative homeostasis. On the other hand, selenium (Se) is an essential component of biological antioxidative machinery, and thus may provide protection against the toxic insults of Cd by augmenting the cellular antioxidant response. However, Se, when present above the threshold concentration, can also induce reactive oxygen species (ROS) generation and cause oxidative damage. In this experiment, trout hepatocytes in primary culture were exposed to 100 µM Cd, alone or in combination with different concentrations (25-500 µM) of selenite (SeO3(2-)) or selenomethionine (SeMet) for 48 h. Our findings indicated that both chemical forms of Se, at the lowest concentration used (25 µM), significantly reduced Cd-induced cytotoxicity (measured as cell viability). In contrast, Se at higher concentrations (≥ 50 µM) did not offer any protection against a Cd induced decrease in cell viability. The reduced cytotoxicity of Cd in the presence of 25 µM selenite or SeMet was associated with reduced intracellular ROS production, recovery of the cellular thiol status (ratio of reduced and oxidized glutathione), and amelioration in the activities of major enzymatic antioxidants (superoxide dismutase, catalase, and glutathione peroxidase). Co-treatment of hepatocytes with Cd and pharmacological antioxidants (TEMPO and NAC) also reduced Cd-induced oxidative stress in trout hepatocytes. This provided further evidence that Se likely ameliorates Cd toxicity via different antioxidative mechanisms.
Liu, Huijun; Xia, YiLu; Cai, Weidan; Zhang, Yina; Zhang, Xiaoqiang; Du, Shaoting
2017-04-01
The rational use and environmental security of chiral pesticides has gained the interest of many researchers. The enantioselective effects of Rac- and S-metolachlor on oxidative stress in Scenedesmus obliquus were determined in this study. Stronger green fluorescence was observed in response to S-metolachlor treatment than to Rac-metolachlor treatment, suggesting that more reactive oxygen species (ROS) were stimulated by S-metolachlor. ROS levels following S-metolachlor treatment were 1.92-, 8.31-, and 1.08-times higher than those observed following Rac-metolachlor treatment at 0.1, 0.2, and 0.3 mg/L, respectively. Superoxide dismutase (SOD) and catalase (CAT) were stimulated with increasing herbicide concentrations, with S-metolachlor exhibiting a greater effect. Oxidative damage in terms of chlorophyll (Chl) content, cellular membrane permeability, and cellular ultrastructures of S. obliquus were investigated. Chla and Chlb contents in algae treated with Rac-metolachlor were 2-6-fold higher than those in algae treated with S-metolachlor at 0.1, 0.2, and 0.3 mg/L. The cellular membrane permeability of algae exposed to 0.3 mg/L Rac- and S-metolachlor was 6.19- and 42.5-times that of the control. Correlation analysis implied that ROS are the major factor responsible for the oxidative damage caused by Rac- and S-metolachlor. Damage to the chloroplasts and cell membrane of S. obliquus, low production of starch granules, and an increased number of vacuoles were observed upon ultrastructural morphology analysis by transmission electron microscope. These results indicate that S-metolachlor has a greater effect on S. obliquus than Rac-metolachlor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Babaee, Fatemeh; Safaeian, Leila; Zolfaghari, Behzad; Haghjoo Javanmard, Shaghayegh
2016-01-01
Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of P. eldarica extract was determined using Folin-Ciocalteu method. The cytotoxicity of P. eldarica extract (25-1000 µg/ml) on HUVECs was assessed using 3-(4,5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method. Cytoprotective effect of P. eldarica extract (25-500 µg/ml) on H2O2-induced oxidative stress was also evaluated by MTT assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were measured in pretreated cells. Results: The total phenolic content of P. eldarica extract was estimated as 37.04±1.8% gallic acid equivalent. P. eldarica extract (25-1000 µg/ml) had no cytotoxic effect on HUVECs viability. The pretreatment of HUVECs with P. eldarica extract at the concentrations of 50-500 µg/ml significantly reduced the cytotoxicity of H2O2. P. eldarica extract decreased hydroperoxides concentration and increased FRAP value in intra-cellular fluid at the concentration range of 100-500 µg/ml and in extra-cellular fluid at the concentration range of 25-500 µg/ml. Conclusions: This study revealed the antioxidant and cytoprotective effects of P. eldarica extract against H2O2-induced oxidative stress in HUVECs. Concerning the high content of phenolic compounds in P. eldarica, more research is needed to evaluate its clinical value in endothelial dysfunction and in other oxidative conditions. PMID:26931383
In vitro toxicity of nanoparticles in BRL 3A rat liver cells.
Hussain, S M; Hess, K L; Gearhart, J M; Geiss, K T; Schlager, J J
2005-10-01
This study was undertaken to address the current deficient knowledge of cellular response to nanosized particle exposure. The study evaluated the acute toxic effects of metal/metal oxide nanoparticles proposed for future use in industrial production methods using the in vitro rat liver derived cell line (BRL 3A). Different sizes of nanoparticles such as silver (Ag; 15, 100 nm), molybdenum (MoO(3); 30, 150 nm), aluminum (Al; 30, 103 nm), iron oxide (Fe(3)O(4); 30, 47 nm), and titanium dioxide (TiO(2); 40 nm) were evaluated for their potential toxicity. We also assessed the toxicity of relatively larger particles of cadmium oxide (CdO; 1 microm), manganese oxide (MnO(2); 1-2 microm), and tungsten (W; 27 microm), to compare the cellular toxic responses with respect to the different sizes of nanoparticles with different core chemical compositions. For toxicity evaluations, cellular morphology, mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH) levels, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were assessed under control and exposed conditions (24h of exposure). Results showed that mitochondrial function decreased significantly in cells exposed to Ag nanoparticles at 5-50 microg/ml. However, Fe(3)O(4), Al, MoO(3) and TiO(2) had no measurable effect at lower doses (10-50 microg/ml), while there was a significant effect at higher levels (100-250 microg/ml). LDH leakage significantly increased in cells exposed to Ag nanoparticles (10-50 microg/ml), while the other nanoparticles tested displayed LDH leakage only at higher doses (100-250 microg/ml). In summary the Ag was highly toxic whereas, MoO(3) moderately toxic and Fe(3)O(4), Al, MnO(2) and W displayed less or no toxicity at the doses tested. The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, reduced mitochondrial membrane potential and increase in ROS levels, which suggested that cytotoxicity of Ag (15, 100 nm) in liver cells is likely to be mediated through oxidative stress.
Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases.
Mukherjee, Rukmini; Chakrabarti, Oishee
2013-01-01
The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu
2013-01-15
Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The olfactory antioxidant response is blocked by Nrf2 knockdown. ► Disruption of olfactory neurobehaviors is associated with Nrf2 knockdown. ► Nrf2 morphants show increased cell death and olfactory sensory neuron loss.« less
ERIC Educational Resources Information Center
Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.
2010-01-01
Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins,…
When it comes to antibiotics, bacteria show some NO-how.
Patel, Bhumit A; Crane, Brian R
2010-10-01
Homologs to mammalian nitric oxide synthases are found in many mostly Gram-positive bacteria. In some genera such as bacilli, and staphylococci, these enzymes produce protects against oxidative damage, this effect has now been shown to provide an advantage against antibiotics that kill by increasing cellular levels of reactive oxygen species.
ERIC Educational Resources Information Center
Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.; James, S. Jill
2012-01-01
Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected…
Metal oxide nanoparticles (NPs) are used in a range of products and applications due to their unique physicochemical properties. In vivo studies have demonstrated the ability of NPs to translocate to the distal organs, including the cardiovascular system, following various routes...
Ullah, M F; Ahmad, Aamir; Khan, Husain Y; Zubair, H; Sarkar, Fazlul H; Hadi, S M
2013-11-01
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.
Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.
Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda
2010-01-01
Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.
Cancer cell metabolism and the modulating effects of nitric oxide.
Chang, Ching-Fang; Diers, Anne R; Hogg, Neil
2015-02-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. Copyright © 2015. Published by Elsevier Inc.
Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems
2018-01-01
Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed. PMID:29743987
Cancer Cell Metabolism and the Modulating Effects of Nitric Oxide
Chang, Ching-Fang; Diers, Anne R.; Hogg, Neil
2016-01-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. PMID:25464273
Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B
2014-04-01
Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.
2015-01-01
The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) FeIII complexes with polyphosphate-related ligands. Some FeIII oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS FeIII. Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM FeIII citrate) accumulated two major NHHS FeII species as the vacuolar NHHS FeIII species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS FeII complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS FeIII with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS FeIII species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141
Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER.
Hoseki, Jun; Oishi, Asami; Fujimura, Takaaki; Sakai, Yasuyoshi
2016-01-01
The endoplasmic reticulum (ER) is an essential organelle for cellular metabolic homeostasis including folding and maturation of secretory and membrane proteins. Disruption of ER proteostasis has been implicated in the pathogenesis of various diseases such as diabetes and neurodegenerative diseases. The ER redox state, which is an oxidative environment suitable for disulfide-bond formation, is essential for ER protein quality control. Hence, detection of the ER redox state, especially in living cells, is essential to understand the mechanism by which the redox state of the ER is maintained. However, methods to detect the redox state of the ER have not been well-established because of inefficient folding and stability of roGFP variants with oxidative redox potential like roGFP-iL. Here we have improved the folding efficiency of ER-targeted roGFP-iL (ERroGFP-iL) in cells by introducing superfolder GFP (sfGFP) mutations. Four specific amino acid substitutions (S30R, Y39N, T105N and I171V) greatly improved folding efficiency in Escherichia coli and in the ER of HeLa cells, as well as the thermostability of the purified proteins. Introduction of these mutations also enhanced the dynamic range for redox change both in vitro and in the ER of living cells. ER-targeted roGFP-S4 (ERroGFP-S4) possessing these four mutations could detect physiological redox changes within the ER. ERroGFP-S4 is therefore a novel probe suitable for monitoring redox change in the ER. ERroGFP-S4 can be applied to detect aberrant ER redox states associated with various pathological conditions and to identify the mechanisms used to maintain the redox state of the ER. © 2016 The Author(s).
Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.
2006-01-01
Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3 μM (60 μg/L) mercury, 750 μg/L Aroclor 1254, and 50 μM (14,500 μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.
Hantavirus Pulmonary Syndrome in the United States.
Fabbri, Marilyn; Maslow, Melanie J.
2001-06-01
Since the first outbreak of hantavirus pulmonary syndrome (HPS) in 1993, understanding of the vast distribution and potential impact of hantaviruses has grown. At least 277 cases of HPS have been documented in the United States. The full clinical spectrum has yet to be elucidated, and one outbreak suggested the possibility of person-to-person transmission. New research has identified the b-3 integrins as cellular receptors for hantaviruses and has determined the pivotal role of the immune system in pathogenesis. Rapid diagnosis has been facilitated by a new immunoblot assay to detect Sin Nombre virus infection. Treatment remains primarily supportive; however, a placebo- controlled trial of ribavirin is ongoing. Extracorporeal membrane oxygenation may be a potential therapy in severe cases; inhaled nitric oxide needs further study. Vaccines developed against hantaviruses associated with hemorrhagic fever and renal syndrome might be effective against HPS-associated strains.
Williams, Vonetta M.; Kokoza, Anatolii; Bashkirova, Svetlana; Duerksen-Hughes, Penelope
2014-01-01
Treatment of advanced and relapsed cervical cancer is frequently ineffective, due in large part to chemoresistance. To examine the pathways responsible, we employed the cervical carcinoma-derived SiHa and CaSki cells as cellular models of resistance and sensitivity, respectively, to treatment with chemotherapeutic agents, doxorubicin, and cisplatin. We compared the proteomic profiles of SiHa and CaSki cells and identified pathways with the potential to contribute to the differential response. We then extended these findings by comparing the expression level of genes involved in reactive oxygen species (ROS) metabolism through the use of a RT-PCR array. The analyses demonstrated that the resistant SiHa cells expressed higher levels of antioxidant enzymes. Decreasing or increasing oxidative stress led to protection or sensitization, respectively, in both cell lines, supporting the idea that cellular levels of oxidative stress affect responsiveness to treatment. Interestingly, doxorubicin and cisplatin induced different profiles of ROS, and these differences appear to contribute to the sensitivity to treatment displayed by cervical cancer cells. Overall, our findings demonstrate that cervical cancer cells display variable profiles with respect to their redox-generating and -adaptive systems, and that these different profiles have the potential to contribute to their responses to treatments with chemotherapy. PMID:25478571
Geißler, S; Textor, M; Schmidt-Bleek, K; Klein, O; Thiele, M; Ellinghaus, A; Jacobi, D; Ode, A; Perka, C; Dienelt, A; Klose, J; Kasper, G; Duda, G N; Strube, P
2013-01-01
Even tissues capable of complete regeneration, such as bone, show an age-related reduction in their healing capacity. Here, we hypothesized that this decline is primarily due to cell non-autonomous (extrinsic) aging mediated by the systemic environment. We demonstrate that culture of mesenchymal stromal cells (MSCs) in serum from aged Sprague–Dawley rats negatively affects their survival and differentiation ability. Proteome analysis and further cellular investigations strongly suggest that serum from aged animals not only changes expression of proteins related to mitochondria, unfolded protein binding or involved in stress responses, it also significantly enhances intracellular reactive oxygen species production and leads to the accumulation of oxidatively damaged proteins. Conversely, reduction of oxidative stress levels in vitro markedly improved MSC function. These results were validated in an in vivo model of compromised bone healing, which demonstrated significant increase regeneration in aged animals following oral antioxidant administration. These observations indicate the high impact of extrinsic aging on cellular functions and the process of endogenous (bone) regeneration. Thus, addressing the cell environment by, for example, systemic antioxidant treatment is a promising approach to enhance tissue regeneration and to regain cellular function especially in elderly patients. PMID:24357801
Ullah, Mohd Fahad; Shamim, Uzma; Hanif, Sarmad; Azmi, Asfar S; Hadi, Sheikh M
2009-11-01
Epidemiological studies have indicated that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. The isoflavone polyphenol genistein in soybean is considered to be a potent chemopreventive agent against cancer. In order to explore the chemical basis of chemopreventive activity of genistein, in this paper we have examined the structure-activity relationship between genistein and its structural analogue biochanin A. We show that both genistein and its methylated derivative biochanin A are able to mobilize nuclear copper in human lymphocyte, leading to degradation of cellular DNA. However, the relative rate of DNA breakage was greater in the case of genistein. Further, the cellular DNA degradation was inhibited by copper chelator (neocuproine/bathocuproine) but not by compounds that specifically bind iron and zinc (desferrioxamine mesylate and histidine, respectively). We also compared the antioxidant activity of the two isoflavones against tert-butylhydroperoxide-induced oxidative breakage in lymphocytes. Again genistein was found to be more effective than biochanin A in providing protection against oxidative stress induced by tert-butylhydroperoxide. It would therefore appear that the structural features of isoflavones that are important for antioxidant properties are also the ones that contribute to their pro-oxidant action through a mechanism that involves redox cycling of chromatin-bound nuclear copper.
Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia
2015-02-01
Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.
Roepstorff, Carsten; Thiele, Maja; Hillig, Thore; Pilegaard, Henriette; Richter, Erik A; Wojtaszewski, Jørgen F P; Kiens, Bente
2006-01-01
5′AMP-activated protein kinase (AMPK) is an energy sensor activated by perturbed cellular energy status such as during muscle contraction. Activated AMPK is thought to regulate several key metabolic pathways. We used sex comparison to investigate whether AMPK signalling in skeletal muscle regulates fat oxidation during exercise. Moderately trained women and men completed 90 min bicycle exercise at 60% V̇O2peak. Both AMPK Thr172 phosphorylation and α2AMPK activity were increased by exercise in men (∼200%, P < 0.001) but not significantly in women. The sex difference in muscle AMPK activation with exercise was accompanied by an increase in muscle free AMP (∼164%, P < 0.01), free AMP/ATP ratio (159%, P < 0.05), and creatine (∼42%, P < 0.001) in men but not in women (NS), suggesting that lack of AMPK activation in women was due to better maintenance of muscle cellular energy balance compared with men. During exercise, fat oxidation per kg lean body mass was higher in women than in men (P < 0.05). Regression analysis revealed that a higher proportion of type 1 muscle fibres (∼23%, P < 0.01) and a higher capillarization (∼23%, P < 0.05) in women than in men could partly explain the sex difference in α2AMPK activity (r = −0.54, P < 0.05) and fat oxidation (r = 0.64, P < 0.05) during exercise. On the other hand, fat oxidation appeared not to be regulated via AMPK. In conclusion, during prolonged submaximal exercise at 60% V̇O2peak, higher fat oxidation in women cannot be explained by higher AMPK signalling but is accompanied by improved muscle cellular energy balance in women probably due to sex specific muscle morphology. PMID:16600998
Oxidative DNA damage during sleep periods among nightshift workers.
Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott
2016-08-01
Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
O'Doherty, P J; Lyons, V; Tun, N M; Rogers, P J; Bailey, T D; Wu, M J
2014-12-01
Amino acid biosynthesis forms part of an integrated stress response against oxidants in Saccharomyces cerevisiae and higher eukaryotes. Here we show an essential protective role of the l-lysine biosynthesis pathway in response to the oxidative stress condition induced by the lipid oxidant-linoleic acid hydroperoxide (LoaOOH), by means of transcriptomic profiling and phenotypic analysis, and using the deletion mutant dal80∆ and lysine auxotroph lys1∆. A comprehensive up-regulation of lysine biosynthetic genes (LYS1, LYS2, LYS4, LYS9, LYS12, LYS20 and LYS21) was revealed in dal80Δ following the oxidant challenge. The lysine auxotroph (lys1∆) exhibited a significant decrease in growth compared with that of BY4743 upon exposure to LoaOOH, albeit with the sufficient provision of lysine in the medium. Furthermore, the growth of wild type BY4743 exposed to LoaOOH was also greatly reduced in lysine-deficient conditions, despite a full complement of lysine biosynthetic genes. Amino acid analysis of LoaOOH-treated yeast showed that the level of cellular lysine remained unchanged throughout oxidant challenge, suggesting that the induced lysine biosynthesis leads to a steady-state metabolism as compared to the untreated yeast cells. Together, these findings demonstrate that lysine availability and its biosynthesis pathway play an important role in protecting the cell from lipid peroxide-induced oxidative stress, which is directly related to understanding environmental stress and industrial yeast management in brewing, wine making and baking.
Oxidative stress in normal hematopoietic stem cells and leukemia.
Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin
2018-04-01
Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe
2015-09-01
Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.
A universal entropy-driven mechanism for thioredoxin–target recognition
Palde, Prakash B.; Carroll, Kate S.
2015-01-01
Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx–protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx–target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein–protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx–target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition. PMID:26080424
Souid, A K; Newton, G L; Dubowy, R L; Fahey, R C; Bernstein, M L
1998-01-01
WR-2721 [S-2-(3-aminopropylamino)ethylphosphorothioic acid] is a chemoprotective agent that is currently in pediatric clinical trials. It is a prodrug that is dephosphorylated by alkaline phosphatase to the active free thiol form, WR-1065 [S-2-(3-aminopropylamino)ethanethiol]. It is likely that adequate and sustained cellular levels of the drug are necessary for optimum cytoprotection. To date, a method to measure both plasma and cellular levels of WR-2721 and its metabolites in clinical samples has not been available. In the study reported here the monobromobimane (mBBr) fluorescent labeling method was used to measure these levels when drug was added in vitro to blood samples from normal volunteers. In addition, we present pharmacokinetic data from a pediatric patient receiving WR-2721 (825 mg/m2 x 2). The results can be summarized as follows: (1) WR-2721 was detected in the patient's plasma with a half-life of about 10 min; (2) the WR-1065 concentration in the blood cellular fraction was similar to that of plasma; (3) both WR-1065 and WR-SS-low molecular weight (WR-SS-LMW) metabolites disappeared from plasma and the cellular fraction by 3.6 h after WR-2721 infusion; (4) a large proportion of WR-1065 was oxidized in plasma to WR-SS protein and WR-SS-LMW; (5) a large proportion of WR-1065 in the cellular fraction was oxidized to WR-SS-protein; (6) the WR-SS-LMW concentration in the cellular fraction was low; and (7) saturation of plasma and cellular protein binding sites was possible. The pharmacokinetic data that were generated with this technique could guide clinical trials using WR-2721.
Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan
2016-10-01
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.
SIRT1: new avenues of discovery for disorders of oxidative stress.
Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui; Maiese, Kenneth
2012-02-01
The sirtuin SIRT1 is expressed throughout the body, has broad biological effects and can significantly affect both cellular survival and longevity during acute and long-term injuries, which involve both oxidative stress and cell metabolism. SIRT1 has an intricate role in the pathology, progression, and treatment of several disease entities, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, tumorigenesis, cardiovascular disease with myocardial injury and atherosclerosis, metabolic disease, and aging-related disease. New areas of study in these disciplines, with discussion of the cellular biology, are highlighted. Novel signaling pathways for SIRT1, which can be targeted to enhance cellular protection and potentially extend lifespan, continue to emerge. Investigations that can further determine the intracellular signaling, trafficking and post-translational modifications that occur with SIRT1 in a variety of cell systems and environments will allow us to further translate this knowledge into effective therapeutic strategies that will be applicable to multiple systems of the body.
Antioxidant responses and cellular adjustments to oxidative stress.
Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago
2015-12-01
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.
Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism
Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva
2016-01-01
Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol. PMID:26999118
Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien
2012-06-15
Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening withmore » approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.« less
Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.
2018-01-01
ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241
Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen
2010-10-13
Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.
Bioenergetic Profile Experiment using C2C12 Myoblast Cells
Nicholls, David G.; Darley-Usmar, Victor M.; Wu, Min; Jensen, Per Bo; Rogers, George W.; Ferrick, David A.
2010-01-01
The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and/or insults. PMID:21189469
Balakrishna, Shrilatha; Lomnicki, Slawo; McAvey, Kevin M; Cole, Richard B; Dellinger, Barry; Cormier, Stephania A
2009-01-01
Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the reducing nature and prolonged environmental and biological lifetimes of the EPFRs in MCP230. PMID:19374750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbon, Silvia, E-mail: silvia.barbon@yahoo.it
In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in themore » future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was accomplished after cell treatment. • TAT-CNTF can be efficiently loaded on oxidized PVA cylinders for local delivery. • TAT-CNTF features make it ideal for peripheral nerve regeneration therapies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki
Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductasemore » 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.« less
New concept: cellular senescence in pathophysiology of cholangiocarcinoma.
Sasaki, Motoko; Nakanuma, Yasuni
2016-01-01
Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Fox, P. L.
1998-01-01
Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.
Mookerjee, Shona A.; Gerencser, Akos A.; Nicholls, David G.; Brand, Martin D.
2017-01-01
Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data. PMID:28270511
Alternative Conformations of Cytochrome c: Structure, Function, and Detection.
Hannibal, Luciana; Tomasina, Florencia; Capdevila, Daiana A; Demicheli, Verónica; Tórtora, Verónica; Alvarez-Paggi, Damián; Jemmerson, Ronald; Murgida, Daniel H; Radi, Rafael
2016-01-26
Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.
Tsong, T Y; Su, Z D
1999-10-30
Direct exposure of cells in suspension to intense electric pulses is known to produce damages to cell membranes and supramolecular organizations of cells, and denaturation of macromolecules, much like injuries and tears seen in electric trauma patients. Thus, the system has been used as a laboratory model for investigating the biochemical basis of electric injury. An intense electric pulse can produce two major effects on cells--one caused by the field, or the electric potential, and the other by current, or the electric energy. The field-induced transmembrane potential can produce electro-conformational changes of ion channels and ion pumps and, when the potential exceeds the dielectric strength of the cell membrane (approximately 500 mV for a pulse width of a few ms), electro-conformational damages and electroporations of membrane proteins and lipid bilayers. These events lead to passage of electric current through the membrane-porated cells and to heating of cell membranes and cytoplasmic contents. The subsequent denaturation of cell membranes and cytoplasmic macromolecules brings about many complex biochemical reactions, including oxidation of proteins and lipids. The combined effects may cripple the cells beyond repair. This communication will focus on the thermal effects of electric shock. After a brief review of the current state of knowledge on thermal denaturation of soluble enzymes and muscle proteins, this paper will describe experiments on the thermal denaturation of cellular components and functions, such as nucleosomes, and the electron transport chain and ATP synthetic enzymes of the mitochondrial inner membranes. Data will show that lipid peroxidation and the subsequent loss of the energy-transducing ability of the cells may occur even at moderate temperatures between 40 degrees C and 45 degrees C. However, lipid peroxidation may be prevented with reducing reagents such as mercaptoethanol, dithiothreitol, and ascorbic acid. Reactivation of denatured cellular proteins and functions may also be possible and a strategy for doing so is discussed.
Mancuso, David J.; Sims, Harold F.; Yang, Kui; Kiebish, Michael A.; Su, Xiong; Jenkins, Christopher M.; Guan, Shaoping; Moon, Sung Ho; Pietka, Terri; Nassir, Fatiha; Schappe, Timothy; Moore, Kristin; Han, Xianlin; Abumrad, Nada A.; Gross, Richard W.
2010-01-01
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A2γ (iPLA2γ−/−) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA2γ+/+ mice after high fat feeding. Notably, iPLA2γ−/− mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA2γ−/− mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA2γ−/− mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA2γ−/− mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA2γ−/− mouse. Collectively, these results identify iPLA2γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome. PMID:20817734
Hempel, Nadine; Melendez, J Andres
2014-01-01
Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can have profound effects on pro-metastatic signaling pathways.
Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.
2017-01-01
p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress. PMID:28222108
Karlsson, Hanna L; Gliga, Anda R; Calléja, Fabienne M G R; Gonçalves, Cátia S A G; Wallinder, Inger Odnevall; Vrieling, Harry; Fadeel, Bengt; Hendriks, Giel
2014-09-02
The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
De Luca, Gabriele; Ventura, Ilenia; Sanghez, Valentina; Russo, Maria Teresa; Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Martire, Alberto; Popoli, Patrizia; Falcone, Germana; Michelini, Flavia; Crescenzi, Marco; Degan, Paolo; Minghetti, Luisa; Bignami, Margherita; Calamandrei, Gemma
2013-08-01
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids. © 2013 John Wiley & Sons Ltd and the Anatomical Society.
Maddalena, Lucas A; Ghelfi, Mikel; Atkinson, Jeffrey; Stuart, Jeffrey A
2017-01-01
A variety of mitochondria-targeted small molecules have been invented to manipulate mitochondrial redox activities and improve function in certain disease states. 3-Hydroxypropyl-triphenylphosphonium-conjugated imidazole-substituted oleic acid (TPP-IOA) was developed as a specific inhibitor of cytochrome c peroxidase activity that inhibits apoptosis by preventing cardiolipin oxidation and cytochrome c release to the cytosol. Here we evaluate the effects of TPP-IOA on oxidative phosphorylation in isolated mitochondria and on mitochondrial function in live cells. We demonstrate that, at concentrations similar to those required to achieve inhibition of cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation in isolated mitochondria. In live SH-SY5Y cells, TPP-IOA partially collapsed mitochondrial membrane potential, caused extensive fragmentation of the mitochondrial network, and decreased apparent mitochondrial abundance within 3h of exposure. Many cultured cell lines rely primarily on aerobic glycolysis, potentially making them less sensitive to small molecules disrupting oxidative phosphorylation. We therefore determined the anti-apoptotic efficacy of TPP-IOA in SH-SY5Y cells growing in glucose or in galactose, the latter of which increases reliance on oxidative phosphorylation for ATP supply. The anti-apoptotic activity of TPP-IOA that was observed in glucose media was not seen in galactose media. It therefore appears that, at concentrations required to inhibit cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation. In light of these data it is predicted that potential future therapeutic applications of TPP-IOA will be restricted to highly glycolytic cell types with limited reliance on oxidative phosphorylation. Copyright © 2016 Elsevier B.V. All rights reserved.
Gorman, S P; Tunney, M M; Keane, P F; Van Bladel, K; Bley, B
1998-03-15
The effective long-term use of indwelling ureteral stents is often hindered by the formation of encrusting deposits which may cause obstruction and blockage of the stent. Development of improved ureteral stent biomaterials capable of preventing or reducing encrustation is therefore particularly desirable. In this study, the suitability as a ureteral stent biomaterial of Aquavene, a novel poly(ethylene oxide)/polyurethane composite hydrogel was compared with that of silicone and polyurethane, two materials widely employed in ureteral stent manufacture. Examination of Aquavene in dry and hydrated states by confocal laser scanning microscopy, scanning electron microscopy, and atomic force microscopy showed the presence of numerous channels within a cellular matrix structure. The channel size increased considerably to as much as 10 microm in diameter in the hydrated state. Aquavene provided superior resistance to encrustation and intraluminal blockage over a 24-week period in a simulated urine flow model. Unobstructed urine flow continued with Aquavene at 24 weeks, whereas silicone and polyurethane stents became blocked with encrustation at 8 and 10 weeks, respectively. Weight loss within Aquavene on the order of 9% (w/w) over the 24-week flow period indicates that extraction of the noncrosslinked poly(ethylene oxide) hydrogel may be responsible for the prevention of encrustation blockage of this biomaterial. In the dry state, Aquavene was significantly harder than either silicone or polyurethane, as shown by Young's modulus, and rapidly became soft on hydration. These additional properties of Aquavene would facilitate ease of stent insertion in the dry state past obstructions in the ureter and provide improved patient comfort on subsequent biomaterial hydration in situ. Aquavene is a promising candidate for use in the urinary tract, as it is probable that effective long-term urine drainage would be maintained in vivo. Further evaluation of this novel biomaterial is therefore warranted.
Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation
2013-01-01
Background Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as “activation”, is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress. Methods Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload. Results We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance. Conclusions We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state. PMID:24160637
Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury
Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Ban, Tae Hyun; Jang, In-Ae; Yoon, Hye Eun; Park, Cheol Whee; Chang, Yoon Sik
2018-01-01
Background. Two important issues in the aging kidney are mitochondrial dysfunction and oxidative stress. An Nrf2 activator, resveratrol, is known to have various effects. Resveratrol may prevent inflammation and oxidative stress by activating Nrf2 and SIRT1 signaling. We examined whether resveratrol could potentially ameliorate the cellular condition, such as renal injury due to cellular oxidative stress and mitochondrial dysfunction caused by aging. Methods. Male 18-month-old C57BL/6 mice were used. Resveratrol (40 mg/kg) was administered to aged mice for 6 months. We compared histological changes, oxidative stress, and aging-related protein expression in the kidney between the resveratrol-treated group (RSV) and the control group (cont). We performed experiments using small-interfering RNAs (siRNAs) for Nrf2 and SIRT1 in cultured HK2 cells. Results. Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice. Also, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group. Transfection with Nrf2 and SIRT1 siRNA prevented resveratrol-induced anti-oxidative effect in HK2 cells in media treated with H2O2. Conclusions. Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney. PMID:29326403
Giovanni, Marcella; Tay, Chor Yong; Setyawati, Magdiel Inggrid; Xie, Jianping; Ong, Choon Nam; Fan, Rongli; Yue, Junqi; Zhang, Lifeng; Leong, David Tai
2015-12-01
Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc.
The role of metals in carcinogenesis: biochemistry and metabolism.
Jennette, K W
1981-01-01
The oxyanions of vanadium, chromium, molybdenum, arsenic, and selenium are stable forms of these elements in high oxidation states which cross cell membranes using the normal phosphate and/or sulfate transport systems of the cell. Once inside the cell, these oxyanions may sulfuryl transfer reactions. Often the oxyanions serve as alternate enzyme substrates but form ester products which are hydrolytically unstable compared with the sulfate and phosphate esters and, therefore, decompose readily in aqueous solution. Arsenite and selenite are capable of reacting with sulfhydryl groups in proteins. Some cells are able to metabolize redox active oxyanions to forms of the elements in other stable oxidation states. Specific enzymes may be involved in the metabolic processes. The metabolites of these elements may form complexes with small molecules, proteins and nucleic acids which inhibit their ability to function properly. The divalent ions of beryllium, manganese, cobalt, nickel, cadmium, mercury, and lead are stable forms of these elements which may mimic essential divalent ions such as magnesium, calcium, iron, copper, or zinc. These ions may complex small molecules, enzymes, and nucleic acids in such a way that the normal activity of these species is altered. Free radicals may be produced in the presence of these metal ions which damage critical cellular molecules. PMID:7023933
Oxidative stress signaling to chromatin in health and disease
Kreuz, Sarah; Fischle, Wolfgang
2016-01-01
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation. PMID:27319358
Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty
2011-01-01
To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.
McAdam, Elizabeth; Brem, Reto; Karran, Peter
2016-01-01
The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867
Leite-Silva, Vânia R; Liu, David C; Sanchez, Washington Y; Studier, Hauke; Mohammed, Yousuf H; Holmes, Amy; Becker, Wolfgang; Grice, Jeffrey E; Benson, Heather Ae; Roberts, Michael S
2016-05-01
We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.
Xu, Bei; Bobek, Gabriele; Makris, Angela; Hennessy, Annemarie
2017-03-01
Medications used to control hypertension in pregnancy also improve trophoblast and endothelial cellular interaction in vitro. Tumour necrosis factor-α (TNF-α) inhibits trophoblast and endothelial cellular interactions and simultaneously decreases endothelial nitric oxide synthase (eNOS) expression. This study investigated whether antihypertensive medications improved these cellular interactions by modulating eNOS and inducible nitric oxide synthase (iNOS) expression. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose TNF-α (0.5 ng/mL) or TNF-α plus soluble fms-like tyrosine kinase-1 (sFlt-1) (100 ng/mL). The endothelial cells were cultured on Matrigel. After endothelial cellular networks appeared, trophoblast derived HTR-8/SVneo cells were co-cultured in the presence of clinically relevant doses of methyldopa, labetalol, hydralazine or clonidine for 24 hours. Cells were retrieved from the Matrigel to extract mRNA and eNOS and iNOS expression were examined by quantitative PCR. Methyldopa, labetalol, hydralazine and clonidine reversed the inhibitory effect of TNF-α on eNOS mRNA expression. After pre-incubating endothelial cells with TNF-α and sFlt-1, all the medications except methyldopa lost their effect on eNOS mRNA expression. In the absence of TNF-α, antihypertensive medications did not change eNOS expression. The mRNA expression of iNOS was not affected by TNF-α or any medications. This study shows that selected antihypertensive medications used in the treatment of hypertension in pregnancy increase eNOS expression in vitro when induced by the inflammatory TNF-α. The anti-angiogenic molecule sFlt-1 may antagonise the potential benefit of these medications by interfering with the NOS pathway. © 2016 John Wiley & Sons Australia, Ltd.
Derivatives of xanthic acid are novel antioxidants: application to synaptosomes.
Lauderback, Christopher M; Drake, Jennifer; Zhou, Daohong; Hackett, Janna M; Castegna, Alessandra; Kanski, Jaroslaw; Tsoras, Maria; Varadarajan, Sridhar; Butterfield, D Allan
2003-04-01
Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.
Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants
Poljsak, Borut; Šuput, Dušan; Milisav, Irina
2013-01-01
Free radical damage is linked to formation of many degenerative diseases, including cancer, cardiovascular disease, cataracts, and aging. Excessive reactive oxygen species (ROS) formation can induce oxidative stress, leading to cell damage that can culminate in cell death. Therefore, cells have antioxidant networks to scavenge excessively produced ROS. The balance between the production and scavenging of ROS leads to homeostasis in general; however, the balance is somehow shifted towards the formation of free radicals, which results in accumulated cell damage in time. Antioxidants can attenuate the damaging effects of ROS in vitro and delay many events that contribute to cellular aging. The use of multivitamin/mineral supplements (MVMs) has grown rapidly over the past decades. Some recent studies demonstrated no effect of antioxidant therapy; sometimes the intake of antioxidants even increased mortality. Oxidative stress is damaging and beneficial for the organism, as some ROS are signaling molecules in cellular signaling pathways. Lowering the levels of oxidative stress by antioxidant supplements is not beneficial in such cases. The balance between ROS and antioxidants is optimal, as both extremes, oxidative and antioxidative stress, are damaging. Therefore, there is a need for accurate determination of individual's oxidative stress levels before prescribing the supplement antioxidants. PMID:23738047