Sample records for cellular processes potentially

  1. AGCVIII Kinases: at the crossroads of cellular signaling

    USDA-ARS?s Scientific Manuscript database

    AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...

  2. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  3. Cellular Imaging With MRI.

    PubMed

    Makela, Ashley V; Murrell, Donna H; Parkins, Katie M; Kara, Jenna; Gaudet, Jeffrey M; Foster, Paula J

    2016-10-01

    Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.

  4. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  5. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  6. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2017-12-01

    ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability

  7. Calcium and ROS: A mutual interplay

    PubMed Central

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  8. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries.

    PubMed

    Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell

    2008-09-01

    Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development.

  9. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries

    PubMed Central

    Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell

    2008-01-01

    Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development. PMID:18544560

  10. Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays

    EPA Science Inventory

    Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...

  11. Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton

    NASA Astrophysics Data System (ADS)

    Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón

    2008-01-01

    Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.

  12. Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components

    PubMed Central

    Huang, Shao-shan Carol; Fraenkel, Ernest

    2009-01-01

    Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617

  13. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  14. Evaluation of the ToxCast Suite of Cellular and Molecular Assays for Prediction of In Vivo Toxicity

    EPA Science Inventory

    Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of human in vitro...

  15. Administrative and research policies required to bring cellular therapies from the research laboratory to the patient's bedside.

    PubMed

    Yim, Robyn

    2005-10-01

    The research process is a balance between the inherent risks of new discoveries and the risks of research participant safety. Conflicts of interest, inherent to the research process, as well as those introduced by emerging cellular therapies, have the potential to compromise safety. The relationship of trust between the researcher and the clinical trial participant facilitates objective decision making, in the best interest of both parties. In the setup of each clinical trial, investigators incorporate ethical, political, legal, financial, and regulatory considerations as protocols are established. Responsibility to abide by these decisions ensures a systematic process and safeguards participants in this process. The integrity of the research process is strengthened by identifying potential conflicting issues with the guiding principles established in the protocols, which may threaten the objectivity of involved parties and jeopardize safety of the participants. The rapid pace and changing paradigms of new discoveries in cellular therapies exaggerate existing conflicts and introduce new ones. Ethical issues raised by emerging cellular therapies include the division of opinions regarding the use of embryonic and fetal tissue to develop stem cell lines for research, the individual versus professional conscience of a researcher, overselling of outcomes as a result of the researcher's desire to be the first to discover a cellular therapy, and therapeutic misconception resulting from a participant's desire for a miracle cure. The basic ethical issue of whether stem cells should be utilized as a cellular therapy raises heated debates because some believe that it is not acceptable to use fetal material as a source of research material for future cures and others feel equally as strong that inaction is unethical because it results in needless suffering and death owing to the absence of this research. Political issues include the divergent position statements of presidential administrations on cellular therapy, variations in individual state laws, and states becoming involved in research funding, such as California's Proposition 71. Legal concerns include expanding private litigation with diversity of lawsuits, expanding lists of defendants, and the use of class-action lawsuits in research cases. Ownership issues also arise in terms of intellectual property, patents, and ownership of stem cells collected from minors, as in umbilical cord blood donations. Situations that challenge the regulatory processes established to ensure participant safety include differences in reporting requirements for private- and public-funded research and the lack of adequate funding and resources to implement and support the institutional review board (IRB) process. Financial considerations influence the development of clinical protocols, because funding is often limited. Financial incentives, personal investment in companies funding research activities, and fundraising pressures may present potential conflicts. In addition, the increasing role of emerging biotechnology start-up companies and pharmaceutical companies in clinical research introduces additional financial considerations. Administrative policies are needed to address these possible conflicts and ensure research participant safety as cellular therapies progress from the research laboratories to the patient's bedside. Administrative policies to ensure minimum standards of quality for emerging products before human clinical trials, policies to enforce consistent reporting requirements for private and public cellular research, policies to minimize financial conflicts of interest, policies to strengthen implementation of the existing IRB process and to structure into the process a consistent, systematic review of these identified conflicts, and policies to limit private litigation will help to preserve the objectivity of the review process and ultimately increase participant safety.

  16. Are microRNAs true sensors of ageing and cellular senescence?

    PubMed

    Williams, Justin; Smith, Flint; Kumar, Subodh; Vijayan, Murali; Reddy, P Hemachandra

    2017-05-01

    All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2.

    PubMed

    Lee, Jung-Seok; Kim, Seul Ki; Jung, Byung-Joo; Choi, Seong-Bok; Choi, Eun-Young; Kim, Chang-Sung

    2018-04-01

    This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs) expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2) treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia) and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis), and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Mobile Phone Service Process Hiccups at Cellular Inc.

    ERIC Educational Resources Information Center

    Edgington, Theresa M.

    2010-01-01

    This teaching case documents an actual case of process execution and failure. The case is useful in MIS introductory courses seeking to demonstrate the interdependencies within a business process, and the concept of cascading failure at the process level. This case demonstrates benefits and potential problems with information technology systems,…

  19. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    PubMed

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  20. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    PubMed

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P < 0.01) and antiproliferative (R 2 = 0.408-0.623, P < 0.05) potential. Moreover, gallic acid may be responsible for the antioxidant potential of seven flowers rich in edible flowers. The antioxidant and antiproliferative potential of 10 edible flowers revealed a clear decrease after digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

    PubMed Central

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho

    2015-01-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  2. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    PubMed

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.

    PubMed

    Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu

    2016-06-02

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.

  4. Ultrashort Phenomena in Biochemistry and Biological Signaling

    NASA Astrophysics Data System (ADS)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  5. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: technological advancement.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2014-10-01

    Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [The PAI-1 swing: microenvironment and cancer cell migration].

    PubMed

    Malo, Michel; Charrière-Bertrand, Cécile; Chettaoui, Chafika; Fabre-Guillevin, Elizabeth; Maquerlot, François; Lackmy, Alexandra; Vallée, Benoît; Delaplace, Franck; Barlovatz-Meimon, Georgia

    2006-12-01

    Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.

  7. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response.

    PubMed

    Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald

    2008-04-01

    Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.

  8. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Antioxidants in dermatology*

    PubMed Central

    Addor, Flavia Alvim Sant'anna

    2017-01-01

    The skin cells continuously produce, through cellular respiration, metabolic processes or under external aggressions, highly reactive molecules oxidation products, generally called free radicals. These molecules are immediately neutralized by enzymatic and non-enzymatic systems in a physiological and dynamic balance. In situations where this balance is broken, various cellular structures, such as the cell membrane, nuclear or mitochondrial DNA may suffer structural modifications, triggering or worsening skin diseases. several substances with alleged antioxidant effects has been offered for topical or oral use, but little is known about their safety, possible associations and especially their mechanism of action. The management of topical and oral antioxidants can help dermatologist to intervene in the oxidative processes safely and effectively, since they know the mechanisms, limitations and potential risks of using these molecules as well as the potential benefits of available associations. PMID:29186248

  10. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  11. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery.

    PubMed

    Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul

    2009-01-01

    Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.

  12. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli.

    PubMed

    Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen

    2016-10-01

    During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.

  13. Emotional and Cognitive Information Processing: Relations to Behavioral Performance and Hippocampal Long-Term Potentiation In Vivo during a Spatial Water Maze Training in Rats

    ERIC Educational Resources Information Center

    Schulz, Kristina; Korz, Volker

    2010-01-01

    Emotionality as well as cognitive abilities contribute to the acquisition and retrieval of memories as well as to the consolidation of long-term potentiation (LTP), a cellular model of memory formation. However, little is known about the timescale and relative contribution of these processes. Therefore, we tested the effects of weak water maze…

  14. Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing.

    PubMed

    Badiola, Iker; Santaolalla, Francisco; Garcia-Gallastegui, Patricia; Ana, Sánchez-Del Rey; Unda, Fernando; Ibarretxe, Gaskon

    2015-09-01

    Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cellular automata and its applications in protein bioinformatics.

    PubMed

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2011-09-01

    With the explosion of protein sequences generated in the postgenomic era, it is highly desirable to develop high-throughput tools for rapidly and reliably identifying various attributes of uncharacterized proteins based on their sequence information alone. The knowledge thus obtained can help us timely utilize these newly found protein sequences for both basic research and drug discovery. Many bioinformatics tools have been developed by means of machine learning methods. This review is focused on the applications of a new kind of science (cellular automata) in protein bioinformatics. A cellular automaton (CA) is an open, flexible and discrete dynamic model that holds enormous potentials in modeling complex systems, in spite of the simplicity of the model itself. Researchers, scientists and practitioners from different fields have utilized cellular automata for visualizing protein sequences, investigating their evolution processes, and predicting their various attributes. Owing to its impressive power, intuitiveness and relative simplicity, the CA approach has great potential for use as a tool for bioinformatics.

  16. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    PubMed

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae

    PubMed Central

    O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris

    2012-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841

  18. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    PubMed

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

    PubMed Central

    Alimonti, Andrea; Nardella, Caterina; Chen, Zhenbang; Clohessy, John G.; Carracedo, Arkaitz; Trotman, Lloyd C.; Cheng, Ke; Varmeh, Shohreh; Kozma, Sara C.; Thomas, George; Rosivatz, Erika; Woscholski, Rudiger; Cognetti, Francesco; Scher, Howard I.; Pandolfi, Pier Paolo

    2010-01-01

    Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy. PMID:20197621

  20. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    PubMed

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  1. The Next Frontier: Quantitative Biochemistry in Living Cells.

    PubMed

    Honigmann, Alf; Nadler, André

    2018-01-09

    Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.

  2. Histone chaperones: an escort network regulating histone traffic.

    PubMed

    De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève

    2007-11-01

    In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.

  3. The Screening of Genes Sensitive to Long-Term, Low-Level Microwave Exposure and Bioinformatic Analysis of Potential Correlations to Learning and Memory.

    PubMed

    Zhao, Ya Li; Li, Ying Xian; Ma, Hong Bo; Li, Dong; Li, Hai Liang; Jiang, Rui; Kan, Guang Han; Yang, Zhen Zhong; Huang, Zeng Xin

    2015-08-01

    To gain a better understanding of gene expression changes in the brain following microwave exposure in mice. This study hopes to reveal mechanisms contributing to microwave-induced learning and memory dysfunction. Mice were exposed to whole body 2100 MHz microwaves with specific absorption rates (SARs) of 0.45 W/kg, 1.8 W/kg, and 3.6 W/kg for 1 hour daily for 8 weeks. Differentially expressing genes in the brains were screened using high-density oligonucleotide arrays, with genes showing more significant differences further confirmed by RT-PCR. The gene chip results demonstrated that 41 genes (0.45 W/kg group), 29 genes (1.8 W/kg group), and 219 genes (3.6 W/kg group) were differentially expressed. GO analysis revealed that these differentially expressed genes were primarily involved in metabolic processes, cellular metabolic processes, regulation of biological processes, macromolecular metabolic processes, biosynthetic processes, cellular protein metabolic processes, transport, developmental processes, cellular component organization, etc. KEGG pathway analysis showed that these genes are mainly involved in pathways related to ribosome, Alzheimer's disease, Parkinson's disease, long-term potentiation, Huntington's disease, and Neurotrophin signaling. Construction of a protein interaction network identified several important regulatory genes including synbindin (sbdn), Crystallin (CryaB), PPP1CA, Ywhaq, Psap, Psmb1, Pcbp2, etc., which play important roles in the processes of learning and memorye. Long-term, low-level microwave exposure may inhibit learning and memory by affecting protein and energy metabolic processes and signaling pathways relating to neurological functions or diseases. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Advances in Lipidomics for Cancer Biomarkers Discovery

    PubMed Central

    Perrotti, Francesca; Rosa, Consuelo; Cicalini, Ilaria; Sacchetta, Paolo; Del Boccio, Piero; Genovesi, Domenico; Pieragostino, Damiana

    2016-01-01

    Lipids play critical functions in cellular survival, proliferation, interaction and death, since they are involved in chemical-energy storage, cellular signaling, cell membranes, and cell–cell interactions. These cellular processes are strongly related to carcinogenesis pathways, particularly to transformation, progression, and metastasis, suggesting the bioactive lipids are mediators of a number of oncogenic processes. The current review gives a synopsis of a lipidomic approach in tumor characterization; we provide an overview on potential lipid biomarkers in the oncology field and on the principal lipidomic methodologies applied. The novel lipidomic biomarkers are reviewed in an effort to underline their role in diagnosis, in prognostic characterization and in prediction of therapeutic outcomes. A lipidomic investigation through mass spectrometry highlights new insights on molecular mechanisms underlying cancer disease. This new understanding will promote clinical applications in drug discovery and personalized therapy. PMID:27916803

  5. Bioengineered vascular constructs as living models for in vitro cardiovascular research.

    PubMed

    Wolf, Frederic; Vogt, Felix; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-09-01

    Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Managing Hyperkalemia: Stepping Into a New Frontier.

    PubMed

    Pham, Antony Q; Sexton, Jessica; Wimer, Dexter; Rana, Isha; Nguyen, Timothy

    2017-10-01

    Maintaining potassium balance in the body is essential for cellular function. Even a slight increase in normal serum potassium levels (3.5-5.0 mEq/L) can interfere with metabolism, electrical action potentials, and cellular processes. Hyperkalemia is commonly seen in patients with chronic kidney disease (CKD) and in patients on renin-angiotensin-aldosterone system (RAAS) inhibitors. Sodium polystyrene sulfonate (SPS), diuretics, and hemodialysis are currently available methods for removing potassium from the body; however, these options have their limitations. Patiromer (Veltassa) and sodium zirconium cyclosilicate are 2 new therapeutic options that can potentially lead a new frontier in the management of hyperkalemia. This article will review these novel treatments.

  7. Priming of Short-Term Potentiation and Synaptic Tagging/Capture Mechanisms by Ryanodine Receptor Activation in Rat Hippocampal CA1

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Li, Qin; Abraham, Wickliffe C.; Xiao, Zhi Cheng

    2009-01-01

    Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic…

  8. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function

    PubMed Central

    Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng

    2016-01-01

    Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883

  9. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    PubMed

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  10. Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.

    PubMed

    Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh

    2018-04-01

    Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.

  11. The effects of carbon nanotubes on lung and dermal cellular behaviors

    PubMed Central

    Luanpitpong, Sudjit; Wang, Liying; Rojanasakul, Yon

    2016-01-01

    Carbon nanotubes (CNTs) hold great promise to create new and better products, but their adverse health effect is a major concern. Human exposure to CNTs is primarily through inhalation and dermal contact, especially during the manufacturing and handling processes. Numerous animal studies have demonstrated the potential pulmonary and dermal hazards associated with CNT exposure, while in vitro studies have assessed the effects of CNT exposure on various cellular behaviors and have been used to perform mechanistic studies. In this review, we provide an overview of the pathological effects of CNTs and examine the acute and chronic effects of CNT exposure on lung and dermal cellular behaviors, beyond the generally discussed cytotoxicity. We then examine the linkage of cellular behaviors and disease pathogenesis, and discuss the pertinent mechanisms. PMID:24981653

  12. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    PubMed

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A comparative study of metabolic state of stem cells during osteogenic and adipogenic differentiations via fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sandeep; Ou, Meng-Hsin; Kuo, Jean-Cheng; Chiou, Arthur

    2016-10-01

    Cellular metabolic state can serve as a biomarker to indicate the differentiation potential of stem cells into other specialized cell lineages. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was applied to determine the fluorescence lifetime and the amounts of the auto-fluorescent metabolic co-factor reduced nicotinamide adenine dinucleotide (NADH) to elucidate the cellular metabolism of human mesenchymal stem cells (hMSCs) in osteogenic and adipogenic differentiation processes. 2P-FLIM provides the free to protein-bound NADH ratio which can serve as the indicator of cellular metabolic state. We measured NADH fluorescence lifetime at 0, 7, and 14 days after hMSCs were induced for either osteogenesis or adipogenesis. In both cases, the average fluorescence lifetime increased significantly at day 14 (P < 0.001), while the ratio of free to protein-bound NADH ratio decreased significantly in 7- days (P < 0.001) and 14-days (P < 0.001). Thus, our results indicated a higher metabolic rate in both osteogenic and adipogenic differentiation processes when compared with undifferentiated hMSCs. This approach may be further utilized to study proliferation efficiency and differentiation potential of stem cells into other specialized cell lineages.

  14. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers.

    PubMed

    Sarkar, Sovan

    2013-10-01

    Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.

  15. Antioxidant potential of polyphenols and tannins from burs of Castanea mollissima Blume.

    PubMed

    Zhao, Shan; Liu, Jie Yuan; Chen, Si Yu; Shi, Ling Ling; Liu, Yu Jun; Ma, Chao

    2011-10-12

    Spiny burs of Castanea mollissima Blume (Chinese chestnut) are usually discarded as industrial waste during post-harvesting processing. The objective of this study was to establish an extraction and isolation procedure for tannins from chestnut burs, and to assess their potential antioxidant activity. Aqueous ethanol solution was used as extraction solvent, and HPD 100 macroporous resin column was applied for isolation. The influence of solvent concentration in the extraction and elution process on extraction yield, tannins and polyphenols content, as well as antioxidant potential, including DPPH and ABTS radical scavenging ability, reducing power ability and cellular antioxidant ability were assessed. In both the extraction and isolation process, 50% aqueous ethanol led to superior total tannins and polyphenols content as well as significantly higher antioxidant activity. In addition, the antioxidant activity and the total tannins content in extracts and fractions had a positive linear correlation, and the predominant components responsible for antioxidant activities were characterized as hydrolysable tannins. To the best of our knowledge, this is the first report on the enrichment of tannins from burs of C. mollissim using macroporous resin chromatography, and to assess the cellular antioxidant activity of them.

  16. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  17. Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions.

    PubMed

    Simon, Johanna; Müller, Laura K; Kokkinopoulou, Maria; Lieberwirth, Ingo; Morsbach, Svenja; Landfester, Katharina; Mailänder, Volker

    2018-06-14

    Formation of the biomolecular corona ultimately determines the successful application of nanoparticles in vivo. Adsorption of biomolecules such as proteins is an inevitable process that takes place instantaneously upon contact with physiological fluid (e.g. blood). Therefore, strategies are needed to control this process in order to improve the properties of the nanoparticles and to allow targeted drug delivery. Here, we show that the design of the protein corona by a pre-formed protein corona with tailored properties enables targeted cellular interactions. Nanoparticles were pre-coated with immunoglobulin depleted plasma to create and design a protein corona that reduces cellular uptake by immune cells. It was proven that a pre-formed protein corona remains stable even after nanoparticles were re-introduced to plasma. This opens up the great potential to exploit protein corona formation, which will significantly influence the development of novel nanomaterials.

  18. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  19. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function.

    PubMed

    García-Dorival, Isabel; Wu, Weining; Dowall, Stuart; Armstrong, Stuart; Touzelet, Olivier; Wastling, Jonathan; Barr, John N; Matthews, David; Carroll, Miles; Hewson, Roger; Hiscox, Julian A

    2014-11-07

    Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.

  20. Monitoring the change of mitochondrial morphology and its metabolism of the breast cancer cells with the treatment of Hsp70 inhibitor during heat shock by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui

    2016-10-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.

  1. Epigenetic Therapy in Lung Cancer - Role of microRNAs.

    PubMed

    Rothschild, Sacha I

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs." This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers.

  2. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.

    PubMed Central

    Chitambar, C R; Seligman, P A

    1986-01-01

    We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751

  3. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  4. Cellular Neural Network for Real Time Image Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagliasindi, G.; Arena, P.; Fortuna, L.

    2008-03-12

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information formore » plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)« less

  5. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis

    PubMed Central

    Ivanov, Alexander V.; Valuev-Elliston, Vladimir T.; Tyurina, Daria A.; Ivanova, Olga N.; Kochetkov, Sergey N.; Bartosch, Birke; Isaguliants, Maria G.

    2017-01-01

    Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review. PMID:27965466

  6. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961

  7. The effects of storage and sterilization on de-cellularized and re-cellularized whole lung.

    PubMed

    Bonenfant, Nicholas R; Sokocevic, Dino; Wagner, Darcy E; Borg, Zachary D; Lathrop, Melissa J; Lam, Ying Wai; Deng, Bin; Desarno, Michael J; Ashikaga, Taka; Loi, Roberto; Weiss, Daniel J

    2013-04-01

    Despite growing interest on the potential use of de-cellularized whole lungs as 3-dimensional scaffolds for ex vivo lung tissue generation, optimal processing including sterilization and storage conditions, are not well defined. Further, it is unclear whether lungs need to be obtained immediately or may be usable even if harvested several days post-mortem, a situation mimicking potential procurement of human lungs from autopsy. We therefore assessed effects of delayed necropsy, prolonged storage (3 and 6 months), and of two commonly utilized sterilization approaches: irradiation or final rinse with peracetic acid, on architecture and extracellular matrix (ECM) protein characteristics of de-cellularized mouse lungs. These different approaches resulted in significant differences in both histologic appearance and in retention of ECM and intracellular proteins as assessed by immunohistochemistry and mass spectrometry. Despite these differences, binding and proliferation of bone marrow-derived mesenchymal stromal cells (MSCs) over a one month period following intratracheal inoculation was similar between experimental conditions. In contrast, significant differences occurred with C10 mouse lung epithelial cells between the different conditions. Therefore, delayed necropsy, duration of scaffold storage, sterilization approach, and cell type used for re-cellularization may significantly impact the usefulness of this biological scaffold-based model of ex vivo lung tissue regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    PubMed

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  9. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes

    NASA Astrophysics Data System (ADS)

    Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri

    2010-03-01

    An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.

  10. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An extended cost potential field cellular automata model considering behavior variation of pedestrian flow

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Li, Xingli; Kuang, Hua; Bai, Yang; Zhou, Huaguo

    2016-11-01

    The original cost potential field cellular automata describing normal pedestrian evacuation is extended to study more general evacuation scenarios. Based on the cost potential field function, through considering the psychological characteristics of crowd under emergencies, the quantitative formula of behavior variation is introduced to reflect behavioral changes caused by psychology tension. The numerical simulations are performed to investigate the effects of the magnitude of behavior variation, the different pedestrian proportions with different behavior variation and other factors on the evacuation efficiency and process in a room. The spatiotemporal dynamic characteristic during the evacuation process is also discussed. The results show that compared with the normal evacuation, the behavior variation under an emergency does not necessarily lead to the decrease of the evacuation efficiency. At low density, the increase of the behavior variation can improve the evacuation efficiency, while at high density, the evacuation efficiency drops significantly with the increasing amplitude of the behavior variation. In addition, the larger proportion of pedestrian affected by the behavior variation will prolong the evacuation time.

  12. Algorithm for cellular reprogramming.

    PubMed

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  13. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  14. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  15. Experimental approaches to identify cellular G-quadruplex structures and functions.

    PubMed

    Di Antonio, Marco; Rodriguez, Raphaël; Balasubramanian, Shankar

    2012-05-01

    Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  17. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    PubMed

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory

    PubMed Central

    Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu

    2010-01-01

    Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. PMID:20018213

  19. Gadd45 proteins: Relevance to aging, longevity and age-related pathologies

    PubMed Central

    Moskalev, Alexey A.; Smit-McBride, Zeljka; Shaposhnikov, Mikhail V.; Plyusnina, Ekaterina N.; Zhavoronkov, Alex; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E.

    2013-01-01

    The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis – all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions. PMID:21986581

  20. Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc.

    PubMed

    Zhou, Xiaoyuan; Meng, Guofeng; Nardini, Christine; Mei, Hongkang

    2017-08-15

    Cells derived by cellular engineering, i.e. differentiation of induced pluripotent stem cells and direct lineage reprogramming, carry a tremendous potential for medical applications and in particular for regenerative therapies. These approaches consist in the definition of lineage-specific experimental protocols that, by manipulation of a limited number of biological cues-niche mimicking factors, (in)activation of transcription factors, to name a few-enforce the final expression of cell-specific (marker) molecules. To date, given the intricate complexity of biological pathways, these approaches still present imperfect reprogramming fidelity, with uncertain consequences on the functional properties of the resulting cells. We propose a novel tool eegc to evaluate cellular engineering processes, in a systemic rather than marker-based fashion, by integrating transcriptome profiling and functional analysis. Our method clusters genes into categories representing different states of (trans)differentiation and further performs functional and gene regulatory network analyses for each of the categories of the engineered cells, thus offering practical indications on the potential lack of the reprogramming protocol. eegc R package is released under the GNU General Public License within the Bioconductor project, freely available at https://bioconductor.org/packages/eegc/. christine.nardini.rsrc@gmail.com or hongkang.k.mei@gsk.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  1. Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc

    PubMed Central

    Zhou, Xiaoyuan; Meng, Guofeng; Nardini, Christine; Mei, Hongkang

    2017-01-01

    Abstract Motivation Cells derived by cellular engineering, i.e. differentiation of induced pluripotent stem cells and direct lineage reprogramming, carry a tremendous potential for medical applications and in particular for regenerative therapies. These approaches consist in the definition of lineage-specific experimental protocols that, by manipulation of a limited number of biological cues—niche mimicking factors, (in)activation of transcription factors, to name a few—enforce the final expression of cell-specific (marker) molecules. To date, given the intricate complexity of biological pathways, these approaches still present imperfect reprogramming fidelity, with uncertain consequences on the functional properties of the resulting cells. Results We propose a novel tool eegc to evaluate cellular engineering processes, in a systemic rather than marker-based fashion, by integrating transcriptome profiling and functional analysis. Our method clusters genes into categories representing different states of (trans)differentiation and further performs functional and gene regulatory network analyses for each of the categories of the engineered cells, thus offering practical indications on the potential lack of the reprogramming protocol. Availability and Implementation eegc R package is released under the GNU General Public License within the Bioconductor project, freely available at https://bioconductor.org/packages/eegc/. Contact christine.nardini.rsrc@gmail.com or hongkang.k.mei@gsk.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28398503

  2. Automated Cellient(™) cytoblocks: better, stronger, faster?

    PubMed

    Prendeville, S; Brosnan, T; Browne, T J; McCarthy, J

    2014-12-01

    Cytoblocks (CBs), or cell blocks, provide additional morphological detail and a platform for immunocytochemistry (ICC) in cytopathology. The Cellient(™) system produces CBs in 45 minutes using methanol fixation, compared with traditional CBs, which require overnight formalin fixation. This study compares Cellient and traditional CB methods in terms of cellularity, morphology and immunoreactivity, evaluates the potential to add formalin fixation to the Cellient method for ICC studies and determines the optimal sectioning depth for maximal cellularity in Cellient CBs. One hundred and sixty CBs were prepared from 40 cytology samples (32 malignant, eight benign) using four processing methods: (A) traditional; (B) Cellient (methanol fixation); (C) Cellient using additional formalin fixation for 30 minutes; (D) Cellient using additional formalin fixation for 60 minutes. Haematoxylin and eosin-stained sections were assessed for cellularity and morphology. ICC was assessed on 14 cases with a panel of antibodies. Three additional Cellient samples were serially sectioned to determine the optimal sectioning depth. Scoring was performed by two independent, blinded reviewers. For malignant cases, morphology was superior with Cellient relative to traditional CBs (P < 0.001). Cellularity was comparable across all methods. ICC was excellent in all groups and the addition of formalin at any stage during the Cellient process did not influence the staining quality. Serial sectioning through Cellient CBs showed optimum cellularity at 30-40 μm with at least 27 sections obtainable. Cellient CBs provide superior morphology to traditional CBs and, if required, formalin fixation may be added to the Cellient process for ICC. Optimal Cellient CB cellularity is achieved at 30-40 μm, which will impact on the handling of cases in daily practice. © 2014 John Wiley & Sons Ltd.

  3. Sensing of dangerous DNA.

    PubMed

    Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G

    2017-07-01

    The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Epigenetic Therapy in Lung Cancer – Role of microRNAs

    PubMed Central

    Rothschild, Sacha I.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs.” This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers. PMID:23802096

  5. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  6. Light, heat, action: neural control of fruit fly behaviour.

    PubMed

    Owald, David; Lin, Suewei; Waddell, Scott

    2015-09-19

    The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.

  7. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Senescence in chronic liver disease: Is the future in aging?

    PubMed

    Aravinthan, Aloysious D; Alexander, Graeme J M

    2016-10-01

    Cellular senescence is a fundamental, complex mechanism with an important protective role present from embryogenesis to late life across all species. It limits the proliferative potential of damaged cells thus protecting against malignant change, but at the expense of substantial alterations to the microenvironment and tissue homeostasis, driving inflammation, fibrosis and paradoxically, malignant disease if the process is sustained. Cellular senescence has attracted considerable recent interest with recognition of pathways linking aging, malignancy and insulin resistance and the current focus on therapeutic interventions to extend health-span. There are major implications for hepatology in the field of fibrosis and cancer, where cellular senescence of hepatocytes, cholangiocytes, stellate cells and immune cells has been implicated in chronic liver disease progression. This review focuses on cellular senescence in chronic liver disease and explores therapeutic opportunities. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture.

    PubMed

    Guo, Li-Ping; Zhang, Yan; Li, Wen-Cui

    2017-05-01

    Microalgae biomass is a sustainable source with the potential to produce a range of products. However, there is currently a lack of practical and functional processes to enable the high-efficiency utilization of the microalgae. We report here a hydrothermal process to maximize the utilizability of microalgae biomass. Specifically, our concept involves the simultaneous conversion of microalgae to (i) hydrophilic and stable carbon quantum dots and (ii) porous carbon. The synthesis is easily scalable and eco-friendly. The microalgae-derived carbon quantum dots possess a strong two-photon fluorescence property, have a low cytotoxicity and an efficient cellular uptake, and show potential for high contrast bioimaging. The microalgae-based porous carbons show excellent CO 2 capture capacities of 6.9 and 4.2mmolg -1 at 0 and 25°C respectively, primarily due to the high micropore volume (0.59cm 3 g -1 ) and large specific surface area (1396m 2 g -1 ). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Signalling and the control of skeletal muscle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto, Anthony; Patel, Ketan, E-mail: ketan.patel@reading.ac.uk

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this reviewmore » we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.« less

  11. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

    PubMed

    Bermejo, Clara; Ewald, Jennifer C; Lanquar, Viviane; Jones, Alexander M; Frommer, Wolf B

    2011-08-15

    Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation. © The Authors Journal compilation © 2011 Biochemical Society

  12. Theoretical aspects of cellular decision-making and information-processing.

    PubMed

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  13. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines.

    PubMed

    Woodhams, Benjamin; Ansel-Bollepalli, Laura; Surmacki, Jakub; Knowles, Helena; Maggini, Laura; de Volder, Michael; Atatüre, Mete; Bohndiek, Sarah

    2018-06-19

    Nanodiamonds have demonstrated potential as powerful sensors in biomedicine, however, their translation into routine use requires a comprehensive understanding of their effect on the biological system being interrogated. Under normal fabrication processes, nanodiamonds are produced with a graphitic carbon shell, but are often oxidized in order to modify their surface chemistry for targeting to specific cellular compartments. Here, we assessed the biological impact of this purification process, considering cellular proliferation, uptake, and oxidative stress for graphitic and oxidized nanodiamond surfaces. We show for the first time that oxidized nanodiamonds possess improved biocompatibility compared to graphitic nanodiamonds in breast cancer cell lines, with graphitic nanodiamonds inducing higher levels of oxidative stress despite lower uptake.

  14. Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species

    PubMed Central

    Schillinger, Kurt J.; Patel, Vickas V.

    2012-01-01

    Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed. PMID:23341843

  15. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

    PubMed Central

    Gao, Yunfang; Arfat, Yasir; Wang, Huiping; Goswami, Nandu

    2018-01-01

    Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives. PMID:29615929

  16. Biological and molecular characterization of cellular differentiation in Tetrahymena vorax: a potential biocontrol protozoan.

    PubMed

    Green, M M; LeBoeuf, R D; Churchill, P F

    2000-01-01

    Tetrahymena vorax (T. vorax) is an indigenous fresh water protozoan with the natural biological potential to maintain a specific aquatic microbial flora by ingesting and eliminating specific microorganism. To investigate the molecular mechanisms controlling Tetrahymena vorax (T. vorax) cellular differentiation from a small-mouth vegetative cell to a voracious large-mouth carnivore capable of ingesting prey ciliates and bacteria from aquatic environments, we use DNA subtraction and gene discovery techniques to identify and isolate T. vorax differentiation-specific genes. The physiological necessity for one newly discovered gene, SUBII-TG, was determined in vivo using an antisense oligonucleotide directed against the 5' SUBII-TG DNA sequence. The barriers to delivering antisense oligonucleotides to the cytoplasm of T. vorax were circumvented by employing a new but simple procedure of processing the oligonucleotide with the differentiation stimulus, stomatin. In these studies, the antisense oligonucleotide down-regulated SUBII-TG mRNA expression, and blocked differentiation and ingestion of prey ciliates. The ability to down-regulate SUBII-TG expression with the antisense oligonucleotide suggests that the molecular mechanisms controlling the natural biological activities of T. vorax can be manipulated to further study its cellular differentiation and potential as a biocontrol microorganism.

  17. Plant-Derived Polyphenols in Human Health: Biological Activity, Metabolites and Putative Molecular Targets.

    PubMed

    Olivares-Vicente, Marilo; Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Segura-Carretero, Antonio; Joven, Jorge; Encinar, Jose Antonio; Micol, Vicente

    2018-01-01

    Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy

    PubMed Central

    2013-01-01

    Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906

  19. Driving mechanisms of passive and active transport across cellular membranes as the mechanisms of cell metabolism and development as well as the mechanisms of cellular distance reactions on hormonal expression and the immune response.

    PubMed

    Ponisovskiy, M R

    2011-01-01

    The article presents mechanisms of cell metabolism, cell development, cell activity, and maintenance of cellular stability. The literature is reviewed from the point of view of these concepts. The balance between anabolic and catabolic processes induces chemical potentials in the extracellular and intracellular media. The chemical potentials of these media are defined as the driving forces of both passive and active transport of substances across cellular membranes. The driving forces of substance transport across cellular membranes as in cellular metabolism and in immune responses and hormonal expressions are considered in the biochemical and biophysical models, reflecting the mechanisms for maintenance of stability of the internal medium and internal energy of an organism. The interactions of passive transport and active transport of substances across cellular walls promote cell proliferation, as well as the mechanism of cellular capacitors, promoting remote reactions across distance for hormonal expression and immune responses. The offered concept of cellular capacitors has given the possibility to explain the mechanism of remote responses of cells to new situations, resulting in the appearance of additional agents. The biophysical model develops an explanation of some cellular functions: cellular membrane action have been identified with capacitor action, based on the similarity of the structures and as well as on similarity of biophysical properties of electric data that confirm the action of the compound-specific interactions of cells within an organism, promoting hormonal expressions and immune responses to stabilize the thermodynamic system of an organism. Comparison of a cellular membrane action to a capacitor has given the possibility for the explanations of exocytosis and endocytosis mechanisms, internalization of the receptor-ligand complex, selection as a receptor reaction to a ligand by immune responses or hormonal effects, reflecting cellular distance reactions on the hormonal expressions, immune responses, and specificity of the mechanisms of immune reactions. Reviewing current research of cell activity, explanations are presented of mechanisms of apoptosis, autophagy, hormonal expression, and immune responses from the point of view of described cellular mechanisms. Thermodynamic laws are used to confirm the importance of the actions of these mechanisms for maintenance of stability of the internal medium and internal energy of an organism.

  20. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    PubMed Central

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  1. Sub-cellular distribution and translocation of TRP channels.

    PubMed

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  2. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  3. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.

    PubMed

    Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C

    2015-09-07

    Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.

  4. Ciona as a Simple Chordate Model for Heart Development and Regeneration

    PubMed Central

    Evans Anderson, Heather; Christiaen, Lionel

    2016-01-01

    Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration. PMID:27642586

  5. iPSCs-based anti-aging therapies: Recent discoveries and future challenges.

    PubMed

    Pareja-Galeano, Helios; Sanchis-Gomar, Fabián; Pérez, Laura M; Emanuele, Enzo; Lucia, Alejandro; Gálvez, Beatriz G; Gallardo, María Esther

    2016-05-01

    The main biological hallmarks of the aging process include stem cell exhaustion and cellular senescence. Consequently, research efforts to treat age-related diseases as well as anti-aging therapies in general have recently focused on potential 'reprogramming' regenerative therapies. These new approaches are based on induced pluripotent stem cells (iPSCs), including potential in vivo reprogramming for tissue repair. Another possibility is targeting pathways of cellular senescence, e.g., through modulation of p16INK4a signaling and especially inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we reviewed and discussed these recent developments together with their possible usefulness for future treatments against sarcopenia, a major age-related condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring.

    PubMed

    Foolen, Jasper; Wunderli, Stefania L; Loerakker, Sandra; Snedeker, Jess G

    2018-01-01

    Tendinopathy is a widespread and unresolved clinical challenge, in which associated pain and hampered mobility present a major cause for work-related disability. Tendinopathy associates with a change from a healthy tissue with aligned extracellular matrix (ECM) and highly polarized cells that are connected head-to-tail, towards a diseased tissue with a disorganized ECM and randomly distributed cells, scar-like features that are commonly attributed to poor innate regenerative capacity of the tissue. A fundamental clinical dilemma with this scarring process is whether treatment strategies should focus on healing the affected (disorganized) tissue or strengthen the remaining healthy (anisotropic) tissue. The question was thus asked whether the intrinsic remodeling capacity of tendon-derived cells depends on the organization of the 3D extracellular matrix (isotropic vs anisotropic). Progress in this field is hampered by the lack of suitable in vitro tissue platforms. We aimed at filling this critical gap by creating and exploiting a next generation tissue platform that mimics aspects of the tendon scarring process; cellular response to a gradient in tissue organization from isotropic (scarred/non-aligned) to highly anisotropic (unscarred/aligned) was studied, as was a transient change from isotropic towards highly anisotropic. Strikingly, cells residing in an 'unscarred' anisotropic tissue indicated superior remodeling capacity (increased gene expression levels of collagen, matrix metalloproteinases MMPs, tissue inhibitors of MMPs), when compared to their 'scarred' isotropic counterparts. A numerical model then supported the hypothesis that cellular remodeling capacity may correlate to cellular alignment strength. This in turn may have improved cellular communication, and could thus relate to the more pronounced connexin43 gap junctions observed in anisotropic tissues. In conclusion, increased tissue anisotropy was observed to enhance the cellular potential for functional remodeling of the matrix. This may explain the poor regenerative capacity of tenocytes in chronic tendinopathy, where the pathological process has resulted in ECM disorganization. Additionally, it lends support to treatment strategies that focus on strengthening the remaining healthy tissue, rather than regenerating scarred tissue. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.

    PubMed

    Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan

    2014-09-01

    Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

  8. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  9. Light, heat, action: neural control of fruit fly behaviour

    PubMed Central

    Owald, David; Lin, Suewei; Waddell, Scott

    2015-01-01

    The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory. PMID:26240426

  10. Two different mechanisms associated with ripple-like oscillations (100-250 Hz) in the human epileptic subiculum in vitro

    PubMed Central

    Alvarado-Rojas, C; Huberfeld, G; Baulac, M; Clemenceau, S; Charpier, S; Miles, R; Menendez de la Prida, L; Le Van Quyen, M

    2015-01-01

    Transient high-frequency oscillations (150-600 Hz) in local field potential generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of high-frequency oscillations (HFO) has been controversial. Here, we searched for HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IID) and also during pharmacologically induced preictal discharges (PID) preceding ictal-like events. While most of these events might be considered pathological since they invaded the fast ripple band (>250 Hz), others were spectrally similar to physiological ripples (150-250 Hz). Do similar cellular mechanisms underly IID-ripples and PID-ripples? Are ripple-like oscillations a valid proxy of epileptogenesis in human TLE? With combined intra- or juxta-cellular and extracellular recordings, we showed that, despite overlapping spectral components, ripple-like IID and PID oscillations were associated with different cellular and synaptic mechanisms. IID-ripples were associated with rhythmic GABAergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID-ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most cells. Thus ripple-like oscillations (100-250 Hz) in the human epileptic hippocampus are associated with different mechanisms for synchrony reflecting distinct dynamic changes in inhibition and excitation during interictal and pre-ictal states. PMID:25448920

  11. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less

  12. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    PubMed

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  13. Introduction to the thematic minireview series on redox-active protein modifications and signaling.

    PubMed

    Banerjee, Ruma

    2013-09-13

    The dynamics of redox metabolism necessitate cellular strategies for sensing redox changes and for responding to them. A common mechanism for receiving and transmitting redox changes is via reversible modifications of protein cysteine residues. A plethora of cysteine modifications have been described, including sulfenylation, glutathionylation, and disulfide formation. These post-translational modifications have the potential to alter protein structure and/or function and to modulate cellular processes ranging from division to death and from circadian rhythms to secretion. The focus of this thematic minireview series is cysteine modifications in response to reactive oxygen and nitrogen species.

  14. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction.

    PubMed

    Dhahbi, Joseph M; Spindler, Stephen R; Atamna, Hani; Yamakawa, Amy; Guerrero, Noel; Boffelli, Dario; Mote, Patricia; Martin, David I K

    2013-02-01

    MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.

  15. The Transcription Factor EB Links Cellular Stress to the Immune Response



    PubMed Central

    Nabar, Neel R.; Kehrl, John H.

    2017-01-01

    The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB’s function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation. PMID:28656016

  16. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis

    PubMed Central

    Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.

    2011-01-01

    Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655

  17. The Transcription Factor EB Links Cellular Stress to the Immune Response

.

    PubMed

    Nabar, Neel R; Kehrl, John H

    2017-06-01

    The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.

  18. Cutting the canopy to defeat the "selfish gene"; conflicting selection pressures for the integration of phototrophy in mixotrophic protists.

    PubMed

    Flynn, Kevin J; Hansen, Per Juel

    2013-11-01

    In strict photoautotrophs, and in many mixotrophic protists, growth at low light stimulates the increased content of photopigment. This photoacclimation further elevates cellular Chl:C content through positive feedback (self-shading), until cellular Chl:C attains a maximum (ChlC(max)). This process, driven by the "selfish gene", enhances the fitness of the individual but decreases total population growth potential through community self-shading. However, some mixotrophic protists (generalist non-constitutives; GNC-mixotrophs) acquire their photosystems ready-made from phototrophic prey but they have no regulatory control on the acquired photosystems. When light is limiting, such organisms cannot photoacclimate; their total Chl:C ratio falls as their acquired photosystems are divided amongst daughter cells and also as the photosystems fail. We show that during that process, and with the removal (consumption) of their individually more efficient phototrophic prey, there is potential for populations of GNC-mixotrophs to become more efficient at light harvesting. Through this process these organisms may retain a critical additional period of photosynthetic capacity. Together with the fact that the acquired photosystem biomass can be potentially almost entirely converted into mixotroph biomass (while chloroplasts must remain an important component of biomass in constitutive mixotrophs, with an associated investment), this may help explain the success of GNC-mixotrophs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Computer simulation studies on passive recruitment dynamics of lipids induced by the adsorption of charged nanoparticles.

    PubMed

    Li, Yang

    2014-07-07

    The recruitment dynamics of lipids in the biomembrane is believed to play an important role in a variety of cellular processes. In this work, we investigate the nanoparticle-induced recruitment dynamics of lipids in the heterogeneous phospholipid bilayers of distearoyl-phosphatidylcholine (DSPC) and dioleoyl-phosphatidylglycerol (DOPG) via coarse-grained molecular dynamics simulations. Three dynamic modes of individual charged DOPG lipid molecules have been taken into account in the recruitment process: lateral diffusion, protrusions, and flip-flops. Based on analysis of the mobility pattern of lipids, structural variations in the membrane as well as activation energy of the structure of lipid eyelids characterized by the potential of mean force, we have concluded that the electrostatic attraction of nanoparticles plays a crucial role in the recruitment process of lipids in phospholipid bilayers. These studies are consistent with experimental observations and to some extent give insight into the origin of some cellular processes such as signaling, formation of lipid rafts, and endocytosis.

  20. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    PubMed

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  1. WE-DE-202-02: Are Track Structure Simulations Truly Needed for Radiobiology at the Cellular and Tissue Levels?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less

  2. Microarray-based analysis of gene expression in lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead.

    PubMed

    Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan

    2015-02-03

    The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.

  3. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  4. Proteomics in biomanufacturing control: Protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Gallagher, Clair; Farrell, Amy; Lindeberg, Anna; Bones, Jonathan

    2018-06-01

    Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MS E discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control. © 2018 Wiley Periodicals, Inc.

  5. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  6. Protein O-GlcNAcylation: A critical regulator of the cellular response to stress.

    PubMed

    Chatham, John C; Marchase, Richard B

    2010-01-01

    The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of chronic disease processes. However, there is increasing evidence that O-GlcNAc levels are increased in response to stress and that acute augmentation of this response is cytoprotective, at least in the short term. Conversely, a reduction in O-GlcNAc levels appears to be associated with decreased cell survival in response to an acute stress. Here we summarize our current understanding of protein O-GlcNAcylation on the cellular response to stress and in mediating cellular protective mechanisms focusing primarily on the cardiovascular system as an example. We consider the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis and explore the parallels between O-GlcNAc signaling and redox signaling. We also discuss the apparent paradox between the reported adverse effects of increased O-GlcNAcylation with its recently reported role in mediating cell survival mechanisms.

  7. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    PubMed

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  8. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

    PubMed Central

    Putker, Marrit; O’Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072

  9. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  11. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  12. Development of an in vitro Hepatocyte Model to Investigate Chemical Mode of Action

    EPA Science Inventory

    There is a clear need to identify and characterize the potential of liver in vitro models that can be used to replace animals for mode of action analysis. Our goal is to use in vitro models for mode of action prediction which recapitulate critical cellular processes underlying in...

  13. Virtual Liver: Evaluating the Impact of Hepatic Microdosimetry for ToxCast Chemicals

    EPA Science Inventory

    The U.S. EPA’s ToxCastTM program uses hundreds of high-throughput, in vitro assays to screen chemicals for potential toxicity. The assays are used to probe in vitro concentrations at which target cellular pathways and processes are perturbed by these chemicals. The U.S. EPA’s Vir...

  14. Cellular nonlinear networks for strike-point localization at JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arena, P.; Fortuna, L.; Bruno, M.

    2005-11-15

    At JET, the potential of fast image processing for real-time purposes is thoroughly investigated. Particular attention is devoted to smart sensors based on system on chip technology. The data of the infrared cameras were processed with a chip implementing a cellular nonlinear network (CNN) structure so as to support and complement the magnetic diagnostics in the real-time localization of the strike-point position in the divertor. The circuit consists of two layers of complementary metal-oxide semiconductor components, the first being the sensor and the second implementing the actual CNN. This innovative hardware has made it possible to determine the position ofmore » the maximum thermal load with a time resolution of the order of 30 ms. Good congruency has been found with the measurement from the thermocouples in the divertor, proving the potential of the infrared data in locating the region of the maximum thermal load. The results are also confirmed by JET magnetic codes, both those used for the equilibrium reconstructions and those devoted to the identification of the plasma boundary.« less

  15. A pilgrim's progress: Seeking meaning in primordial germ cell migration.

    PubMed

    Cantú, Andrea V; Laird, Diana J

    2017-10-01

    Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Retrovirus-mediated siRNA targeting TRPM7 gene induces apoptosis in RBL-2H3 cells.

    PubMed

    Ng, N-M; Jiang, S-P; Lv, Z-Q

    2012-09-01

    Calcium signaling is important for both normal physiologic processes and pathology of various diseases. Transient receptor potential melastatin 7 (TRPM7) gene has been reported to be a potential candidate for calcium influx. The present study aimed to investigate the possible role of TRPM7 channels in apoptosis in rat basophilic leukemia mast cell line (RBL-2H3), which is widely used in mast cell-associated studies. A recombinant retrovirus vector siRNA targeting rat TRPM7 gene was constructed and identified. Cellular survival was assessed by MTT. Cell apoptosis was evaluated by flow cytometry and TUNEL-FITC/Hoechst 33258 staining. The transfection efficiency by retrovirus vector was about 60%-70%. Transfection with TRPM7 siRNA significantly reduced TRPM7 expression both at mRNA and protein levels. Suppression of TRPM7 expression by siRNA led to significantly decreased cellular survival rates and increased apoptosis rates in RBL-2H3 cells. This study indicates that TRPM7 is involved in the apoptosis process in RBL-2H3 cells.

  17. Genetic instability in budding and fission yeast—sources and mechanisms

    PubMed Central

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-01-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. PMID:26109598

  18. Genetic instability in budding and fission yeast-sources and mechanisms.

    PubMed

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-11-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. © FEMS 2015.

  19. Potential mechanisms of hepatitis B virus induced liver injury

    PubMed Central

    Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq

    2014-01-01

    Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946

  20. Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer?

    PubMed

    Yeh, Albert C; Ramaswamy, Sridhar

    2015-12-01

    Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biologic level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biologic insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. ©2015 American Association for Cancer Research.

  1. Mechanisms of Cancer Cell Dormancy – Another Hallmark of Cancer?

    PubMed Central

    Yeh, Albert C.; Ramaswamy, Sridhar

    2015-01-01

    Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biological level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biological insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately down-regulate the Ras/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. PMID:26354021

  2. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  4. Kinetic memory based on the enzyme-limited competition.

    PubMed

    Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2014-08-01

    Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.

  5. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    PubMed

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  6. Action potential properties are gravity dependent

    NASA Astrophysics Data System (ADS)

    Meissner, Klaus; Hanke, Wolfgang

    2005-06-01

    The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.

  7. A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability

    NASA Astrophysics Data System (ADS)

    Cang, Chunlei; Aranda, Kimberly; Ren, Dejian

    2014-09-01

    Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.

  8. Protein Kinase M[Zeta] Is Essential for the Induction and Maintenance of Dopamine-Induced Long-Term Potentiation in Apical CA1 Dendrites

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation…

  9. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.

  10. Live-Cell Imaging of Filoviruses.

    PubMed

    Schudt, Gordian; Dolnik, Olga; Becker, Stephan

    2017-01-01

    Observation of molecular processes inside living cells is fundamental to a deeper understanding of virus-host interactions in filoviral-infected cells. These observations can provide spatiotemporal insights into protein synthesis, protein-protein interaction dynamics, and transport processes of these highly pathogenic viruses. Thus, live-cell imaging provides the possibility for antiviral screening in real time and gives mechanistic insights into understanding filovirus assembly steps that are dependent on cellular factors, which then represent potential targets against this highly fatal disease. Here we describe analysis of living filovirus-infected cells under maximum biosafety (i.e., BSL4) conditions using plasmid-driven expression of fluorescently labeled viral and cellular proteins and/or viral genome-encoded expression of fluorescently labeled proteins. Such multiple-color and multidimensional time-lapse live-cell imaging analyses are a powerful method to gain a better understanding of the filovirus infection cycle.

  11. The landscape of viral proteomics and its potential to impact human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.

    2016-05-06

    Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development.more » Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.« less

  12. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.

    PubMed

    Todgham, Anne E; Hofmann, Gretchen E

    2009-08-01

    Ocean acidification from the uptake of anthropogenic CO(2) is expected to have deleterious consequences for many calcifying marine animals. Forecasting the vulnerability of these marine organisms to climate change is linked to an understanding of whether species possess the physiological capacity to compensate for the potentially adverse effects of ocean acidification. We carried out a microarray-based transcriptomic analysis of the physiological response of larvae of a calcifying marine invertebrate, the purple sea urchin, Strongylocentrotus purpuratus, to CO(2)-driven seawater acidification. In lab-based cultures, larvae were raised under conditions approximating current ocean pH conditions (pH 8.01) and at projected, more acidic pH conditions (pH 7.96 and 7.88) in seawater aerated with CO(2) gas. Targeting expression of approximately 1000 genes involved in several biological processes, this study captured changes in gene expression patterns that characterize the transcriptomic response to CO(2)-driven seawater acidification of developing sea urchin larvae. In response to both elevated CO(2) scenarios, larvae underwent broad scale decreases in gene expression in four major cellular processes: biomineralization, cellular stress response, metabolism and apoptosis. This study underscores that physiological processes beyond calcification are impacted greatly, suggesting that overall physiological capacity and not just a singular focus on biomineralization processes is essential for forecasting the impact of future CO(2) conditions on marine organisms. Conducted on targeted and vulnerable species, genomics-based studies, such as the one highlighted here, have the potential to identify potential ;weak links' in physiological function that may ultimately determine an organism's capacity to tolerate future ocean conditions.

  13. Programmable in vivo selection of arbitrary DNA sequences.

    PubMed

    Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud

    2012-01-01

    The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.

  14. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhoumi, Rola, E-mail: rmouneimne@cvm.tamu.edu; Mouneimne, Youssef; Ramos, Ernesto

    2011-05-15

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted inmore » the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.« less

  15. Novel image processing approach to detect malaria

    NASA Astrophysics Data System (ADS)

    Mas, David; Ferrer, Belen; Cojoc, Dan; Finaurini, Sara; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2015-09-01

    In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.

  16. A Range Finding Protocol to Support Design for Transcriptomics Experimentation: Examples of In-Vitro and In-Vivo Murine UV Exposure

    PubMed Central

    van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.

    2014-01-01

    In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911

  17. Processing Characteristics and Properties of the Cellular Products Made by Using Special Foaming Agents

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebova, Ludmila

    2012-12-01

    The paper describes the manufacturing process of extruded products by the cellular extrusion method, and presents specifications of the blowing agents used in the extrusion process as well as process conditions. The process of cellular extrusion of thermoplastic materials is aimed at obtaining cellular shapes and coats with reduced density, presenting no hollows on the surface of extruder product and displaying minimal contraction under concurrent maintenance of properties similar to properties of products extruded by means of the conventional method. In order to obtain cellular structure, the properties of extruded product are modified by applying suitable plastic or inserting auxiliary agents.

  18. Embryological Development: Evolutionary History, Genetic Bias, and Cellular Environment Control the Flow of Developmental Events. Part I.

    ERIC Educational Resources Information Center

    Caplan, Arnold I.

    1981-01-01

    Describes development of the limb and various interactions necessary for the expression of its unique form and phenotypes to uncover the hierarchical controlling steps in the development process for the potential of avoiding abnormal events and manipulating what might be detrimental genetic events into a normal sequence. (Author/SK)

  19. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  20. Cellular genetic therapy.

    PubMed

    Del Vecchio, F; Filareto, A; Spitalieri, P; Sangiuolo, F; Novelli, G

    2005-01-01

    Cellular genetic therapy is the ultimate frontier for those pathologies that are consequent to a specific nonfunctional cellular type. A viable cure for there kinds of diseases is the replacement of sick cells with healthy ones, which can be obtained from the same patient or a different donor. In fact, structures can be corrected and strengthened with the introduction of undifferentiated cells within specific target tissues, where they will specialize into the desired cellular types. Furthermore, consequent to the recent results obtained with the transdifferentiation experiments, a process that allows the in vitro differentiation of embryonic and adult stem cells, it has also became clear that many advantages may be obtained from the use of stem cells to produce drugs, vaccines, and therapeutic molecules. Since stem cells can sustain lineage potentials, the capacity for differentiation, and better tolerance for the introduction of exogenous genes, they are also considered as feasible therapeutic vehicles for gene therapy. In fact, it is strongly believed that the combination of cellular genetic and gene therapy approaches will definitely allow the development of new therapeutic strategies as well as the production of totipotent cell lines to be used as experimental models for the cure of genetic disorders.

  1. Cellular network entropy as the energy potential in Waddington's differentiation landscape

    PubMed Central

    Banerji, Christopher R. S.; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X.; Teschendorff, Andrew E.

    2013-01-01

    Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape. PMID:24154593

  2. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Tsvetkova, Olga

    2011-06-01

    SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.

  3. Designing synthetic RNA for delivery by nanoparticles

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  4. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  5. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.

    PubMed

    Buratti, Emanuele; Baralle, Francisco Ernesto

    2010-01-01

    Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.

  6. Mitochondria in lung disease

    PubMed Central

    Cloonan, Suzanne M.; Choi, Augustine M.K.

    2016-01-01

    Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell’s most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets. PMID:26928034

  7. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg)

    PubMed Central

    Clark, Melody S; Thorne, Michael AS; Purać, Jelena; Burns, Gavin; Hillyard, Guy; Popović, Željko D; Grubor-Lajšić, Gordana; Worland, M Roger

    2009-01-01

    Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery. Conclusion Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration. PMID:19622137

  8. Risky family processes prospectively forecast shorter telomere length mediated through negative emotions.

    PubMed

    Brody, Gene H; Yu, Tianyi; Shalev, Idan

    2017-05-01

    This study was designed to examine prospective associations of risky family environments with subsequent levels of negative emotions and peripheral blood mononuclear cell telomere length (TL), a marker of cellular aging. A second purpose was to determine whether negative emotions mediate the hypothesized link between risky family processes and diminished telomere length. Participants were 293 adolescents (age 17 years at the first assessment) and their primary caregivers. Caregivers provided data on risky family processes when the youths were age 17 years, youths reported their negative emotions at age 18 years, and youths' TL was assayed from a blood sample at age 22 years. The results revealed that (a) risky family processes forecast heightened negative emotions (β = .316, p < .001) and diminished TL (β = -.199, p = .003) among youths, (b) higher levels of negative emotions forecast shorter TL (β = -.187, p = .012), and (c) negative emotions served as a mediator connecting risky family processes with diminished TL (indirect effect = -0.012, 95% CI [-0.036, -0.002]). These findings are consistent with the hypothesis that risky family processes presage premature cellular aging through effects on negative emotions, with potential implications for lifelong health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Risky Family Processes Prospectively Forecast Shorter Telomere Length Mediated through Negative Emotions

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Shalev, Idan

    2016-01-01

    Objective This study was designed to examine prospective associations of risky family environments with subsequent levels of negative emotions and peripheral blood mononuclear cell telomere length (TL), a marker of cellular aging. A second purpose was to determine whether negative emotions mediate the hypothesized link between risky family processes and diminished telomere length. Methods Participants were 293 adolescents (age 17 years at the first assessment) and their primary caregivers. Caregivers provided data on risky family processes when the youths were age 17 years, youths reported their negative emotions at age 18 years, and youths’ TL was assayed from a blood sample at age 22 years. Results The results revealed that (a) risky family processes forecast heightened negative emotions (β = .316, p < .001) and diminished TL (β = −.199, p = .003) among youths, (b) higher levels of negative emotions forecast shorter TL (β = −.187, p = .012), and (c) negative emotions served as a mediator connecting risky family processes with diminished TL (indirect effect = −0.012, 95% CI [−0.036, −0.002]). Conclusions These findings are consistent with the hypothesis that risky family processes presage premature cellular aging through effects on negative emotions, with potential implications for lifelong health. PMID:27831704

  10. The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis

    PubMed Central

    Valenzuela, Claudio A.; Quintanilla, Ricardo; Moore-Carrasco, Rodrigo; Brown, Nelson E.

    2017-01-01

    In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP. PMID:28894697

  11. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI

    PubMed Central

    2010-01-01

    Background Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition. PMID:20704702

  12. Individual human cell responses to low doses of chemicals studied by synchrotron infrared spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Holman, Hoi-Ying N.; Goth-Goldstein, Regine; Blakely, Elanor A.; Bjornstad, Kathy; Martin, Michael C.; McKinney, Wayne R.

    2000-05-01

    Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in the individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR-FTIR microscopy probes intact living cells providing a composite view of all of the molecular response and the ability to monitor the response over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low- doses of chemicals. In this study we used the high spatial - resolution SR-FTIR vibrational spectromicroscopy as a sensitive analytical tool to detect chemical- and radiation- induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of dioxin. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio- compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.

  13. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    PubMed

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  14. MicroRNAs in HPV associated cancers: small players with big consequences.

    PubMed

    Satapathy, Sandeep; Batra, Jyotsna; Jeet, Varinder; Thompson, Erik W; Punyadeera, C

    2017-07-01

    MicroRNAs (miRs) are short (~20 nucleotides) non-coding ribonuecleic acids (ncRNAs) known to be involved in cellular processes such as proliferation, differentiation, immune response, pathogenicity and tumourigenesis, among many others. The regulatory mechanisms exerted by miRs have been implicated in many cancers, including Human Papillomavirus (HPV)-associated cancers. Areas covered: In this review, the authors discuss the involvement of miRs (-143, -375, -21, -200, -296 etc.) that have been shown to be dysregulated in HPV-associated cancers. This review also encompasses both intracellular and exosomal miRs, and their potential as diagnostic biomarkers in saliva and blood. The authors have also attempted to dissect the functional impact of miRs on cellular processes such as changes in cellular polarity, loss of apoptosis and tumour suppression, and unchecked and uncontrolled cell cycle regulation, all of which ultimately lead to aberrant cellular proliferation. Expert commentary: Identification of dysregulated miRs in HPV-associated cancers opens up new opportunities to develop diagnostic, therapeutic and prognostic biomarkers. Studies on global expression patterns of miRs dysregulated in HPV-associated cancers can be instrumental in developing broader therapeutic strategies. Therapies like anti-miR, miR-replacement and those based on alternative natural products targeting miRs, need to be improved and better synchronized to be cost-effective and have better treatment outcomes.

  15. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, S.

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less

  17. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J.

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less

  18. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  19. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  20. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  1. Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

    PubMed

    Miranda, Williams E; Ngo, Van A; Perissinotti, Laura L; Noskov, Sergei Yu

    2017-11-01

    The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Williams, Graham V.; Goldman-Rakic, Patricia S.

    1995-08-01

    Dopamine has been implicated in the cognitive process of working memory but the cellular basis of its action has yet to be revealed. By combining iontophoretic analysis of dopamine receptors with single-cell recording during behaviour, we found that D1 antagonists can selectively potentiate the 'memory fields' of prefrontal neurons which subserve working memory. The precision shown for D1 receptor modulation of mnemonic processing indicates a direct gating of selective excitatory synaptic inputs to prefrontal neurons during cognition.

  3. Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities

    PubMed Central

    Joardar, Archi; Manzo, Ernesto

    2017-01-01

    Purpose of Review Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. Recent Findings Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients’ muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. Summary These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics. PMID:29057168

  4. Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities.

    PubMed

    Joardar, Archi; Manzo, Ernesto; Zarnescu, Daniela C

    2017-06-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients' muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics.

  5. Discrepancy between mRNA and protein abundance: Insight from information retrieval process in computers

    PubMed Central

    Wang, Degeng

    2008-01-01

    Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers - multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks – biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird’s-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation. PMID:18757239

  6. Examining the architecture of cellular computing through a comparative study with a computer

    PubMed Central

    Wang, Degeng; Gribskov, Michael

    2005-01-01

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software–hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's ‘hardware’ equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed. PMID:16849179

  7. Examining the architecture of cellular computing through a comparative study with a computer.

    PubMed

    Wang, Degeng; Gribskov, Michael

    2005-06-22

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.

  8. Discrepancy between mRNA and protein abundance: insight from information retrieval process in computers.

    PubMed

    Wang, Degeng

    2008-12-01

    Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers-multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory, respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks-biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird's-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation.

  9. Listening to the noise: random fluctuations reveal gene network parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munsky, Brian; Khammash, Mustafa

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich sourcemore » of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.« less

  10. Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Nikolov, Ivan; Skutella, Thomas; Just, Lothar

    2007-01-01

    Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell-cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement.

  11. Autophagy in Measles Virus Infection.

    PubMed

    Rozières, Aurore; Viret, Christophe; Faure, Mathias

    2017-11-24

    Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  12. Targeting ubiquitination for cancer therapies.

    PubMed

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.

  13. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    PubMed

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  14. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects

    PubMed Central

    Shahshahan, Mohammad A; Beckley, Maureen N; Jazirehi, Ali R

    2011-01-01

    Protein degradation by proteasome is essential to the regulation of important cellular functions including cell cycle progression, proliferation, differentiation and apoptosis. Abnormal proteasomal degradation of key regulatory proteins perturbs the normal dynamics of these cellular processes culminating in uncontrolled cell cycle progression and decreased apoptosis leading to the characteristic cancer cell phenotype. Proteasome inhibitors are a novel group of therapeutic agents designed to oppose the increased proteasomal degradation observed in various cancers while restoring key cellular functions such as apoptosis, cell cycle progression, and the inhibition of angiogenesis. Several proteasome inhibitors have been evaluated in pre- and clinical studies for their potential usage in clinical oncology. Bortezomib (Velcade, PS-341) is the first Food and Drug Administration-approved proteasome inhibitor for the treatment of multiple myeloma and mantle cell lymphoma. Bortezomib's ability to preferentially induce toxicity and cell death in tumor cells while rendering healthy cells unaffected makes it a powerful therapeutic agent and has extended its use in other types of malignancies. The ability of bortezomib and other proteasome inhibitors to synergize with conventional therapies in killing tumors in various in vitro and in vivo models makes this class of drugs a powerful tool in overcoming acquired and inherent resistance observed in many cancers. This is achieved through modulation of aberrant cellular survival signal transduction pathways and their downstream anti-apoptotic gene products. This review will discuss the anti-neoplastic effects of various proteasome inhibitors in a variety of cancers with a special emphasis on bortezomib, its mechanism of action and role in cancer therapy. We further discuss the potential use of bortezomib in the treatment of metastatic melanoma. PMID:22016836

  15. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.

    PubMed

    Chong, Ket Hing; Zhang, Xiaomeng; Zheng, Jie

    2018-01-01

    Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.

  16. Process for control of cell division

    NASA Technical Reports Server (NTRS)

    Cone, C. D., Jr. (Inventor)

    1977-01-01

    A method of controlling mitosis of biological cells was developed, which involved inducing a change in the intracellular ionic hierarchy accompanying the cellular electrical transmembrane potential difference (Esubm) of the cells. The ionic hierarchy may be varied by imposing changes on the relative concentrations of Na(+), K(+) and Cl(-), or by directly imposing changes in the physical Esubm level across the cell surface.

  17. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    PubMed Central

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  18. Template-assisted fabrication of protein nanocapsules

    NASA Astrophysics Data System (ADS)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  19. Cellular senescence of human mammary epithelial cells (HMEC) is associated with an altered MMP-7/HB-EGF signaling and increased formation of elastin-like structures.

    PubMed

    Bertram, Catharina; Hass, Ralf

    2009-10-01

    The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.

  20. The relationship between nernst equilibrium variability and the multifractality of interspike intervals in the hippocampus.

    PubMed

    Meier, Stephen R; Lancaster, Jarrett L; Fetterhoff, Dustin; Kraft, Robert A; Hampson, Robert E; Starobin, Joseph M

    2017-04-01

    Spatiotemporal patterns of action potentials are considered to be closely related to information processing in the brain. Auto-generating neurons contributing to these processing tasks are known to cause multifractal behavior in the inter-spike intervals of the output action potentials. In this paper we define a novel relationship between this multifractality and the adaptive Nernst equilibrium in hippocampal neurons. Using this relationship we are able to differentiate between various drugs at varying dosages. Conventional methods limit their ability to account for cellular charge depletion by not including these adaptive Nernst equilibria. Our results provide a new theoretical approach for measuring the effects which drugs have on single-cell dynamics.

  1. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.

    2002-10-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

  2. Yogic exercises and health--a psycho-neuro immunological approach.

    PubMed

    Kulkarni, D D; Bera, T K

    2009-01-01

    Relaxation potential of yogic exercises seems to play a vital role in establishing psycho-physical health in reversing the psycho-immunology of emotions under stress based on breath and body awareness. However, mechanism of yogic exercises for restoring health and fitness components operating through psycho-neuro-immunological pathways is unknown. Therefore, a hybrid model of human information processing-psycho-neuroendocrine (HIP-PNE) network has been proposed to reveal the importance of yogic information processing. This study focuses on two major pathways of information processing involving cortical and hypothalamo-pituitary-adrenal axis (HPA) interactions with a deep reach molecular action on cellular, neuro-humoral and immune system in reversing stress mediated diseases. Further, the proposed HIP-PNE model has ample of experimental potential for objective evaluation of yogic view of health and fitness.

  3. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  4. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts.

    PubMed

    Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd

    2013-08-16

    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.

  5. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    PubMed

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  6. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    PubMed

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Production, properties, and applications of hydrocolloid cellular solids.

    PubMed

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical, and even electronic industries.

  8. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  9. A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure

    NASA Astrophysics Data System (ADS)

    Snelling, Dean Andrew, Jr.

    The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 - T6 castings resulting from two different commercially available Binder Jetting media and traditional "no-bake" silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375°C was established for the ceramic insert (78% cordierite). Upon printing and sintering the iii ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs.

  10. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  11. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP states have uniform amplitudes in a given neuron. PMID:22934081

  12. Engineered nanoparticles against MDR in cancer: The state of the art and its prospective

    PubMed Central

    Greig, Nigel H.; Kamal, Mohammad Amjad; Midoux, Patrick; Pichon, Chantal

    2016-01-01

    Cancer is a highly heterogeneous disease, both within a single patient as well as between patients, and is the leading cause of death worldwide. A variety of mono and combinational therapies, including chemotherapy, have been developed and refined over recent years for its effective treatment. However, the evolution of chemotherapeutic resistance or multidrug resistance (MDR) in cancer has become a major challenge to successful chemotherapy. MDR is a complex process that combines multifaceted non-cellular and cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decades has reached the point where smartly designed nanoparticles with targeting ligands can aid successful chemotherapy by preferentially accumulating within the tumor region through means of active and passive targeting to overcome MDR, and simultaneously reduce the off-target accumulation of their payload. Such nanoparticle formulations – sometimes termed nanomedicines - are at different stages of cancer clinical trials and show promise in resistant cases. Nanoparticles as chemotherapeutics carriers provide the opportunity to have multiple payloads of drug and/or imaging agents for combinational and theranostic therapy. Moreover, nanotechnology has the potential to combine new treatment strategies, such as near-infrared (NIR), magnetic resonance imaging (MRI), and high intensity focused ultrasound (HIFU) into cancer chemotherapy and imaging. Here we discuss the cellular/non-cellular factors that underpin MDR in cancer, and the potential of nanomedicines to combat MDR, along with recent advances in combining nanotechnology with other approaches in cancer therapy. PMID:27319945

  13. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Long-term experiences in cryopreservation of mobilized peripheral blood stem cells using a closed-bag system: a technology with potential for broader application.

    PubMed

    Spoerl, Silvia; Peter, Robert; Wäscher, Dagmar; Verbeek, Mareike; Menzel, Helge; Peschel, Christian; Krackhardt, Angela M

    2015-11-01

    In several European countries, preparation of cellular products with open manufacturing systems as used for cryopreservation of peripheral blood stem cells (PBSCs) needs to be performed in a clean-room facility. However, this form of manufacturing is highly expensive and laborious. Thus, safe techniques providing improved efficacy regarding time and material, which are in accordance with legal requirements are highly desirable. We have developed, validated, and applied a simple method for cryopreservation of PBSCs within a functionally closed-bag system using the closed cryo freeze prep set. This process fulfills good manufacturing practice requirements and allows for the cryopreservation of PBSCs without a clean-room facility. In addition to cryopreservation of PBSCs, we have recently successfully modified our system for processing, portioning, and cryopreservation of allogeneic donor lymphocytes. Since 2010, cryopreservation of PBSCs using a closed-bag system has been performed in our facility on a routine basis and 210 patients and healthy donors have been included in this analysis. No significant reduction in viability of CD34+ cells and no process-related contamination were observed. Outcome of hematopoietic stem cell transplantation regarding time of engraftment and infectious complications is comparable to products manufactured in conventional clean-room facilities. Our data confirm that cryopreservation of PBSCs within a functionally closed-bag system is safe, effective, and economical. Furthermore, the system has the potential to be extended to other manufacturing processes of cellular products. © 2015 AABB.

  15. Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling

    PubMed Central

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202

  16. Adenovirus Type 5 Early Region 1B 55K Oncoprotein-Dependent Degradation of Cellular Factor Daxx Is Required for Efficient Transformation of Primary Rodent Cells▿

    PubMed Central

    Schreiner, Sabrina; Wimmer, Peter; Groitl, Peter; Chen, Shuen-Yuan; Blanchette, Paola; Branton, Philip E.; Dobner, Thomas

    2011-01-01

    Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription. PMID:21697482

  17. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  18. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  19. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.

    PubMed

    Das, U; Kumar, S; Dimmock, J R; Sharma, R K

    2012-07-01

    N-myristoyltransferase (NMT) is an essential eukaryotic enzyme which catalyzes the transfer of the myristoyl group to the terminal glycine residue of a number of proteins including those involved in signal transduction and apoptotic pathways. Myristoylation is crucial for the cellular proliferation process and is required for the growth and development in a number of organisms including many human pathogens and viruses. Targeting the myristoylation process thus has emerged as a novel therapeutic strategy for anticancer drug design. The expression/activity of NMT is considerably elevated in a number of cancers originating in the colon, stomach, gallbladder, brain and breast and attenuation of NMT levels has been shown to induce apoptosis in cancerous cell lines and reduce tumor volume in murine xenograft models for cancer. A focus of current therapeutic interventions in novel cancer treatments is therefore directed at developing specific NMT inhibitors. The inhibition of the myristoyl lipidation process with respect to cancer drug development lies in the fact that many proteins involved in oncogenesis such as src and various kinases require myristoylation to perform their cellular functions. Inhibiting NMT functions to control malignancy is a novel approach in the area of anticancer drug design and there are rapidly expanding discoveries of synthetic NMT inhibitors as potential chemotherapeutic agents to be employed in the warfare against cancer. The current review focuses on developments of various chemical NMT inhibitors with potential roles as anticancer agents.

  20. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  1. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  2. Reconfigurable Cellular Photonic Crystal Arrays (RCPA)

    DTIC Science & Technology

    2013-03-01

    signal processing based on reconfigurable integrated optics devices. This technology has the potential to revolutionize the design circle of optical...Accomplishments III.A. Design and fabrication of an accumulation-mode modulator Figure 1(a) shows the schematic of a compact resonator on the double-Si... integration of silicon nitride on silicon-on-insulator platform to enhance the arsenal of photonic circuit designers . The coherent integration of

  3. The Universally Conserved Prokaryotic GTPases

    PubMed Central

    Verstraeten, Natalie; Fauvart, Maarten; Versées, Wim; Michiels, Jan

    2011-01-01

    Summary: Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. PMID:21885683

  4. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  5. Sirtuins in dermatology: applications for future research and therapeutics.

    PubMed

    Serravallo, Melissa; Jagdeo, Jared; Glick, Sharon A; Siegel, Daniel M; Brody, Neil I

    2013-05-01

    Sirtuins are a family of seven proteins in humans (SIRT1-SIRT7) that are involved in multiple cellular processes relevant to dermatology. The role of sirtuins in other organ systems is established. However, the importance of these proteins in dermatology is less defined. Recently, sirtuins gained international attention because of their role as "longevity proteins" that may extend and enhance human life. Sirtuins function in the cell via histone deacetylase and/or adenosine diphosphate ribosyltransferase enzymatic activity that target histone and non-histone substrates, including transcription regulators, tumor suppressors, structural proteins, DNA repair proteins, cell signaling proteins, transport proteins, and enzymes. Sirtuins are involved in cellular pathways related to skin structure and function, including aging, ultraviolet-induced photoaging, inflammation, epigenetics, cancer, and a variety of cellular functions including cell cycle, DNA repair and proliferation. This review highlights sirtuin-related cellular pathways, therapeutics and pharmacological targets in atopic dermatitis, bullous dermatoses, collagen vascular disorders, psoriasis, systemic lupus erythematosus, hypertrophic and keloid scars, cutaneous infections, and non-melanoma and melanoma skin cancer. Also discussed is the role of sirtuins in the following genodermatoses: ataxia telangiectasia, Cowden's syndrome, dyskeratosis congenita, Rubenstein-Taybi, Werner syndrome, and xeroderma pigmentosum. The pathophysiology of these inherited diseases is not well understood, and sirtuin-related processes represent potential therapeutic targets for diseases lacking suitable alternative treatments. The goal of this review is to bring attention to the dermatology community, physicians, and scientists, the importance of sirtuins in dermatology and provide a foundation and impetus for future discussion, research and pharmacologic discovery.

  6. Emergence of molecular imaging of aortic aneurysm; implications for risk stratification and management

    PubMed Central

    Golestani, Reza; Sadeghi, Mehran M.

    2014-01-01

    Summary Imaging cellular and molecular processes associated with aneurysm expansion, dissection, and rupture can potentially transform the management of patients with thoracic and abdominal aortic aneurysm (TAA and AAA). Here, we review recent advances in molecular imaging of aortic aneurysm, focusing on imaging modalities with the greatest potential for clinical translation and application, PET, SPECT and MRI. Inflammation (e.g., with 18F-FDG, nanoparticles) and matrix remodeling (e.g., with matrix metalloproteinase-targeted tracers) are highlighted as promising targets for molecular imaging of aneurysm. Potential alternative or complementary approaches to molecular imaging for aneurysm risk stratification are briefly discussed. PMID:24381115

  7. Connecting the dots: chromatin and alternative splicing in EMT.

    PubMed

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  8. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle

    PubMed Central

    Romanick, Mark; Brown-Borg, Holly M.

    2013-01-01

    With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. PMID:23523469

  9. Gingival wound healing: an essential response disturbed by aging?

    PubMed

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  10. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  11. O-GlcNAc and the Cardiovascular System

    PubMed Central

    Dassanayaka, Sujith; Jones, Steven P.

    2014-01-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. PMID:24287310

  12. O-GlcNAc and the cardiovascular system.

    PubMed

    Dassanayaka, Sujith; Jones, Steven P

    2014-04-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361

  14. Bacterial and cellular RNAs at work during Listeria infection.

    PubMed

    Sesto, Nina; Koutero, Mikael; Cossart, Pascale

    2014-01-01

    Listeria monocytogenes is an intracellular pathogen that can enter and invade host cells. In the course of its infection, RNA-mediated regulatory mechanisms provide a fast and versatile response for both the bacterium and the host. They regulate a variety of processes, such as environment sensing and virulence in pathogenic bacteria, as well as development, cellular differentiation, metabolism and immune responses in eukaryotic cells. The aim of this article is to summarize first the RNA-mediated regulatory mechanisms that play a role in the Listeria lifestyle and in its virulence, and then the host miRNA responses to Listeria infection. Finally, we discuss the potential cross-talk between bacterial RNAs and host RNA regulatory mechanisms as new mechanisms of bacterial virulence.

  15. Tracking transcriptional activities with high-content epifluorescent imaging

    NASA Astrophysics Data System (ADS)

    Hua, Jianping; Sima, Chao; Cypert, Milana; Gooden, Gerald C.; Shack, Sonsoles; Alla, Lalitamba; Smith, Edward A.; Trent, Jeffrey M.; Dougherty, Edward R.; Bittner, Michael L.

    2012-04-01

    High-content cell imaging based on fluorescent protein reporters has recently been used to track the transcriptional activities of multiple genes under different external stimuli for extended periods. This technology enhances our ability to discover treatment-induced regulatory mechanisms, temporally order their onsets and recognize their relationships. To fully realize these possibilities and explore their potential in biological and pharmaceutical applications, we introduce a new data processing procedure to extract information about the dynamics of cell processes based on this technology. The proposed procedure contains two parts: (1) image processing, where the fluorescent images are processed to identify individual cells and allow their transcriptional activity levels to be quantified; and (2) data representation, where the extracted time course data are summarized and represented in a way that facilitates efficient evaluation. Experiments show that the proposed procedure achieves fast and robust image segmentation with sufficient accuracy. The extracted cellular dynamics are highly reproducible and sensitive enough to detect subtle activity differences and identify mechanisms responding to selected perturbations. This method should be able to help biologists identify the alterations of cellular mechanisms that allow drug candidates to change cell behavior and thereby improve the efficiency of drug discovery and treatment design.

  16. Nonlinear dynamics of C-terminal tails in cellular microtubules

    NASA Astrophysics Data System (ADS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  17. Aptamers as tools for target prioritization and lead identification.

    PubMed

    Burgstaller, Petra; Girod, Anne; Blind, Michael

    2002-12-15

    The increasing number of potential drug target candidates has driven the development of novel technologies designed to identify functionally important targets and enhance the subsequent lead discovery process. Highly specific synthetic nucleic acid ligands--also known as aptamers--offer a new exciting route in the drug discovery process by linking target validation directly with HTS. Recently, aptamers have proven to be valuable tools for modulating the function of endogenous cellular proteins in their natural environment. A set of technologies has been developed to use these sophisticated ligands for the validation of potential drug targets in disease models. Moreover, aptamers that are specific antagonists of protein function can act as substitute interaction partners in HTS assays to facilitate the identification of small-molecule lead compounds.

  18. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.

    PubMed

    Yu, Xiaobo; LaBaer, Joshua

    2015-05-01

    AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.

  19. Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions

    PubMed Central

    Gholizadeh, Shima; Draz, Mohamed; Zarghooni, Maryam; Nezhad, Amir Sanati; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. PMID:28088752

  20. Stimfit: quantifying electrophysiological data with Python

    PubMed Central

    Guzman, Segundo J.; Schlögl, Alois; Schmidt-Hieber, Christoph

    2013-01-01

    Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals. PMID:24600389

  1. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  2. A comprehensive review of metal-induced cellular transformation studies.

    PubMed

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    PubMed Central

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  4. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-01

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species ( Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae ( Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO2), 10-20 nm silicon dioxide (SiO2), and 15-30 nm cerium dioxide (CeO2). We found SiO2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  5. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    PubMed

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro.

    PubMed

    Elson, Edward

    2009-01-01

    A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and currents described.

  7. Identifying and targeting determinants of melanoma cellular invasion.

    PubMed

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L; Tan, BeeShin; Behren, Andreas; Cebon, Jonathan; McKeown, Sonja J

    2016-07-05

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients.

  8. Identifying and targeting determinants of melanoma cellular invasion

    PubMed Central

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin

    2016-01-01

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792

  9. Homocysteine and disease: Causal associations or epiphenomenons?

    PubMed

    Hannibal, Luciana; Blom, Henk J

    2017-02-01

    Nutritional and genetic deficiencies of folate and vitamin B 12 lead to elevation of cellular homocysteine (Hcy), which translates in increased plasma Hcy. The sources and role of elevated plasma Hcy in pathology continues to be a subject of intense scientific debate. Whether a cause, mediator or marker, little is known about the molecular mechanisms and interactions of Hcy with cellular processes that lead to disease. The use of folic acid reduces the incidence of neural tube defects, but the effect of Hcy-lowering interventions with folic acid in cardiovascular disease and cognitive impairment remains controversial. The fact that levels of Hcy in plasma do not always reflect cellular status of this amino acid may account for the substantial gaps that exist between epidemiological, intervention and basic research studies. Understanding whether plasma Hcy is a mechanistic player or an epiphenomenon in pathogenesis requires further investigation, and this research is essential to improve the assessment and potential treatment of hyperhomocysteinemias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease

    PubMed Central

    Groebner, Jennifer L.; Tuma, Pamela L.

    2015-01-01

    The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the “tubulin code” are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease. PMID:26393662

  11. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease.

    PubMed

    Groebner, Jennifer L; Tuma, Pamela L

    2015-09-18

    The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.

  12. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets.

    PubMed

    Wood, Steven L; Pernemalm, Maria; Crosbie, Philip A; Whetton, Anthony D

    2014-05-01

    Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases and currently has an overall five-year survival rate of only 15%. Patients presenting with advanced stage NSCLC die within 18-months of diagnosis. Metastatic spread accounts for >70% of these deaths. Thus elucidation of the mechanistic basis of NSCLC-metastasis has potential to impact on patient quality of life and survival. Research on NSCLC metastasis has recently expanded to include non-cancer cell components of tumors-the stromal cellular compartment and extra-cellular matrix components comprising the tumor-microenvironment. Metastasis (from initial primary tumor growth through angiogenesis, intravasation, survival in the bloodstream, extravasation and metastatic growth) is an inefficient process and few released cancer cells complete the entire process. Micro-environmental interactions assist each of these steps and discovery of the mechanisms by which tumor cells co-operate with the micro-environment are uncovering key molecules providing either biomarkers or potential drug targets. The major sites of NSCLC metastasis are brain, bone, adrenal gland and the liver. The mechanistic basis of this tissue-tropism is beginning to be elucidated offering the potential to target stromal components of these tissues thus targeting therapy to the tissues affected. This review covers the principal steps involved in tumor metastasis. The role of cell-cell interactions, ECM remodeling and autocrine/paracrine signaling interactions between tumor cells and the surrounding stroma is discussed. The mechanistic basis of lung cancer metastasis to specific organs is also described. The signaling mechanisms outlined have potential to act as future drug targets minimizing lung cancer metastatic spread and morbidity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  14. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  15. Cellular therapies for heart disease: unveiling the ethical and public policy challenges.

    PubMed

    Raval, Amish N; Kamp, Timothy J; Hogle, Linda F

    2008-10-01

    Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.

  16. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis

    PubMed Central

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia

    2017-01-01

    Abstract Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an ‘all-or-none’ pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. PMID:28520982

  17. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    PubMed

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  18. [Engineering a bone free flap for maxillofacial reconstruction: technical restrictions].

    PubMed

    Raoul, G; Myon, L; Chai, F; Blanchemain, N; Ferri, J

    2011-09-01

    Vascularisation is a key for success in bone tissue engineering. Creating a functional vascular network is an important concern so as to ensure vitality in regenerated tissues. Many strategies were developed to achieve this goal. One of these is cellular growth technique by perfusion bioreactor chamber. These new technical requirements came along with improved media and chamber receptacles: bioreactors (chapter 2). Some bone tissue engineering processes already have clinical applications but for volumes limited by the lack of vascularisation. Resorbable or non-resorbable membranes are an example. They are used separately or in association with bone grafts and they protect the graft during the revascularization process. Potentiated osseous regeneration uses molecular or cellular adjuvants (BMPs and autologous stem cells) to improve osseous healing. Significant improvements were made: integration of specific sequences, which may guide and enhance cells differentiation in scaffold; nano- or micro-patterned cell containing scaffolds. Finally, some authors consider the patient body as an ideal bioreactor to induce vascularisation in large volumes of grafted tissues. "Endocultivation", i.e., cellular culture inside the human body was proven to be feasible and safe. The properties of regenerated bone in the long run remain to be assessed. The objective to reach remains the engineering of an "in vitro" osseous free flap without morbidity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Interrogation of Cellular Innate Immunity by Diamond-Nanoneedle-Assisted Intracellular Molecular Fishing.

    PubMed

    Wang, Zixun; Yang, Yang; Xu, Zhen; Wang, Ying; Zhang, Wenjun; Shi, Peng

    2015-10-14

    Understanding intracellular signaling cascades and network is one of the core topics in modern biology. Novel tools based on nanotechnologies have enabled probing and analyzing intracellular signaling with unprecedented sensitivity and specificity. In this study, we developed a minimally invasive method for in situ probing specific signaling components of cellular innate immunity in living cells. The technique was based on diamond-nanoneedle arrays functionalized with aptamer-based molecular sensors, which were inserted into cytoplasmic domain using a centrifugation controlled process to capture molecular targets. Simultaneously, these diamond-nanoneedles also facilitated the delivery of double-strand DNAs (dsDNA90) into cells to activate the pathway involving the stimulator of interferon genes (STING). We showed that the nanoneedle-based biosensors can be successfully utilized to isolate transcriptional factor, NF-κB, from intracellular regions without damaging the cells, upon STING activation. By using a reversible protocol and repeated probing in living cells, we were able to examine the singling dynamics of NF-κB, which was quickly translocated from cytoplasm to nucleus region within ∼40 min of intracellular introduction of dsDNA90 for both A549 and neuron cells. These results demonstrated a novel and versatile tool for targeted in situ dissection of intracellular signaling, providing the potential to resolve new sights into various cellular processes.

  20. The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation

    PubMed Central

    Spooner, Ralee; Yilmaz, Özlem

    2011-01-01

    The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling. PMID:21339989

  1. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae.

    PubMed

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-10-26

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.

  2. Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence.

    PubMed

    Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo

    2018-06-24

    Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.

  3. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    PubMed

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  4. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  5. Molecular cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Kvetnoy, I M; Kvetnaia, T V; Polyakova, V O; Korf, H-W

    2012-06-01

    The effects of epithalone and vilone peptides on the synthesis of melatonin and factors involved in this process, arylalkylamine-N-acetyltransferase (AANAT) enzyme and pCREB transcription protein, were studied in rat pinealocyte culture. Epithalone stimulated AANAT and pCREB synthesis and increased melatonin level in culture medium. Simultaneous addition of norepinephrine and peptides into the culture potentiated the expression of AANAT and pCREB.

  6. Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: Promising options for prevention and treatment of uterine fibroids?

    PubMed Central

    Islam, Md Soriful; Akhtar, Most Mauluda; Ciavattini, Andrea; Giannubilo, Stefano Raffaele; Protic, Olga; Janjusevic, Milijana; Procopio, Antonio Domenico; Segars, James H.; Castellucci, Mario; Ciarmela, Pasquapina

    2014-01-01

    Uterine leiomyomas (fibroids, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70–80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pressure on the bladder, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 6 billion dollars annually in the United States. Unfortunately, no long-term medical treatments are available. Dysregulation of inflammatory processes are thought to be involved in the initiation of leiomyoma and extracellular matrix deposition, cell proliferation, and angiogenesis are the key cellular events implicated in leiomyoma growth. In modern pharmaceutical industries, dietary phytochemicals are used as source of new potential drugs for many kinds of tumors. Dietary phytochemicals may exert therapeutic effects by interfering with key cellular events of the tumorigenesis process. At present, a negligible number of phytochemicals have been tested as therapeutic agents against fibroids. In this context, our aim was to introduce some of the potential dietary phytochemicals that have shown anti-inflammatory, antiproliferative, antifibrotic, and antiangiogenic activities in different biological systems. This review could be useful to stimulate the evaluation of these phytochemicals as possible therapies for uterine fibroids. PMID:24976593

  7. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma.

    PubMed

    Shen, Jiliang; Huang, Chiung-Kuei; Yu, Hong; Shen, Bo; Zhang, Yaping; Liang, Yuelong; Li, Zheyong; Feng, Xu; Zhao, Jie; Duan, Lian; Cai, Xiujun

    2017-05-01

    Exosomes are small vesicles that were initially thought to be a mechanism for discarding unneeded membrane proteins from reticulocytes. Their mediation of intercellular communication appears to be associated with several biological functions. Current studies have shown that most mammalian cells undergo the process of exosome formation and utilize exosome-mediated cell communication. Exosomes contain various microRNAs, mRNAs and proteins. They have been reported to mediate multiple functions, such as antigen presentation, immune escape and tumour progression. This concise review highlights the findings regarding the roles of exosomes in liver diseases, particularly hepatitis B, hepatitis C, liver cirrhosis and hepatocellular carcinoma. However, further elucidation of the contributions of exosomes to intercellular information transmission is needed. The potential medical applications of exosomes in liver diseases seem practical and will depend on the ingenuity of future investigators and their insights into exosome-mediated biological processes. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Cellular v-ATPase is required for virion assembly compartment formation in human cytomegalovirus infection

    PubMed Central

    Pavelin, Jonathan; McCormick, Dominique; Chiweshe, Stephen; Ramachandran, Saranya; Lin, Yao-Tang

    2017-01-01

    Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy. PMID:29093211

  9. Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Levin, Craig

    2017-03-01

    Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.

  10. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    PubMed Central

    Bieback, Karen; Kinzebach, Sven; Karagianni, Marianna

    2010-01-01

    It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs), and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed. PMID:21318154

  11. Analysis of Human Mobility Based on Cellular Data

    NASA Astrophysics Data System (ADS)

    Arifiansyah, F.; Saptawati, G. A. P.

    2017-01-01

    Nowadays not only adult but even teenager and children have then own mobile phones. This phenomena indicates that the mobile phone becomes an important part of everyday’s life. Based on these indication, the amount of cellular data also increased rapidly. Cellular data defined as the data that records communication among mobile phone users. Cellular data is easy to obtain because the telecommunications company had made a record of the data for the billing system of the company. Billing data keeps a log of the users cellular data usage each time. We can obtained information from the data about communication between users. Through data visualization process, an interesting pattern can be seen in the raw cellular data, so that users can obtain prior knowledge to perform data analysis. Cellular data processing can be done using data mining to find out human mobility patterns and on the existing data. In this paper, we use frequent pattern mining and finding association rules to observe the relation between attributes in cellular data and then visualize them. We used weka tools for finding the rules in stage of data mining. Generally, the utilization of cellular data can provide supporting information for the decision making process and become a data support to provide solutions and information needed by the decision makers.

  12. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases

    PubMed Central

    Smith, J. A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S.

    2015-01-01

    Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs—or specific EV cargoes—are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases. PMID:24973266

  13. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases.

    PubMed

    Smith, J A; Leonardi, T; Huang, B; Iraci, N; Vega, B; Pluchino, S

    2015-04-01

    Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.

  14. The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal.

    PubMed

    de Tezanos Pinto, Felicitas; Adamo, Hugo Pedro

    2018-01-01

    The P-type ATPase ATP13A2 protein was originally associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, in the last years it has been found to underlay variants of neuronal ceroid-lipofuscinoses and hereditary spastic paraplegia. These findings expand the clinical and genetic spectrum of ATP13A2-associated disorders, which are commonly characterized by lysosomal dysfunction. Nowadays it is well known that lysosomes are not merely related to the degradation and recycling of cellular waste, but are also involved in fundamental processes such as secretion, plasma membrane repair, signaling, energy metabolism and autophagy. The essential role of lysosomes in these cellular processes has significant implications for health and disease. ATP13A2 is localized in lysosomes and late endosomes and its mutation leads to lysosome dysfunction, diminishes the exosome secretion and impairs autophagic flux. In this review, we first describe ATP13A2-associated disorders and their relation with the endolysosomal pathway. We then describe the ATP13A2-involvement in iron homeostasis and its potential linkage with new pathologies like cancer, and finally, we consider the putative role of ATP13A2 in lipid processing and degradation, opening the interesting possibility of a broader role of this protein providing protection against a variety of disease-associated changes affecting cellular homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolt, Alicia M.; Byrd, Randi M.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.ed

    2010-05-01

    Arsenic is a widespread environmental toxicant with a diverse array of molecular targets and associated diseases, making the identification of the critical mechanisms and pathways of arsenic-induced cytotoxicity a challenge. In a variety of experimental models, over a range of arsenic exposure levels, apoptosis is a commonly identified arsenic-induced cytotoxic pathway. Human lymphoblastoid cell lines (LCL) have been used as a model system in arsenic toxicology for many years, but the exact mechanism of arsenic-induced cytotoxicity in LCL is still unknown. We investigated the cytotoxicity of sodium arsenite in LCL 18564 using a set of complementary markers for cell deathmore » pathways. Markers indicative of apoptosis (phosphatidylserine externalization, PARP cleavage, and sensitivity to caspase inhibition) were uniformly negative in arsenite exposed cells. Interestingly, electron microscopy, acidic vesicle fluorescence, and expression of LC3 in LCL 18564 identified autophagy as an arsenite-induced process that was associated with cytotoxicity. Autophagy, a cellular programmed response that is associated with both cellular stress adaptation as well as cell death appears to be the predominant process in LCL cytotoxicity induced by arsenite. It is unclear, however, whether LCL autophagy is an effector mechanism of arsenite cytotoxicity or alternatively a cellular compensatory mechanism. The ability of arsenite to induce autophagy in lymphoblastoid cell lines introduces a potentially novel mechanistic explanation of the well-characterized in vitro and in vivo toxicity of arsenic to lymphoid cells.« less

  16. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels.

    PubMed

    Zhao, Zhenying; Yin, Yongqiang; Wu, Hong; Jiang, Min; Lou, Jianshi; Bai, Gang; Luo, Guo'an

    2013-01-01

    Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD), sodium current (I(Na)), L-type calcium current (I(Ca, L)) and transient outward potassium current (I(to)) were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90) were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited I(Na) and I(Ca,L) and attenuated the aconitine-increased I(Na) and I(Ca,L) by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, I(Na), I(Ca, L), and I(to) may be multiple targets of arctigenin, leading to its antiarrhythmic effect. © 2013 S. Karger AG, Basel.

  17. Mechanical properties of porous and cellular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, K.; Green, D.J.; Gibson, L.J.

    1991-01-01

    This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less

  18. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Long-term potentiation and long-term depression: a clinical perspective

    PubMed Central

    Bliss, Timothy V.P.; Cooke, Sam F

    2011-01-01

    Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke. PMID:21779718

  20. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    PubMed

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems.

  1. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Henderson, W Matthew; Bouchard, Dermont; Chang, Xiaojun; Al-Abed, Souhail R; Teng, Quincy

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous nanoparticle exposure. Published by Elsevier B.V.

  2. A grid matrix-based Raman spectroscopic method to characterize different cell milieu in biopsied axillary sentinel lymph nodes of breast cancer patients.

    PubMed

    Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R

    2016-01-01

    Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms.

  3. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells.

    PubMed

    Rodriguez-Lorenzo, Laura; Fytianos, Kleanthis; Blank, Fabian; von Garnier, Christophe; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2014-04-09

    In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach

    PubMed Central

    Westermark, Stefanie; Steuer, Ralf

    2016-01-01

    Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes. PMID:28083530

  5. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  6. Degron Protease Blockade Sensor to Image Epigenetic Histone Protein Methylation in Cells and Living Animals

    PubMed Central

    2015-01-01

    Lysine methylation of histone H3 and H4 has been identified as a promising therapeutic target in treating various cellular diseases. The availability of an in vivo assay that enables rapid screening and preclinical evaluation of drugs that potentially target this cellular process will significantly expedite the pace of drug development. This study is the first to report the development of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation status of a specific histone lysine methylation mark (H3-K9) in live animals. The sensitivity of this sensor was assessed in various cell lines, in response to down-regulation of methyltransferase EHMT2 by specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase inhibitors BIX01294 and Chaetocin in mice reveals the potential of this sensor for preclinical drug evaluation. This biosensor thus has demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development. PMID:25489787

  7. Cutting the Wires: Modularization of Cellular Networks for Experimental Design

    PubMed Central

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-01

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264

  8. [Role of long-term potentiation in mechanism of the conditioned learning].

    PubMed

    Tsvetkov, E A; Suderevskaia, E I; Veselkin, N P

    2011-01-01

    The review analyzes the fundamental problem of study of the neuronal mechanisms underlying processes of learning and memory. As a neuronal models of these phenomena there was considered one of the cellular phenomena that has characteristics similar with those in the process of "remembering"--such as the long-term potentiation (LTP). LTP is easily reproduced in certain synapses of the central nervous system, specifically in synapses of hippocampus and amygdala. As to the behavioral model of learning, there was used the conditioned learning, in frames of which production of the context-dependent/independent conditioned reaction was considered. Analysis of literature data has allowed showing that various stages of LTP produced on synapses of hippocampus or amygdala can be comparable with certain phase of the process of learning. Based on the exposed material the authors conclude that plastic changes of synapses of hippocampus and amygdala can represent the morphological substrate of some kinds of learning and memory.

  9. Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.

  10. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  11. The identification of cellular targets of 17β estradiol using a lytic (T7) cDNA phage display approach.

    PubMed

    Van Dorst, Bieke; Mehta, Jaytry; Rouah-Martin, Elsa; De Coen, Wim; Blust, Ronny; Robbens, Johan

    2011-02-01

    To unravel the mechanism of action of chemical compounds, it is crucial to know their cellular targets. A novel in vitro tool that can be used as a fast, simple and cost effective alternative is cDNA phage display. This tool is used in our study to select cellular targets of 17β estradiol (E2). It was possible to select two potential cellular targets of E2 out of the T7 Select™ Human Breast cDNA phage library. The selected cellular targets, autophagy/beclin-1 regulator 1 (beclin 1) and ATP synthase F(0) subunit 6 (ATP6) have so far been unknown as binding proteins of E2. To confirm the E2 binding properties of these selected proteins, surface plasmon resonance (SPR) was used. With SPR the K(d) values were determined to be 0.178±0.031 and 0.401±0.142 nM for the ATP6 phage and beclin 1 phage, respectively. These K(d) values in the low nM range verify that the selected cellular proteins are indeed binding proteins for E2. The selection and identification of these two potential cellular targets of E2, can enhance our current understanding of its mechanism of action. This illustrates the potential of lytic (T7) cDNA phage display in toxicology, to provide important information about cellular targets of chemical compounds. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Individual Human Cell Responses to Low Doses of Chemicals and Radiation Studied by Synchrotron Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Michael C.; Holman, Hoi-Ying N.; Blakely, Eleanor A.; Goth-Goldstein, Regine; McKinney, Wayne R.

    2000-03-01

    Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR FTIR microscopy probes intact living cells providing a composite view of all of the molecular responses and the ability to monitor the responses over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low-doses of radiation and chemicals. In this study we used high spatial-resolution SR FTIR vibrational spectromicroscopy at ALS Beamline 1.4.3 as a sensitive analytical tool to detect chemical- and radiation-induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of oxidative stresses: bleomycin, hydrogen peroxide, and X-rays. We observe spectral changes that are unique to each exogenous stressor. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio-compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.

  13. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  15. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  16. Cellular and chemical neuroscience of mammalian sleep.

    PubMed

    Datta, Subimal

    2010-05-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep. Copyright 2010 Elsevier B.V. All rights reserved.

  17. STEM CELLS AS A POTENTIAL FUTURE TREATMENT OF PEDIATRIC INTESTINAL DISORDERS

    PubMed Central

    Markel, Troy A.; Crisostomo, Paul R.; Lahm, Tim; Novotny, Nathan M.; Rescorla, Frederick J.; Tector, A. Joseph; Meldrum, Daniel R.

    2008-01-01

    All surgical disciplines encounter planned and unplanned ischemic events that may ultimately lead to cellular dysfunction and death. Stem cell therapy has shown promise for the treatment of a variety of ischemic and inflammatory disorders where tissue damage has occurred. As stem cells have proven beneficial in many disease processes, important opportunities in the future treatment of gastrointestinal disorders may exist. Therefore, this manuscript will serve to: review the different types of stem cells that may be applicable to the treatment of gastrointestinal disorders, review the mechanisms suggesting that stem cells may work for these conditions; discuss current practices for harvesting and purifying stem cells; and provide a concise summary of a few of the pediatric intestinal disorders that could be treated with cellular therapy. PMID:18970924

  18. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?

    PubMed

    Tayton, Edward; Purcell, M; Aarvold, A; Smith, J O; Kalra, S; Briscoe, A; Shakesheff, K; Howdle, S M; Dunlop, D G; Oreffo, R O C

    2012-05-01

    Disease transmission, availability and cost of allografts have resulted in significant efforts to find an alternative for use in impaction bone grafting (IBG). Recent studies identified two polymers with both structural strength and biocompatibility characteristics as potential replacements. The aim of this study was to assess whether increasing the polymer porosity further enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic biomaterial alternative to allografts in IBG. Solid and porous poly(DL-lactide) (P(DL)LA) and poly(DL-lactide-co-glycolide) (P(DL)LGA) scaffolds were produced via melt processing and supercritical CO(2) foaming, and the differences characterized using scanning electron microscopy (SEM). Mechanical testing included milling and impaction, with comparisons made using a shear testing rig as well as a novel agitation test for cohesion. Cellular compatibility tests for cell number, viability, and osteogenic differentiation using WST-1 assays, fluorostaining, and ALP assays were determined following 14 day culture with skeletal stem cells. SEM showed excellent porosity throughout both of the supercritical-foam-produced polymer scaffolds, with pores between 50 and 200 μm. Shear testing showed that the porous polymers exceeded the shear strength of allograft controls (P<0.001). Agitation testing showed greater cohesion between the particles of the porous polymers (P<0.05). Cellular studies showed increased cell number, viability, and osteogenic differentiation on the porous polymers compared to solid block polymers (P<0.05). The use of supercritical CO(2) to generate porous polymeric biodegradable scaffolds significantly improves the cellular compatibility and cohesion observed compared to non-porous counterparts, without substantial loss of mechanical shear strength. These improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U.

    PubMed

    Viehweger, Katrin; Geipel, Gerhard; Bernhard, Gert

    2011-12-01

    Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10 μM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50 μM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2) (2+) are reduced to each UO(2) (+) by unbound redox sensitive sulfhydryl moieties. UO(2) (+) subsequently disproportionates to UO(2) (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2 h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal.

  20. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  1. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.

    PubMed

    Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola

    2018-01-01

    The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.

  2. Fluorescence multi-scale endoscopy and its applications in the study and diagnosis of gastro-intestinal diseases: set-up design and software implementation

    NASA Astrophysics Data System (ADS)

    Gómez-García, Pablo Aurelio; Arranz, Alicia; Fresno, Manuel; Desco, Manuel; Mahmood, Umar; Vaquero, Juan José; Ripoll, Jorge

    2015-06-01

    Endoscopy is frequently used in the diagnosis of several gastro-intestinal pathologies as Crohn disease, ulcerative colitis or colorectal cancer. It has great potential as a non-invasive screening technique capable of detecting suspicious alterations in the intestinal mucosa, such as inflammatory processes. However, these early lesions usually cannot be detected with conventional endoscopes, due to lack of cellular detail and the absence of specific markers. Due to this lack of specificity, the development of new endoscopy technologies, which are able to show microscopic changes in the mucosa structure, are necessary. We here present a confocal endomicroscope, which in combination with a wide field fluorescence endoscope offers fast and specific macroscopic information through the use of activatable probes and a detailed analysis at cellular level of the possible altered tissue areas. This multi-modal and multi-scale imaging module, compatible with commercial endoscopes, combines near-infrared fluorescence (NIRF) measurements (enabling specific imaging of markers of disease and prognosis) and confocal endomicroscopy making use of a fiber bundle, providing a cellular level resolution. The system will be used in animal models exhibiting gastro-intestinal diseases in order to analyze the use of potential diagnostic markers in colorectal cancer. In this work, we present in detail the set-up design and the software implementation in order to obtain simultaneous RGB/NIRF measurements and short confocal scanning times.

  3. Dioxins: diagnostic and prognostic challenges arising from complex mechanisms

    PubMed Central

    Rysavy, Noel M.; Maaetoft-Udsen, Kristina; Turner, Helen

    2013-01-01

    Dioxins are ubiquitous environmental challenges to humans, with a pervasiveness that arises from two hundred years of rapid industrialization and mechanization of Western societies and which is now extending into the developing world. Despite their penetrance of the human biota, these compounds are poorly understood in terms of their true physiological potential for harm, and the mechanisms by which they impact cellular and organ level function are only recently becoming clear. Emerging awareness that chronic exposures to toxins may have generational and subtle effects on the outcomes of diseases such as cancer and diabetes, which are already multifactorial and highly complex, creates the context for the current review paper. Here, we summarize dioxin exposure paradigms and the resulting physiological effects that have been documented in animals and humans. Novel insights into potential endogenous end exogenous ligands, as well as the mechanisms by which these ligands impact acute and chronic cellular processes, are discussed. We develop the idea that the diagnosis of dioxin exposure, the subtleties of the cellular effects of the compounds and prognosis of the long term effects of exposure are problems requiring that researchers leverage the power of genomics and epigenetics. However, the continuation of longitudinal epidemiological studies and development of a firmer basis from which to extrapolate animal studies will be critical in ensuring optimal insight from these resource-intensive techniques. PMID:22610997

  4. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure

    PubMed Central

    Wang, Yan; Tang, Meng

    2018-01-01

    Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required. PMID:29765216

  5. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure.

    PubMed

    Wang, Yan; Tang, Meng

    2018-01-01

    Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.

  6. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit.

    PubMed

    Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell

    2015-04-15

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.

  7. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGES

    Aimone, J. B.; Li, Y.; Lee, S. W.; ...

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  8. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aimone, J. B.; Li, Y.; Lee, S. W.

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  9. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    NASA Astrophysics Data System (ADS)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  10. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment.

    PubMed

    Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R

    2018-04-05

    Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success. Published by Elsevier Inc.

  11. Combinatorial contextualization of peptidic epitopes for enhanced cellular immunity.

    PubMed

    Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2014-01-01

    Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our "motif-programming" approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment.

  12. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  13. Real-Time Cellular Exometabolome Analysis with a Microfluidic-Mass Spectrometry Platform

    PubMed Central

    Marasco, Christina C.; Enders, Jeffrey R.; Seale, Kevin T.; McLean, John A.; Wikswo, John P.

    2015-01-01

    To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of “in-culture” experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell’s metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform’s capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and highlights the dynamics of the exometabolome over time. Upregulation of the cocaine metabolite, benzoylecgonine, was noted in experienced T cells, indicating potential cellular memory of cocaine exposure. These metabolomics distinctions were absent from the analogous, traditional “in-culture” UPLC-ESI-IM-MS experiment, further demonstrating this platform’s capabilities. PMID:25723555

  14. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    PubMed

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  17. Structure and Function of Viral Deubiquitinating Enzymes.

    PubMed

    Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L

    2017-11-10

    Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  19. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  20. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    PubMed

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Cellular telephone interference with medical equipment.

    PubMed

    Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P

    2005-10-01

    To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.

  2. Nonlinear dynamics of C–terminal tails in cellular microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V.

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localizedmore » waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.« less

  3. Evidence of isotopic fractionation of natural uranium in cultured human cells

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  4. Secretome profiles of immortalized dental follicle cells using iTRAQ-based proteomic analysis.

    PubMed

    Dou, Lei; Wu, Yan; Yan, Qifang; Wang, Jinhua; Zhang, Yan; Ji, Ping

    2017-08-04

    Secretomes produced by mesenchymal stromal cells (MSCs) were considered to be therapeutic potential. However, harvesting enough primary MSCs from tissue was time-consuming and costly, which impeded the application of MSCs secretomes. This study was to immortalize MSCs and compare the secretomes profile of immortalized and original MSCs. Human dental follicle cells (DFCs) were isolated and immortalized using pMPH86. The secretome profile of immortalized DFCs (iDFCs) was investigated and compared using iTRAQ labeling combined with mass spectrometry (MS) quantitative proteomics. The MS data was analyzed using ProteinPilotTM software, and then bioinformatic analysis of identified proteins was done. A total of 2092 secreted proteins were detected in conditioned media of iDFCs. Compared with primary DFCs, 253 differently expressed proteins were found in iDFCs secretome (142 up-regulated and 111 down-regulated). Intensive bioinformatic analysis revealed that the majority of secreted proteins were involved in cellular process, metabolic process, biological regulation, cellular component organization or biogenesis, immune system process, developmental process, response to stimulus and signaling. Proteomic profile of cell secretome wasn't largely affected after immortalization converted by this piggyBac immortalization system. The secretome of iDFCs may be a good candidate of primary DFCs for regenerative medicine.

  5. Evidence of isotopic fractionation of natural uranium in cultured human cells

    PubMed Central

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-01-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes. PMID:27872304

  6. Evidence of isotopic fractionation of natural uranium in cultured human cells.

    PubMed

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-06

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235 U isotope with regard to 238 U. Efforts were made to develop and then validate a procedure for highly accurate n( 238 U)/n( 235 U) determinations in microsamples of cells. We found that intracellular U is enriched in 235 U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO 2 2+ ) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  7. Automation in high-content flow cytometry screening.

    PubMed

    Naumann, U; Wand, M P

    2009-09-01

    High-content flow cytometric screening (FC-HCS) is a 21st Century technology that combines robotic fluid handling, flow cytometric instrumentation, and bioinformatics software, so that relatively large numbers of flow cytometric samples can be processed and analysed in a short period of time. We revisit a recent application of FC-HCS to the problem of cellular signature definition for acute graft-versus-host-disease. Our focus is on automation of the data processing steps using recent advances in statistical methodology. We demonstrate that effective results, on par with those obtained via manual processing, can be achieved using our automatic techniques. Such automation of FC-HCS has the potential to drastically improve diagnosis and biomarker identification.

  8. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    PubMed

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Gelatin-based laser direct-write technique for the precise spatial patterning of cells.

    PubMed

    Schiele, Nathan R; Chrisey, Douglas B; Corr, David T

    2011-03-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.

  10. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy.

    PubMed

    Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cells, which can be derived from different sources, demonstrate promising therapeutic evidences for cellular therapies. Among various types of stem cell, mesenchymal stem cells are one of the most common stem cells that are used in cellular therapy. Human subcutaneous adipose tissue provides an easy accessible source of mesenchymal stem cells with some considerable advantages. Accordingly, various preclinical and clinical investigations have shown enormous potential of adipose-derived stromal cells in regenerative medicine. Consequently, increasing clinical applications of these cells has elucidated the importance of safety concerns regarding clinical transplantation. Therefore, clinical-grade preparation of adipose-derived stromal cells in accordance with current good manufacturing practice guidelines is an essential part of their clinical applications to ensure the safety, quality, characteristics, and identity of cell products. Additionally, GMP-compliant cell manufacturing involves several issues to provide a quality assurance system during translation from the basic stem cell sciences into clinical investigations and applications. On the other hand, advanced cellular therapy requires extensive validation, process control, and documentation. It also evidently elucidates the critical importance of production methods and probable risks. Therefore, implementation of a quality management and assurance system in accordance with GMP guidelines can greatly reduce these risks particularly in the higher-risk category or "more than minimally manipulated" products.

  11. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty.

    PubMed

    Hazlehurst, Kevin Brian; Wang, Chang Jiang; Stanford, Mark

    2014-04-01

    Stress shielding of the periprosthetic femur following total hip arthroplasty is a problem that can promote the premature loosening of femoral stems. In order to reduce the need for revision surgery it is thought that more flexible implant designs need to be considered. In this work, the mechanical properties of laser melted square pore cobalt chrome molybdenum cellular structures have been incorporated into the design of a traditional monoblock femoral stem. The influence of incorporating the properties of cellular structures on the load transfer to the periprosthetic femur was investigated using a three dimensional finite element model. Eleven different stiffness configurations were investigated by using fully porous and functionally graded approaches. This investigation confirms that the periprosthetic stress values depend on the stiffness configuration of the stem. The numerical results showed that stress shielding is reduced in the periprosthetic Gruen zones when the mechanical properties of cobalt chrome molybdenum cellular structures are used. This work identifies that monoblock femoral stems manufactured using a laser melting process, which are designed for reduced stiffness, have the potential to contribute towards reducing stress shielding. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.

    PubMed

    Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine

    2017-08-16

    The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

  13. The fate of chemoresistance in triple negative breast cancer (TNBC)

    PubMed Central

    O’Reilly, Elma A.; Gubbins, Luke; Sharma, Shiva; Tully, Riona; Guang, Matthew Ho Zhing; Weiner-Gorzel, Karolina; McCaffrey, John; Harrison, Michele; Furlong, Fiona; Kell, Malcolm; McCann, Amanda

    2015-01-01

    Background Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. Scope of Review How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. Major conclusions Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. General Significance Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy. PMID:26676166

  14. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence

    PubMed Central

    Sohel, Md. Mahmodul Hasan; Hoelker, Michael; Noferesti, Sina Seifi; Salilew-Wondim, Dessie; Tholen, Ernst; Looft, Christian; Rings, Franca; Uddin, Muhammad Jasim; Spencer, Thomas E.; Schellander, Karl; Tesfaye, Dawit

    2013-01-01

    Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment. PMID:24223816

  15. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use.

    PubMed

    Woods, Erik J; Thirumala, Sreedhar; Badhe-Buchanan, Sandhya S; Clarke, Dominic; Mathew, Aby J

    2016-06-01

    The field of cellular therapeutics has immense potential, affording an exciting array of applications in unmet medical needs. One of several key issues is an emphasis on getting these therapies from bench to bedside without compromising safety and efficacy. The successful commercialization of cellular therapeutics will require many to extend the shelf-life of these therapies beyond shipping "fresh" at ambient or chilled temperatures for "just in time" infusion. Cryopreservation is an attractive option and offers potential advantages, such as storing and retaining patient samples in case of a relapse, banking large quantities of allogeneic cells for broader distribution and use and retaining testing samples for leukocyte antigen typing and matching. However, cryopreservation is only useful if cells can be reanimated to physiological life with negligible loss of viability and functionality. Also critical is the logistics of storing, processing and transporting cells in clinically appropriate packaging systems and storage devices consistent with quality and regulatory standards. Rationalized approaches to develop commercial-scale cell therapies require an efficient cryopreservation system that provides the ability to inventory standardized products with maximized shelf life for later on-demand distribution and use, as well as a method that is scientifically sound and optimized for the cell of interest. The objective of this review is to bridge this gap between the basic science of cryobiology and its application in this context by identifying several key aspects of cryopreservation science in a format that may be easily integrated into mainstream cell therapy manufacture. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Melt-processed polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2015-12-28

    The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.

  17. A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis

    ERIC Educational Resources Information Center

    Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari

    2012-01-01

    Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…

  18. Biotechnologies as a Context for Enhancing Junior High-School Students' Ability to Ask Meaningful Questions about Abstract Biological Processes.

    ERIC Educational Resources Information Center

    Olsher, G.; Dreyfus, A.

    1999-01-01

    Suggests a new approach to teaching about biochemical cellular processes by stimulating student interest in those biochemical processes that allowed for the outcomes of modern biotechnologies. Discusses the development of students' ability to ask meaningful questions about intra-cellular processes, and the resulting meaningful learning of relevant…

  19. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  20. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata.

    PubMed

    Sleight, Victoria A; Peck, Lloyd S; Dyrynda, Elisabeth A; Smith, Valerie J; Clark, Melody S

    2018-05-12

    Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.

  1. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi.

    PubMed

    Rojas-Pirela, Maura; Rigden, Daniel J; Michels, Paul A; Cáceres, Ana J; Concepción, Juan Luis; Quiñones, Wilfredo

    2018-01-01

    Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Femtosecond laser-induced cell-cell surgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R; Elezzabi, Abdulhakem Y

    2014-04-01

    Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures. © 2014 Wiley Periodicals, Inc.

  3. Kinase Substrate Sensor (KISS), a Mammalian In Situ Protein Interaction Sensor*

    PubMed Central

    Lievens, Sam; Gerlo, Sarah; Lemmens, Irma; De Clercq, Dries J. H.; Risseeuw, Martijn D. P.; Vanderroost, Nele; De Smet, Anne-Sophie; Ruyssinck, Elien; Chevet, Eric; Van Calenbergh, Serge; Tavernier, Jan

    2014-01-01

    Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges. PMID:25154561

  4. Tip-enhanced Raman scattering of bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  5. Inflammatory etiopathogenesis of systemic lupus erythematosus: an update

    PubMed Central

    Podolska, Malgorzata J; Biermann, Mona HC; Maueröder, Christian; Hahn, Jonas; Herrmann, Martin

    2015-01-01

    The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris. PMID:26316795

  6. Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging

    PubMed Central

    Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim

    2010-01-01

    Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915

  7. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton.

    PubMed

    Chiu, Meng-Hsuen; Khan, Zafir A; Garcia, Santiago G; Le, Andre D; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W; Santschi, Peter H; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-13

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO 2 ), 10-20 nm silicon dioxide (SiO 2 ), and 15-30 nm cerium dioxide (CeO 2 ). We found SiO 2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO 2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca 2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca 2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  8. Stem Cell Applications in Tendon Disorders: A Clinical Perspective

    PubMed Central

    Young, Mark

    2012-01-01

    Tendon injuries are a common cause of morbidity and a significant health burden on society. Tendons are structural tissues connecting muscle to bone and are prone to tearing and tendinopathy, an overuse or degenerative condition that is characterized by failed healing and cellular depletion. Current treatments, for tendon tear are conservative, surgical repair or surgical scaffold reconstruction. Tendinopathy is treated by exercises, injection therapies, shock wave treatments or surgical tendon debridement. However, tendons usually heal with fibrosis and scar tissue, which has suboptimal tensile strength and is prone to reinjury, resulting in lifestyle changes with activity restriction. Preclinical studies show that cell therapies have the potential to regenerate rather than repair tendon tissue, a process termed tenogenesis. A number of different cell lines, with varying degrees of differentiation, have being evaluated including stem cells, tendon derived cells and dermal fibroblasts. Even though cellular therapies offer some potential in treating tendon disorders, there have been few published clinical trials to determine the ideal cell source, the number of cells to administer, or the optimal bioscaffold for clinical use. PMID:22448174

  9. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    PubMed Central

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2015-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 “radiosensitive” human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders. PMID:21962002

  10. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  11. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Patel, Siddharth; Athirasala, Avathamsa; Menezes, Paula P; Ashwanikumar, N; Zou, Ting; Sahay, Gaurav; Bertassoni, Luiz E

    2018-06-07

    The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.

  12. Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics

    PubMed Central

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Yeow, Yen Ling; Hamzah, Juliana; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Ganss, Ruth; Kim, Jun Ki; Lee, Woei M.; Kennedy, Brendan F.

    2017-01-01

    In this paper, we describe a technique capable of visualizing mechanical properties at the cellular scale deep in living tissue, by incorporating a gradient-index (GRIN)-lens micro-endoscope into an ultrahigh-resolution optical coherence elastography system. The optical system, after the endoscope, has a lateral resolution of 1.6 µm and an axial resolution of 2.2 µm. Bessel beam illumination and Gaussian mode detection are used to provide an extended depth-of-field of 80 µm, which is a 4-fold improvement over a fully Gaussian beam case with the same lateral resolution. Using this system, we demonstrate quantitative elasticity imaging of a soft silicone phantom containing a stiff inclusion and a freshly excised malignant murine pancreatic tumor. We also demonstrate qualitative strain imaging below the tissue surface on in situ murine muscle. The approach we introduce here can provide high-quality extended-focus images through a micro-endoscope with potential to measure cellular-scale mechanics deep in tissue. We believe this tool is promising for studying biological processes and disease progression in vivo. PMID:29188108

  13. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    PubMed

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  14. Femtosecond laser fabricated spike structures for selective control of cellular behavior.

    PubMed

    Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N

    2010-09-01

    In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.

  15. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response.

    PubMed

    Zhang, Lu; Wang, Kui; Lei, Yunlong; Li, Qifu; Nice, Edouard Collins; Huang, Canhua

    2015-12-01

    Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses

    PubMed Central

    Liang, Qin; Dexheimer, Thomas S; Zhang, Ping; Rosenthal, Andrew S; Villamil, Mark A; You, Changjun; Zhang, Qiuting; Chen, Junjun; Ott, Christine A; Sun, Hongmao; Luci, Diane K; Yuan, Bifeng; Simeonov, Anton; Jadhav, Ajit; Xiao, Hui; Wang, Yinsheng; Maloney, David J; Zhuang, Zhihao

    2014-01-01

    Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs. PMID:24531842

  17. Mitochondrial correlates of signaling processes involved with the cellular response to eimeria infection in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Host cellular responses to coccidiosis infection are consistent with elements of apoptosis, autophagy, and necrosis. These processes are enhanced in the cell through cell-directed signaling or repressed through parasite-derived inhibitors of these processes favoring the survival of the parasite. Acr...

  18. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    PubMed

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  19. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells

    PubMed Central

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young

    2017-01-01

    Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968

  20. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    PubMed

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  1. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    PubMed

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria. Copyright © 2015 Wheeler et al.

  2. Autophagosome and phagosome.

    PubMed

    Deretic, Vojo

    2008-01-01

    Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.

  3. Embryology in the era of proteomics.

    PubMed

    Katz-Jaffe, Mandy G; McReynolds, Susanna

    2013-03-15

    Proteomic technologies have begun providing evidence that viable embryos possess unique protein profiles. Some of these potential protein biomarkers have been identified as extracellular and could be used in the development of a noninvasive quantitative method for embryo assessment. The field of assisted reproductive technologies would benefit from defining the human embryonic proteome and secretome, thereby expanding our current knowledge of embryonic cellular processes. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    PubMed

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Light Weight Biomorphous Cellular Ceramics from Cellulose Templates

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.

  7. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    NASA Astrophysics Data System (ADS)

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-10-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  8. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    PubMed

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-01-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.

  9. Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: promising options for prevention and treatment of uterine fibroids?

    PubMed

    Islam, Md Soriful; Akhtar, Most Mauluda; Ciavattini, Andrea; Giannubilo, Stefano Raffaele; Protic, Olga; Janjusevic, Milijana; Procopio, Antonio Domenico; Segars, James H; Castellucci, Mario; Ciarmela, Pasquapina

    2014-08-01

    Uterine leiomyomas (fibroids, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70-80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pressure on the bladder, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 6 billion dollars annually in the United States. Unfortunately, no long-term medical treatments are available. Dysregulation of inflammatory processes are thought to be involved in the initiation of leiomyoma and extracellular matrix deposition, cell proliferation, and angiogenesis are the key cellular events implicated in leiomyoma growth. In modern pharmaceutical industries, dietary phytochemicals are used as source of new potential drugs for many kinds of tumors. Dietary phytochemicals may exert therapeutic effects by interfering with key cellular events of the tumorigenesis process. At present, a negligible number of phytochemicals have been tested as therapeutic agents against fibroids. In this context, our aim was to introduce some of the potential dietary phytochemicals that have shown anti-inflammatory, antiproliferative, antifibrotic, and antiangiogenic activities in different biological systems. This review could be useful to stimulate the evaluation of these phytochemicals as possible therapies for uterine fibroids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-generated morphology in lagoon reefs

    PubMed Central

    Hamblin, Michael G.

    2015-01-01

    The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PMID:26175962

  11. Model-based design of experiments for cellular processes.

    PubMed

    Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E

    2013-01-01

    Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.

  12. SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM

    PubMed Central

    Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.

    2013-01-01

    The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431

  13. The genome editing toolbox: a spectrum of approaches for targeted modification.

    PubMed

    Cheng, Joseph K; Alper, Hal S

    2014-12-01

    The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dissecting the Components of Long-Term Potentiation

    PubMed Central

    Blundon, Jay A.; Zakharenko, Stanislav S.

    2009-01-01

    The formation of memories relies on plastic changes at synapses between neurons. Although the mechanisms of synaptic plasticity have been studied extensively over several decades, many aspects of this process remain controversial. The cellular locus of expression of long-term potentiation (LTP), a major form of synaptic plasticity, is one of the most important unresolved phenomena. In this article, we summarize some recent advances in this area made possible by the development of new imaging tools. These studies have demonstrated that LTP is compound in nature and consists of both presynaptic and postsynaptic components. We also review some features of presynaptic and postsynaptic changes during compound LTP. PMID:18940785

  15. Cytoskeletal Regulation of Dermal Regeneration

    PubMed Central

    Strudwick, Xanthe L.; Cowin, Allison J.

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  16. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Rahman, Irfan

    2016-12-01

    Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. THE RGM/DRAGON FAMILY OF BMP CO-RECEPTORS

    PubMed Central

    Corradini, Elena; Babitt, Jodie L.; Lin, Herbert Y.

    2013-01-01

    The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology. PMID:19897400

  18. A Pan-GTPase Inhibitor as a Molecular Probe

    PubMed Central

    Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O.; Romero, Elsa; Simpson, Denise S.; Schroeder, Chad E.; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E.; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A.

    2015-01-01

    Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed. PMID:26247207

  19. The role of iron in brain ageing and neurodegenerative disorders

    PubMed Central

    Ward, Roberta J; Zucca, Fabio A; Duyn, Jeff H; Crichton, Robert R; Zecca, Luigi

    2017-01-01

    In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood–brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection. PMID:25231526

  20. microRNA therapies in cancer.

    PubMed

    Rothschild, Sacha I

    2014-01-01

    MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs" Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

  1. The fairytale of the GSSG/GSH redox potential.

    PubMed

    Flohé, Leopold

    2013-05-01

    The term GSSG/GSH redox potential is frequently used to explain redox regulation and other biological processes. The relevance of the GSSG/GSH redox potential as driving force of biological processes is critically discussed. It is recalled that the concentration ratio of GSSG and GSH reflects little else than a steady state, which overwhelmingly results from fast enzymatic processes utilizing, degrading or regenerating GSH. A biological GSSG/GSH redox potential, as calculated by the Nernst equation, is a deduced electrochemical parameter based on direct measurements of GSH and GSSG that are often complicated by poorly substantiated assumptions. It is considered irrelevant to the steering of any biological process. GSH-utilizing enzymes depend on the concentration of GSH, not on [GSH](2), as is predicted by the Nernst equation, and are typically not affected by GSSG. Regulatory processes involving oxidants and GSH are considered to make use of mechanistic principles known for thiol peroxidases which catalyze the oxidation of hydroperoxides by GSH by means of an enzyme substitution mechanism involving only bimolecular reaction steps. The negligibly small rate constants of related spontaneous reactions as compared with enzyme-catalyzed ones underscore the superiority of kinetic parameters over electrochemical or thermodynamic ones for an in-depth understanding of GSH-dependent biological phenomena. At best, the GSSG/GSH potential might be useful as an analytical tool to disclose disturbances in redox metabolism. This article is part of a Special Issue entitled Cellular Functions of Glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea.

    PubMed

    Sukhov, Vladimir; Sherstneva, Oksana; Surova, Lyubov; Katicheva, Lyubov; Vodeneev, Vladimir

    2014-11-01

    Electrical signals (action potential and variation potential, VP) caused by environmental stimuli are known to induce various physiological responses in plants, including changes in photosynthesis; however, their functional mechanisms remain unclear. In this study, the influence of VP on photosynthesis in pea (Pisum sativum L.) was investigated and the proton participation in this process analysed. VP, induced by local heating, inactivated photosynthesis and activated respiration, with the initiation of the photosynthetic response connected with inactivation of the photosynthetic dark stage; however, direct VP influence on the light stage was also probable. VP generation was accompanied with pH increases in apoplasts (0.17-0.30 pH unit) and decreases in cytoplasm (0.18-0.60 pH unit), which probably reflected H(+) -ATPase inactivation and H(+) influx during this electrical event. Imitation of H(+) influx using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a photosynthetic response that was similar with a VP-induced response. Experiments on chloroplast suspensions showed that decreased external pH also induced an analogous response and that its magnitude depended on the magnitude of pH change. Thus, the present results showed that proton cellular influx was the probable mechanism of VP's influence on photosynthesis in pea. Potential means of action for this influence are discussed. © 2014 John Wiley & Sons Ltd.

  3. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to generate user-controllable (time-varying and localizable), massively parallel forces on arrays of cells mediated by coalesced ensembles of magnetic nanoparticles. The above process is simplified and adapted for single cell analysis by precisely aligning fibronectin patterned cells to a single flanking micromagnet. The cells are loaded with magnetic-fluorescent nanoparticles, which are then localized to uniform positions at the internal edge of the cell membrane over huge arrays of cells using large external fields, allowing us to conduct composed studies on cellular response to force. By applying forces approaching the yield tension (5 nN / mum) of single cells, we are able to generate highly coordinated responses in cellular behavior. We discover that increasing tension generates highly directed, PAK-dependent leading-edge type filopodia that increase in intensity with rising tension. In addition, we find that our generated forces can simulate cues created during cellular mitosis, as we are consistently able to generate significant (45 to 90 degree) biasing of the metaphase plate during cell division. Large sample size and rapid sample generation also allow us to analyze cells at an unprecedented rate---a single sample can simultaneously stimulate thousands of cells for high statistical accuracy in measurements. We believe these approaches have potential not just as a tool to study single-cell response, but as a means of cell control, potentially through modifying cell movement, division, or differentiation. More generally, once approaches to release nanoparticles from endosomes are implemented, the technique provides a platform to dynamically apply a range of localized stimuli arbitrarily within cells. Through the bioconjugation of proteins, nucleic acids, small molecules, or whole organelles a broad range of questions should be accessible concerning molecular localization and its importance in cell function.

  4. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    PubMed Central

    Cornelius, Carolin; Koverech, Guido; Crupi, Rosalia; Di Paola, Rosanna; Koverech, Angela; Lodato, Francesca; Scuto, Maria; Salinaro, Angela T.; Cuzzocrea, Salvatore; Calabrese, Edward J.; Calabrese, Vittorio

    2014-01-01

    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process. PMID:24959146

  5. Modeling the Land Use/Cover Change in an Arid Region Oasis City Constrained by Water Resource and Environmental Policy Change using Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Hu, X.; Li, X.; Lu, L.

    2017-12-01

    Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.

  6. Fate of tenogenic differentiation potential of human bone marrow stromal cells by uniaxial stretching affected by stretch-activated calcium channel agonist gadolinium

    PubMed Central

    Balaji Raghavendran, Hanumantha Rao; Pingguan-Murphy, Belinda; Abbas, Azlina A.; Merican, Azhar M.; Kamarul, Tunku

    2017-01-01

    The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications. PMID:28654695

  7. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  8. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking.

    PubMed

    Gaxiola-Cuevas, Nallely; Mora-Rochín, Saraid; Cuevas-Rodriguez, Edith Oliva; León-López, Liliana; Reyes-Moreno, Cuauhtémoc; Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge

    2017-09-01

    Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6-83.5%, 74.1-77.6% and 79.8-80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8-49.8%, 41.3-42.3% and 43.7-44.4% assayed in traditional tortillas, respectively. Approximately 72.5-88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.

  9. THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?

    PubMed

    Cheung, Alice Y; Wu, Hen-Ming

    2011-12-01

    The plant cell wall provides form and integrity to the cell as well as a dynamic interface between a cell and its environment. Therefore mechanisms capable of policing changes in the cell wall, signaling cellular responses including those that would feedback regulate cell wall properties are expected to play important roles in facilitating growth and ensuring survival. Discoveries in the last few years that the Arabidopsis THESEUS 1 receptor-like kinase (RLK) may function as a sensor for cell wall defects to regulate growth and that its relatives FERONIA and ANXURs regulate pollen tube integrity imply strongly that they play key roles in cell wall-related processes. Furthermore, FERONIA acts as a cell surface regulator for RAC/ROP GTPases and activates production of reactive oxygen species which are, respectively, important molecular switches and mediators for diverse processes. These findings position the THESEUS 1/FERONIA family RLKs as surface regulators and potential cell wall sensors capable of broadly and profoundly impacting cellular pathways in response to diverse signals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. An overview about oxidation in clinical practice of skin aging*

    PubMed Central

    Silva, Silas Arandas Monteiro e; Michniak-Kohn, Bozena; Leonardi, Gislaine Ricci

    2017-01-01

    Free radicals are unstable chemical species, highly reactive, being formed by cellular entities of different tissues. Increased production of these species without proper effective action of endogenous and exogenous antioxidant systems, generates a condition of oxidative stress, potentially provider of skin disorders that extend from functional impairments (skin cancer, dermatitis, chronic and acute inflammatory processes) even aesthetic character, with the destruction of structural proteins and cellular changes with the appearance of stains, marks and lines of expressions and other signs inherent to the intrinsic and extrinsic skin aging process. The antioxidants are chemical substances commonly used in clinical practice for topical application and may contribute in the fight against the radical species responsible for many skin damage. This paper summarized the main evidence of the benefits brought by the topical application of antioxidants in the skin, considering the amplitude of the indicative performance of antioxidant activity by in vitro and ex-vivo tests as well as in vivo tests. It is recognized that a breadth of product performance tests should be explored to truly identify the effectiveness of antioxidant products for an anti-aging effect. PMID:29186250

  11. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory.

    PubMed

    Mahgoub, Melissa; Monteggia, Lisa M

    2014-10-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have demonstrated a crucial function for histone acetylation and histone deacetylation in regulating the cellular and behavioral mechanisms underlying synaptic plasticity and learning and memory. In trying to delineate the roles of individual HDACs, genetic tools have been used to manipulate HDAC expression in rodents, uncovering distinct contributions of individual HDACs in regulating the processes of memory formation. Moreover, recent findings have suggested an important role for HDAC inhibitors in enhancing learning and memory processes as well as ameliorating symptoms related to neurodegenerative diseases. In this review, we focus on the role of HDACs in learning and memory, as well as significant data emerging from the field in support of HDAC inhibitors as potential therapeutic targets for the treatment of cognitive disorders. © 2014 Mahgoub and Monteggia; Published by Cold Spring Harbor Laboratory Press.

  12. Focused Metabolite Profiling for Dissecting Cellular and Molecular Processes of Living Organisms in Space Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.

  13. Computational Systems Biology in Cancer: Modeling Methods and Applications

    PubMed Central

    Materi, Wayne; Wishart, David S.

    2007-01-01

    In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy. PMID:19936081

  14. Novel antioxidants are not toxic to normal tissues but effectively kill cancer cells.

    PubMed

    Kovalchuk, Anna; Aladedunye, Felix; Rodriguez-Juarez, Rocio; Li, Dongping; Thomas, James; Kovalchuk, Olga; Przybylski, Roman

    2013-10-01

    Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.

  15. Lamina-independent lamins in the nuclear interior serve important functions.

    PubMed

    Dechat, T; Gesson, K; Foisner, R

    2010-01-01

    Nuclear lamins were originally described as the main constituents of the nuclear lamina, a filamentous meshwork closely associated with the inner nuclear membrane. However, within recent years, it has become increasingly evident that a fraction of lamins also resides throughout the nuclear interior. As intermediate-filament-type proteins, lamins have been suggested to fulfill mainly structural functions such as providing shape and mechanical stability to the nucleus. But recent findings show that both peripheral and nucleoplasmic lamins also have important roles in essential cellular processes such as transcription, DNA replication, cell cycle progression, and chromatin organization. Furthermore, more than 300 mutations in the gene encoding A-type lamins have been associated with several human diseases now generally termed laminopathies and comprising muscular dystrophies, lipodystrophies, cardiomyopathies, and premature aging diseases. This review focuses on the lamina-independent pool of lamins in the nuclear interior, which surprisingly has not been studied in much detail so far. We discuss the properties and regulation of nucleoplasmic lamins during the cell cycle, their interaction partners, and their potential involvement in cellular processes and the development of laminopathies.

  16. Molecular Imaging of Inflammation in Atherosclerosis

    PubMed Central

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  17. Cutting the wires: modularization of cellular networks for experimental design.

    PubMed

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-07

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Exosome-Mediated Pathogen Transmission by Arthropod Vectors.

    PubMed

    Hackenberg, Michael; Kotsyfakis, Michail

    2018-04-24

    Recent molecular and cellular studies have highlighted a potentially important role for tick exosomes in parasite transmission. Here we summarize evolving hypotheses about the largely unknown cellular events that may take place at the tick-host-pathogen interface, focusing on a potential role for arthropod exosomes in this tripartite interaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  20. Differential growth of wrinkled biofilms

    NASA Astrophysics Data System (ADS)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  1. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.

    PubMed

    Patricelli, M P; Cravatt, B F

    2001-01-01

    Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.

  2. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.

  3. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation.

    PubMed

    Arjunan, Satya Nanda Vel; Tomita, Masaru

    2010-03-01

    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally. The online version of this article (doi:10.1007/s11693-009-9047-2) contains supplementary material, which is available to authorized users.

  4. Exosomes and their role in the micro-/macro-environment: a comprehensive review

    PubMed Central

    Javeed, Naureen; Mukhopadhyay, Debabrata

    2017-01-01

    The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care. PMID:28290182

  5. Exosomes and their role in the micro-/macro-environment: a comprehensive review.

    PubMed

    Javeed, Naureen; Mukhopadhyay, Debabrata

    2017-09-26

    The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.

  6. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  7. High-content screening for the discovery of pharmacological compounds: advantages, challenges and potential benefits of recent technological developments.

    PubMed

    Soleilhac, Emmanuelle; Nadon, Robert; Lafanechere, Laurence

    2010-02-01

    Screening compounds with cell-based assays and microscopy image-based analysis is an approach currently favored for drug discovery. Because of its high information yield, the strategy is called high-content screening (HCS). This review covers the application of HCS in drug discovery and also in basic research of potential new pathways that can be targeted for treatment of pathophysiological diseases. HCS faces several challenges, however, including the extraction of pertinent information from the massive amount of data generated from images. Several proposed approaches to HCS data acquisition and analysis are reviewed. Different solutions from the fields of mathematics, bioinformatics and biotechnology are presented. Potential applications and limits of these recent technical developments are also discussed. HCS is a multidisciplinary and multistep approach for understanding the effects of compounds on biological processes at the cellular level. Reliable results depend on the quality of the overall process and require strong interdisciplinary collaborations.

  8. Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine 'giant rosette' plants.

    PubMed

    Beck, E; Schulze, E D; Senser, M; Scheibe, R

    1984-09-01

    The water potentials of frozen leaves of Afroalpine plants were measured psychrometrically in the field. Comparison of these potentials with the osmotic potentials of an expressed cellular sap and the water potentials of ice indicated almost ideal freezing behaviour and suggested equilibrium freezing. On the basis of the osmotic potentials of expressed cellular sap, the fractions of frozen cellular water which correspond to the measured water potentials of the frozen leaves could be determined (e.g. 74% at -3.0° C). The freezing points of leaves were found to be in the range between 0° C and -0.5° C, rendering evidence for freezing of almost pure water and thus confirming the conclusions drawn from the water-potential measurements. The leaves proved to be frost resistant down to temperatures between -5° C and -15° C, as depending on the species. They tolerated short supercooling periods which were necessary in order to start ice nucleation. Extracellular ice caps and ice crystals in the intercellular space were observed when cross sections of frozen leaves were investigated microscopically at subfreezing temperatures.

  9. D-ribose--an additive with caffeine.

    PubMed

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  10. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    PubMed Central

    Stuker, Florian; Ripoll, Jorge; Rudin, Markus

    2011-01-01

    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495

  11. Understanding the cancer cell phenotype beyond the limitations of current omics analyses.

    PubMed

    Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara

    2016-01-01

    Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.

  12. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    PubMed

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  13. Catecholamine transport in isolated lung parenchyma of pig

    PubMed Central

    Goldie, Roy G.; Paterson, James W.

    1982-01-01

    1 Lung parenchyma strips of the pig incubated at 37°C with [3H]-(-)-noradrenaline ([3H]-NA) or [3H]-(±)-isoprenaline ([3H]-Iso), accumulated radioactivity via saturable, high affinity uptake processes. Apparent saturation constants (Km) for [3H]-NA and [3H]-Iso were 1.34 × 10-6 M and 1.63 × 10-6 M respectively, while apparent transport maxima (Vmax) were 4.86 and 1.63 × 10-9 mol min-1 g-1 respectively. 2 Cellular accumulation of radioactivity from radiolabelled catecholamines was greatly reduced by lowering the temperature to 7°C, pretreatment with ouabain (100 μM), phentolamine (15 μM) or phenoxybenzamine (80 μM). However, accumulation of radioactivity derived from (3H]-NA was inhibited selectively by cocaine (10 μM) and desipramine (1 μM), while normetanephrine (80 μM) and 3-O-methylisoprenaline (50 μM) caused much greater reductions in cellular radioactivity from [3H]-Iso than from (3H]-NA. Taken together with information from kinetic studies, the results indicate that these amines are transported by separate uptake processes. 3 Cocaine (50 μM) which selectively reduced [3H]-NA transport, had no significant effect on the sensitivity (EC50) of isolated parenchyma lung strips of the pig to the contractile effects of cumulative concentrations of NA. The catechol-O-methyl transferase (COMT) inhibitor, U-0521 (60 μM), also failed to alter the potency of NA, while normetanephrine (80 μM) caused a 2 fold decrease in potency. 4 Phentolamine (15 μM), which reduced the cellular accumulation of radioactivity derived from [3H]-Iso by 64%, caused a small potentiation of Iso-induced relaxations of porcine lung strips. Normetanephrine (80 μM) and 3-O-methylisoprenaline (50 μM), which also depressed the accumulation of cellular radioactivity from [3H]-Iso by > 50%, caused rightward shifts in Iso concentration-effect curves as a result of β-adrenoceptor blockade. In sharp contrast, cortisol (80 μM) and U-0521 (60 μM), which caused smaller reductions in the cellular accumulation of radioactivity derived from [3H]-Iso, both caused an approximately 9 fold potentiation of responses to Iso in isolated lung strips. 5 The results indicate that the major sites of uptake and metabolism of NA in porcine parenchyma strip are remote from α-adrenoceptors mediating NA-induced contraction. Similarly, some major sites of uptake of Iso are remote from β-adrenoceptors mediating Iso-induced relaxation. However, β-adrenoceptors are apparently in close proximity to a compartment containing COMT activity. PMID:7104521

  14. A DNA network as an information processing system.

    PubMed

    Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M

    2012-01-01

    Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.

  15. Emergence of tissue mechanics from cellular processes: shaping a fly wing

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.

  16. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  17. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa)

    NASA Technical Reports Server (NTRS)

    Gibeaut, David M.; Karuppiah, Nadarajah; Chang, S.-R.; Brock, Thomas G.; Vadlamudi, Babu; Kim, Donghern; Ghosheh, Najati S.; Rayle, David L.; Carpita, Nicholas C.; Kaufman, Peter B.

    1990-01-01

    The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response and asymmetric processes involving degradation of starch and cell wall synthesis. Cellular and biochemical events were studied by investigation of the activities of related enzymes and changes in cell walls and their constituents. It is suggested that an osmotic potential gradient acts as the driving factor for growth, while wall extensibility is a limiting factor in pulvinus growth.

  18. Computational analysis of axonal transport: a novel assessment of neurotoxicity, neuronal development and functions.

    PubMed

    Goshima, Yoshio; Hida, Tomonobu; Gotoh, Toshiyuki

    2012-01-01

    Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  19. Detecting the Extent of Cellular Decomposition after Sub-Eutectoid Annealing in Rolled UMo Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, Elizabeth J.; Jana, Saumyadeep; Devaraj, Arun

    2017-07-31

    This report presents an automated image processing approach to quantifying microstructure image data, specifically the extent of eutectoid (cellular) decomposition in rolled U-10Mo foils. An image processing approach is used here to be able to quantitatively describe microstructure image data in order to relate microstructure to processing parameters (time, temperature, deformation).

  20. Protein arginine methylation: Cellular functions and methods of analysis.

    PubMed

    Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz

    2006-12-01

    During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.

  1. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins

    PubMed Central

    Harden, Mallory E.; Prasad, Nripesh; Griffiths, Anthony

    2017-01-01

    ABSTRACT The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. PMID:28049151

  2. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  3. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  4. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seong-Rin; Schoenung, Julie M., E-mail: jmschoenung@ucdavis.ed

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancermore » potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.« less

  5. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones. 2010 Elsevier Ltd. All rights reserved.

  6. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  7. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  8. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    PubMed Central

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  10. Characteristics of excessive cellular phone use in Korean adolescents.

    PubMed

    Ha, Jee Hyun; Chin, Bumsu; Park, Doo-Heum; Ryu, Seung-Ho; Yu, Jaehak

    2008-12-01

    Abstract The objective of this study was to evaluate the possible psychological problems related to excessive cellular phone use in adolescents. Results from 595 participants showed that the potentially excessive user group had a tendency to identify themselves with their cellular phones and to have difficulties in controlling usage. They expressed more depressive symptoms, higher interpersonal anxiety, and lower self-esteem. A positive correlation was also observed between excessive cellular phone use and Internet addiction.

  11. Cellular phone use and brain tumor: a meta-analysis.

    PubMed

    Kan, Peter; Simonsen, Sara E; Lyon, Joseph L; Kestle, John R W

    2008-01-01

    The dramatic increase in the use of cellular phones has generated concerns about potential adverse effects, especially the development of brain tumors. We conducted a meta-analysis to examine the effect of cellular phone use on the risk of brain tumor development. We searched the literature using MEDLINE to locate case-control studies on cellular phone use and brain tumors. Odds ratios (ORs) for overall effect and stratified ORs associated with specific brain tumors, long-term use, and analog/digital phones were calculated for each study using its original data. A pooled estimator of each OR was then calculated using a random-effects model. Nine case-control studies containing 5,259 cases of primary brain tumors and 12,074 controls were included. All studies reported ORs according to brain tumor subtypes, and five provided ORs on patients with > or =10 years of follow up. Pooled analysis showed an overall OR of 0.90 (95% confidence interval [CI] 0.81-0.99) for cellular phone use and brain tumor development. The pooled OR for long-term users of > or =10 years (5 studies) was 1.25 (95% CI 1.01-1.54). No increased risk was observed in analog or digital cellular phone users. We found no overall increased risk of brain tumors among cellular phone users. The potential elevated risk of brain tumors after long-term cellular phone use awaits confirmation by future studies.

  12. The cellular transducer in bone: What is it?

    PubMed

    Taylor, David; Hazenberg, Jan; Lee, T Clive

    2006-01-01

    Bone is able to detect its strain environment and respond accordingly. In particular it is able to adapt to over-use and under-use by bone deposition or resorption. How can bone sense strain? Various physical mechanisms have been proposed for the so-called cellular transducer, but there is no conclusive proof for any one of them. This paper examines the theories and evidence, with particular reference to a new theory proposed by the authors, involving damage to cellular processes by microcracks. Experiments on bone samples ex-vivo showed that cracks cannot fracture osteocytes, but that cellular processes which span the crack can be broken. A theoretical model was developed for predicting the number of broken processes as a function of crack size and applied stress. This showed that signals emitted by fractured processes could be used to detect cracks which needed repairing and to provide information on the overall level of damage which could be used to initiate repair and adaptation responses.

  13. The different facets of organelle interplay-an overview of organelle interactions.

    PubMed

    Schrader, Michael; Godinho, Luis F; Costello, Joseph L; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy-a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.

  14. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  15. Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells

    PubMed Central

    Schiele, Nathan R.; Chrisey, Douglas B.

    2011-01-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381

  16. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  17. THz in biology and medicine: toward quantifying and understanding the interaction of millimeter- and submillimeter-waves with cells and cell processes

    NASA Astrophysics Data System (ADS)

    Siegel, Peter H.; Pikov, Victor

    2010-02-01

    As the application and commercial use of millimeter- and submillimeter-wavelength radiation become more widespread, there is a growing need to understand and quantify both the coupling mechanisms and the impact of this long wavelength energy on biological function. Independent of the health impact of high doses of radio frequency (RF) energy on full organisms, which has been extensively investigated, there exists the potential for more subtle effects, which can best be quantified in studies which examine real-time changes in cellular functions as RF energy is applied. In this paper we present the first real time examination of RF induced changes in cellular activity at absorbed power levels well below the existing safe exposure limits. Fluorescence microscopy imaging of immortalized epithelial and neuronal cells in vitro indicate increased cellular membrane permeability and nanoporation after short term exposure to modest levels (10-50 mW/cm2) of RF power at 60 GHz. Sensitive patch clamp measurements on pyramidal neurons in cortical slices of neonatal rats showed a dramatic increase in cellular membrane permeability resulting either in suppression or facilitation of neuronal activity during exposure to sub-μW/cm2 of RF power at 60 GHz. Non-invasive modulation of neuronal activity could prove useful in a variety of health applications from suppression of peripheral neuropathic pain to treatment of central neurological disorders.

  18. Reduced Warburg Effect in Cancer Cells Undergoing Autophagy: Steady- State 1H-MRS and Real-Time Hyperpolarized 13C-MRS Studies

    PubMed Central

    Wong Te Fong, Anne-Christine; Hill, Deborah K.; Orton, Matthew R.; Parkes, Harry G.; Koh, Dow-Mu; Robinson, Simon P.; Leach, Martin O.; Eykyn, Thomas R.; Chung, Yuen-Li

    2014-01-01

    Autophagy is a highly regulated, energy dependent cellular process where proteins, organelles and cytoplasm are sequestered in autophagosomes and digested to sustain cellular homeostasis. We hypothesized that during autophagy induced in cancer cells by i) starvation through serum and amino acid deprivation or ii) treatment with PI-103, a class I PI3K/mTOR inhibitor, glycolytic metabolism would be affected, reducing flux to lactate, and that this effect may be reversible. We probed metabolism during autophagy in colorectal HT29 and HCT116 Bax knock-out cells using hyperpolarized 13C-magnetic resonance spectroscopy (MRS) and steady-state 1H-MRS. 24 hr PI103-treatment or starvation caused significant reduction in the apparent forward rate constant (kPL) for pyruvate to lactate exchange compared with controls in HT29 (100 μM PI-103: 82%, p = 0.05) and HCT116 Bax-ko cells (10 μM PI-103: 53%, p = 0.05; 20 μM PI-103: 42%, p<0.0001; starvation: 52%, p<0.001), associated with reduced lactate excretion and intracellular lactate in all cases, and unchanged lactate dehydrogenase (LDH) activity and increased NAD+/NADH ratio following PI103 treatment or decreased LDH activity and unchanged NAD+/NADH ratio following starvation. After 48 hr recovery from PI103 treatment, kPL remained below control levels in HT29 cells (74%, p = 0.02), and increased above treated values, but remained below 24 hr vehicle-treated control levels in HCT116 Bax-ko cells (65%, p = 0.004) both were accompanied by sustained reduction in lactate excretion, recovery of NAD+/NADH ratio and intracellular lactate. Following recovery from starvation, kPL was significantly higher than 24 hr vehicle-treated controls (140%, p = 0.05), associated with increased LDH activity and total cellular NAD(H). Changes in kPL and cellular and excreted lactate provided measureable indicators of the major metabolic processes accompanying starvation- and drug-induced autophagy. The changes are reversible, returning towards and exceeding control values on cellular recovery, which potentially identifies resistance. kPL (hyperpolarized 13C-MRS) and lactate (1H-MRS) provide useful biomarkers for the autophagic process, enabling non-invasive monitoring of the Warburg effect. PMID:24667972

  19. The data of establishing a three-dimensional culture system for in vitro recapitulation and mechanism exploration of tumor satellite formation during cancer cell transition.

    PubMed

    Chen, Chun-Nan; Chen, You-Tzung; Yang, Tsung-Lin

    2017-12-01

    Tumor satellite formation is an indicator of cancer invasiveness and correlates with recurrence, metastasis, and poorer prognosis. By analyzing pathological specimens, tumor satellites formed at the tumor-host interface reflect the phenomena of epithelial-mesenchymal transition. It is impossible to reveal the dynamic processes and the decisive factors of tumor satellite formation using clinicopathological approaches alone. Therefore, establishment of an in vitro system to monitor the phenomena is important to explicitly elucidate underlying mechanisms. In this study, we explored the feasibility of creating an in vitro three-dimensional collagen culture system to recapitulate the process of tumor satellite formation. This data presented here are referred to the research article (Chen et al., 2017) [1]. Using this model, the dynamic process of tumor satellite formation could be recapitulated in different types of human cancer cells. Induced by calcium deprivation, the treated cells increased the incidence and migratory distance of tumor satellites. E-cadherin internalization and invadopodia formation were enhanced by calcium deprivation and were associated with cellular dynamic change during tumor satellite formation. The data confirmed the utility of this culture system to recapitulate dynamic cellular alteration and to explore the potential mechanisms of tumor satellite formation.

  20. Exosomes as divine messengers: are they the Hermes of modern molecular oncology?

    PubMed Central

    Braicu, C; Tomuleasa, C; Monroig, P; Cucuianu, A; Berindan-Neagoe, I; Calin, G A

    2015-01-01

    Exosomes are cell-derived vesicles that convey key elements with the potential to modulate intercellular communication. They are known to be secreted from all types of cells, and are crucial messengers that can regulate cellular processes by ‘trafficking' molecules from cells of one tissue to another. The exosomal content has been shown to be broad, composed of different types of cytokines, growth factors, proteins, or nucleic acids. Besides messenger RNA (mRNA) they can also contain noncoding transcripts such as microRNAs (miRNAs), which are small endogenous cellular regulators of protein expression. In diseases such as cancer, exosomes can facilitate tumor progression by altering their vesicular content and supplying the tumor niche with molecules that favor the progression of oncogenic processes such as proliferation, invasion and metastasis, or even drug resistance. The packaging of their molecular content is known to be tissue specific, a fact that makes them interesting tools in clinical diagnostics and ideal candidates for biomarkers. In the current report, we describe the main properties of exosomes and explain their involvement in processes such as cell differentiation and cell death. Furthermore, we emphasize the need of developing patient-targeted treatments by applying the conceptualization of exosomal-derived miRNA-based therapeutics. PMID:25236394

  1. Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM).

    PubMed

    Behrens, Sebastian; Kappler, Andreas; Obst, Martin

    2012-11-01

    Environmental microbiology research increasingly focuses on the single microbial cell as the defining entity that drives environmental processes. The interactions of individual microbial cells with each other, the environment and with higher organisms shape microbial communities and control the functioning of whole ecosystems. A single-cell view of microorganisms in their natural environment requires analytical tools that measure both cell function and chemical speciation at the submicrometre scale. Here we review the technical capabilities and limitations of high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission (soft) X-ray microscopy (STXM) and give examples of their applications. Whereas NanoSIMS can be combined with isotope-labelling, thereby localizing the distribution of cellular activities (e.g. carbon/nitrogen fixation/turnover), STXM provides information on the location and chemical speciation of metabolites and products of redox reactions. We propose the combined use of both techniques and discuss the technical challenges of their joint application. Both techniques have the potential to enhance our understanding of cellular mechanisms and activities that contribute to microbially mediated processes, such as the biogeochemical cycling of elements, the transformation of contaminants and the precipitation of mineral phases. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    PubMed Central

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  3. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  4. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    PubMed Central

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  5. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  6. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    PubMed

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    PubMed Central

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332

  8. Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes.

    PubMed

    Yang, Ruiguo; Song, Bo; Sun, Zhiyong; Lai, King Wai Chiu; Fung, Carmen Kar Man; Patterson, Kevin C; Seiffert-Sinha, Kristina; Sinha, Animesh A; Xi, Ning

    2015-01-01

    We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity.

    PubMed

    Yang, Yifei; Zhang, Yuan; Yang, LingYun; Zhao, Leilei; Si, Lianghui; Zhang, Huibin; Liu, Qingsong; Zhou, Jinpei

    2017-02-01

    Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7g exhibited the most inhibitory activity against c-Met with IC 50 of 53.4nM and 253nM in enzymatic and cellular level, respectively. Following that, the compound 7g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7g was a potential c-Met inhibitor deserving further investigation for cancer treatment. Copyright © 2016. Published by Elsevier Inc.

  10. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification

    PubMed Central

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082

  11. Assessment of TRPM7 functions by drug-like small molecules.

    PubMed

    Chubanov, Vladimir; Ferioli, Silvia; Gudermann, Thomas

    2017-11-01

    Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca 2+ signalling, Mg 2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca 2+ signaling and Ca 2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera

    NASA Astrophysics Data System (ADS)

    Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor

    2015-09-01

    Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.

  13. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.

    PubMed

    Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor

    2015-09-01

    Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.

  14. Microbiota as a mediator of cancer progression and therapy.

    PubMed

    Pope, Jillian L; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Microbiota as a mediator of cancer progression and therapy

    PubMed Central

    Pope, Jillian L.; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. PMID:27554797

  16. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  17. Additively manufactured hierarchical stainless steels with high strength and ductility.

    PubMed

    Wang, Y Morris; Voisin, Thomas; McKeown, Joseph T; Ye, Jianchao; Calta, Nicholas P; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T; Santala, Melissa K; Depond, Philip J; Matthews, Manyalibo J; Hamza, Alex V; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  18. Additively manufactured hierarchical stainless steels with high strength and ductility

    NASA Astrophysics Data System (ADS)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  19. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE PAGES

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; ...

    2017-10-30

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  20. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  1. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer

    PubMed Central

    Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc

    2017-01-01

    The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321

  2. Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity

    PubMed Central

    Lee, David A.

    2017-01-01

    ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338

  3. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity.

    PubMed

    Thorpe, Stephen D; Lee, David A

    2017-05-04

    Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.

  4. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    PubMed

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  5. Nanobodies and recombinant binders in cell biology

    PubMed Central

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  6. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    PubMed Central

    Njie-Mbye, Ya F.; Opere, Catherine A.; Chitnis, Madhura; Ohia, Sunny E.

    2012-01-01

    Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed. PMID:22934046

  7. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    PubMed Central

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  8. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  9. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    PubMed Central

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  10. The Roles of Glutathione Peroxidases during Embryo Development

    PubMed Central

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4. PMID:21847368

  11. The Roles of Glutathione Peroxidases during Embryo Development.

    PubMed

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.

  12. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo.

    PubMed

    Olivera-Martinez, Isabel; Schurch, Nick; Li, Roman A; Song, Junfang; Halley, Pamela A; Das, Raman M; Burt, Dave W; Barton, Geoffrey J; Storey, Kate G

    2014-08-01

    Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation. © 2014. Published by The Company of Biologists Ltd.

  13. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  14. Feasibility and Biocompatibility of 3D-Printed Photopolymerized and Laser Sintered Polymers for Neuronal, Myogenic, and Hepatic Cell Types.

    PubMed

    Rimington, Rowan P; Capel, Andrew J; Player, Darren J; Bibb, Richard J; Christie, Steven D R; Lewis, Mark P

    2018-06-13

    The integration of additive manufacturing (AM) technology within biological systems holds significant potential, specifically when refining the methods utilized for the creation of in vitro models. Therefore, examination of cellular interaction with the physical/physicochemical properties of 3D-printed polymers is critically important. In this work, skeletal muscle (C 2 C 12 ), neuronal (SH-SY5Y) and hepatic (HepG2) cell lines are utilized to ascertain critical evidence of cellular behavior in response to 3D-printed candidate polymers: Clear-FL (stereolithography, SL), PA-12 (laser sintering, LS), and VeroClear (PolyJet). This research outlines initial critical evidence for a framework of polymer/AM process selection when 3D printing biologically receptive scaffolds, derived from industry standard, commercially available AM instrumentation. C 2 C 12 , SH-SY5Y, and HepG2 cells favor LS polymer PA-12 for applications in which cellular adherence is necessitated. However, cell type specific responses are evident when cultured in the chemical leachate of photopolymers (Clear-FL and VeroClear). With the increasing prevalence of 3D-printed biointerfaces, the development of rigorous cell type specific biocompatibility data is imperative. Supplementing the currently limited database of functional 3D-printed biomaterials affords the opportunity for experiment-specific AM process and polymer selection, dependent on biological application and intricacy of design features required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  16. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    NASA Astrophysics Data System (ADS)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  17. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration.

    PubMed

    Pereira, D R; Silva-Correia, J; Oliveira, J M; Reis, R L

    2013-02-01

    Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  19. Identification of a molecular recognition feature in the E1A oncoprotein that binds the SUMO conjugase UBC9 and likely interferes with polySUMOylation.

    PubMed

    Yousef, A F; Fonseca, G J; Pelka, P; Ablack, J N G; Walsh, C; Dick, F A; Bazett-Jones, D P; Shaw, G S; Mymryk, J S

    2010-08-19

    Hub proteins have central roles in regulating cellular processes. By targeting a single cellular hub, a viral oncogene may gain control over an entire module in the cellular interaction network that is potentially comprised of hundreds of proteins. The adenovirus E1A oncoprotein is a viral hub that interacts with many cellular hub proteins by short linear motifs/molecular recognition features (MoRFs). These interactions transform the architecture of the cellular protein interaction network and virtually reprogram the cell. To identify additional MoRFs within E1A, we screened portions of E1A for their ability to activate yeast pseudohyphal growth or differentiation. This identified a novel functional region within E1A conserved region 2 comprised of the sequence EVIDLT. This MoRF is necessary and sufficient to bind the N-terminal region of the SUMO conjugase UBC9, which also interacts with SUMO noncovalently and is involved in polySUMOylation. Our results suggest that E1A interferes with polySUMOylation, but not with monoSUMOylation. These data provide the first insight into the consequences of the interaction of E1A with UBC9, which was initially described in 1996. We further demonstrate that polySUMOylation regulates pseudohyphal growth and promyelocytic leukemia body reorganization by E1A. In conclusion, the interaction of the E1A oncogene with UBC9 mimics the normal binding between SUMO and UBC9 and represents a novel mechanism to modulate polySUMOylation.

  20. Aspartate β-hydroxylase modulates cellular senescence via glycogen synthase kinase 3β in hepatocellular carcinoma

    PubMed Central

    Iwagami, Yoshifumi; Huang, Chiung-Kuei; Olsen, Mark J.; Thomas, John-Michael; Jang, Grace; Kim, Miran; Lin, Qiushi; Carlson, Rolf I.; Wagner, Carl E.; Dong, Xiaoqun; Wands, Jack R.

    2015-01-01

    Background & Aims Aspartate β-hydroxylase (ASPH) is an enzyme overexpressed in human hepatocellular carcinoma (HCC) tumors and participates in the malignant transformation process. We determined if ASPH was a therapeutic target by exerting effects on cellular senescence to retard HCC progression. Methods ASPH knockdown or knockout was achieved by shRNAs or CRISPR/Cas9 system, respectively, whereas enzymatic inhibition was rendered by a potent 2nd generation small molecule inhibitor (SMI) of ASPH. Alterations of cell proliferation, colony formation and cellular senescence were evaluated in human HCC cell lines. The potential mechanisms for activating cellular senescence were explored using murine subcutaneous and orthotopic xenograft models. Results Inhibition of ASPH expression and enzymatic activity significantly reduced cell proliferation and colony formation, but induced tumor cell senescence. Following inhibition of ASPH activity, phosphorylation of GSK3β and p16 expression were increased to promote senescence whereas cyclin D1 and PCNA were decreased to reduce cell proliferation. The mechanisms involved demonstrate that ASPH binds to GSK3β and inhibits its subsequent interactions with AKT and p38 upstream kinases as shown by co-immunoprecipitation. In vivo experiments demonstrated that the SMI treatment of HCC bearing mice resulted in significant dose-dependent reduced tumor growth, induced phosphorylation of GSK3β, enhanced p16 expression in tumor cells and promoted cellular senescence. Conclusions We have identified a new mechanism that promotes HCC growth and progression by modulating senescence of tumor cells. These findings suggest that ASPH enzymatic activity is a novel therapeutic target for HCC. PMID:26683595

  1. PDGF-AA-induced filamentous mitochondria benefit dermal papilla cells in cellular migration.

    PubMed

    Mifude, C; Kaseda, K

    2015-06-01

    Human dermal papilla cells (HDPCs) play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. Previous reports demonstrated that platelet-derived growth factor-AA (PDGF-AA) enhanced the formation of dermal condensates in hair follicular development. Additionally, PDGF-AA induces/maintains the anagen phase of the hair cycle. It is likely that mitochondrial morphology and functions are tightly coupled with maintenance of these energy-demanding activities. However, little is known about the mitochondrial regulation in HDPCs. Thus, we investigated the PDGF-involved mitochondrial regulation in HDPCs. The mitochondrial morphologies of HDPCs were examined in the presence or absence of PDGF-AA under a fluorescent microscope. ATP production and cellular motility were investigated. The relationship between mitochondrial morphology and the cellular functions was discussed. We observed that primary HDPCs contained mitochondria with filamentous and/or rounded morphologies. Both types of mitochondria showed similar membrane potentials. Interestingly, in the presence of PDGF-AA, but not PDGF-BB, the balance between the two morphologies shifted towards the filamentous form. Concomitantly, both mitochondrial enzymatic activity and total cellular ATP level were augmented by PDGF-AA. These two parameters were closely correlated, suggesting the mitochondrial involvement in the PDGF-augmented ATP production. Moreover, PDGF-AA accelerated the migration of HDPCs in a gap-filling assay, but did not change the rate of cellular proliferation. Notably, filamentous mitochondria dominated migrating HDPCs. PDGF-AA benefits HDPCs in the process of migration, by increasing the number of filamentous mitochondria. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    PubMed

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  3. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    NASA Astrophysics Data System (ADS)

    Lipton, Jeffrey I.; Lipson, Hod

    2016-08-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.

  4. Prospects for discovery by epigenome comparison

    PubMed Central

    Milosavljevic, Aleksandar

    2010-01-01

    Epigenomic analysis efforts have so far focused on the multiple layers of epigenomic information within individual cell types. With the rapidly increasing diversity of epigenomically mapped cell types, unprecedented opportunities for comparative analysis of epigenomes are opening up. One such opportunity is to map the bifurcating tree of cellular differentiation. Another is to understand the epigenomically mediated effects of mutations, environmental influences, and disease processes. Comparative analysis of epigenomes therefore has the potential to provide wide-ranging fresh insights into basic biology and human disease. The realization of this potential will critically depend on availability of a cyberinfrastructure that will scale with the volume of data and diversity of applications and a number of other computational challenges. PMID:20944597

  5. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    EPA Science Inventory

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  6. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  7. The role of protein O-linked beta-N-acetylglucosamine in mediating cardiac stress responses.

    PubMed

    Chatham, John C; Marchase, Richard B

    2010-02-01

    The modification of serine and threonine residues of nuclear and cytoplasmic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) has emerged as a highly dynamic post-translational modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of its adverse effects in mediating a range of chronic disease processes, including diabetes, cancer and neurodegenerative diseases. However, at the cellular level it has been shown that O-GlcNAc levels are increased in response to stress; augmentation of this response improved cell survival while attenuation decreased cell viability. Thus, it has become apparent that strategies that augment O-GlcNAc levels are pro-survival, whereas those that reduce O-GlcNAc levels decrease cell survival. There is a long history demonstrating the effectiveness of acute glucose-insulin-potassium (GIK) treatment and to a lesser extent glutamine in protecting against a range of stresses, including myocardial ischemia. A common feature of these approaches for metabolic cardioprotection is that they both have the potential to stimulate O-GlcNAc synthesis. Consequently, here we examine the links between metabolic cardioprotection with the ischemic cardioprotection associated with acute increases in O-GlcNAc levels. Some of the protective mechanisms associated with activation of O-GlcNAcylation appear to be transcriptionally mediated; however, there is also strong evidence to suggest that transcriptionally independent mechanisms also play a critical role. In this context we discuss the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis including the role of non-voltage gated, capacitative calcium entry as a potential mechanism contributing to this protection. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Critical role of canonical transient receptor potential channel 7 in initiation of seizures.

    PubMed

    Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang

    2014-08-05

    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.

  9. Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis.

    PubMed

    Dias, Sílvia R C; Boroni, Mariana; Rocha, Elizângela A; Dias, Thomaz L; de Laet Souza, Daniela; Oliveira, Fabrício M S; Bitar, Mainá; Macedo, Andrea M; Machado, Carlos R; Caliari, Marcelo V; Franco, Glória R

    2014-01-01

    Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.

  10. Generic framework for mining cellular automata models on protein-folding simulations.

    PubMed

    Diaz, N; Tischer, I

    2016-05-13

    Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined.

  11. Pretreatment of high solid microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1998-01-01

    A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.

  12. Magnetization reversal process in (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liu, Zhuang; Zhang, Xin; Feng, Yanping; Wang, Chunxiao; Sun, Yingli; Lee, Don; Yan, Aru; Wu, Qiong

    2017-05-01

    Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior.

  13. Investigation of the environmental implications of the CNT switch through its life cycle

    NASA Astrophysics Data System (ADS)

    Dahlben, Lindsay Johanna

    Carbon nanotubes (CNTs) are unique allotropes of carbon that have high tensile strength, a high Young's modulus, good thermal conductivity, and depending on the CNT chirality can be metallic or semiconducting. These mechanical, thermal, and electrical properties make CNTs an attractive element in electronic applications such as conductive films, photovoltaics, non-volatile memory devices, batteries, sensors, and displays. Although commercialization of CNT-enabled products is increasing, there remains a significant lack of information regarding the health effects and environmental impacts of CNTs. Some studies have even shown that the behavior, toxicity, and persistence of CNTs may differ from bulk heterogeneous carbon. Given these uncertainties, it is prudent to assess the environmental attributes of CNT products and processes now to discover and potentially prevent adverse effects. This study investigates the environmental implications of a non-volatile bi-stable electromechanical CNT switch through its life cycle. Life cycle assessment (LCA) methodology is used to track the environmental impacts of the CNT switch through its fabrication and expected use and end-of-life (EOL) stages. Process parameters, energy consumption, input materials, output emissions, and yield efficiencies are determined for the laboratory and full-scale manufacture environments. The Ecoinvent(TM) inventory database and Eco-indicator 1999(TM) method are utilized for the impact assessment. Results for the fabrication stage are reported for highest contributions to environmental impact such as airborne inorganics, land use, and fossil fuels due to Au refining processes and electricity consumption. Extension of the LCA scope is evaluated for the potential replacement of CNT switches to current field-effect transistors (FETs) in flash memory for a cellular phone application. First-order predictions are made for the functionality and performance of the CNT switch during the use stage through an environmental perspective. Existing cellular phone EOL management options including recycling and direct disposal to landfill and incineration are evaluated for potential limitations, concerns, and environmental releases that may occur from the assimilation of CNT switch-enabled phones into the waste stream. In this manner, potential environmental effects of the CNT switch throughout its life cycle stages can be addressed alongside its technological development to ensure safe, sustainable, and successful CNT products.

  14. Cellular Therapy for Chronic Traumatic Brachial Plexus Injury

    PubMed Central

    Sharma, Alok; Sane, Hemangi; Gokulchandran, Nandini; Badhe, Prerna; Pai, Suhasini; Kulkarni, Pooja; Yadav, Jayanti; Inamdar, Sanket

    2018-01-01

    Cellular therapy is being actively pursued as a therapeutic modality in many of the neurological diseases. A variety of stem cells from diverse sources have been studied in detail and have been shown to exhibit angiogenetic and immunomodulatory properties in addition to other neuroprotective effects. Published clinical data have shown bone marrow mononuclear cell (BMMNC) injection in neurological disorders is safe and possesses regenerative potential. We illustrate a case of 27-year-old male with traumatic brachial plexus injury, administered with autologous BMMNCs intrathecally and intramuscularly, followed by multidisciplinary rehabilitation. At the follow-up assessment of 3 and 7 months after first cell transplantation, improvements were recorded in muscle strength and movements. Electromyography (EMG) performed after the intervention showed a response in biceps and deltoid muscles suggesting the process of reinnervation at the site of injury. In view of the improvements observed after the treatment, the patient underwent second cell transplantation 8 months after the first transplantation. Muscle wasting had completely stopped with an increase in the muscle girth. No adverse effects were noted. Improvements were maintained for 4 years. A comprehensive randomized study for this type of injury is needed to establish the therapeutic benefits of cellular therapy. PMID:29657936

  15. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  16. MicroRNA Profiling of Sendai Virus-Infected A549 Cells Identifies miR-203 as an Interferon-Inducible Regulator of IFIT1/ISG56

    PubMed Central

    Buggele, William A.

    2013-01-01

    The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript. PMID:23785202

  17. Proteomics in Heart Failure: Top-down or Bottom-up?

    PubMed Central

    Gregorich, Zachery R.; Chang, Ying-Hua; Ge, Ying

    2014-01-01

    Summary The pathophysiology of heart failure (HF) is diverse, owing to multiple etiologies and aberrations in a number of cellular processes. Therefore, it is essential to understand how defects in the molecular pathways that mediate cellular responses to internal and external stressors function as a system to drive the HF phenotype. Mass spectrometry (MS)-based proteomics strategies have great potential for advancing our understanding of disease mechanisms at the systems level because proteins are the effector molecules for all cell functions and, thus, are directly responsible for determining cell phenotype. Two MS-based proteomics strategies exist: peptide-based bottom-up and protein-based top-down proteomics—each with its own unique strengths and weaknesses for interrogating the proteome. In this review, we will discuss the advantages and disadvantages of bottom-up and top-down MS for protein identification, quantification, and the analysis of post-translational modifications, as well as highlight how both of these strategies have contributed to our understanding of the molecular and cellular mechanisms underlying HF. Additionally, the challenges associated with both proteomics approaches will be discussed and insights will be offered regarding the future of MS-based proteomics in HF research. PMID:24619480

  18. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803

    DOE PAGES

    Liberton, Michelle; Chrisler, William B.; Nicora, Carrie D.; ...

    2017-03-02

    Here, cyanobacteria, such as Synechocystis sp. PCC 6803, utilize large antenna systems to optimize light harvesting and energy transfer to reaction centers. Understanding the structure and function of these complexes, particularly when altered, will help direct bio-design efforts to optimize biofuel production. Three specific phycobilisome (PBS) complex truncation mutants were studied, ranging from progressive truncation of phycocyanin rods in the CB and CK strains, to full removal of all phycocyanin and allophycocyanin cores in the PAL mutant. We applied comprehensive proteomic analyses to investigate both direct and downstream molecular systems implications of each truncation. Results showed that PBS truncation inmore » Synechocystis sp. PCC 6803 dramatically alters core cellular mechanisms beyond energy capture and electron transport, placing constraints upon cellular processes that dramatically altered phenotypes. This included primarily membrane associated functions and altered regulation of cellular resources (i.e., iron, nitrite/nitrate, bicarbonate). Additionally, each PBS truncation, though progressive in nature, exhibited unique phenotypes compare to WT, and hence we assert that in the current realm of extensive bioengineering and bio-design, there remains a continuing need to assess systems-wide protein based abundances to capture potential indirect phenotypic effects.« less

  19. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    PubMed Central

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2015-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. PMID:22513272

  20. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liberton, Michelle; Chrisler, William B.; Nicora, Carrie D.

    Here, cyanobacteria, such as Synechocystis sp. PCC 6803, utilize large antenna systems to optimize light harvesting and energy transfer to reaction centers. Understanding the structure and function of these complexes, particularly when altered, will help direct bio-design efforts to optimize biofuel production. Three specific phycobilisome (PBS) complex truncation mutants were studied, ranging from progressive truncation of phycocyanin rods in the CB and CK strains, to full removal of all phycocyanin and allophycocyanin cores in the PAL mutant. We applied comprehensive proteomic analyses to investigate both direct and downstream molecular systems implications of each truncation. Results showed that PBS truncation inmore » Synechocystis sp. PCC 6803 dramatically alters core cellular mechanisms beyond energy capture and electron transport, placing constraints upon cellular processes that dramatically altered phenotypes. This included primarily membrane associated functions and altered regulation of cellular resources (i.e., iron, nitrite/nitrate, bicarbonate). Additionally, each PBS truncation, though progressive in nature, exhibited unique phenotypes compare to WT, and hence we assert that in the current realm of extensive bioengineering and bio-design, there remains a continuing need to assess systems-wide protein based abundances to capture potential indirect phenotypic effects.« less

Top