Point process models for localization and interdependence of punctate cellular structures.
Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F
2016-07-01
Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Cellular registration without behavioral recall of olfactory sensory input under general anesthesia.
Samuelsson, Andrew R; Brandon, Nicole R; Tang, Pei; Xu, Yan
2014-04-01
Previous studies suggest that sensory information is "received" but not "perceived" under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. One hundred seven rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. The olfactory sensory processing centers could distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Reexposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity, which was similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the "cellular memory," however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. Histologically distinguishable registration of sensory processing continues to occur at the cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications.
Cellular Registration Without Behavioral Recall Of Olfactory Sensory Input Under General Anesthesia
Samuelsson, Andrew R.; Brandon, Nicole R.; Tang, Pei; Xu, Yan
2014-01-01
Background Previous studies suggest that sensory information is “received” but not “perceived” under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. Methods 107 rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. Results The olfactory sensory processing centers can distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Re-exposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the “cellular memory,” however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. Conclusions Histologically distinguishable registration of sensory process continues to occur at cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications. PMID:24694846
p21-activated kinase signaling in breast cancer.
Gururaj, Anupama E; Rayala, Suresh K; Kumar, Rakesh
2005-01-01
The p21-activated kinases signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. A wealth of information has accumulated at an impressive pace in the recent past, both with regard to previously identified targets for p21-activated kinases that regulate the actin cytoskeleton and cellular stress pathways and with regard to newly identified targets and their role in cancer. Emerging data also provide new clues towards a previously unappreciated link between these various cellular processes. The present review attempts to provide a quick tutorial to the reader about the evolving significance of p21-activated kinases and small GTPases in breast cancer, using information from mouse models, tissue culture studies, and human materials.
Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components
Huang, Shao-shan Carol; Fraenkel, Ernest
2009-01-01
Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617
Robakis, Thalia; Bak, Beata; Lin, Shu-huei; Bernard, Daniel J.; Scheiffele, Peter
2008-01-01
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. PMID:18981173
Evolutionary layering and the limits to cellular perfection
Lynch, Michael
2012-01-01
Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs. PMID:23115338
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-01-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
NASA Astrophysics Data System (ADS)
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-02-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.
Radomski, Nadine; Rebbig, Annica; Leonhardt, Ralf M; Knittler, Michael R
2017-11-02
Autophagy is an evolutionarily ancient and highly conserved eukaryotic mechanism that targets cytoplasmic material for degradation. Autophagic flux involves the formation of autophagosomes and their degradation by lysosomes. The process plays a crucial role in maintaining cellular homeostasis and responds to various environmental conditions. While autophagy had previously been thought to be a non-selective process, it is now clear that it can also selectively target cellular organelles, such as mitochondria (referred to as mitophagy) and/or invading pathogens (referred to as xenophagy). Selective autophagy is characterized by specific substrate recognition and requires distinct cellular adaptor proteins. Here we review xenophagic mechanisms involved in the recognition and autolysosomal or autophagolysosomal degradation of different intracellular bacteria. In this context, we also discuss a recently discovered cellular self-defense pathway, termed mito-xenophagy, which occurs during bacterial infection of dendritic cells and depends on a TNF-α-mediated metabolic switch from oxidative phosphorylation to glycolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.
The ubiquitin conjugating enzyme UbcH7, controls cell migration
USDA-ARS?s Scientific Manuscript database
Post translational modification by ubiquitination can target proteins for degradation, allow the interaction of proteins to form complexes or direct relocalization of proteins to different subcellular compartments. As such, ubiquitin controls a variety of essential cellular processes. Previously we ...
Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.
Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh
2018-04-01
Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.
Jimenez, Ana Gabriela; Williams, Joseph B
2014-10-01
The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.
Chitambar, C R; Seligman, P A
1986-01-01
We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751
Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)
NASA Astrophysics Data System (ADS)
Forshee, Jay Lance, II
Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity via expert agreement, response process validity through student think-aloud interviews, and via the Delphi survey methodology. Included is a discussion of item function (difficulty, discrimination, and point-biserial correlation), persistent misconceptions and the interpretation, uses, and future directions of the CCRCI.
Clyde, Karen; Glaunsinger, Britt A.
2011-01-01
One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023
Partial information decomposition as a spatiotemporal filter.
Flecker, Benjamin; Alford, Wesley; Beggs, John M; Williams, Paul L; Beer, Randall D
2011-09-01
Understanding the mechanisms of distributed computation in cellular automata requires techniques for characterizing the emergent structures that underlie information processing in such systems. Recently, techniques from information theory have been brought to bear on this problem. Building on this work, we utilize the new technique of partial information decomposition to show that previous information-theoretic measures can confound distinct sources of information. We then propose a new set of filters and demonstrate that they more cleanly separate out the background domains, particles, and collisions that are typically associated with information storage, transfer, and modification in cellular automata.
Evolutionary cell biology: functional insight from "endless forms most beautiful".
Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B
2015-12-15
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.
Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez
2012-01-01
The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet-unknown general, non-specific mechanism allowing fast inherited adaptation to unforeseen challenges.
Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C
2015-09-07
Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.
Winter, Gal; Cordente, Antonio G.; Curtin, Chris
2014-01-01
Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes. PMID:25517415
Correlated receptor transport processes buffer single-cell heterogeneity
Kallenberger, Stefan M.; Unger, Anne L.; Legewie, Stefan; Lymperopoulos, Konstantinos; Eils, Roland
2017-01-01
Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. PMID:28945754
A POX on Renal Cancer Cells | Center for Cancer Research
Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis,
Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Olmstead, Richard; Irwin, Michael R; Cole, Steve W
2007-03-01
Fatigue is a common problem following cancer treatment and our previous studies suggest that a chronic inflammatory process might contribute to cancer-related fatigue. However, immune responses to challenge have not yet been evaluated among individuals with cancer-related fatigue, and it is not known what mechanisms drive increased levels of inflammatory markers in fatigued cancer survivors. We have previously reported that fatigued breast cancer survivors show a blunted cortisol response to an experimental psychological stressor. In this report, we focus on inflammatory responses to this stressor and their relationship to circulating glucocorticoids and cellular sensitivity to glucocorticoid inhibition. Relative to non-fatigued control survivors, participants experiencing persistent fatigue showed significantly greater increases in LPS-stimulated production of IL-1beta and IL-6 following the stressor (Group x Time interaction: p<.05). Fatigued participants did not show any difference in cellular sensitivity to cortisol inhibition of cytokine production, but they did show significantly less salivary cortisol increase in the aftermath of the stressor. Moreover, blunted cortisol responses were associated with significantly increased production of IL-6 in response to LPS stimulation (p<.05). These data provide further evidence of enhanced inflammatory processes in fatigued breast cancer survivors and suggest that these processes may stem in part from decreased glucocorticoid response to stress.
Physically-Induced Cytoskeleton Remodeling of Cells in Three-Dimensional Culture
Lee, Sheng-Lin; Nekouzadeh, Ali; Butler, Boyd; Pryse, Kenneth M.; McConnaughey, William B.; Nathan, Adam C.; Legant, Wesley R.; Schaefer, Pascal M.; Pless, Robert B.
2012-01-01
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension. PMID:23300512
Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease
2012-01-01
Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043
NASA Astrophysics Data System (ADS)
González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio
2013-10-01
We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.
Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald
2008-04-01
Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.
Dynamics of Lamin-A Processing Following Precursor Accumulation
Liu, Qian; Kim, Dae In; Syme, Janet; LuValle, Phyllis; Burke, Brian; Roux, Kyle J.
2010-01-01
Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed. PMID:20526372
Collard, J-F; Hinsenkamp, M
2015-05-01
We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes characterized by an accelerated regulation after extremely low frequency pulsed stimulation also confirms their role in the processes of cell proliferation and differentiation. Bioinformatics approach allows in-depth research, without the bias of pre-selection, on cellular processes involved in a huge gene list. Copyright © 2015 Elsevier Inc. All rights reserved.
Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice
USDA-ARS?s Scientific Manuscript database
Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...
Modes of Interaction between Individuals Dominate the Topologies of Real World Networks
Lee, Insuk; Kim, Eiru; Marcotte, Edward M.
2015-01-01
We find that the topologies of real world networks, such as those formed within human societies, by the Internet, or among cellular proteins, are dominated by the mode of the interactions considered among the individuals. Specifically, a major dichotomy in previously studied networks arises from modeling networks in terms of pairwise versus group tasks. The former often intrinsically give rise to scale-free, disassortative, hierarchical networks, whereas the latter often give rise to single- or broad-scale, assortative, nonhierarchical networks. These dependencies explain contrasting observations among previous topological analyses of real world complex systems. We also observe this trend in systems with natural hierarchies, in which alternate representations of the same networks, but which capture different levels of the hierarchy, manifest these signature topological differences. For example, in both the Internet and cellular proteomes, networks of lower-level system components (routers within domains or proteins within biological processes) are assortative and nonhierarchical, whereas networks of upper-level system components (internet domains or biological processes) are disassortative and hierarchical. Our results demonstrate that network topologies of complex systems must be interpreted in light of their hierarchical natures and interaction types. PMID:25793969
Alimonti, Andrea; Nardella, Caterina; Chen, Zhenbang; Clohessy, John G.; Carracedo, Arkaitz; Trotman, Lloyd C.; Cheng, Ke; Varmeh, Shohreh; Kozma, Sara C.; Thomas, George; Rosivatz, Erika; Woscholski, Rudiger; Cognetti, Francesco; Scher, Howard I.; Pandolfi, Pier Paolo
2010-01-01
Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy. PMID:20197621
Kinetic memory based on the enzyme-limited competition.
Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko
2014-08-01
Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.
Targeting ubiquitination for cancer therapies.
Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing
2015-01-01
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
[Arterial media calcification in patients with type 2 diabetes mellitus].
Belovici, Maria Isabela; Pandele, G I
2008-01-01
Arterial calcification was previously viewed as an inevitable, passive, and degenerative process that occurred at the end stages of atherosclerosis. Recent studies, however, have demonstrated that calcification of arteries is a complex and regulated process. It may occur in conjunction with atherosclerosis or in an isolated form that is commonly associated with diabetes and renal failure. Higher artery calcium scores are associated with increased cardiovascular events, and some aspects of arterial calcification are similar to the biology of forming bone. Arterial calcification can thus be viewed as a distinct inflammatory arteriopathy, much like atherosclerosis and aneurysms, with its own contribution to cardiovascular morbidity and mortality. Current research involves efforts to define the complex interactions between cellular and molecular mediators of arterial calcification and, in particular, the role of endogenous calcification inhibitors. This review discusses the clinical relevance, cellular events, and suspected molecular pathways that control arterial calcification.
Exploring patterns of epigenetic information with data mining techniques.
Aguiar-Pulido, Vanessa; Seoane, José A; Gestal, Marcos; Dorado, Julián
2013-01-01
Data mining, a part of the Knowledge Discovery in Databases process (KDD), is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Analyses of epigenetic data have evolved towards genome-wide and high-throughput approaches, thus generating great amounts of data for which data mining is essential. Part of these data may contain patterns of epigenetic information which are mitotically and/or meiotically heritable determining gene expression and cellular differentiation, as well as cellular fate. Epigenetic lesions and genetic mutations are acquired by individuals during their life and accumulate with ageing. Both defects, either together or individually, can result in losing control over cell growth and, thus, causing cancer development. Data mining techniques could be then used to extract the previous patterns. This work reviews some of the most important applications of data mining to epigenetics.
NASA Astrophysics Data System (ADS)
Hellouin de Menibus, Benjamin; Sablik, Mathieu
2017-06-01
This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial configuration at random according to some initial shift-ergodic measure, and use the limit measure to describe the asymptotic behaviour of the automata. We first take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata [introduced by Fisch (J Theor Probab 3(2):311-338, 1990; Phys D 45(1-3):19-25, 1990)], one-sided captive cellular automata [introduced by Theyssier (Captive Cellular Automata, 2004)], the majority-traffic cellular automaton, a self stabilisation process towards a discrete line [introduced by Regnault and Rémila (in: Mathematical Foundations of Computer Science 2015—40th International Symposium, MFCS 2015, Milan, Italy, Proceedings, Part I, 2015)]. In a second time we restrict our study to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times [generalising K ůrka et al. (in: Proceedings of AUTOMATA, 2011)], the density of particles and the rate of convergence to the limit measure.
Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale.
Inoue, Yasuhiro; Adachi, Taiji
2011-07-01
Membrane protrusion is a mechanochemical process of active membrane deformation driven by actin polymerization. Previously, Brownian ratchet (BR) was modeled on the basis of the underlying molecular mechanism. However, because the BR requires a priori load that cannot be determined without information of the cell shape, it cannot be effective in studies in which resultant shapes are to be solved. Other cellular-scale models describing the protrusion have also been suggested for modeling a whole cell; however, these models were not developed on the basis of coarse-grained physics representing the underlying molecular mechanism. Therefore, to express the membrane protrusion on the cellular scale, we propose a novel mathematical model, the coarse-grained BR (CBR), which is derived on the basis of nonequilibrium thermodynamics theory. The CBR can reproduce the BR within the limit of the quasistatic process of membrane protrusion and can estimate the protrusion velocity consistently with an effective elastic constant that represents the state of the energy of the membrane. Finally, to demonstrate the applicability of the CBR, we attempt to perform a cellular-scale simulation of migrating keratocyte in which the proposed CBR is used for the membrane protrusion model on the cellular scale. The results show that the experimentally observed shapes of the leading edge are well reproduced by the simulation. In addition, The trend of dependences of the protrusion velocity on the curvature of the leading edge, the temperature, and the substrate stiffness also agreed with the other experimental results. Thus, the CBR can be considered an appropriate cellular-scale model to express the membrane protrusion on the basis of its underlying molecular mechanism.
A POX on Renal Cancer Cells | Center for Cancer Research
Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.
Measurement of replication structures at the nanometer scale using super-resolution light microscopy
Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.
2010-01-01
DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256
On the derivation of approximations to cellular automata models and the assumption of independence.
Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V
2014-07-01
Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.
Probabilistic Cellular Automata
Agapie, Alexandru; Giuclea, Marius
2014-01-01
Abstract Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case—connecting the probability of a configuration in the stationary distribution to its number of zero-one borders—the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata. PMID:24999557
Probabilistic cellular automata.
Agapie, Alexandru; Andreica, Anca; Giuclea, Marius
2014-09-01
Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.
Bridges, Robert J; Bradbury, Neil A
2018-01-01
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
NASA Astrophysics Data System (ADS)
Wei, Lin; Yang, Qiaoyu; Xiao, Lehui
2014-08-01
Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery. Electronic supplementary information (ESI) available: Experimental section and additional supporting results as noted in the text. See DOI: 10.1039/c4nr02732a
2010-01-01
Background Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition. PMID:20704702
Theoretical aspects of cellular decision-making and information-processing.
Kobayashi, Tetsuya J; Kamimura, Atsushi
2012-01-01
Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.
Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.
Dembowski, Jill A; DeLuca, Neal A
2015-05-01
Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.
Ma, Yanyan; Yang, Mingkun; Lin, Xiaohuang; Liu, Xin; Huang, Hui; Ge, Feng
2017-05-05
As a recently validated reversible post translational modification, lysine malonylation regulates diverse cellular processes from bacteria to mammals, but its existence and function in photosynthetic organisms remain unknown. Cyanobacteria are the most ancient group of photosynthetic prokaryotes and contribute about 50% of the total primary production on Earth. Previously, we reported the lysine acetylome in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Here we performed the first proteomic survey of lysine malonylation in Synechocystis using highly accurate tandem mass spectrometry in combination with affinity purification. We identified 598 lysine malonylation sites on 339 proteins with high confidence in total. A bioinformatic analysis suggested that these malonylated proteins may play various functions and were distributed in diverse subcellular compartments. Among them, many malonylated proteins were involved in cellular metabolism. The functional significance of lysine malonylation in the metabolic enzyme activity of phosphoglycerate kinase (PGK) was determined by site-specific mutagenesis and biochemical studies. Interestingly, 27 proteins involved in photosynthesis were found to be malonylated for the first time, suggesting that lysine malonylation may be involved in photosynthesis. Thus our results provide the first lysine malonylome in a photosynthetic organism and suggest a previously unexplored role of lysine malonylation in the regulation of metabolic processes and photosynthesis in Synechocystis as well as in other photosynthetic organisms.
NASA Astrophysics Data System (ADS)
Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.
The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival
Studholme, Colin; Frias, Antonio E.
2017-01-01
Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920
Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel
2012-01-01
With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540
Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka
2014-01-01
We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973
Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga
2015-03-16
The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.
San Miguel-Ruiz, José E; García-Arrarás, José E
2007-10-18
All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds. Other species, such as echinoderms, posses a striking repair capability that can include the replacement of entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of organ regeneration, particularly in animals where loss and regeneration of complex structures is a programmed natural event, is similar to wound healing. We have now used the sea cucumber Holothuria glaberrima to address this question. Animals were lesioned by making a 3-5 mm transverse incision between one of the longitudinal muscle pairs along the bodywall. Lesioned tissues included muscle, nerve, water canal and dermis. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in cellular and tissue elements during repair were evaluated using classical dyes, immmuohistochemistry and phalloidin labeling. In addition, the temporal and spatial distribution of cell proliferation in the animals was assayed using BrdU incorporation. We found that cellular events associated with wound healing in H. glaberrima correspond to those previously shown to occur during intestinal regeneration. These include: (1) an increase in the number of spherule-containing cells, (2) remodeling of the extracellular matrix, (3) formation of spindle-like structures that signal dedifferentiation of muscle cells in the area flanking the lesion site and (4) intense cellular division occurring mainly in the coelomic epithelium after the first week of regeneration. Our data indicate that H. glaberrima employs analogous cellular mechanisms during wound healing and organ regeneration. Thus, it is possible that regenerative limitations in some organisms are due either to the absence of particular mechanisms associated with repair or the inability of activating the repair process in some tissues or stages.
Algorithm for cellular reprogramming.
Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika
2017-11-07
The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon
2010-01-01
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less
Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun
2013-01-01
Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810
Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.
2017-01-01
Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413
Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, Misty; Martinez, Raquel; Ali, Hind
2006-06-23
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC{sub 5} {approx} 20 {mu}M). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositolmore » 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.« less
Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription.
Bauer, David L V; Tellier, Michael; Martínez-Alonso, Mónica; Nojima, Takayuki; Proudfoot, Nick J; Murphy, Shona; Fodor, Ervin
2018-05-15
Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
The auxetic behavior of an expanded periodic cellular structure
NASA Astrophysics Data System (ADS)
Ciolan, Mihaela A.; Lache, Simona; Velea, Marian N.
2018-02-01
Within nowadays research, when it comes to lightweight sandwich panels, periodic cellular structures are considered real trendsetters. One of the most used type of core in producing sandwich panels is the honeycomb. However, due to its relatively high manufacturing cost, this structure has limited applications; therefore, research has been carried out in order to develop alternative solutions. An example in this sense is the ExpaAsym cellular structure, developed at the Transilvania University of Braşov; it represents a periodic cellular structure manufactured through a mechanically expansion process of a previously cut and perforated sheet material. The relative density of the structure was proven to be significantly lower than the one of the honeycomb. This gives a great advantage to the structure, due to the fact that when the internal angle A of the unit cell is 60°, after the mechanical expansion it results a hexagonal structure. The main objective of this paper is to estimate the in-plane Poisson ratios of the structure, in terms of its geometrical parameters. It is therefore analytically shown that for certain values of the geometric parameters, the in-plane Poisson ratios have negative values when the internal angle exceeds 90°, which determines its auxetic behavior.
A Quantitative Study of Oxygen as a Metabolic Regulator
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.
2000-01-01
An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.
How chemistry supports cell biology: the chemical toolbox at your service.
Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib
2014-12-01
Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bensasson, René V.; Zoete, Vincent; Berthier, Gaston; Talalay, Paul; Dinkova-Kostova, Albena T.
2010-01-01
Electron affinity (EA) and electrophilicity index (ω) of 16 synthetic triterpenoids (TP), previously identified as inducers of cytoprotective enzymes and as inhibitors of cellular inflammatory responses, have been calculated by the molecular orbital method. Linear correlations were obtained by plotting the values of EA, as well as those of ω versus (i) the potencies of induction of NAD(P)H quinone reductase (NQO1, EC 1.6.99.2), a cytoprotective enzyme, expressed via the concentration of TP required to double the specific activity of NQO1 (CD value) and (ii) the values of their anti-inflammatory activity expressed via the IC-50 of TP for suppression of upregulation of inducible nitric oxide synthase (iNOS, EC 1.14.13.39), both previously experimentally determined. The observed correlations demonstrate quantitatively for a series of triterpenoids that their electrophilicity is a major factor determining their potency as inducers of the cytoprotective phase 2 response and as inhibitors of inflammatory processes. PMID:20433811
Cox, Dianne; Hodgson, Louis
2014-01-01
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463
Hanna, Samer; Miskolci, Veronika; Cox, Dianne; Hodgson, Louis
2014-01-01
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.
Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins
Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria
2016-01-01
Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213
Cellular uptake of modified oligonucleotides: fluorescence approach
NASA Astrophysics Data System (ADS)
Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves
2005-06-01
Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.
Teen Perceptions of Cellular Phones as a Communication Tool
ERIC Educational Resources Information Center
Jonas, Denise D.
2011-01-01
The excitement and interest in innovative technologies has spanned centuries. However, the invention of the cellular phone has surpassed previous technology interests, and changed the way we communicate today. Teens make up the fastest growing market of current cellular phone users. Consequently, the purpose of this study was to determine teen…
Balaji Raghavendran, Hanumantha Rao; Pingguan-Murphy, Belinda; Abbas, Azlina A.; Merican, Azhar M.; Kamarul, Tunku
2017-01-01
The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications. PMID:28654695
Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki
2014-05-01
A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.
NASA Astrophysics Data System (ADS)
Garbacz, Tomasz; Dulebova, Ludmila
2012-12-01
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Schachtner, Thomas; Otto, Natalie M; Stein, Maik; Reinke, Petra
2018-05-01
The number of kidney transplant recipients (KTRs) being waitlisted for a subsequent transplantation has disproportionately increased to almost 25%. Evidence for the optimal management of the failed allograft, however, remains inconsistent. We studied 111 KTRs who underwent their second kidney transplantation from 1998 to 2015. In 51/111 KTRs (46%) the failed allograft was removed and in 60/111 (54%) the failed allograft was retained. KTRs with primary non-function and allograft loss <12 months of the first failed allograft were excluded from analysis. Samples were collected before transplantation and at 1 month posttransplantation and donor-reactive T cells were measured using an interferon-γ enzyme-linked immunosorbent spot assay. KTRs with the previous allograft removed showed significantly higher rates of acute cellular rejection compared with KTRs with the previous allograft retained [27/51 KTRs (53%) versus 18/60 KTRs (30%); P = 0.019]. KTRs with the previous allograft removed showed significantly inferior death-censored allograft survival compared with KTRs with the previous allograft retained (P = 0.022). Here, KTRs with the previous allograft removed showed significantly higher donor-reactive T cells pretransplantation compared with KTRs with the previous allograft retained (P = 0.012). Interestingly, no differences were observed for the presence of panel reactive antibodies and for the development of de novo donor-specific antibodies. Our data suggest higher cellular presensitization among KTRs with the previous allograft removed, which is associated with higher rates of acute cellular rejection and inferior allograft survival. Immunological mechanisms that may account for these differences may include prolonged maintenance immunosuppression to save urine output in KTRs with the first kidney allograft retained and cellular presensitization after withdrawal of maintenance immunosuppression, which lead to allograft rejection and ultimately to allograft nephrectomy.
Non-Small Cell Lung Cancers in Women and Men: Differences in Biology, Behavior, and Outcomes.
Mah, Vei H
2015-01-01
Lung cancer is the leading cause of cancer deaths in men and women, both because of its high incidence rates and poor prognosis without effective therapies. Environmental carcinogens, most predominantly tobacco smoke, play a significant role. There are continuously emerging data to suggest the biological process differs between lung cancers in men and women. Differences are seen in a variety of cellular pathways and responses to carcinogens and therapies. Particular note in this article is made of carcinogen processing by cytochrome P450s, estrogen receptor pathways, epidermal growth factor receptor mutations, and how these are not necessarily independent cellular processes. These topics are only very briefly summarized here and it was not possible to include many important references. The heterogeneity of lung cancers in men and women, as well as smokers and nonsmokers, are likely to become more apparent with further studies. Work previously done in our laboratory (EDRN, PIs David Chia & Lee Goodglick) served to further emphasize these differences. This report is dedicated to the memory of Lee Goodglick with whom I had the privilege to work for many years prior to his untimely death.
The similia principle: results obtained in a cellular model system.
Wiegant, Fred; Van Wijk, Roeland
2010-01-01
This paper describes the results of a research program focused on the beneficial effect of low dose stress conditions that were applied according to the similia principle to cells previously disturbed by more severe stress conditions. In first instance, we discuss criteria for research on the similia principle at the cellular level. Then, the homologous ('isopathic') approach is reviewed, in which the initial (high dose) stress used to disturb cellular physiology and the subsequent (low dose) stress are identical. Beneficial effects of low dose stress are described in terms of increased cellular survival capacity and at the molecular level as an increase in the synthesis of heat shock proteins (hsps). Both phenomena reflect a stimulation of the endogenous cellular self-recovery capacity. Low dose stress conditions applied in a homologous approach stimulate the synthesis of hsps and enhance survival in comparison with stressed cells that were incubated in the absence of low dose stress conditions. Thirdly, the specificity of the low dose stress condition is described where the initial (high dose) stress is different in nature from the subsequently applied (low dose) stress; the heterologous or 'heteropathic' approach. The results support the similia principle at the cellular level and add to understanding of how low dose stress conditions influence the regulatory processes underlying self-recovery. In addition, the phenomenon of 'symptom aggravation' which is also observed at the cellular level, is discussed in the context of self-recovery. Finally, the difference in efficiency between the homologous and the heterologous approach is discussed; a perspective is indicated for further research; and the relationship between studies on the similia principle and the recently introduced concept of 'postconditioning hormesis' is emphasized. Copyright 2009 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Biased and unbiased strategies to identify biologically active small molecules.
Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël
2014-08-15
Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.
On Cellular Darwinism: Mitochondria.
Bull, Larry
2016-01-01
The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model.
Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John
2008-01-01
Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425
Mukherjee, Shivam; Guainazzi, Angelo; Schärer, Orlando D.
2014-01-01
DNA interstrand crosslinks (ICLs) are extremely cytotoxic lesions that block essential cellular processes, such as replication and transcription. Crosslinking agents are widely used in cancer chemotherapy and form an array of structurally diverse ICLs. Despite the clinical success of these agents, resistance of tumors to crosslinking agents, for example, through repair of these lesions by the cellular machinery remains a problem. We have previously reported the synthesis of site-specific ICLs mimicking those formed by nitrogen mustards to facilitate the studies of cellular responses to ICL formation. Here we extend these efforts and report the synthesis of structurally diverse major groove ICLs that induce severe, little or no distortion in the DNA. Our approach employs the incorporation of aldehyde precursors of different lengths into complementary strands and ICL formation using a double reductive amination with a variety of amines. Our studies provide insight into the structure and reactivity parameters of ICL formation by double reductive amination and yield a set of diverse ICLs that will be invaluable for exploring structure–activity relationships in ICL repair. PMID:24782532
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-01-01
Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-12-03
Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).
Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang
2016-01-01
DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743
Cellular phone use while driving at night.
Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P
2008-03-01
Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.
Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.
2014-01-01
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468
2D photonic crystal complete band gap search using a cyclic cellular automaton refination
NASA Astrophysics Data System (ADS)
González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.
2014-11-01
We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.
Haigh, Cathryn L; Tumpach, Carolin; Drew, Simon C; Collins, Steven J
2015-01-01
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.
Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.
2015-01-01
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Rewiring of cellular membrane homeostasis by picornaviruses.
Belov, George A; Sztul, Elizabeth
2014-09-01
Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Integrated electronics and fluidic MEMS for bioengineering
NASA Astrophysics Data System (ADS)
Fok, Ho Him Raymond
Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8 pedestals. This approach also allows the in-vitro model to mimic the three-dimensionality of the cellular mitotic spindle that is absent in previous work. The second application of an integrated bioengineering system discussed in this dissertation is to design and fabricate active electronics and sensors for an in-vivo application to monitor neural activity at the cellular level. Temperature sensors were chosen for a first demonstration. In order for temperature sensors to be able to be implanted into brain interfaces, it is necessary for these devices to be fabricated using processes that are compatible with bio-compatible substrates such as glass and plastic. This dissertation addresses this challenge by developing temperature sensors integrated with biasing circuitry using zinc oxide thin film transistors (TFTs) fabricated on polyimide substrates. The integrated sensors show good temperature sensitivity, which is critical for monitoring neural temperature at the cellular level. This dissertation also describes the unique requirements of encapsulating implantable electronics. For instance, encapsulation schemes must be designed in such a way that they both protect electronic devices from extracellular fluids and also do not interfere with the functionality of these devices. In this work, SU-8 is used as a convenient and effective encapsulation layer. Thermal engineering to prevent active electronics from overheating and to ensure accurate temperature measurement from temperature sensors is also discussed, and a synergistic encapsulation and thermal engineering combination is presented.
Song, Renfang; Kidd, Laura; Janssen, Adam; Yosypiv, Ihor V
2018-04-01
Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells (NPCs) of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump V-ATPase. Previously, we demonstrated that conditional ablation of the PRR in Six2 + NPCs in mice (Six2 PRR -/- ) causes early neonatal death. Here, we identified genes that are regulated by PRR in Six2 + NPCs FACS-isolated from Six2 PRR -/- and control kidneys on embryonic day E15.5 using whole-genome expression analysis. Seven genes with expression in CM cells previously shown to direct kidney development, including Notch1, β-catenin, Lef1, Lhx1, Jag1, and p53, were downregulated. The functional groups within the downregulated gene set included genes involved in embryonic and cellular development, renal regeneration, cellular assembly and organization, cell morphology, death and survival. Double-transgenic Six2 PRR -/- /BatGal + mice, a reporter strain for β-catenin transcriptional activity, showed decreased β-catenin activity in the UB in vivo. Reduced PRR gene dosage in heterozygous Six2 PRR +/- mice was associated with decreased glomerular number, segmental thickening of the glomerular basement membrane with focal podocyte foot process effacement, development of hypertension and increased soluble PRR (sPRR) levels in the urine at 2 months of age. Together, these data demonstrate that NPC PRR performs essential functions during nephrogenesis via control of hierarchy of genes that regulate critical cellular processes. Both reduced nephron endowment and augmented urine sPRR likely contribute to programming of hypertension in Six2 PRR +/- mice. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Photochromic molecular implementations of universal computation.
Chaplin, Jack C; Krasnogor, Natalio; Russell, Noah A
2014-12-01
Unconventional computing is an area of research in which novel materials and paradigms are utilised to implement computation. Previously we have demonstrated how registers, logic gates and logic circuits can be implemented, unconventionally, with a biocompatible molecular switch, NitroBIPS, embedded in a polymer matrix. NitroBIPS and related molecules have been shown elsewhere to be capable of modifying many biological processes in a manner that is dependent on its molecular form. Thus, one possible application of this type of unconventional computing is to embed computational processes into biological systems. Here we expand on our earlier proof-of-principle work and demonstrate that universal computation can be implemented using NitroBIPS. We have previously shown that spatially localised computational elements, including registers and logic gates, can be produced. We explain how parallel registers can be implemented, then demonstrate an application of parallel registers in the form of Turing machine tapes, and demonstrate both parallel registers and logic circuits in the form of elementary cellular automata. The Turing machines and elementary cellular automata utilise the same samples and same hardware to implement their registers, logic gates and logic circuits; and both represent examples of universal computing paradigms. This shows that homogenous photochromic computational devices can be dynamically repurposed without invasive reconfiguration. The result represents an important, necessary step towards demonstrating the general feasibility of interfacial computation embedded in biological systems or other unconventional materials and environments. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Sohn, Sook-Young; Hearing, Patrick
2016-06-14
The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses.
Analysis of cellular and extracellular DNA in fingerprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Button, Julie M.
It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implicationsmore » for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.« less
Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks
Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.
2014-01-01
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961
Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.
2013-01-01
SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008
Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.
Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K
2010-11-01
The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.
ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE
Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.
2010-01-01
The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332
Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tan, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V.; Mathison, John C.; Moresco, Eva Marie Y.; Monson, Nancy L.; Ulevitch, Richard J.; Beutler, Bruce
2015-01-01
The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines including IL-1β and IL-18. We show that NLRP3 inflammasome activation is restricted to interphase of the cell cycle by NEK7, a serine/threonine kinase previously implicated in mitosis. NLRP3 inflammasome activation requires NEK7, which binds to the NLRP3 leucine-rich repeat domain in a kinase-independent manner downstream from the induction of mitochondrial ROS. This interaction is necessary for NLRP3-ASC complex formation, ASC oligomerization, and caspase-1 activation. NEK7 promotes the NLRP3-dependent cellular inflammatory response to intraperitoneal monosodium urate challenge, and the development of experimental autoimmune encephalitis in mice. Our findings suggest NEK7 serves as a cellular switch that enforces mutual exclusivity between the inflammasome response and cell division. PMID:26642356
Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D
2013-07-25
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Functional Analysis of the Aspergillus nidulans Kinome
De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.
2013-01-01
The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs. PMID:23505451
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.
Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo
2015-06-01
The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arjunan, Satya Nanda Vel; Tomita, Masaru
2010-03-01
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally. The online version of this article (doi:10.1007/s11693-009-9047-2) contains supplementary material, which is available to authorized users.
Cellular solidification in a monotectic system
NASA Technical Reports Server (NTRS)
Kaukler, W. F.; Curreri, P. A.
1987-01-01
Succinonitrile-glycerol, SN-G, transparent organic monotectic alloy is studied with particular attention to cellular growth. The phase diagram is determined, near the monotectic composition, with greater accuracy than previous studies. A solidification interface stability diagram is determined for planar growth. The planar-to-cellular transition is compared to predictions from the Burton, Primm, Schlichter theory. A new technique to determine the solute segregation by Fourier transform infrared spectroscopy is developed. Proposed models that involve the cellular interface for alignment of monotectic second-phase spheres or rods are compared with observations.
Absence of cellular hypersensitivity to muscle and thymic antigens in myasthenia gravis.
Behan, W M; Behan, P O; Simpson, J A
1975-01-01
Humoral antibodies to skeletal muscle and its components and to thymus have been demonstrated in the sera of patients with myasthenia gravis. A role for cellular hypersensitivity to similar antigens in the pathogenesis of the disease has been suggested by some reports of the presence of cellular immunity. A detailed immunological study using muscle and thymic antigens, including those prepared from the patients' own tissues, failed to confirm these findings. It is suggested that previous reports of cellular hypersensitivity represent the demonstration of an epiphenomenon. PMID:1206412
Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle
2015-01-01
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644
Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications
Choi, Hyo-Jick; Montemagno, Carlo D.
2013-01-01
In this review, we briefly introduce our efforts to reconstruct cellular life processes by mimicking natural systems and the applications of these systems to energy and environmental problems. Functional units of in vitro cellular life processes are based on the fabrication of artificial organelles using protein-incorporated polymersomes and the creation of bioreactors. This concept of an artificial organelle originates from the first synthesis of poly(siloxane)-poly(alkyloxazoline) block copolymers three decades ago and the first demonstration of protein activity in the polymer membrane a decade ago. The increased value of biomimetic polymers results from many research efforts to find new applications such as functionally active membranes and a biochemical-producing polymersome. At the same time, foam research has advanced to the point that biomolecules can be efficiently produced in the aqueous channels of foam. Ongoing research includes replication of complex biological processes, such as an artificial Calvin cycle for application in biofuel and specialty chemical production, and carbon dioxide sequestration. We believe that the development of optimally designed biomimetic polymers and stable/biocompatible bioreactors would contribute to the realization of the benefits of biomimetic systems. Thus, this paper seeks to review previous research efforts, examine current knowledge/key technical parameters, and identify technical challenges ahead. PMID:28788424
NASA Astrophysics Data System (ADS)
Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.
2017-02-01
Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.
Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.
Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank
2017-01-01
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics
NASA Astrophysics Data System (ADS)
Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng
2013-03-01
Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.
NASA Astrophysics Data System (ADS)
Shor, Erez; Shoham, Shy; Levenberg, Shulamit
2016-03-01
Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.
Autophagic pathways and metabolic stress
Kaushik, S.; Singh, R.; Cuervo, A. M.
2014-01-01
Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. PMID:21029294
Autophagic pathways and metabolic stress.
Kaushik, S; Singh, R; Cuervo, A M
2010-10-01
Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.
Divergent cellular pathways of hippocampal memory consolidation and reconsolidation
Lee, Jonathan L. C.; Hynds, Robert E.
2013-01-01
The reconsolidation of memories after their retrieval involves cellular mechanisms that recapitulate much of the initial consolidation process. However, we have previously demonstrated that there are independent cellular mechanisms of consolidation and reconsolidation in the dorsal hippocampus for contextual fear memories. Expression of BDNF was required for consolidation, while Zif268 expression was necessary for reconsolidation. Given the dichotomy between the obvious mechanistic similarity and notable dissociations between consolidation and reconsolidation, we sought to determine whether the separation at the level of gene expression reflected either parallel and independent upstream signalling pathways, or common upstream mechanisms that diverge by the level of transcriptional activation. Here we show that while consolidation and reconsolidation are commonly dependent upon NMDA receptor activation in the dorsal hippocampus there is a double dissociation between the effects of the MEK inhibitor U0126 and the IKK inhibitor sulfasalazine. Moreover, rescue experiments and western blot analyses show that there are functional NMDA receptor–ERK1–BDNF and NMDA receptor–IKKα–Zif268 pathways for consolidation and reconsolidation, respectively. Therefore, there are divergent pathways of hippocampal memory consolidation and reconsolidation, involving commonality at the cell surface, but separable downstream kinase cascades and transcriptional regulation. PMID:23197404
Identification of Cellular Proteins Required for Replication of Human Immunodeficiency Virus Type 1
Dziuba, Natallia; Ferguson, Monique R.; O'Brien, William A.; Sanchez, Anthony; Prussia, Andrew J.; McDonald, Natalie J.; Friedrich, Brian M.; Li, Guangyu; Shaw, Michael W.; Sheng, Jinsong; Hodge, Thomas W.; Rubin, Donald H.
2012-01-01
Abstract Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation. PMID:22404213
Identification of cellular proteins required for replication of human immunodeficiency virus type 1.
Dziuba, Natallia; Ferguson, Monique R; O'Brien, William A; Sanchez, Anthony; Prussia, Andrew J; McDonald, Natalie J; Friedrich, Brian M; Li, Guangyu; Shaw, Michael W; Sheng, Jinsong; Hodge, Thomas W; Rubin, Donald H; Murray, James L
2012-10-01
Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation.
Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory.
del Río, José A; Gavín, Rosalina
2016-01-01
Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.
High Resolution, Large Deformation 3D Traction Force Microscopy
López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian
2014-01-01
Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435
Wu, Zhiqiang; Zhao, Jinlin; Qiu, Minghan; Mi, Zeyun; Meng, Maobin; Guo, Yu; Wang, Hui; Yuan, Zhiyong
2018-04-19
Accurately identifying and quantifying cellular autophagy is very important as the significance of autophagy in physiological and pathological processes becomes increasingly evident. Ectopically expressed fluorescent-tagged microtubule-associated protein light chain 3B (MAP1LC3B, LC3) is the most widely used reporter for monitoring autophagy activity thus far. However, this approach ignores the influence of constitutively overexpressed LC3 on autophagy itself and autophagy-related processes and its accuracy in indicating autophagy is questionable. Here, we generated a knock-in GFP-LC3 reporter via the CRISPR/Cas9 system in 293FT cells to add GFP to the N-terminal of and in frame with endogenous LC3. We proved that this knock-in GFP-LC3 was expressed at biological level driven by the endogenous transcriptional regulatory elements as the wild type alleles. Compared with the ectopically expressed GFP-LC3, the endogenous knock-in reporter exhibited much higher sensitivity and signal-to-noise ratio of GFP-LC3 puncta upon the induction or inhibition of autophagy at certain step for monitoring autophagy activity. Thus, according to the previous reported concerning and the results presented here, we suggest that this knock-in GFP-LC3 reporter is better for bona fide monitoring cellular autophagy and should be employed for further study of autophagy in vitro and in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-03-01
A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blom, Magdalena; Reis, Katarina; Heldin, Johan
RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less
Lu, Zhongyan; Shen, Hong; Shen, Zanming
2018-01-01
In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.
Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori
Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng
2014-01-01
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153
PDGF-AA-induced filamentous mitochondria benefit dermal papilla cells in cellular migration.
Mifude, C; Kaseda, K
2015-06-01
Human dermal papilla cells (HDPCs) play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. Previous reports demonstrated that platelet-derived growth factor-AA (PDGF-AA) enhanced the formation of dermal condensates in hair follicular development. Additionally, PDGF-AA induces/maintains the anagen phase of the hair cycle. It is likely that mitochondrial morphology and functions are tightly coupled with maintenance of these energy-demanding activities. However, little is known about the mitochondrial regulation in HDPCs. Thus, we investigated the PDGF-involved mitochondrial regulation in HDPCs. The mitochondrial morphologies of HDPCs were examined in the presence or absence of PDGF-AA under a fluorescent microscope. ATP production and cellular motility were investigated. The relationship between mitochondrial morphology and the cellular functions was discussed. We observed that primary HDPCs contained mitochondria with filamentous and/or rounded morphologies. Both types of mitochondria showed similar membrane potentials. Interestingly, in the presence of PDGF-AA, but not PDGF-BB, the balance between the two morphologies shifted towards the filamentous form. Concomitantly, both mitochondrial enzymatic activity and total cellular ATP level were augmented by PDGF-AA. These two parameters were closely correlated, suggesting the mitochondrial involvement in the PDGF-augmented ATP production. Moreover, PDGF-AA accelerated the migration of HDPCs in a gap-filling assay, but did not change the rate of cellular proliferation. Notably, filamentous mitochondria dominated migrating HDPCs. PDGF-AA benefits HDPCs in the process of migration, by increasing the number of filamentous mitochondria. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Damage Control: Cellular Mechanisms of Plasma Membrane Repair
Andrews, Norma W.; de Almeida, Patricia E.; Corrotte, Matthias
2014-01-01
Summary When wounded, eukaryotic cells reseal in a few seconds. Ca2+ influx induces exocytosis of lysosomes, a process previously thought to promote repair by “patching” wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase triggers endocytosis of lesions, followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal, which are distinct from the “patch” model. PMID:25150593
This manuscript describes cellular and genomic evidence that microglia exposed to concentrated air pollutants (CAPs). These were CAPs achieved from a previous study in which sub-chronically exposed transgenic animals develop neurodegeneration (Veronesi et al., Inhalation Tox,...
Bertram, Catharina; Hass, Ralf
2009-10-01
The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.
Analysis of Human Mobility Based on Cellular Data
NASA Astrophysics Data System (ADS)
Arifiansyah, F.; Saptawati, G. A. P.
2017-01-01
Nowadays not only adult but even teenager and children have then own mobile phones. This phenomena indicates that the mobile phone becomes an important part of everyday’s life. Based on these indication, the amount of cellular data also increased rapidly. Cellular data defined as the data that records communication among mobile phone users. Cellular data is easy to obtain because the telecommunications company had made a record of the data for the billing system of the company. Billing data keeps a log of the users cellular data usage each time. We can obtained information from the data about communication between users. Through data visualization process, an interesting pattern can be seen in the raw cellular data, so that users can obtain prior knowledge to perform data analysis. Cellular data processing can be done using data mining to find out human mobility patterns and on the existing data. In this paper, we use frequent pattern mining and finding association rules to observe the relation between attributes in cellular data and then visualize them. We used weka tools for finding the rules in stage of data mining. Generally, the utilization of cellular data can provide supporting information for the decision making process and become a data support to provide solutions and information needed by the decision makers.
Mechanical properties of porous and cellular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, K.; Green, D.J.; Gibson, L.J.
1991-01-01
This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less
Vaccination and the TAP-independent antigen processing pathways.
López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen
2013-09-01
The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
An improved cellular automaton method to model multispecies biofilms.
Tang, Youneng; Valocchi, Albert J
2013-10-01
Biomass-spreading rules used in previous cellular automaton methods to simulate multispecies biofilm introduced extensive mixing between different biomass species or resulted in spatially discontinuous biomass concentration and distribution; this caused results based on the cellular automaton methods to deviate from experimental results and those from the more computationally intensive continuous method. To overcome the problems, we propose new biomass-spreading rules in this work: Excess biomass spreads by pushing a line of grid cells that are on the shortest path from the source grid cell to the destination grid cell, and the fractions of different biomass species in the grid cells on the path change due to the spreading. To evaluate the new rules, three two-dimensional simulation examples are used to compare the biomass distribution computed using the continuous method and three cellular automaton methods, one based on the new rules and the other two based on rules presented in two previous studies. The relationship between the biomass species is syntrophic in one example and competitive in the other two examples. Simulation results generated using the cellular automaton method based on the new rules agree much better with the continuous method than do results using the other two cellular automaton methods. The new biomass-spreading rules are no more complex to implement than the existing rules. Copyright © 2013 Elsevier Ltd. All rights reserved.
Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae; Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae; Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae
2014-04-15
We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATPmore » following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.« less
Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach
Westermark, Stefanie; Steuer, Ralf
2016-01-01
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes. PMID:28083530
Proteolipidic Composition of Exosomes Changes during Reticulocyte Maturation*
Carayon, Kévin; Chaoui, Karima; Ronzier, Elsa; Lazar, Ikrame; Bertrand-Michel, Justine; Roques, Véronique; Balor, Stéphanie; Terce, François; Lopez, André; Salomé, Laurence; Joly, Etienne
2011-01-01
During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process. PMID:21828046
Baker, R. Frank; Leach, Kristen A.; Boyer, Nathanial R.; Skopelitis, Tara; Jackson, David; Braun, David M.
2016-01-01
Sucrose transporters (SUTs) translocate sucrose (Suc) across cellular membranes, and in eudicots, multiple SUTs are known to function in Suc phloem loading in leaves. In maize (Zea mays), the Sucrose Transporter1 (ZmSut1) gene has been implicated in Suc phloem loading based upon RNA expression in leaves, electrophysiological experiments, and phenotypic analysis of zmsut1 mutant plants. However, no previous studies have examined the cellular expression of ZmSut1 RNA or the subcellular localization of the ZmSUT1 protein to assess the gene’s hypothesized function in Suc phloem loading or to evaluate its potential roles, such as phloem unloading, in nonphotosynthetic tissues. To this end, we performed RNA in situ hybridization experiments, promoter-reporter gene analyses, and ZmSUT1 localization studies to elucidate the cellular expression pattern of the ZmSut1 transcript and protein. These data showed that ZmSut1 was expressed in multiple cell types throughout the plant and indicated that it functions in phloem companion cells to load Suc and also in other cell types to retrieve Suc from the apoplasm to prevent its accumulation and loss to the transpiration stream. Additionally, by comparing a phloem-mobile tracer with ZmSut1 expression, we determined that developing maize leaves dynamically switch from symplasmic to apoplasmic phloem unloading, reconciling previously conflicting reports, and suggest that ZmSut1 does not have an apparent function in either unloading process. A model for the dual roles for ZmSut1 function (phloem loading and apoplasmic recycling), Sut1 evolution, and its possible use to enhance Suc export from leaves in engineering C3 grasses for C4 photosynthesis is discussed. PMID:27621426
González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F
2010-11-01
Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.
Mammalian synthetic biology for studying the cell
Mathur, Melina; Xiang, Joy S.
2017-01-01
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576
NASA Astrophysics Data System (ADS)
Mehta, Pankaj; Lang, Alex H.; Schwab, David J.
2016-03-01
A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.
Genomic signal processing: from matrix algebra to genetic networks.
Alter, Orly
2007-01-01
DNA microarrays make it possible, for the first time, to record the complete genomic signals that guide the progression of cellular processes. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment, and drug development. This chapter reviews the first data-driven models that were created from these genome-scale data, through adaptations and generalizations of mathematical frameworks from matrix algebra that have proven successful in describing the physical world, in such diverse areas as mechanics and perception: the singular value decomposition model, the generalized singular value decomposition model comparative model, and the pseudoinverse projection integrative model. These models provide mathematical descriptions of the genetic networks that generate and sense the measured data, where the mathematical variables and operations represent biological reality. The variables, patterns uncovered in the data, correlate with activities of cellular elements such as regulators or transcription factors that drive the measured signals and cellular states where these elements are active. The operations, such as data reconstruction, rotation, and classification in subspaces of selected patterns, simulate experimental observation of only the cellular programs that these patterns represent. These models are illustrated in the analyses of RNA expression data from yeast and human during their cell cycle programs and DNA-binding data from yeast cell cycle transcription factors and replication initiation proteins. Two alternative pictures of RNA expression oscillations during the cell cycle that emerge from these analyses, which parallel well-known designs of physical oscillators, convey the capacity of the models to elucidate the design principles of cellular systems, as well as guide the design of synthetic ones. In these analyses, the power of the models to predict previously unknown biological principles is demonstrated with a prediction of a novel mechanism of regulation that correlates DNA replication initiation with cell cycle-regulated RNA transcription in yeast. These models may become the foundation of a future in which biological systems are modeled as physical systems are today.
USDA-ARS?s Scientific Manuscript database
We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...
Electromagnetic Basis of Metabolism and Heredity
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Stolc, Viktor
2016-01-01
Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.
Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tang, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V; Mathison, John C; Moresco, Eva Marie Y; Monson, Nancy L; Ulevitch, Richard J; Beutler, Bruce
2016-03-01
The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.
Koba, Ryota; Oguma, Keisuke; Sentsui, Hiroshi
2015-06-02
Tripartite motif-containing 25 (TRIM25) regulates various cellular processes through E3 ubiquitin ligase activity. Previous studies have revealed that the expression of TRIM25 is induced by type I interferon and that TRIM25 is involved in the host cellular innate immune response against retroviral infection. Although retroviral infection is prevalent in domestic cats, the roles of feline TRIM25 in the immune response against these viral infections are poorly understood. Because feline TRIM25 is expected to modulate the infection of feline leukemia virus (FeLV), we investigated its effects on early- and late-stage FeLV replication. This study revealed that ectopic expression of feline TRIM25 in HEK293T cells reduced viral protein levels leading to the inhibition of FeLV release. Our findings show that feline TRIM25 has a potent antiviral activity and implicate an antiviral mechanism whereby feline TRIM25 interferes with late-stage FeLV replication. Copyright © 2015 Elsevier B.V. All rights reserved.
The BioPlex Network: A Systematic Exploration of the Human Interactome.
Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P
2015-07-16
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.
The BioPlex Network: A Systematic Exploration of the Human Interactome
Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.
2015-01-01
SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194
Collective Calcium Signaling of Defective Multicellular Networks
NASA Astrophysics Data System (ADS)
Potter, Garrett; Sun, Bo
2015-03-01
A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.
POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE
Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina
2011-01-01
Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540
The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation
NASA Technical Reports Server (NTRS)
Doty, Stephen B.; Stiner, Dalina; Telford, William G.
2000-01-01
In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.
Caspase-2 associates with FAN through direct interaction and overlapping functionality.
Forsberg, Jeremy; Li, Xinge; Zamaraev, Aleksey V; Panaretakis, Theocharis; Zhivotovsky, Boris; Olsson, Magnus
2018-05-23
Caspase-2 has been implicated in diverse cellular processes, and the identification of factors with which it interacts has steadily increased. In the present study, we report a direct interaction between caspase-2 and factor associated with neutral sphingomyelinase activation (FAN) using yeast two-hybrid screening and co-immunoprecipitation. Further, stable suppression of caspase-2 expression in HEK293T and HeLa cells enabled a systematic investigation of putative novel enzyme functionalities, especially with respect to ceramide production, cell migration, IL-6 production and vesicular homeostasis, all of which have been previously reported to be associated with FAN. Lipidomics excluded the involvement of caspase-2 in the generation of ceramide species, but caspase-2-dependent deregulation of IL-6 release, vesicular size and delayed cell relocation supported an association between caspase-2 and FAN. Collectively, these data identify a novel caspase-2-interacting factor, FAN, and expand the role for the enzyme in seemingly non-apoptotic cellular mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Photospheric Magnetic Flux Transport - Supergranules Rule
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Rightmire-Upton, Lisa
2012-01-01
Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!
Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control.
Karnik, Rucha; Waghmare, Sakharam; Zhang, Ben; Larson, Emily; Lefoulon, Cécile; Gonzalez, Wendy; Blatt, Michael R
2017-01-01
Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H + -ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.
Granovsky, Alexey E; Rosner, Marsha Rich
2008-04-01
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.
Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.
Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak
2016-02-27
Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.
Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism
Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak
2016-01-01
Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219
Omnidirectional spin-wave nanograting coupler
Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.
2013-01-01
Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978
NASA Astrophysics Data System (ADS)
Cang, Chunlei; Aranda, Kimberly; Ren, Dejian
2014-09-01
Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.
Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan
2018-08-01
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu
Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less
The Role of Oxidative Stress in Parkinson’s Disease
Dias, Vera; Junn, Eunsung; Mouradian, M. Maral
2014-01-01
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection. PMID:24252804
Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P. F.
2013-01-01
Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway. PMID:24068925
Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P F
2013-09-01
Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway.
Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review
Truscott, T. George
2018-01-01
We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252
Mammalian synthetic biology for studying the cell.
Mathur, Melina; Xiang, Joy S; Smolke, Christina D
2017-01-02
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.
Structure and Function of Viral Deubiquitinating Enzymes.
Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L
2017-11-10
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui
2016-01-01
Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558
Schreiner, Sabrina; Wimmer, Peter; Groitl, Peter; Chen, Shuen-Yuan; Blanchette, Paola; Branton, Philip E.; Dobner, Thomas
2011-01-01
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription. PMID:21697482
Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation.
Meadows, Adam L; Karnik, Rahi; Lam, Harry; Forestell, Sean; Snedecor, Brad
2010-03-01
We have developed a reactor-scale model of Escherichia coli metabolism and growth in a 1000 L process for the production of a recombinant therapeutic protein. The model consists of two distinct parts: (1) a dynamic, process specific portion that describes the time evolution of 37 process variables of relevance and (2) a flux balance based, 123-reaction metabolic model of E. coli metabolism. This model combines several previously reported modeling approaches including a growth rate-dependent biomass composition, maximum growth rate objective function, and dynamic flux balancing. In addition, we introduce concentration-dependent boundary conditions of transport fluxes, dynamic maintenance demands, and a state-dependent cellular objective. This formulation was able to describe specific runs with high-fidelity over process conditions including rich media, simultaneous acetate and glucose consumption, glucose minimal media, and phosphate depleted media. Furthermore, the model accurately describes the effect of process perturbations--such as glucose overbatching and insufficient aeration--on growth, metabolism, and titer. (c) 2009 Elsevier Inc. All rights reserved.
Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi
2016-01-01
We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Liwei; Zhao, Wenting; Zheng, Quanhui
2016-01-15
The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. Themore » data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.« less
Melt-processed polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2015-12-28
The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.
Matsumoto, Hirotaka; Kiryu, Hisanori
2016-06-08
Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.
A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis
ERIC Educational Resources Information Center
Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari
2012-01-01
Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…
ERIC Educational Resources Information Center
Olsher, G.; Dreyfus, A.
1999-01-01
Suggests a new approach to teaching about biochemical cellular processes by stimulating student interest in those biochemical processes that allowed for the outcomes of modern biotechnologies. Discusses the development of students' ability to ask meaningful questions about intra-cellular processes, and the resulting meaningful learning of relevant…
Arabidopsis thaliana GEX1 has dual functions in gametophyte development and early embryogenesis
USDA-ARS?s Scientific Manuscript database
GEX1 is a plasma membrane protein conserved among plant species, and was previously shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immedi...
The Interpretation of Cellular Transport Graphics by Students with Low and High Prior Knowledge
ERIC Educational Resources Information Center
Cook, Michelle; Carter, Glenda; Wiebe, Eric N.
2008-01-01
The purpose of this study was to examine how prior knowledge of cellular transport influenced how high school students in the USA viewed and interpreted graphic representations of this topic. The participants were Advanced Placement Biology students (n = 65); each participant had previously taken a biology course in high school. After assessing…
USDA-ARS?s Scientific Manuscript database
Host cellular responses to coccidiosis infection are consistent with elements of apoptosis, autophagy, and necrosis. These processes are enhanced in the cell through cell-directed signaling or repressed through parasite-derived inhibitors of these processes favoring the survival of the parasite. Acr...
Gkigkitzis, Ioannis
2013-01-01
The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Analytical modeling based on cell death signaling molecules has been shown to be an independent and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration.
Deretic, Vojo
2008-01-01
Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.
Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng
2015-01-01
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017
Chen, Guang-Chao; Lee, Janice Y; Tang, Hong-Wen; Debnath, Jayanta; Thomas, Sheila M; Settleman, Jeffrey
2008-01-01
Autophagy is a conserved cellular process of macromolecule recycling that involves vesicle-mediated degradation of cytoplasmic components. Autophagy plays essential roles in normal cell homeostasis and development, the response to stresses such as nutrient starvation, and contributes to disease processes including cancer and neurodegeneration. Although many of the autophagy components identified from genetic screens in yeast are well conserved in higher organisms, the mechanisms by which this process is regulated in any species are just beginning to be elucidated. In a genetic screen in Drosophila melanogaster, we have identified a link between the focal adhesion protein paxillin and the Atg1 kinase, which has been previously implicated in autophagy. In mammalian cells, we find that paxillin is redistributed from focal adhesions during nutrient deprivation, and paxillin-deficient cells exhibit defects in autophagosome formation. Together, these findings reveal a novel evolutionarily conserved role for paxillin in autophagy.
Light Weight Biomorphous Cellular Ceramics from Cellulose Templates
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2003-01-01
Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.
Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?
NASA Technical Reports Server (NTRS)
Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.;
2013-01-01
Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.
Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L
2014-01-01
Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. © 2013 John Wiley & Sons Ltd.
Model-based design of experiments for cellular processes.
Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E
2013-01-01
Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.
SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM
Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.
2013-01-01
The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431
Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E
2003-05-01
Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Moreno-Villanueva, Maria; Krieger, Stephanie; Feiveson, Alan; Kovach, Annie Marie; Buerkle, Alexander; Wu, Honglu
2017-01-01
Under Earth gravity conditions cellular damage can be counteracted by activation of the physiological defense mechanisms or through medical interventions. The mode of action of both, physiological response and medical interventions can be affected by microgravity leading to failure in repairing the damage. There are many studies reporting the effects of microgravity and/or radiation on cellular functions. However, little is known about the synergistic effects on cellular response to radiation when other endogenous cellular stress-response pathways are previously activated. Here, we investigated whether previous stimulation of the adrenergic receptor, which modulates immune response, affects radiation-induced apoptosis in immune cells under simulated microgravity conditions. Peripheral blood mononuclear cells (PBMCs) were stimulated with isoproterenol (a sympathomimetic drug) and exposed to 0.8 or 2Gy gamma-radiation in simulated microgravity versus Earth gravity. Expression of genes involved in adrenergic receptor pathways, DNA repair and apoptosis as well as the number of apoptotic cells and DNA strand breaks were determined. Our results showed that, under simulated microgravity conditions, previous treatment with isoproterenol prevented radiation-induced i) gene down regulation, ii) DNA strand breaks formation and iii) apoptosis induction. Interestedly, we found a radiation-induced increase of adrenergic receptor gene expression, which was also abolished in simulated microgravity. Understanding the mechanisms of isoproterenol-mediated radioprotection in simulated microgravity can help to develop countermeasures for space-associated health risks as well as radio-sensitizers for cancer therapy.
Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters
WANG, JIACHEN; DASGUPTA, INDRANI; FOX, GEORGE E.
2009-01-01
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such. PMID:19478915
Udhane, Sameer S; Legeza, Balazs; Marti, Nesa; Hertig, Damian; Diserens, Gaëlle; Nuoffer, Jean-Marc; Vermathen, Peter; Flück, Christa E
2017-08-17
Metformin is an antidiabetic drug, which inhibits mitochondrial respiratory-chain-complex I and thereby seems to affect the cellular metabolism in many ways. It is also used for the treatment of the polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. In addition, metformin possesses antineoplastic properties. Although metformin promotes insulin-sensitivity and ameliorates reproductive abnormalities in PCOS, its exact mechanisms of action remain elusive. Therefore, we studied the transcriptome and the metabolome of metformin in human adrenal H295R cells. Microarray analysis revealed changes in 693 genes after metformin treatment. Using high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS-NMR), we determined 38 intracellular metabolites. With bioinformatic tools we created an integrated pathway analysis to understand different intracellular processes targeted by metformin. Combined metabolomics and transcriptomics data analysis showed that metformin affects a broad range of cellular processes centered on the mitochondrium. Data confirmed several known effects of metformin on glucose and androgen metabolism, which had been identified in clinical and basic studies previously. But more importantly, novel links between the energy metabolism, sex steroid biosynthesis, the cell cycle and the immune system were identified. These omics studies shed light on a complex interplay between metabolic pathways in steroidogenic systems.
Adamowski, Maciek; Kania, Urszula
2018-01-01
Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis. PMID:29511054
AGCVIII Kinases: at the crossroads of cellular signaling
USDA-ARS?s Scientific Manuscript database
AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...
ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...
Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C
2015-03-03
Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.
Differential growth of wrinkled biofilms
NASA Astrophysics Data System (ADS)
Espeso, D. R.; Carpio, A.; Einarsson, B.
2015-02-01
Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.
Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries.
Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell
2008-09-01
Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development.
Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries
Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell
2008-01-01
Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development. PMID:18544560
Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons
Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme
2013-01-01
Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621
NASA Astrophysics Data System (ADS)
Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.
2014-03-01
Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.
Are microRNAs true sensors of ageing and cellular senescence?
Williams, Justin; Smith, Flint; Kumar, Subodh; Vijayan, Murali; Reddy, P Hemachandra
2017-05-01
All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes. Copyright © 2016 Elsevier B.V. All rights reserved.
How the study of Listeria monocytogenes has led to new concepts in biology.
Rolhion, Nathalie; Cossart, Pascale
2017-06-01
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
nextPARS: parallel probing of RNA structures in Illumina
Saus, Ester; Willis, Jesse R.; Pryszcz, Leszek P.; Hafez, Ahmed; Llorens, Carlos; Himmelbauer, Heinz
2018-01-01
RNA molecules play important roles in virtually every cellular process. These functions are often mediated through the adoption of specific structures that enable RNAs to interact with other molecules. Thus, determining the secondary structures of RNAs is central to understanding their function and evolution. In recent years several sequencing-based approaches have been developed that allow probing structural features of thousands of RNA molecules present in a sample. Here, we describe nextPARS, a novel Illumina-based implementation of in vitro parallel probing of RNA structures. Our approach achieves comparable accuracy to previous implementations, while enabling higher throughput and sample multiplexing. PMID:29358234
The quantitative and condition-dependent Escherichia coli proteome
Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias
2016-01-01
Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532
2011-01-01
Background Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites Giardia intestinalis and Trichomonas vaginalis. Results We have identified the previously 'missing' Giardia RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs. Conclusions Results indicate that Giardia intestinalis and Trichomonas vaginalis, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes. PMID:22053856
Magnetic Resonance Microscopy of Human and Porcine Neurons and Cellular Processes
Flint, Jeremy J.; Hansen, Brian; Portnoy, Sharon; Lee, Choong-Heon; King, Michael A.; Fey, Michael; Vincent, Franck; Stanisz, Greg J; Vestergaard-Poulsen, Peter; Blackband, Stephen J
2012-01-01
With its unparalleled ability to safely generate high-contrast images of soft tissues, magnetic resonance imaging (MRI) has remained at the forefront of diagnostic clinical medicine. Unfortunately due to resolution limitations, clinical scans are most useful for detecting macroscopic structural changes associated with a small number of pathologies. Moreover, due to a longstanding inability to directly observe magnetic resonance (MR) signal behavior at the cellular level, such information is poorly characterized and generally must be inferred. With the advent of the MR microscope in 1986 came the ability to measure MR signal properties of theretofore unobservable tissue structures. Recently, further improvements in hardware technology have made possible the ability to visualize mammalian cellular structure. In the current study, we expand upon previous work by imaging the neuronal cell bodies and processes of human and porcine α-motor neurons. Complimentary imaging studies are conducted in pig tissue in order to demonstrate qualitative similarities to human samples. Also, apparent diffusion coefficient (ADC) maps were generated inside porcine α-motor neuron cell bodies and portions of their largest processes (mean = 1.7±0.5 μm2/ms based on 53 pixels) as well as in areas containing a mixture of extracellular space, microvasculature, and neuropil (0.59±0.37 μm2/ms based on 33 pixels). Three-dimensional reconstruction of MR images containing α-motor neurons shows the spatial arrangement of neuronal projections between adjacent cells. Such advancements in imaging portend the ability to construct accurate models of MR signal behavior based on direct observation and measurement of the components which comprise functional tissues. These tools would not only be useful for improving our interpretation of macroscopic MRI performed in the clinic, but they could potentially be used to develop new methods of differential diagnosis to aid in the early detection of a multitude of neuropathologies. PMID:22281672
Understanding the cancer cell phenotype beyond the limitations of current omics analyses.
Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara
2016-01-01
Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.
Emergence of tissue mechanics from cellular processes: shaping a fly wing
NASA Astrophysics Data System (ADS)
Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank
Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.
Detecting the Extent of Cellular Decomposition after Sub-Eutectoid Annealing in Rolled UMo Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, Elizabeth J.; Jana, Saumyadeep; Devaraj, Arun
2017-07-31
This report presents an automated image processing approach to quantifying microstructure image data, specifically the extent of eutectoid (cellular) decomposition in rolled U-10Mo foils. An image processing approach is used here to be able to quantitatively describe microstructure image data in order to relate microstructure to processing parameters (time, temperature, deformation).
Protein arginine methylation: Cellular functions and methods of analysis.
Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz
2006-12-01
During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.
Goyal, Ravinder K.; Hancock, Robert E. W.; Mattoo, Autar K.; Misra, Santosh
2013-01-01
Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield. PMID:24147012
Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A; Nathanielsz, Peter W; Myatt, Leslie; Nijland, Mark J
2013-10-01
Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.
Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields
NASA Astrophysics Data System (ADS)
Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.
2013-02-01
Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo
Ohno, Yoshikazu; Otaki, Joji M.
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.
Ohno, Yoshikazu; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.
Genetic Dominance & Cellular Processes
ERIC Educational Resources Information Center
Seager, Robert D.
2014-01-01
In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…
Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions
ERIC Educational Resources Information Center
Brown, Mary H.; Schwartz, Renee S.
2009-01-01
The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Fox, P. L.
1998-01-01
Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.
Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih
2016-04-12
Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.
Raman hyperspectral imaging of iron transport across membranes in cells
NASA Astrophysics Data System (ADS)
Das, Anupam; Costa, Xavier Felipe; Khmaladze, Alexander; Barroso, Margarida; Sharikova, Anna
2016-09-01
Raman scattering microscopy is a powerful imaging technique used to identify chemical composition, structural and conformational state of molecules of complex samples in biology, biophysics, medicine and materials science. In this work, we have shown that Raman techniques allow the measurement of the iron content in protein mixtures and cells. Since the mechanisms of iron acquisition, storage, and excretion by cells are not completely understood, improved knowledge of iron metabolism can offer insight into many diseases in which iron plays a role in the pathogenic process, such as diabetes, neurodegenerative diseases, cancer, and metabolic syndrome. Understanding of the processes involved in cellular iron metabolism will improve our knowledge of cell functioning. It will also have a big impact on treatment of diseases caused by iron deficiency (anemias) and iron overload (hereditary hemochromatosis). Previously, Raman studies have shown substantial differences in spectra of transferrin with and without bound iron, thus proving that it is an appropriate technique to determine the levels of bound iron in the protein mixture. We have extended these studies to obtain hyperspectral images of transferrin in cells. By employing a Raman scanning microscope together with spectral detection by a highly sensitive back-illuminated cooled CCD camera, we were able to rapidly acquire and process images of fixed cells with chemical selectivity. We discuss and compare various methods of hyperspectral Raman image analysis and demonstrate the use of these methods to characterize cellular iron content without the need for dye labeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigham, CJ; Speth, DR; Rha, C
Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectivelymore » repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.« less
González, Silvia A; Affranchino, José L
2016-07-01
The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.
A Proteomic Study of Brassinosteroid Response in Arabidopsis
Deng, Zhiping; Zhang, Xin; Tang, Wenqiang; Oses-Prieto, Juan A; Suzuki, Nagi; Gendron, Joshua M; Chen, Huanjing; Guan, Shenheng; Chalkley, Robert J.; Peterman, T. Kaye; Burlingame, Alma L.; Wang, Zhi-Yong
2010-01-01
Summary The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we have performed a proteomic study of BR-regulated proteins in Arabidopsis using two-dimensional difference gel electrophoresis (2-D DIGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 42 BR-regulated proteins, which are predicted to play potential roles in BR regulation of specific cellular processes, such as signaling, cytoskeleton rearrangement, vesicle trafficking, and biosynthesis of hormones and vitamins. Analyses of the BR insensitive mutant bri1-116 and BR hypersensitive mutant bzr1-1D identified 5 proteins (PATL1, PATL2, THI1, AtMDAR3 and NADP-ME2) affected by both BR-treatment and in the mutants, suggesting their importance in BR action. Selected proteins were further studied using insertion knockout mutants or immunoblotting. Interestingly, about 80% of the BR-responsive proteins were not identified in previous microarray studies, and direct comparison between protein- and RNA changes in BR mutants revealed a very weak correlation. RT-PCR analysis of selected genes revealed gene-specific kinetic relationships between RNA and protein responses. Furthermore, BR-regulated posttranslational modification of BiP2 protein was detected as spot shifts in 2-D DIGE. This study provides novel insights into the molecular networks that link BR signaling to specific cellular and physiological responses. PMID:17848588
A family of cellular proteins related to snake venom disintegrins.
Weskamp, G; Blobel, C P
1994-03-29
Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions.
NASA Astrophysics Data System (ADS)
Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.
2016-03-01
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Fluorescence microscopy: A tool to study autophagy
NASA Astrophysics Data System (ADS)
Rai, Shashank; Manjithaya, Ravi
2015-08-01
Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.
Cellular water distribution, transport, and its investigation methods for plant-based food material.
Khan, Md Imran H; Karim, M A
2017-09-01
Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S
1994-01-01
We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.« less
The cellular transducer in bone: What is it?
Taylor, David; Hazenberg, Jan; Lee, T Clive
2006-01-01
Bone is able to detect its strain environment and respond accordingly. In particular it is able to adapt to over-use and under-use by bone deposition or resorption. How can bone sense strain? Various physical mechanisms have been proposed for the so-called cellular transducer, but there is no conclusive proof for any one of them. This paper examines the theories and evidence, with particular reference to a new theory proposed by the authors, involving damage to cellular processes by microcracks. Experiments on bone samples ex-vivo showed that cracks cannot fracture osteocytes, but that cellular processes which span the crack can be broken. A theoretical model was developed for predicting the number of broken processes as a function of crack size and applied stress. This showed that signals emitted by fractured processes could be used to detect cracks which needed repairing and to provide information on the overall level of damage which could be used to initiate repair and adaptation responses.
Makela, Ashley V; Murrell, Donna H; Parkins, Katie M; Kara, Jenna; Gaudet, Jeffrey M; Foster, Paula J
2016-10-01
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Matrix remodeling between cells and cellular interactions with collagen bundle
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
Peterson, Emily A; Boezio, Alessandro A; Andrews, Paul S; Boezio, Christiane M; Bush, Tammy L; Cheng, Alan C; Choquette, Deborah; Coats, James R; Colletti, Adria E; Copeland, Katrina W; DuPont, Michelle; Graceffa, Russell; Grubinska, Barbara; Kim, Joseph L; Lewis, Richard T; Liu, Jingzhou; Mullady, Erin L; Potashman, Michele H; Romero, Karina; Shaffer, Paul L; Stanton, Mary K; Stellwagen, John C; Teffera, Yohannes; Yi, Shuyan; Cai, Ti; La, Daniel S
2012-08-01
mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series. Copyright © 2012. Published by Elsevier Ltd.
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi
2011-01-01
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Comparative muscle transcriptome associated with carcass traits of Nellore cattle.
Silva-Vignato, Bárbara; Coutinho, Luiz L; Cesar, Aline S M; Poleti, Mirele D; Regitano, Luciana C A; Balieiro, Júlio C C
2017-07-03
Commercial cuts yield is an important trait for beef production, which affects the final value of the products, but its direct determination is a challenging procedure to be implemented in practice. The measurement of ribeye area (REA) and backfat thickness (BFT) can be used as indirect measures of meat yield. REA and BFT are important traits studied in beef cattle due to their strong implication in technological (carcass yield) and nutritional characteristics of meat products, like the degree of muscularity and total body fat. Thus, the aim of this work was to study the Longissimus dorsi muscle transcriptome of Nellore cattle, associated with REA and BFT, to find differentially expressed (DE) genes, metabolic pathways, and biological processes that may regulate these traits. By comparing the gene expression level between groups with extreme genomic estimated breeding values (GEBV), 101 DE genes for REA and 18 for BFT (false discovery rate, FDR 10%) were identified. Functional enrichment analysis for REA identified two KEGG pathways, MAPK (Mitogen-Activated Protein Kinase) signaling pathway and endocytosis pathway, and three biological processes, response to endoplasmic reticulum stress, cellular protein modification process, and macromolecule modification. The MAPK pathway is responsible for fundamental cellular processes, such as growth, differentiation, and hypertrophy. For BFT, 18 biological processes were found to be altered and grouped into 8 clusters of semantically similar terms. The DE genes identified in the biological processes for BFT were ACHE, SRD5A1, RSAD2 and RSPO3. RSAD2 has been previously shown to be associated with lipid droplet content and lipid biosynthesis. In this study, we identified genes, metabolic pathways, and biological processes, involved in differentiation, proliferation, protein turnover, hypertrophy, as well as adipogenesis and lipid biosynthesis related to REA and BFT. These results enlighten some of the molecular processes involved in muscle and fat deposition, which are economically important carcass traits for beef production.
Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius
2015-01-01
A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542
3D Printing Variable Stiffness Foams Using Viscous Thread Instability
NASA Astrophysics Data System (ADS)
Lipton, Jeffrey I.; Lipson, Hod
2016-08-01
Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.
Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging
Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim
2010-01-01
Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915
TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4.
Kuipers, Arthur J; Middelbeek, Jeroen; Vrenken, Kirsten; Pérez-González, Carlos; Poelmans, Geert; Klarenbeek, Jeffrey; Jalink, Kees; Trepat, Xavier; van Leeuwen, Frank N
2018-07-01
Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a mesenchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regulated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by tensional regulation of SOX4. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Anitha, Ayyappan; Thanseem, Ismail
2015-01-01
Autism is a complex neurodevelopmental disorder characterized by deficiencies in social interaction and communication, and by repetitive and stereotyped behaviors. According to a recent report, the prevalence of this pervasive developmental disorder has risen to 1 in 88. This will have enormous public health implications in the future, and has necessitated the need to discover predictive biomarkers that could index for autism before the onset of symptoms. microRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression at the posttranscriptional level. They have recently emerged as prominent epigenetic regulators of various cellular processes including neurodevelopment. They are abundantly present in the brain, and their dysfunction has been implicated in an array of neuropathological conditions including autism. miRNAs, previously known to be expressed only in cells and tissues, have also been detected in extracellular body fluids such as serum, plasma, saliva, and urine. Altered expression of cellular and circulating miRNAs have been observed in autistic individuals compared to healthy controls. miRNAs are now being considered as potential targets for the development of novel therapeutic strategies for autism.
Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition
Sterns, J. David; Smith, Colin B.; Steele, John R.; Stevenson, Kimberly L.; Gallicano, G. Ian
2014-01-01
Type II diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance precipitating abnormally high blood glucose levels. While the onset of T2DM is known to be the consequence of a multifactorial interplay with a strong genetic component, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Heritable epigenetic modifications, such as DNA methylation and histone modifications, play a vital role in many important cellular processes, including pancreatic cellular differentiation and maintenance of normal β-cell function. Recent studies have found possible epigenetic mechanisms to explain observed risk factors, such as altered atherogenic lipid profiles, elevated body mass index (BMI), and impaired glucose tolerance (IGT), for later development of T2DM in children born to mothers experiencing both famine and hyperglycemic conditions. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought, highlighting the importance of early preventative measures in minimizing the global burden of T2DM. PMID:25364722
PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.
Derrington, Edmund; Gabus, Caroline; Leblanc, Pascal; Chnaidermann, Jonas; Grave, Linda; Dormont, Dominique; Swietnicki, Wieslaw; Morillas, Manuel; Marck, Daniel; Nandi, Pradip; Darlix, Jean-Luc
2002-01-01
The function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins.
Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
Bascom, Carlisle S; Wu, Shu-Zon; Nelson, Katherine; Oakey, John; Bezanilla, Magdalena
2016-09-01
Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time. © 2016 American Society of Plant Biologists. All rights reserved.
Miles, Anna L; Burr, Stephen P; Grice, Guinevere L; Nathan, James A
2017-03-15
Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.
Watching cellular machinery in action, one molecule at a time.
Monachino, Enrico; Spenkelink, Lisanne M; van Oijen, Antoine M
2017-01-02
Single-molecule manipulation and imaging techniques have become important elements of the biologist's toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components. © 2017 Monachino et al.
Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...
Modeling cell adhesion and proliferation: a cellular-automata based approach.
Vivas, J; Garzón-Alvarado, D; Cerrolaza, M
Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.
Recombinant cathepsin E has no proteolytic activity at neutral pH.
Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert
2007-08-17
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.
Generic framework for mining cellular automata models on protein-folding simulations.
Diaz, N; Tischer, I
2016-05-13
Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined.
Pretreatment of high solid microbial sludges
Rivard, Christopher J.; Nagle, Nicholas J.
1998-01-01
A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.
Cellular telephone interference with medical equipment.
Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P
2005-10-01
To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.
NASA Astrophysics Data System (ADS)
Liu, Lei; Liu, Zhuang; Zhang, Xin; Feng, Yanping; Wang, Chunxiao; Sun, Yingli; Lee, Don; Yan, Aru; Wu, Qiong
2017-05-01
Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior.
Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria
Burnap, Robert L.
2014-01-01
Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the ribosome groups. PMID:25654078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiss, Brian J.; Cano, Gina L.; Tavis, John E.
2004-12-05
Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22.more » Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.« less
Molecular and Cellular Biology Animations: Development and Impact on Student Learning
ERIC Educational Resources Information Center
McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan
2005-01-01
Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…
Razi, Aida; Britton, Robert A.
2017-01-01
Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.
Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C
2015-01-01
Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A
2015-01-01
In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.
Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.
2015-01-01
In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254
Modulation of Beta-catenin Activity with PKD1 in Prostate Cancer
2012-04-01
2010 initiative), NIH (NCI RO1, NCRR COBRE ) and pharmaceutical industries (Merck Pharmaceuticals, Investigator Initiated Grant). 15. SUBJECT TERMS...cellular division and loss of cellular adhesion – the two fundamental hallmarks of a cancer cell. We have previously made two important discoveries in...another important protein in cancer cells, β-catenin. These preliminary discoveries in prostate cancer have led us to put forth the current proposal
Instability-driven electromagnetic fields in coronal plasmas
Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...
2013-04-15
Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less
Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman
2017-06-16
The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
RNase MRP and the RNA processing cascade in the eukaryotic ancestor.
Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J
2007-02-08
Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.
3D Printing Variable Stiffness Foams Using Viscous Thread Instability
Lipton, Jeffrey I.; Lipson, Hod
2016-01-01
Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148
Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes
2004-01-01
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.
ERIC Educational Resources Information Center
Songer, Catherine J.; Mintzes, Joel J.
1994-01-01
Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…
Bovine Foamy Virus Transactivator BTas Interacts with Cellular RelB To Enhance Viral Transcription▿
Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao
2010-01-01
Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription. PMID:20844054
Bovine foamy virus transactivator BTas interacts with cellular RelB to enhance viral transcription.
Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao
2010-11-01
Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription.
Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John
2003-09-26
The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.
Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K
2016-07-01
A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.
Intron retention in viruses and cellular genes: Detention, border controls and passports.
Rekosh, David; Hammarskjold, Marie-Louise
2018-05-01
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.
ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.
Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing
2016-02-01
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Nanobodies and recombinant binders in cell biology.
Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich
2015-06-08
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.
Computing aggregate properties of preimages for 2D cellular automata.
Beer, Randall D
2017-11-01
Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm-incremental aggregation-that can compute aggregate properties of the set of precursors exponentially faster than naïve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach.
Computing aggregate properties of preimages for 2D cellular automata
NASA Astrophysics Data System (ADS)
Beer, Randall D.
2017-11-01
Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm—incremental aggregation—that can compute aggregate properties of the set of precursors exponentially faster than naïve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach.
Gottschalk, Elinor Y; Meneses, Patricio I
2015-09-01
The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of intracellular trafficking processes in keratinocytes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kormes, Diego J; Cortón, Eduardo
2009-01-01
Whereas biosensors have been usually proposed as analytical tools, used to investigate the surrounding media pursuing an analytical answer, we have used a biosensor-like device to characterize the microbial cells immobilized on it. We have studied the kinetics of transport and degradation of glucose at different concentrations and temperatures. When glucose concentrations of 15 and 1.5 mM were assayed, calculated activation energies were 25.2 and 18.4 kcal mol(-1), respectively, in good agreement with previously published data. The opportunity and convenience of using Arrhenius plots to estimate the activation energy in metabolic-related processes is also discussed.
Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.
2018-02-01
The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.
Braun, Joerg E; Serebrov, Victor
2017-01-01
Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
NASA Astrophysics Data System (ADS)
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela
2016-02-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica
2016-01-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775
Pretreatment of high solid microbial sludges
Rivard, C.J.; Nagle, N.J.
1998-07-28
A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.
Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation
Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.
1978-01-01
A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541
Romeralo, M; Baldauf, S L; Cavender, J C
2009-01-01
Sampling soils to look for dictyostelids in southern Portugal we found an isolate that has a morphology that differed from any previously described species of the group. We sequenced the internally transcribed spacer (ITS) and small subunit (SSU) genes of the nuclear ribosomal RNA and found that both sequences are distinct from all previously described sequences. Phylogenetic analyses place the new species in dictyostelid Group 3 (Rhizostelids) together with D. potamoides, with which it shares 65.8% identity for ITS and 96.6% for SSU. In this paper we describe a new species of cellular slime mold, Dictyostelium ibericum, based on morphological and molecular characters. It is a small species with polar granules in its spores.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Kosztin, Ioan
2013-03-01
Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.
Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C
2014-02-01
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Imaging Cell Shape Change in Living Drosophila Embryos
Figard, Lauren; Sokac, Anna Marie
2011-01-01
The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)1-5. On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells. The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility6, but is instead fueled largely by exocytosis of membrane from internal stores7. Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle. Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using "embryo glue" to mount the embryo in a specific orientation (Table 1)8-19. In all cases, the workflow is basically the same (Figure 1). Standard methods for cloning and Drosophila transgenesis are used to prepare stable fly stocks that express a protein of interest, fused to Green Fluorescent Protein (GFP) or its variants, and these flies provide a renewable source of embryos. Alternatively, fluorescent proteins/probes are directly introduced into fly embryos via straightforward micro-injection techniques9-10. Then, depending on the developmental event and cell shape change to be imaged, embryos are collected and staged by morphology on a dissecting microscope, and finally positioned and mounted for time-lapse imaging on a confocal microscope. PMID:21490577
The Innate Immunity in Alzheimer Disease- Relevance to Pathogenesis and Therapy.
Blach-Olszewska, Zofia; Zaczynska, Ewa; Gustaw-Rothenberg, Kasia; Avila-Rodrigues, Marco; Barreto, George E; Leszek, Jerzy; Aliev, Gjumrakch
2015-01-01
The genetic, cellular, and molecular changes associated with Alzheimer disease provide evidence of immune and inflammatory processes involvement in its pathogenesis. These are supported by epidemiological studies, which show some benefit of long-term use of NSAID. The hypothesis that AD is in fact an immunologically mediated and even inflammatory pathological process may be in fact scientifically intriguing. There are several obstacles that suggest the need for more complex view, in the process of targeting inflammation and immunity in AD. In our previous studies we proposed a reliable methodology to assess innate immunity in Alzheimer patients and controls. The methodology is based on the phenomenon of human leukocytes being resistant to viral infection. The unspecific character of the resistance, dependent on interferons and tumor necrosis factor, and occurrence in cells ex vivo indicate that an in vivo mechanism of innate immunity may be involved. The above mentioned resistance could be estimated in a test based on peripheral blood leukocytes infection by vesicular stomachs virus.
Cocucci, E; Kim, J Y; Bai, Y; Pabla, N
2017-01-01
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Early cysteine-dependent inactivation of 26S proteasomes does not involve particle disassembly.
Hugo, Martín; Korovila, Ioanna; Köhler, Markus; García-García, Carlos; Cabrera-García, J Daniel; Marina, Anabel; Martínez-Ruiz, Antonio; Grune, Tilman
2018-06-01
Under oxidative stress 26S proteasomes suffer reversible disassembly into its 20S and 19S subunits, a process mediated by HSP70. This inhibits the degradation of polyubiquitinated proteins by the 26S proteasome and allows the degradation of oxidized proteins by a free 20S proteasome. Low fluxes of antimycin A-stimulated ROS production caused dimerization of mitochondrial peroxiredoxin 3 and cytosolic peroxiredoxin 2, but not peroxiredoxin overoxidation and overall oxidation of cellular protein thiols. This moderate redox imbalance was sufficient to inhibit the ATP stimulation of 26S proteasome activity. This process was dependent on reversible cysteine oxidation. Moreover, our results show that this early inhibition of ATP stimulation occurs previous to particle disassembly, indicating an intermediate step during the redox regulation of the 26S proteasome with special relevance under redox signaling rather than oxidative stress conditions. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.
Barat, J M; Barrera, C; Frías, J M; Fito, P
2007-03-01
Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.
Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael
2012-01-01
Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521
Systems biology of cellular membranes: a convergence with biophysics.
Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini
2017-09-01
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Behbehani, Gregory K.; Thom, Colin; Zunder, Eli R.; Finck, Rachel; Gaudilliere, Brice; Fragiadakis, Gabriela K.; Fantl, Wendy J.; Nolan, Garry P.
2015-01-01
Fluorescent cellular barcoding and mass-tag cellular barcoding are cytometric methods that enable high sample throughput, minimize inter-sample variation, and reduce reagent consumption. Previously employed barcoding protocols require that barcoding be performed after surface marker staining, complicating combining the technique with measurement of alcohol-sensitive surface epitopes. This report describes a method of barcoding fixed cells after a transient partial permeabilization with 0.02% saponin that results in efficient and consistent barcode staining with fluorescent or mass-tagged reagents while preserving surface marker staining. This approach simplifies barcoding protocols and allows direct comparison of surface marker staining of multiple samples without concern for variations in the antibody cocktail volume, antigen-antibody ratio, or machine sensitivity. Using this protocol, cellular barcoding can be used to reliably detect subtle differences in surface marker expression. PMID:25274027
Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen
2016-10-01
During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.
Architecture of the human interactome defines protein communities and disease networks
Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade
2017-01-01
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442
Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells.
Reis, Filipa S; Lima, Raquel T; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena
2015-09-29
Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.
Ben Naceur, Chiraz; Maxime, Valérie; Ben Mansour, Hedi; Le Tilly, Véronique; Sire, Olivier
2016-11-01
Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water. Copyright © 2016 Elsevier Inc. All rights reserved.
Dougherty, W G; Semler, B L
1993-01-01
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216
Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.
Carroll, Bernadette; Korolchuk, Viktor I; Sarkar, Sovan
2015-10-01
Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.
Global analysis of bacterial transcription factors to predict cellular target processes.
Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer
2004-03-01
Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.
Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress
2013-01-01
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation. PMID:24499129
ERIC Educational Resources Information Center
Yeong, Foong May
2015-01-01
Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…
Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes
Caspeta, Luis; Castillo, Tania; Nielsen, Jens
2015-01-01
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154
NASA Astrophysics Data System (ADS)
Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
Signals for the lysosome: a control center for cellular clearance and energy metabolism
Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.
2015-01-01
Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508
Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*
Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.
2014-01-01
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018
Roderburg, Christoph; Mollnow, Tobias; Bongaerts, Brenda; Elfimova, Natalia; Vargas Cardenas, David; Berger, Katharina; Zimmermann, Henning; Koch, Alexander; Vucur, Mihael; Luedde, Mark; Hellerbrand, Claus; Odenthal, Margarete; Trautwein, Christian; Tacke, Frank; Luedde, Tom
2012-01-01
Background and Aims Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis. Methods We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis. Results The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide. Conclusion Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular compartments involved in the pathogenesis of liver cirrhosis. PMID:22412969
de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo
2015-03-01
Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.
Yim, Robyn
2005-10-01
The research process is a balance between the inherent risks of new discoveries and the risks of research participant safety. Conflicts of interest, inherent to the research process, as well as those introduced by emerging cellular therapies, have the potential to compromise safety. The relationship of trust between the researcher and the clinical trial participant facilitates objective decision making, in the best interest of both parties. In the setup of each clinical trial, investigators incorporate ethical, political, legal, financial, and regulatory considerations as protocols are established. Responsibility to abide by these decisions ensures a systematic process and safeguards participants in this process. The integrity of the research process is strengthened by identifying potential conflicting issues with the guiding principles established in the protocols, which may threaten the objectivity of involved parties and jeopardize safety of the participants. The rapid pace and changing paradigms of new discoveries in cellular therapies exaggerate existing conflicts and introduce new ones. Ethical issues raised by emerging cellular therapies include the division of opinions regarding the use of embryonic and fetal tissue to develop stem cell lines for research, the individual versus professional conscience of a researcher, overselling of outcomes as a result of the researcher's desire to be the first to discover a cellular therapy, and therapeutic misconception resulting from a participant's desire for a miracle cure. The basic ethical issue of whether stem cells should be utilized as a cellular therapy raises heated debates because some believe that it is not acceptable to use fetal material as a source of research material for future cures and others feel equally as strong that inaction is unethical because it results in needless suffering and death owing to the absence of this research. Political issues include the divergent position statements of presidential administrations on cellular therapy, variations in individual state laws, and states becoming involved in research funding, such as California's Proposition 71. Legal concerns include expanding private litigation with diversity of lawsuits, expanding lists of defendants, and the use of class-action lawsuits in research cases. Ownership issues also arise in terms of intellectual property, patents, and ownership of stem cells collected from minors, as in umbilical cord blood donations. Situations that challenge the regulatory processes established to ensure participant safety include differences in reporting requirements for private- and public-funded research and the lack of adequate funding and resources to implement and support the institutional review board (IRB) process. Financial considerations influence the development of clinical protocols, because funding is often limited. Financial incentives, personal investment in companies funding research activities, and fundraising pressures may present potential conflicts. In addition, the increasing role of emerging biotechnology start-up companies and pharmaceutical companies in clinical research introduces additional financial considerations. Administrative policies are needed to address these possible conflicts and ensure research participant safety as cellular therapies progress from the research laboratories to the patient's bedside. Administrative policies to ensure minimum standards of quality for emerging products before human clinical trials, policies to enforce consistent reporting requirements for private and public cellular research, policies to minimize financial conflicts of interest, policies to strengthen implementation of the existing IRB process and to structure into the process a consistent, systematic review of these identified conflicts, and policies to limit private litigation will help to preserve the objectivity of the review process and ultimately increase participant safety.
High flexibility of DNA on short length scales probed by atomic force microscopy.
Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C
2006-11-01
The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Cabrera, Marco
2000-01-01
An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.
In vivo effects of a GPR30 antagonist.
Dennis, Megan K; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Alcon, Sara N; Nayak, Tapan K; Bologa, Cristian G; Leitao, Andrei; Brailoiu, Eugen; Deliu, Elena; Dun, Nae J; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R
2009-06-01
Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
A chemical proteomics approach for global analysis of lysine monomethylome profiling.
Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming
2015-02-01
Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a
Wisner, Stephanie A; Chen, Xiao; Spiegelman, Nicole A; Linder, Maurine E
2017-01-01
Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation. PMID:29239724
1992-01-01
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus. PMID:1730771
Shih, Y L; Lo, S J
1993-05-01
Treatment of GMM-1 (a goldfish melanocytoma cell line) cells with epinephrine induced a rapid cell expansion (flattening of cells, extension and broadening of cellular processes) similar to the effect of dexamethasone reported previously (Shih et al., 1990). Studies on the possible involvement of secondary messengers in cell expansion indicated that (i) both 8-bromo-CAMP and forskolin caused cell shrinking (the opposite of cell expansion); (ii) TPA also caused cell shrinking; (iii) phospholipid derivatives, such as 1,2-dioctanoyl-sn-glycerol, lysophosphatidic acid, and arachidonic acid caused cell expansion; and (iv) EGTA (calcium chelator) and nifedipine (calcium channel blocker) inhibited the effect of epinephrine. Together with the previous findings, these observations indicate that epinephrine and dexamethasone may share a common pathway in triggering an external calcium influx to cause cell expansion. The results of the effects of epinephrine agonists and antagonists, together with those of other workers, also show that there are multiple isoforms of adrenoceptor in the goldfish.
Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S
2015-10-30
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Moraes, Claudia T P; Polatto, Juliana M; Rossato, Sarita S; Izquierdo, Mariana; Munhoz, Danielle D; Martins, Fernando H; Pimenta, Daniel C; Farfan, Mauricio J; Elias, Waldir P; Barbosa, Ângela S; Piazza, Roxane M F
2015-12-18
Enteropathogenic Escherichia coli (EPEC) is distinguished mainly by the presence of EPEC adherence factor plasmid (pEAF) in typical EPEC (tEPEC) and its absence in atypical EPEC (aEPEC). The initial adherence to the intestinal mucosa is complex and mediated by adhesins other than bundle-forming pilus, which is not produced by aEPEC. Extracellular matrix (ECM) proteins of eukaryotic cells are commonly recognized by bacterial adhesins. Therefore, binding to ECM proteins may facilitate colonization, invasion and/or signaling by intestinal pathogens. Previous studies from our group demonstrated that aEPEC O26:H11 (strain BA2103) showed high binding activity to fibronectin, not shared by its counterpart, aEPEC O26:HNM. In the present study, using mass spectrometry after fibronectin-associated immunoprecipitation, two proteins, flagellin (50 kDa) and GroEL (52 kDa), were identified and BA2103 binding ability to fibronectin was inhibited in the presence of anti-H11 and anti-GroEL sera, but not by either naïve rabbit or other unrelated sera. It was also observed that the presence of purified flagellin inhibits adhesion of BA2103 to cellular fibronectin in a dose-dependent manner. Additionally, BA2103 GroEL is similar to the same protein of uropathogenic E. coli. Our results suggest that flagellin may play a role in the in vitro interaction of BA2103 with cellular fibronectin, and GroEL can be an accessory protein in this process.
Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby
2013-01-01
Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578
Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth.
Sabatino, Maria Eugenia; Grondona, Ezequiel; Sosa, Liliana D V; Mongi Bragato, Bethania; Carreño, Lucia; Juarez, Virginia; da Silva, Rodrigo A; Remor, Aline; de Bortoli, Lucila; de Paula Martins, Roberta; Pérez, Pablo A; Petiti, Juan Pablo; Gutiérrez, Silvina; Torres, Alicia I; Latini, Alexandra; De Paul, Ana L
2018-05-20
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression. Copyright © 2018 Elsevier Inc. All rights reserved.
MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shun; Huang, Haijiao; Li, Nanhong
2016-05-13
MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33more » promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.« less
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32
Bryant, Helen E.; Matthews, David A.; Wadd, Sarah; Scott, James E.; Kean, Joy; Graham, Susan; Russell, William C.; Clements, J. Barklie
2000-01-01
The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts. PMID:11070032
Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32.
Bryant, H E; Matthews, D A; Wadd, S; Scott, J E; Kean, J; Graham, S; Russell, W C; Clements, J B
2000-12-01
The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991-28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.
Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.
2010-01-01
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀ = ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725
Literature Review on Dynamic Cellular Manufacturing System
NASA Astrophysics Data System (ADS)
Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.
2014-06-01
In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.
An Evaluation of the Efficacy of a Laboratory Exercise on Cellular Respiration
ERIC Educational Resources Information Center
Scholer, Anne-Marie; Hatton, Mary
2008-01-01
This study is an analysis of the effectiveness of a faculty-designed laboratory experience about a difficult topic, cellular respiration. The activity involves a hands-on model of the cellular-respiration process, making use of wooden ball-and-stick chemistry models and small toy trucks on a table top model of the mitochondrion. Students…
Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo
2015-01-01
Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Terminal addition in a cellular world.
Torday, J S; Miller, William B
2018-07-01
Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.
Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.
Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L
2017-06-14
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level
Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.
2017-01-01
A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499
An improved sample loading technique for cellular metabolic response monitoring under pressure
NASA Astrophysics Data System (ADS)
Gikunda, Millicent Nkirote
To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.
Partial Gravity Biological Tether Experiment on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wallace, S.; Graham, L.
2018-02-01
A tether-based partial gravity bacterial biological experiment represents a viable biological experiment to investigate the fundamental internal cellular processes between altered levels of gravity and cellular adaption.
Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.
Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M
2016-08-23
Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Inferring the Limit Behavior of Some Elementary Cellular Automata
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.
Blaesi, Aron H; Saka, Nannaji
2016-07-25
At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.
Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.
2014-01-01
Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. PMID:22676371
Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R
2012-11-01
Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley & Sons A/S.
In vivo cell biology in zebrafish – providing insights into vertebrate development and disease
Vacaru, Ana M.; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W.; Sadler, Kirsten C.
2014-01-01
ABSTRACT Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease. PMID:24481493
Beltrán-Heredia, Elena; Almendro-Vedia, Víctor G.; Monroy, Francisco; Cao, Francisco J.
2017-01-01
Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous curvatures, low or negative membrane tension and hypertonic media. Conditions for spontaneous constriction at a given constriction force are also determined. The implications of these results for biological cell division are discussed. This work contributes to a better quantitative understanding of the mechanical pathway of cellular division, and could assist the design of artificial divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology approaches. PMID:28579960
Conservation and divergence of microRNAs in Populus
Barakat, Abdelali; Wall, Phillip K; DiLoreto, Scott; dePamphilis, Claude W; Carlson, John E
2007-01-01
Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species. PMID:18166134
Desai, N P; Hubbell, J A
1992-01-01
Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.
Predictability in cellular automata.
Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius
2014-01-01
Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.
Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran
2015-01-01
Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
Wang, Guangyao; Chen, Ping; Zong, Liang; Shi, Lei; Zhao, Wei
2014-02-01
Cellular schwannomas have been previously described at almost every anatomic location of the human body, but reports in the gastric wall are rare. The current study presents a rare case of cellular schwannoma originating from the gastric wall. Computed tomography revealed a 5.6×5.3×4.0-cm 3 solid mass located in the posterior wall of the stomach. Open laparotomy confirmed its mesenchymal origin. Microscopically, the tissue was composed of spindle-shaped and fascicularly-arranged cells, but mitotic figures were rare. Immunohistochemical staining showed that the tumor was negative for cluster of differentiation (CD)117, CD34, smooth muscle actin and desmin, but positive for S-100 and Ki67. The patient presented no evidence of recurrence and metastasis during follow-up. Gastric cellular schwannomas may be diagnosed by clinical characteristics, histological observations and immunohistochemical markers.
Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A
2015-01-01
The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
Han, Mee-Jung
2017-11-28
The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.
Viral Impact in Autoimmune Diseases: Expanding the “X Chromosome–Nucleolus Nexus” Hypothesis
Brooks, Wesley H.
2017-01-01
Viruses are suspected of significant roles in autoimmune diseases but the mechanisms are unclear. We get some insight by considering demands a virus places on host cells. Viruses not only require production of their own proteins, RNA and/or DNA, but also production of additional cellular machinery, such as ribosomes, to handle the increased demands. Since the nucleolus is a major site of RNA processing and ribonucleoprotein assembly, nucleoli are targeted by viruses, directly when viral RNA and proteins enter the nucleolus and indirectly when viruses induce increased expression of cellular polyamine genes. Polyamines are at high levels in nucleoli to assist in RNA folding. The size and activity of nucleoli increase directly with increases in polyamines. Nucleolar expansion due to abnormal increases in polyamines could disrupt nearby chromatin, such as the inactive X chromosome, leading to expression of previously sequestered DNA. Sudden expression of a large concentration of Alu elements from the disrupted inactive X can compete with RNA transcripts containing intronic Alu sequences that normally maintain nucleolar structural integrity. Such disruption of nucleolar activity can lead to misfolded RNAs, misassembled ribonucleoprotein complexes, and fragmentation of the nucleolus. Many autoantigens in lupus are, at least transiently, components of the nucleolus. Considering these effects of viruses, the “X chromosome–nucleolus nexus” hypothesis, which proposed disruption of the inactive X by the nucleolus during stress, is now expanded here to propose subsequent disruption of the nucleolus by previously sequestered Alu elements, which can fragment the nucleolus, leading to generation of autoantigens. PMID:29234321
Christiansen, Helena E.; Mehinto, Alvine C.; Yu, Fahong; Perry, Russell W.; Denslow, Nancy D.; Maule, Alec G.; Mesa, Matthew G.
2014-01-01
Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.
Bacterial Cellular Materials as Precursors of Chloroform
NASA Astrophysics Data System (ADS)
Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.
2011-12-01
The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.
Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle
Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.
2015-01-01
The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008
Are There Roles for Brain Cell Senescence in Aging and Neurodegenerative Disorders?
Tan, Florence C. C.; Hutchison, Emmette R.; Eitan, Erez; Mattson, Mark P.
2014-01-01
The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer’s and Parkinson’s diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues. PMID:25305051
Are there roles for brain cell senescence in aging and neurodegenerative disorders?
Tan, Florence C C; Hutchison, Emmette R; Eitan, Erez; Mattson, Mark P
2014-12-01
The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer's and Parkinson's diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues.
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
The Next Frontier: Quantitative Biochemistry in Living Cells.
Honigmann, Alf; Nadler, André
2018-01-09
Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.
A comparison of high-throughput techniques for assaying circadian rhythms in plants.
Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony
2015-01-01
Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.
Kormes, Diego J.; Cortón, Eduardo
2009-01-01
Whereas biosensors have been usually proposed as analytical tools, used to investigate the surrounding media pursuing an analytical answer, we have used a biosensor-like device to characterize the microbial cells immobilized on it. We have studied the kinetics of transport and degradation of glucose at different concentrations and temperatures. When glucose concentrations of 15 and 1.5 mM were assayed, calculated activation energies were 25.2 and 18.4 kcal mol−1, respectively, in good agreement with previously published data. The opportunity and convenience of using Arrhenius plots to estimate the activation energy in metabolic-related processes is also discussed. PMID:22573975
Identification and pathway analysis of microRNAs with no previous involvement in breast cancer.
Romero-Cordoba, Sandra; Rodriguez-Cuevas, Sergio; Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo
2012-01-01
microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.
Time scale of diffusion in molecular and cellular biology
NASA Astrophysics Data System (ADS)
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
NASA Astrophysics Data System (ADS)
Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.
2018-05-01
Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.
Exploring Autophagy in Drosophila
Juhász, Gábor
2017-01-01
Autophagy is a catabolic process in eukaryotic cells promoting bulk or selective degradation of cellular components within lysosomes. In recent decades, several model systems were utilized to dissect the molecular machinery of autophagy and to identify the impact of this cellular “self-eating” process on various physiological and pathological processes. Here we briefly discuss the advantages and limitations of using the fruit fly Drosophila melanogaster, a popular model in cell and developmental biology, to apprehend the main pathway of autophagy in a complete animal. PMID:28704946
Can mechanics control pattern formation in plants?
Dumais, Jacques
2007-02-01
Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.
Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development
Veland, Iben Rønn; Lindbæk, Louise; Christensen, Søren Tvorup
2014-01-01
Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration. PMID:26955067
From cells to tissue: A continuum model of epithelial mechanics
NASA Astrophysics Data System (ADS)
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Cellularized Cellular Solids via Freeze-Casting.
Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M
2016-02-01
The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pennington, Shaun H; Ferreira, Daniela M; Reiné, Jesús; Nyirenda, Tonney S; Thompson, Ameeka L; Hancock, Carole A; Wright, Angela D; Gordon, Stephen B; Gordon, Melita A
2018-06-26
We have previously demonstrated that polyfunctional Ty21a-responsive CD4 + and CD8 + T cells are generated at the duodenal mucosa 18 days following vaccination with live-attenuated S. Typhi (Ty21a). The longevity of cellular responses has been assessed in peripheral blood, but persistence of duodenal responses is unknown. We vaccinated eight healthy adults with Ty21a. Peripheral blood and duodenal samples were acquired after a median of 1.5 years (ranging from 1.1 to 3.7 years) following vaccination. Cellular responses were assessed in peripheral blood and at the duodenal mucosa by flow cytometry. Levels of IgG and IgA were also assessed in peripheral blood by enzyme-linked immunosorbent assay. No T-cell responses were observed at the duodenal mucosa, but CD4 + T-cell responses to Ty21a and FliC were observed in peripheral blood. Peripheral anti-lipopolysaccharide IgG and IgA responses were also observed. Early immunoglobulin responses were not associated with the persistence of long-term cellular immune responses. Early T-cell responses which we have previously observed at the duodenal mucosa 18 days following oral vaccination with Ty21a could not be detected at a median of 1.5 years. Peripheral responses were observed at this time. Immunoglobulin responses observed shortly after vaccination were not associated with cellular immune responses at 1.5 years, suggesting that the persistence of cellular immunity is not associated with the strength of the initial humoral response to vaccination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Guillemot, G.; Avettand-Fènoël, M.-N.; Iosta, A.; Foct, J.
2011-01-01
Hot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.
Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah
2015-02-01
Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen
2016-10-01
Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.
2017-01-01
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium. PMID:28230813
Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon
2013-01-01
This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine to be in short supply for yeast growth in some natural grape musts.
Tomka, Tomas; Iber, Dagmar; Boareto, Marcelo
2018-04-24
The sculpturing of the vertebrate body plan into segments begins with the sequential formation of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled by travelling waves of gene expression. These kinetic waves emerge from coupled cellular oscillators and sweep across the PSM. In zebrafish, the oscillations are driven by autorepression of her genes and are synchronized via Notch signalling. Mathematical modelling has played an important role in explaining how collective properties emerge from the molecular interactions. Increasingly more quantitative experimental data permits the validation of those mathematical models, yet leads to increasingly more complex model formulations that hamper an intuitive understanding of the underlying mechanisms. Here, we review previous efforts, and design a mechanistic model of the her1 oscillator, which represents the experimentally viable her7;hes6 double mutant. This genetically simplified system is ideally suited to conceptually recapitulate oscillatory entrainment and travelling wave formation, and to highlight open questions. It shows that three key parameters, the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient to understand the emergence of the collective period, the collective amplitude, and the synchronization of neighbouring Her1 oscillators. Moreover, two spatiotemporal time delay gradients, in the autorepression and in the juxtacrine signalling, are required to explain the collective oscillatory dynamics and synchrony of PSM cells. The highlighted developmental principles likely apply more generally to other developmental processes, including neurogenesis and angiogenesis. Copyright © 2018. Published by Elsevier Ltd.
Rodríguez, Marianela; Muñoz, Nacira; Lenardon, Sergio; Lascano, Ramiro
2013-01-01
Sugars are part of an integrated redox system, since they are key regulators of respiration and photosynthesis, and therefore of the levels of reducing power, ATP and ROS. These elements are major determinants of the cellular redox state, which is involved in the perception and regulation of many endogenous and environmental stimuli. Our previous findings suggested that early sugar increase produced during compatible Sunflower chlorotic mottle virus (SuCMoV) infection might modulate chlorotic symptom development through redox state alteration in sunflower. The purpose of this work was to characterize redox-related metabolites and gene expression changes associated with high sugar availability and symptom development induced by SuCMoV. The results show that sugar caused an increase in glutathione, ascorbate, pyridine nucleotides, and ATP. In addition, higher sugar availability reduced hydrogen peroxide and ΦPSII. This finding suggests that high sugar availability would be associated with cellular redox alteration and photoinhibitory process. The expression of the genes analyzed was also strongly affected by sugar, such as the down-regulation of psbA and up-regulation of psbO and cp29. The expression level of cytoplasmic (apx-1 and gr)- and chloroplastic (Fe-sod)-targeted genes was also significantly enhanced in sugar-treated leaves. Therefore, all these responses suggest that sugars induce chloroplastic redox state alteration with photoinhibition process that could be contributing to chlorotic symptom development during SuCMoV infection.
Cornet, Edouard; Mullier, François; Despas, Noemie; Jacqmin, Hugues; Geara, Carole; Boubaya, Marouane; Chatelain, Bernard; Troussard, Xavier
2016-10-01
The French-Speaking Cellular Haematology Group (GFHC) recently published criteria for microscopic analysis of a blood smears when a hemogram is requested. In order to evaluate and improve these recommendations using an XN (Sysmex) analyzer, we assessed 31,836 samples categorized into two sub-groups of patients either receiving or not receiving care in the clinical hematology/oncology departments of two university hospitals. By combining the manufacturer's recommendations and the GFHC recommendations, 21.3% of samples had a positive review flag in phase 1 of our study (17,991 samples). In phase 2 (13,845 samples), increasing the immature granulocytes (IG) percentage from 5-10% as a review trigger threshold, and ignoring slides with isolated flags 'PLT HIGH' (thrombocytosis) or 'MCV LOW' (microcytosis) or 'Blast/Abn Lymph and Atypical Lymph' (blast cells/abnormal lymphocytes and atypical lymphocytes) (in the absence of abnormal cells on a previous blood smear within 72 h), enabled us to significantly reduce the number of slides reviewed from 21.3-15.0% (p < 0.0001), without loss of clinical value. This decrease occurred in both sub-groups (hematology 48.7-38.0%, non-hematology 18.3-11.7%, p < 0.0001). In conclusion, the application of the GFHC criteria adapted to XN analyzers has enabled us to optimize the hematology laboratory processes, and thus reduce the production costs and the turnaround time of hemogram results.
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Galluzzi, L; Bravo-San Pedro, J M; Vitale, I; Aaronson, S A; Abrams, J M; Adam, D; Alnemri, E S; Altucci, L; Andrews, D; Annicchiarico-Petruzzelli, M; Baehrecke, E H; Bazan, N G; Bertrand, M J; Bianchi, K; Blagosklonny, M V; Blomgren, K; Borner, C; Bredesen, D E; Brenner, C; Campanella, M; Candi, E; Cecconi, F; Chan, F K; Chandel, N S; Cheng, E H; Chipuk, J E; Cidlowski, J A; Ciechanover, A; Dawson, T M; Dawson, V L; De Laurenzi, V; De Maria, R; Debatin, K-M; Di Daniele, N; Dixit, V M; Dynlacht, B D; El-Deiry, W S; Fimia, G M; Flavell, R A; Fulda, S; Garrido, C; Gougeon, M-L; Green, D R; Gronemeyer, H; Hajnoczky, G; Hardwick, J M; Hengartner, M O; Ichijo, H; Joseph, B; Jost, P J; Kaufmann, T; Kepp, O; Klionsky, D J; Knight, R A; Kumar, S; Lemasters, J J; Levine, B; Linkermann, A; Lipton, S A; Lockshin, R A; López-Otín, C; Lugli, E; Madeo, F; Malorni, W; Marine, J-C; Martin, S J; Martinou, J-C; Medema, J P; Meier, P; Melino, S; Mizushima, N; Moll, U; Muñoz-Pinedo, C; Nuñez, G; Oberst, A; Panaretakis, T; Penninger, J M; Peter, M E; Piacentini, M; Pinton, P; Prehn, J H; Puthalakath, H; Rabinovich, G A; Ravichandran, K S; Rizzuto, R; Rodrigues, C M; Rubinsztein, D C; Rudel, T; Shi, Y; Simon, H-U; Stockwell, B R; Szabadkai, G; Tait, S W; Tang, H L; Tavernarakis, N; Tsujimoto, Y; Vanden Berghe, T; Vandenabeele, P; Villunger, A; Wagner, E F; Walczak, H; White, E; Wood, W G; Yuan, J; Zakeri, Z; Zhivotovsky, B; Melino, G; Kroemer, G
2015-01-01
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death. PMID:25236395
Takada, Silvia Honda; Ikebara, Juliane Midori; de Sousa, Erica; Cardoso, Débora Sterzeck; Resende, Rodrigo Ribeiro; Ulrich, Henning; Rückl, Martin; Rüdiger, Sten; Kihara, Alexandre Hiroaki
2017-11-01
It is well known that calcium (Ca 2+ ) is involved in the triggering of neuronal death. Ca 2+ cytosolic levels are regulated by Ca 2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca 2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca 2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca 2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca 2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca 2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015.
Galluzzi, L; Bravo-San Pedro, J M; Vitale, I; Aaronson, S A; Abrams, J M; Adam, D; Alnemri, E S; Altucci, L; Andrews, D; Annicchiarico-Petruzzelli, M; Baehrecke, E H; Bazan, N G; Bertrand, M J; Bianchi, K; Blagosklonny, M V; Blomgren, K; Borner, C; Bredesen, D E; Brenner, C; Campanella, M; Candi, E; Cecconi, F; Chan, F K; Chandel, N S; Cheng, E H; Chipuk, J E; Cidlowski, J A; Ciechanover, A; Dawson, T M; Dawson, V L; De Laurenzi, V; De Maria, R; Debatin, K-M; Di Daniele, N; Dixit, V M; Dynlacht, B D; El-Deiry, W S; Fimia, G M; Flavell, R A; Fulda, S; Garrido, C; Gougeon, M-L; Green, D R; Gronemeyer, H; Hajnoczky, G; Hardwick, J M; Hengartner, M O; Ichijo, H; Joseph, B; Jost, P J; Kaufmann, T; Kepp, O; Klionsky, D J; Knight, R A; Kumar, S; Lemasters, J J; Levine, B; Linkermann, A; Lipton, S A; Lockshin, R A; López-Otín, C; Lugli, E; Madeo, F; Malorni, W; Marine, J-C; Martin, S J; Martinou, J-C; Medema, J P; Meier, P; Melino, S; Mizushima, N; Moll, U; Muñoz-Pinedo, C; Nuñez, G; Oberst, A; Panaretakis, T; Penninger, J M; Peter, M E; Piacentini, M; Pinton, P; Prehn, J H; Puthalakath, H; Rabinovich, G A; Ravichandran, K S; Rizzuto, R; Rodrigues, C M; Rubinsztein, D C; Rudel, T; Shi, Y; Simon, H-U; Stockwell, B R; Szabadkai, G; Tait, S W; Tang, H L; Tavernarakis, N; Tsujimoto, Y; Vanden Berghe, T; Vandenabeele, P; Villunger, A; Wagner, E F; Walczak, H; White, E; Wood, W G; Yuan, J; Zakeri, Z; Zhivotovsky, B; Melino, G; Kroemer, G
2015-01-01
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting.
Insulin promotes cell migration by regulating PSA-NCAM.
Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A
2017-06-01
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Tresguerres, Martin; Parks, Scott K; Katoh, Fumi; Goss, Greg G
2006-02-01
We have previously shown that continuous intravenous infusion of NaHCO3 for 24 h ( approximately 1000 micromol kg(-1) h(-1)) results in the relocation of V-H+-ATPase from the cytoplasm to the basolateral membrane in the gills of the Pacific dogfish. To further investigate this putative base-secretive process we performed similar experiments with the addition of colchicine, an inhibitor of cytoskeleton-dependent cellular trafficking processes. Blood pH and plasma total CO2 were significantly higher in the colchicines-treated, HCO3- -infused fish compared with fish infused with HCO3- alone. The effect of colchicine was highest after 24 h of infusion (8.33+/-0.06 vs 8.02+/-0.03 pH units, 15.72+/-3.29 vs 6.74+/-1.34 mmol CO2 l(-1), N=5). Immunohistochemistry and western blotting confirmed that colchicine blocked the transit of V-H+-ATPase to the basolateral membrane. Furthermore, western blotting analyses from whole gill and cell membrane samples suggest that the short-term (6 h) response to alkaline stress consists of relocation of V-H+-ATPases already present in the cell to the basolateral membrane, while in the longer term (24 h) there is both relocation of preexistent enzyme and upregulation in the synthesis of new units. Our results strongly suggest that cellular relocation of V-H+-ATPase is necessary for enhanced HCO3- secretion across the gills of the Pacific dogfish.
In-cell RNA structure probing with SHAPE-MaP.
Smola, Matthew J; Weeks, Kevin M
2018-06-01
This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.
Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T
2017-01-01
The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover ( Trifolium repens L.) Kunitz Proteinase Inhibitor ( Tr-KPI ) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1 , Tr-KPI2 , and Tr-KPI5 , was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1 , a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs , particularly Tr-KPI5 , have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.
Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P.; McManus, Michael T.
2017-01-01
The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress. PMID:29046678
Autophagy - An Emerging Anti-Aging Mechanism
Gelino, Sara; Hansen, Malene
2013-01-01
Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cell’s capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases. PMID:23750326
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minor, P.D.; Dimmock, N.J.
1977-05-15
Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less
Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces
Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.
2011-01-01
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201
Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.
Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan
2015-10-01
The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J.; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma
2014-01-01
Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. PMID:25277244
NFAT Signaling and the Tumorigenic Microenvironment of the Prostate
2017-12-01
ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability
2018-04-12
Classical Hodgkin Lymphoma; Lymphocyte-Depleted Classical Hodgkin Lymphoma; Lymphocyte-Rich Classical Hodgkin Lymphoma; Mixed Cellularity Classical Hodgkin Lymphoma; Nodular Sclerosis Classical Hodgkin Lymphoma
Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.
Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J
2015-03-13
Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...
2016-11-08
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology
Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip
2015-01-01
A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580
2010-01-01
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis. PMID:20849641
Dufoo-Hurtado, Miguel D.; Huerta-Ocampo, José Á.; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P.; Mercado-Silva, Edmundo M.
2015-01-01
Low-temperature conditioning of garlic “seed” cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that “seed” bulbs from “Coreano” variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic “seed” cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic “seed” cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies. PMID:26029231
Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia
2010-04-01
We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.
Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian
2015-01-01
Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826
Bailey, Allison; De Wit, Pierre; Thor, Peter; Browman, Howard I; Bjelland, Reidun; Shema, Steven; Fields, David M; Runge, Jeffrey A; Thompson, Cameron; Hop, Haakon
2017-09-01
Ocean acidification is the increase in seawater p CO 2 due to the uptake of atmospheric anthropogenic CO 2 , with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in p CO 2 , and associated decrease in pH, represents a climate change-related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal-level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular-level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild-caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA-seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.
bigSCale: an analytical framework for big-scale single-cell data.
Iacono, Giovanni; Mereu, Elisabetta; Guillaumet-Adkins, Amy; Corominas, Roser; Cuscó, Ivon; Rodríguez-Esteban, Gustavo; Gut, Marta; Pérez-Jurado, Luis Alberto; Gut, Ivo; Heyn, Holger
2018-06-01
Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest techniques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however, generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clustering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while preserving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters identified rare populations, such as reelin ( Reln )-positive Cajal-Retzius neurons, for which we report previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular function. Together, bigSCale presents a solution to address future challenges of large single-cell data sets. © 2018 Iacono et al.; Published by Cold Spring Harbor Laboratory Press.
Dufoo-Hurtado, Miguel D; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P; Mercado-Silva, Edmundo M
2015-01-01
Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.
DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION
LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.
2012-01-01
Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte mitochondrial dynamics vary with sub-cellular region, and (iii) the physical presence of neurons can affect astrocyte mitochondrial behavior. PMID:21907265
In Vivo Confocal Microscopy of the Ocular Surface: From Bench to Bedside
Villani, Edoardo; Baudouin, Christophe; Efron, Nathan; Hamrah, Pedram; Kojima, Takashi; Patel, Sanjay V.; Pflugfelder, Stephen C.; Zhivov, Andrey; Dogru, Murat
2014-01-01
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis. PMID:24215436
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2016-01-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712
NASA Astrophysics Data System (ADS)
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Ponizovskiy, Michail R
2016-01-01
Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.
CHIP as a membrane-shuttling proteostasis sensor
Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia
2017-01-01
Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030
The Cellular Autophagy Pathway Modulates Human T-Cell Leukemia Virus Type 1 Replication
Tang, Sai-Wen; Chen, Chia-Yen; Klase, Zachary; Zane, Linda
2013-01-01
Autophagy, a general homeostatic process for degradation of cytosolic proteins or organelles, has been reported to modulate the replication of many viruses. The role of autophagy in human T-cell leukemia virus type 1 (HTLV-1) replication has, however, been uncharacterized. Here, we report that HTLV-1 infection increases the accumulation of autophagosomes and that this accumulation increases HTLV-1 production. We found that the HTLV-1 Tax protein increases cellular autophagosome accumulation by acting to block the fusion of autophagosomes to lysosomes, preventing the degradation of the former by the latter. Interestingly, the inhibition of cellular autophagosome-lysosome fusion using bafilomycin A increased the stability of the Tax protein, suggesting that cellular degradation of Tax occurs in part through autophagy. Our current findings indicate that by interrupting the cell's autophagic process, Tax exerts a positive feedback on its own stability. PMID:23175371
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.
Magnetic levitation of single cells
Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan
2015-01-01
Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Richard R.; Brown, Craig E.; Brain Research Center, University of British Columbia, Vancouver, BC, V6T 1Z3
2007-12-21
The cystine/glutamate exchanger (xCT) supplies intracellular cyst(e)ine for the production of glutathione, a major cellular anti-oxidant. xCT is enriched in brain regions associated with neurogenesis. Previous studies have shown that the malfunction of this protein greatly attenuates cell proliferation in vitro and is associated with brain atrophy in vivo. Using mice that are homozygous for a function-blocking deletion in xCT (Sut mice), we examined in vivo the role of xCT in cell proliferation in neurogenic regions of the subventricular zone (SVZ) and denate gyrus (DG) in the adult brain. Our results indicate that a high level of cellular proliferation inmore » the adult brain persists even in the absence of functional xCT. Furthermore, in both young adult and middle-aged mice (3 and 11 months old), rates of SVZ cell proliferation were comparable between Sut and wild-type controls, although there was trend towards reduced proliferation in Sut mice (12% and 9% reduction, respectively). To our surprise, rates of cell proliferation in the DG were elevated in both 3- and 11-month-old Sut mice relative to controls (22% and 28% increase, respectively). These results demonstrate that xCT expression plays a role in regulating cellular proliferation in the DG, but not the SVZ of adult mice. Furthermore, unlike previous in vitro studies, our in vivo observations clearly indicate that xCT is not essential for ongoing cellular proliferation.« less
Cell migration, intercalation and growth regulate mammalian cochlear extension.
Driver, Elizabeth Carroll; Northrop, Amy; Kelley, Matthew W
2017-10-15
Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea. © 2017. Published by The Company of Biologists Ltd.
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes
2012-01-01
Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155
Stochastic Nature in Cellular Processes
NASA Astrophysics Data System (ADS)
Liu, Bo; Liu, Sheng-Jun; Wang, Qi; Yan, Shi-Wei; Geng, Yi-Zhao; Sakata, Fumihiko; Gao, Xing-Fa
2011-11-01
The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir
2012-02-28
In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.
Piezo proteins: regulators of mechanosensation and other cellular processes.
Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G
2014-11-14
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cellular senescence and organismal aging.
Jeyapalan, Jessie C; Sedivy, John M
2008-01-01
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.
Cellular senescence and organismal aging
Jeyapalan, Jessie C.; Sedivy, John M.
2012-01-01
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging. PMID:18502472
[Programmed necrosis and necroptosis - molecular mechanisms].
Giżycka, Agata; Chorostowska-Wynimko, Joanna
2015-12-16
Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.
Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription
NASA Astrophysics Data System (ADS)
Schmidt, Moritz; Summerer, Daniel
2014-02-01
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.
Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.
Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong
2017-03-01
Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.
Genomic Signal Processing: Predicting Basic Molecular Biological Principles
NASA Astrophysics Data System (ADS)
Alter, Orly
2005-03-01
Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of these two sets of states. Mapping genome-scale protein binding data using pseudoinverse projection onto patterns of RNA expression data that had been extracted by SVD and GSVD, a novel correlation between DNA replication initiation and RNA transcription during the cell cycle in yeast, that might be due to a previously unknown mechanism of regulation, is predicted. (1) Alter & Golub, Proc. Natl. Acad. Sci. USA 101, 16577 (2004). (2) Alter, Golub, Brown & Botstein, Miami Nat. Biotechnol. Winter Symp. 2004 (www.med.miami.edu/mnbws/alter-.pdf)
Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe
2018-03-09
Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
At a glance: cellular biology for engineers.
Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R
2008-10-01
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law
Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo
2006-01-01
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283
Determination of cellular strains by combined atomic force microscopy and finite element modeling.
Charras, Guillaume T; Horton, Mike A
2002-01-01
Many organs adapt to their mechanical environment as a result of physiological change or disease. Cells are both the detectors and effectors of this process. Though many studies have been performed in vitro to investigate the mechanisms of detection and adaptation to mechanical strains, the cellular strains remain unknown and results from different stimulation techniques cannot be compared. By combining experimental determination of cell profiles and elasticities by atomic force microscopy with finite element modeling and computational fluid dynamics, we report the cellular strain distributions exerted by common whole-cell straining techniques and from micromanipulation techniques, hence enabling their comparison. Using data from our own analyses and experiments performed by others, we examine the threshold of activation for different signal transduction processes and the strain components that they may detect. We show that modulating cell elasticity, by increasing the F-actin content of the cytoskeleton, or cellular Poisson ratio are good strategies to resist fluid shear or hydrostatic pressure. We report that stray fluid flow in some substrate-stretch systems elicits significant cellular strains. In conclusion, this technique shows promise in furthering our understanding of the interplay among mechanical forces, strain detection, gene expression, and cellular adaptation in physiology and disease. PMID:12124270
Neustupa, J
2016-02-01
The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Methylation alterations are not a major cause of PTTG1 misregulation.
Hidalgo, Manuel; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A; Royo, Jose Luis
2008-04-21
On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of misregulation associated to PTTG1 over-expression.
Ostreocin-D impact on globular actin of intact cells.
Ares, Isabel R; Cagide, Eva; Louzao, M Carmen; Espiña, Begoña; Vieytes, Mercedes R; Yasumoto, Takeshi; Botana, Luis M
2009-02-01
Ostreocin-D, discovered in the past decade, is a marine toxin produced by dinoflagellates. It shares structure with palytoxin, a toxic compound responsible for the seafood intoxication named clupeotoxism. At the cellular level, the action sites and pharmacological effects for ostreocin-D are still almost unknown. Previously, we demonstrated that these toxins change the filamentous actin cytoskeleton, which is essential for multiple cellular functions. However, nothing has yet been reported about what happens with the unpolymerized actin pool. Here (i) the effects induced by ostreocin-D on unpolymerized actin, (ii) the Ca2+ role in such a process, and (iii) the cytotoxic activity of ostreocin-D on the human neuroblastoma BE(2)-M17 cell line are shown for the first time. Fluorescently labeled DNase I was used for staining of monomeric actin prior to detection with both laser-scanning cytometry and confocal microscopy techniques. Cellular viability was tested through a microplate metabolic activity assay. Ostreocin-D elicited a rearrangement of monomeric actin toward the nuclear region. This event was not accompanied by changes in its content. In addition, the presence or absence of external Ca2+ did not change these results. This toxin was also found to cause a decrease in the viability of neuroblastoma cells, which was inhibited by the specific blocker of Na+/K+-ATPase, ouabain. All these responses were comparable to those obtained with palytoxin under identical conditions. The data suggest that ostreocin-D modulates the unassembled actin pool, activating signal transduction pathways not related to Ca2+ influx in the same way as palytoxin.
Cellular image segmentation using n-agent cooperative game theory
NASA Astrophysics Data System (ADS)
Dimock, Ian B.; Wan, Justin W. L.
2016-03-01
Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.
The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.
Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos
2016-02-24
Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system.
The Receptor-Binding Domain in the VP1u Region of Parvovirus B19
Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos
2016-01-01
Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5–80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158
Fillingame, R H; Jorstad, C M; Morris, D R
1975-01-01
There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, R.
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
NASA Astrophysics Data System (ADS)
Williams, Christopher Bryant
Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of the physics of primitive creation and an investigation of failure modes during the layered fabrication of thin trusses, build time and cost models are presented in order to verify claims of the process's economic benefits. The main contribution of this research is the embodiment of a novel manner for realizing metal parts of designed mesostructure.
Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.
Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B
2004-01-01
Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.
Gartlan, Kate H; Wee, Janet L; Demaria, Maria C; Nastovska, Roza; Chang, Tsz Man; Jones, Eleanor L; Apostolopoulos, Vasso; Pietersz, Geoffrey A; Hickey, Michael J; van Spriel, Annemiek B; Wright, Mark D
2013-05-01
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie
2012-01-01
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222
A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis.
Igaev, Maxim; Janning, Dennis; Sündermann, Frederik; Niewidok, Benedikt; Brandt, Roland; Junge, Wolfgang
2014-12-02
Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes, which is noticeably different from that in vitro. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc
2013-01-01
Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins. PMID:23527161
A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS
We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...
Characterization of a rare Unverricht-Lundborg disease mutation.
Duarte, Ana Joana; Ribeiro, Diogo; Chaves, João; Amaral, Olga
2015-09-01
Cystatin B (CSTB) gene mutations cause Unverricht-Lundborg disease (ULD), a rare form of myoclonic epilepsy. The previous identification of a Portuguese patient, homozygous for a unique splicing defect (c.66G > A; p.Q22Q), provided awareness regarding the existence of variant forms of ULD. In this work we aimed at the characterization of this mutation at the population level and at the cellular level. The cellular fractionation studies here carried out showed mislocalization of the protein and add to the knowledge on this disease.
Gary Achtemeier
2012-01-01
A cellular automata fire model represents âelementsâ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for âsuper-diffusiveâ fire spread and coupled surface-layer (2-m) fireâatmosphere processes. Pressure anomalies, which are integrals of the thermal...
Microfluidic resonant waveguide grating biosensor system for whole cell sensing
NASA Astrophysics Data System (ADS)
Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye
2011-04-01
We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.
Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W
2003-09-07
The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.
Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function
Gahl, Trevor J.; Kunze, Anja
2018-01-01
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315
Toruño, Tania Y.; Stergiopoulos, Ioannis; Coaker, Gitta
2017-01-01
Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369
Endocytosis and Endosomal Trafficking in Plants.
Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S
2016-04-29
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.
Gahl, Trevor J; Kunze, Anja
2018-01-01
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.
Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R
2017-09-15
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.
Hess, Christoph; Kemper, Claudia
2016-08-16
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race
Ramesh, Shunmugiah V.; Sahu, Pranav P.; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R.
2017-01-01
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. PMID:28914771
Prohibitin 2: At a communications crossroads.
Bavelloni, Alberto; Piazzi, Manuela; Raffini, Mirco; Faenza, Irene; Blalock, William L
2015-04-01
Prohibitins (PHBs) are a highly conserved class of proteins first discovered as inhibitors of cellular proliferation. Since then PHBs have been found to have a significant role in transcription, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism, placing these proteins among the key regulators of pathologies such as cancer, neuromuscular degeneration, and other metabolic diseases. The human genome encodes two PHB proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which function not only as a heterodimeric complex, but also independently. While many previous reviews have focused on the better characterized prohibitin, PHB1, this review focuses on PHB2 and new data concerning its cellular functions both in complex with PHB1 and independent of PHB1. © 2015 International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.
2012-01-01
Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.
Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.
2012-01-01
Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142
Wavefront cellular learning automata.
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Predictability in Cellular Automata
Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius
2014-01-01
Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778
Wavefront cellular learning automata
NASA Astrophysics Data System (ADS)
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng
2013-08-21
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
NASA Astrophysics Data System (ADS)
Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro
2015-09-01
Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.
SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2
Vennemann, Astrid; Hofmann, Thomas G.
2013-01-01
FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASHK1792R, is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies. PMID:23673342
Calcium signaling in taste cells: regulation required.
Medler, Kathryn F
2010-11-01
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex
Schluter, Cayetana; Lam, Karen K.Y.; Brumm, Jochen; Wu, Bella W.; Saunders, Matthew; Stevens, Tom H.
2008-01-01
Endosomal transport is critical for cellular processes ranging from receptor down-regulation and retroviral budding to the immune response. A full understanding of endosome sorting requires a comprehensive picture of the multiprotein complexes that orchestrate vesicle formation and fusion. Here, we use unsupervised, large-scale phenotypic analysis and a novel computational approach for the global identification of endosomal transport factors. This technique effectively identifies components of known and novel protein assemblies. We report the characterization of a previously undescribed endosome sorting complex that contains two well-conserved proteins with four predicted membrane-spanning domains. Vps55p and Vps68p form a complex that acts with or downstream of ESCRT function to regulate endosomal trafficking. Loss of Vps68p disrupts recycling to the TGN as well as onward trafficking to the vacuole without preventing the formation of lumenal vesicles within the MVB. Our results suggest the Vps55/68 complex mediates a novel, conserved step in the endosomal maturation process. PMID:18216282
A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles
Wang, Chensu; Wang, Yiguang; Li, Yang; Bodemann, Brian; Zhao, Tian; Ma, Xinpeng; Huang, Gang; Hu, Zeping; DeBerardinis, Ralph J.; White, Michael A.; Gao, Jinming
2015-01-01
Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled ‘detection and perturbation' strategy. PMID:26437053
Cell signaling by reactive nitrogen and oxygen species in atherosclerosis
NASA Technical Reports Server (NTRS)
Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.
2000-01-01
The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.
Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.
Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey
2016-02-24
Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.
Moon, Yuseok; Kim, Jeung Il; Yang, Hyun; Eling, Thomas E.
2009-01-01
Previously, we reported that non-steroidal anti-inflammatory drugs (NSAIDs) suppress cellular invasion which was mediated by thrombospondin-1 (TSP-1). As the extending study of the previous observation, we investigated the effect of NSAID-induced TSP-1 on the cellular growth and its related signaling transduction of the TSP-1 production. Among diverse NSAIDs, sulindac sulfide was most potent of inducing the human TSP-1 protein expression. Functionally, induced TSP-1 expression was associated with the growth-compensatory action of NSAID. TSP-1 expression was also elevated by mitogenic signals of ERK1/2 and RhoA GTPase pathway which had also growth-promotive capability after sulindac sulfide treatment. These findings suggest the possible mechanism through which tumor cells can survive the chemopreventive action of NSAIDs or the normal epithelium can reconstitute after NSAID-mediated ulceration in a compensatory way. PMID:18261746
Keever-Taylor, Carolyn A; Slaper-Cortenbach, Ineke; Celluzzi, Christina; Loper, Kathy; Aljurf, Mahmoud; Schwartz, Joseph; Mcgrath, Eoin; Eldridge, Paul
2015-12-01
Methods for processing products used for hematopoietic progenitor cell (HPC) transplantation must ensure their safety and efficacy. Personnel training and ongoing competency assessment is critical to this goal. Here we present results from a global survey of methods used by a diverse array of cell processing facilities for the initial training and ongoing competency assessment of key personnel. The Alliance for Harmonisation of Cellular Therapy Accreditation (AHCTA) created a survey to identify facility type, location, activity, personnel, and methods used for training and competency. A survey link was disseminated through organizations represented in AHCTA to processing facilities worldwide. Responses were tabulated and analyzed as a percentage of total responses and as a percentage of response by region group. Most facilities were based at academic medical centers or hospitals. Facilities with a broad range of activity, product sources and processing procedures were represented. Facilities reported using a combination of training and competency methods. However, some methods predominated. Cellular sources for training differed for training versus competency and also differed based on frequency of procedures performed. Most facilities had responsibilities for procedures in addition to processing for which training and competency methods differed. Although regional variation was observed, training and competency requirements were generally consistent. Survey data showed the use of a variety of training and competency methods but some methods predominated, suggesting their utility. These results could help new and established facilities in making decisions for their own training and competency programs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J
2018-02-06
The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.
Solidification processing of monotectic alloy matrix composites
NASA Technical Reports Server (NTRS)
Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.
1989-01-01
Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.
Yazicioglu, Mustafa N.; Monaldini, Luca; Chu, Kirk; Khazi, Fayaz R.; Murphy, Samuel L.; Huang, Heshu; Margaritis, Paris; High, Katherine A.
2013-01-01
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins. PMID:23873930
AFM feature definition for neural cells on nanofibrillar tissue scaffolds.
Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M
2012-01-01
A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.
Biological adaptive control model: a mechanical analogue of multi-factorial bone density adaptation.
Davidson, Peter L; Milburn, Peter D; Wilson, Barry D
2004-03-21
The mechanism of how bone adapts to every day demands needs to be better understood to gain insight into situations in which the musculoskeletal system is perturbed. This paper offers a novel multi-factorial mathematical model of bone density adaptation which combines previous single-factor models in a single adaptation system as a means of gaining this insight. Unique aspects of the model include provision for interaction between factors and an estimation of the relative contribution of each factor. This interacting system is considered analogous to a Newtonian mechanical system and the governing response equation is derived as a linear version of the adaptation process. The transient solution to sudden environmental change is found to be exponential or oscillatory depending on the balance between cellular activation and deactivation frequencies.
Calcium-dependent microneme protein discharge and in vitro egress of Eimeria tenella sporozoites.
Yan, Xinlei; Tao, Geru; Liu, Xianyong; Ji, Yongsheng; Suo, Xun
2016-11-01
Egress is a vital step in the endogenous development of apicomplexan parasites, as it assures the parasites exit from consumed host cells and entry into fresh ones. However, little information has previously been reported on this step of Eimeria spp. In this study, we investigated in vitro egress of Eimeria tenella sporozoites triggered by acetaldehyde. We found that addition of exogenous acetaldehyde induces egress of sporozoites from primary chicken kidney cells (PCKs) and stimulate secretion of E. tenella microneme 2 protein (EtMic 2). Moreover, by using cellular calcium inhibitors, we further proved that these processes were dependent on the intracellular calcium of the parasites. Our findings provide clues to the study of interaction between eimerian parasites and their hosts. Copyright © 2016. Published by Elsevier Inc.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650
Putim, Chanyanuch; Phaonakrop, Narumon; Jaresitthikunchai, Janthima; Gamngoen, Ratikorn; Tragoolpua, Khajornsak; Intorasoot, Sorasak; Anukool, Usanee; Tharincharoen, Chayada Sitthidet; Phunpae, Ponrut; Tayapiwatana, Chatchai; Kasinrerk, Watchara; Roytrakul, Sittiruk; Butr-Indr, Bordin
2018-03-01
The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification.
Markers for vulnerability in acute porphyria. A hypothesis paper.
Thunell, S; Andersson, C; Carlmark, B; Floderus, Y; Grönqvist, S O; Harper, P; Henrichson, A; Lindh, U
1995-04-01
Previously symptomatic and permanently asymptomatic carriers of a gene mutation for acute intermittent porphyria as well as matched controls were screened with regard to a series of variables of possible relevance to the development of porphyric symptoms. The basis for the study was a concept of acute porphyria as a condition of a permanent system overload of oxidative stress, with long term effects on hepatic and renal tissue, and with instances of periodic overload of free radicals giving rise to acute neurologic involvement. Leukocyte concentrations of manganese, calcium, iron and zinc, as well as erythrocyte calcium differed between the groups, acute intermittent porphyria gene carriers, irrespective of previous porphyric illness, showing significantly higher levels than the controls. Manganese was found to be the most discriminative component of all the 78 variables investigated, accounting for about 98 per cent of the variance between the groups. An increment, by a factor of four, in cellular manganese is suggestive of an increase, in acute intermittent porphyria, of a manganese associated enzyme, e.g. glutamine synthetase, pyruvate carboxylase or mitochondrial superoxide dismutase. The best fit into the model considered is provided by a theory focused on superoxide dismutase, induced in response to superoxide anion radical produced from aminolaevulinic acid. In porphyria gene carriers seemingly resistant to porphyric manifestations, an increase in potentially prooxidant cellular iron is matched by a proportional increment in manganese, i.e. presumably by a corresponding mitochondrial superoxide dismutase induction. This mechanism is not operative in porphyric individuals prone to development of neuropsychiatric symptoms. In acute intermittent porphyria with a history of porphyric illness there is a positive correlation between erythrocyte manganese and serum folate and a negative correlation between leukocyte ferrochelatase activity and serum cobalamin concentration. This may mirror a role of the cobalamin-folate system in the acute porphyric process.
Dixit, Gauri; Baker, Rachael; Sacks, Carly M; Torres, Matthew P; Dohlman, Henrik G
2014-05-23
Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke.
Yeager, R Philip; Kushman, Mary; Chemerynski, Susan; Weil, Roxana; Fu, Xin; White, Marcella; Callahan-Lyon, Priscilla; Rosenfeldt, Hans
2016-06-01
This article presents a mode of action (MOA) analysis that identifies key mechanisms in the respiratory toxicity of inhaled acrolein and proposes key acrolein-related toxic events resulting from the inhalation of tobacco smoke. Smoking causes chronic obstructive pulmonary disorder (COPD) and acrolein has been previously linked to the majority of smoking-induced noncancer respiratory toxicity. In contrast to previous MOA analyses for acrolein, this MOA focuses on the toxicity of acrolein in the lower respiratory system, reflecting the exposure that smokers experience upon tobacco smoke inhalation. The key mechanisms of acrolein toxicity identified in this proposed MOA include (1) acrolein chemical reactivity with proteins and other macromolecules of cells lining the respiratory tract, (2) cellular oxidative stress, including compromise of the important anti-oxidant glutathione, (3) chronic inflammation, (4) necrotic cell death leading to a feedback loop where necrosis-induced inflammation leads to more necrosis and oxidative damage and vice versa, (5) tissue remodeling and destruction, and (6) loss of lung elasticity and enlarged lung airspaces. From these mechanisms, the proposed MOA analysis identifies the key cellular processes in acrolein respiratory toxicity that consistently occur with the development of COPD: inflammation and necrosis in the middle and lower regions of the respiratory tract. Moreover, the acrolein exposures that occur as a result of smoking are well above exposures that induce both inflammation and necrosis in laboratory animals, highlighting the importance of the role of acrolein in smoking-related respiratory disease. Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.
Schäfer, C.; Mohan, A.; Burford, W.; Driscoll, M. K.; Ludlow, A. T.; Wright, W. E.; Shay, J. W.; Danuser, G.
2016-01-01
Introduction Oncogenic Kras mutations are important drivers of lung cancer development and metastasis. They are known to activate numerous cellular signaling pathways implicated in enhanced proliferation, survival, tumorigenicity and motility during malignant progression. Objectives Most previous studies of Kras in cancer have focused on the comparison of cell states in the absence or presence of oncogenic Kras mutations. Here we show that differential expression of the constitutively active mutation KrasV12 has profound effects on cell morphology and motility that drive metastatic processes. Methods The study relies on lung cancer cell transformation models, patient-derived lung cancer cell lines, and human lung tumor sections combined with molecular biology techniques, live-cell imaging and staining methods. Results Our analysis shows two cell functional states driven by KrasV12 protein levels: a non-motile state associated with high KrasV12 levels and tumorigenicity, and a motile state associated with low KrasV12 levels and cell dissemination. Conversion between the states is conferred by differential activation of a mechano-sensitive double-negative feedback between KrasV12/ERK/Myosin II and matrix-adhesion signaling. KrasV12 expression levels change upon cues such as hypoxia and integrin-mediated cell-matrix adhesion, rendering KrasV12 levels an integrator of micro-environmental signals that translate into cellular function. By live cell imaging of tumor models we observe shedding of mixed high and low KrasV12 expressers forming multi-functional collectives with potentially optimal metastatic properties composed of a highly mobile and a highly tumorigenic unit. Discussion Together these data highlight previously unappreciated roles for the quantitative effects of expression level variation of oncogenic signaling molecules in conferring fundamental alterations in cell function regulation required for cancer progression. PMID:29057096
Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.
Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela
2017-12-01
MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Johnson, Margaret (Peg)
1998-01-01
Details the active-learning approach to teaching cellular respiration in an introductory, one-semester course for nonmajors. Focuses on a laboratory exercise designed to answer the question of what happens to food when eaten. Contains 19 references. (DDR)
Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity.
Mortimer, Nathan T; Goecks, Jeremy; Kacsoh, Balint Z; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A
2013-06-04
Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.
Pericentrin in cellular function and disease
Delaval, Benedicte
2010-01-01
Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them. PMID:19951897
Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation
Piggott, Nina; Cook, Michael A.; Tyers, Mike; Measday, Vivien
2011-01-01
The ability of cells to respond to environmental changes and adapt their metabolism enables cell survival under stressful conditions. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is particularly well adapted to the harsh conditions of anaerobic wine fermentation. However, S. cerevisiae gene function has not been previously systematically interrogated under conditions of industrial fermentation. We performed a genome-wide study of essential and nonessential S. cerevisiae gene requirements during grape juice fermentation to identify deletion strains that are either depleted or enriched within the viable fermentative population. Genes that function in autophagy and ubiquitin-proteasome degradation are required for optimal survival during fermentation, whereas genes that function in ribosome assembly and peroxisome biogenesis impair fitness during fermentation. We also uncover fermentation phenotypes for 139 uncharacterized genes with no previously known cellular function. We demonstrate that autophagy is induced early in wine fermentation in a nitrogen-replete environment, suggesting that autophagy may be triggered by other forms of stress that arise during fermentation. These results provide insights into the complex fermentation process and suggest possible means for improvement of industrial fermentation strains. PMID:22384346
The expanding universe of noncoding RNAs.
Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A
2006-01-01
The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.
Automated Cellient(™) cytoblocks: better, stronger, faster?
Prendeville, S; Brosnan, T; Browne, T J; McCarthy, J
2014-12-01
Cytoblocks (CBs), or cell blocks, provide additional morphological detail and a platform for immunocytochemistry (ICC) in cytopathology. The Cellient(™) system produces CBs in 45 minutes using methanol fixation, compared with traditional CBs, which require overnight formalin fixation. This study compares Cellient and traditional CB methods in terms of cellularity, morphology and immunoreactivity, evaluates the potential to add formalin fixation to the Cellient method for ICC studies and determines the optimal sectioning depth for maximal cellularity in Cellient CBs. One hundred and sixty CBs were prepared from 40 cytology samples (32 malignant, eight benign) using four processing methods: (A) traditional; (B) Cellient (methanol fixation); (C) Cellient using additional formalin fixation for 30 minutes; (D) Cellient using additional formalin fixation for 60 minutes. Haematoxylin and eosin-stained sections were assessed for cellularity and morphology. ICC was assessed on 14 cases with a panel of antibodies. Three additional Cellient samples were serially sectioned to determine the optimal sectioning depth. Scoring was performed by two independent, blinded reviewers. For malignant cases, morphology was superior with Cellient relative to traditional CBs (P < 0.001). Cellularity was comparable across all methods. ICC was excellent in all groups and the addition of formalin at any stage during the Cellient process did not influence the staining quality. Serial sectioning through Cellient CBs showed optimum cellularity at 30-40 μm with at least 27 sections obtainable. Cellient CBs provide superior morphology to traditional CBs and, if required, formalin fixation may be added to the Cellient process for ICC. Optimal Cellient CB cellularity is achieved at 30-40 μm, which will impact on the handling of cases in daily practice. © 2014 John Wiley & Sons Ltd.
Welcome to pandoraviruses at the ‘Fourth TRUC’ club
Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier
2015-01-01
Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms. PMID:26042093