Science.gov

Sample records for cellular surface characteristics

  1. Impact of cranberry on Escherichia coli cellular surface characteristics

    SciTech Connect

    Johnson, Brandy J.; Malanoski, Anthony P.; Ligler, Frances S.

    2008-12-19

    The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.

  2. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics

    PubMed Central

    2012-01-01

    Background Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. Results Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP90 (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨm), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨm), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP90. Conclusions The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface

  3. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.

    PubMed

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A G; Meyerov, Robin; Schechter, Israel; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

  4. Ti-O-N/Ti composite coating on Ti-6Al-4V: surface characteristics, corrosion properties and cellular responses.

    PubMed

    Cao, Xiao-Lin; Sun, Tao; Yu, Yonghao

    2015-03-01

    To enhance the corrosion resistance of Ti-6Al-4V and extend its lifetime in medical applications, Ti-O-N/Ti composite coating was synthesized on the surface via plasma immersion ion implantation and deposition (PIIID). Surface morphology and cross sectional morphology of the composite coating were characterized using atomic force microscopy and scanning electron microscopy, respectively. Although X-ray photoelectron spectroscopic analysis revealed that the Ti-O-N/Ti composite coating was composed of non-stoichiometric titanium oxide, titanium nitride and titanium oxynitride, no obvious characteristic peak corresponding to the crystalline phases of them was detected in the X-ray diffraction pattern. In accordance with Owens-Wendt equation, surface free energy of the uncoated and coated samples was calculated and compared. Moreover, the corrosion behavior of uncoated and coated samples was evaluated by means of electrochemical impedance spectroscopy measurement, and an equivalent circuit deriving from Randles model was used to fit Bode plots and describe the electrochemical processes occurring at the sample/electrolyte interface. On the basis of the equivalent circuit model, the resistance of the composite coating was 4.7 times higher than that of the passive layer on uncoated samples, indicating the enhanced corrosion resistance after PIIID treatment. Compared to uncoated Ti-6Al-V, Ti-O-N/Ti-coated samples facilitated ostoblast proliferation within 7 days of cell culture, while there was no statistically significant difference in alkaline phosphate activity between uncoated and coated samples during 21 days of cell culture.

  5. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  6. Sound attenuation characteristics of cellular metamaterials

    NASA Astrophysics Data System (ADS)

    Varanasi, Satya Surya Srinivas

    could be mitigated by the addition of appropriate treatments such as a lightweight grid that modified the incident sound field to be normally directed. Although the performance of the metamaterial-based barrier solutions was better compared to the conventional ones, the performance can be poor at the system eigenfrequencies. The possibility of shifting energy from the deficit bands to other regions where the barriers are more efficient was numerically explored for embodiments of segmented cellular materials having non-linear stiffness characteristics. The acoustical behavior of such materials was probed through representative two-dimensional models of a segmented plate with a contact interface. Super-harmonic response peaks were observed for pure harmonic excitations, the strength of which were found to strongly depend on the degree of non-linearity or bilinear stiffness ratio. The closer an excitation frequency was to the characteristic eigenfrequencies of the structure, the stronger was the super-harmonic response, which supported the idea of transferring energy from problematic frequency bands to higher frequencies. Finally, the possibility of a spatial-shift of energy from longitudinal to lateral direction was explored with the idea of eliminating the design constraints associated with conventional absorbing materials, and with the hope of realizing a compact sound absorber. The embodiment was a two-phase chiral composite made using a Topologically Interlocked Material (TIM) with its unit cell being a tetrahedron consisting of two helicoid dissections. A comparative study was conducted with standard microstructures inspired by the Voigt and Reuss models. The twist mode of the chiral composites was found to be excited by an incident sound field normal to the plane of the TIM assembly. Although this behavior is not unique to a chiral microstructure, many other microstructures do not exhibit this behavior. The excitation of the twist mode by the incident sound field

  7. Sialidases as regulators of bioengineered cellular surfaces.

    PubMed

    Zamora, Cristina Y; Ryan, Matthew J; d'Alarcao, Marc; Kumar, Krishna

    2015-07-01

    Human sialidases (NEUs) catalyze the removal of N-acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure-activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design.

  8. Sialidases as regulators of bioengineered cellular surfaces

    PubMed Central

    Zamora, Cristina Y; Ryan, Matthew J; d'Alarcao, Marc; Kumar, Krishna

    2015-01-01

    Human sialidases (NEUs) catalyze the removal of N-acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure–activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design. PMID:25795684

  9. Characteristics of cellular composition of periodontal pockets

    PubMed Central

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-01-01

    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds—cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Conclusion Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues. PMID:28180007

  10. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  11. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  12. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures

    PubMed Central

    Murugan, Karmani; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Pillay, Viness

    2015-01-01

    Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals. PMID:25834433

  13. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  14. Surface-modified gold nanoshells for enhanced cellular uptake.

    PubMed

    Liang, Zhongshi; Liu, Yun; Li, Xiangyang; Wu, Qinge; Yu, Jiahui; Luo, Shufang; Lai, Lihui; Liu, Shunying

    2011-09-15

    Gold nanoshells have shown a great potential for use as agents in a wide variety of biomedical applications, and some of which require the delivery of large numbers of gold nanoshells onto or into the cells. Here, we develop a ready method to enhance the cellular uptake of gold nanoshells by modifying with meso-2,3-dimercaptosuccinic acid (DMSA). The quantifiable technique of inductively coupled plasma atomic emissions spectroscopy (ICP-AES) and transmission electron microscopy (TEM) were used to investigate the cellular uptake of unmodified and DMSA-modified gold nanoshells. Three cell lines (RAW 264.7, A549, and BEL-7402) were involved and the results indicated that the cellular uptake of the DMSA-modified gold nanoshells was obviously enhanced versus the unmodified gold nanoshells. The reason possibly lies in the nonspecific adsorption of serum protein on the DMSA-modified gold nanoshells (DMSA-GNs), which consequently enhanced the cellular uptake. As a continued effort, in vitro experiments with endocytic inhibitors suggested the DMSA-GNs internalized into cells via receptor-mediated endocytosis (RME) pathway. This study has provided a valuable insight into the effects of surface modification on cellular uptake of nanoparticles.

  15. Surface chemistry governs cellular tropism of nanoparticles in the brain

    NASA Astrophysics Data System (ADS)

    Song, Eric; Gaudin, Alice; King, Amanda R.; Seo, Young-Eun; Suh, Hee-Won; Deng, Yang; Cui, Jiajia; Tietjen, Gregory T.; Huttner, Anita; Saltzman, W. Mark

    2017-05-01

    Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with `stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.

  16. Cellular self-organization on micro-structured surfaces.

    PubMed

    Röttgermann, Peter J F; Alberola, Alicia Piera; Rädler, Joachim O

    2014-04-14

    Micro-patterned surfaces are frequently used in high-throughput single-cell studies, as they allow one to image isolated cells in defined geometries. Commonly, cells are seeded in excess onto the entire chip, and non-adherent cells are removed from the unpatterned sectors by rinsing. Here, we report on the phenomenon of cellular self-organization, which allows for autonomous positioning of cells on micro-patterned surfaces over time. We prepared substrates with a regular lattice of protein-coated adhesion sites surrounded by PLL-g-PEG passivated areas, and studied the time course of cell ordering. After seeding, cells randomly migrate over the passivated surface until they find and permanently attach to adhesion sites. Efficient cellular self-organization was observed for three commonly used cell lines (HuH7, A549, and MDA-MB-436), with occupancy levels typically reaching 40-60% after 3-5 h. The time required for sorting was found to increase with increasing distance between adhesion sites, and is well described by the time-to-capture in a random-search model. Our approach thus paves the way for automated filling of cell arrays, enabling high-throughput single-cell analysis of cell samples without losses.

  17. Cell surface-mediated cellular interactions: effects of B104 neuroblastoma surface determinants on C6 glioma cellular properties.

    PubMed

    Ciment, G; de Vellis, J

    1982-01-01

    To study the influence of cell surface-associated molecules on intercellular communication, C6 glioma cells were cultured both on plastic and on substrata of paraformaldehyde-fixed B104 neuroblastoma cells. By then comparing the phenotypic expression of these "cocultured" C6 cells with cells cultured on tissue culture plastic, the influence of the cellular substratum was determined. The beta-adrenergic-responsive cyclic AMP-generating system of C6 cells was compared on these various substrata. We found that fixed beds of dibutyryl cyclic AMP (dbcAMP)-treated B104 cells uncoupled beta-receptors from adenylate cyclase, whereas fixed beds of similarly treated C6 cells did not. However, other cellular properties were not affected by growth atop fixed dbcAMP-treated B104 cell beds including the rate of C6 cellular proliferation and their rate of protein synthesis. The cell surface-associated determinant on B104 cells capable of uncoupling the beta-responsive cyclase system of C6 cells is probably a protein, as judged by its susceptibility to protease treatment. Other properties of C6 cells were also affected by the various substrata including basal and hydrocortisone-induced levels of glycerol phosphate dehydrogenase (GPDH; an oligodendroglial marker) and the rate of RNA synthesis in these cells.

  18. Surface modifications of silicon nitride for cellular biosensor applications.

    PubMed

    Gustavsson, Johan; Altankov, George; Errachid, Abdelhamid; Samitier, Josep; Planell, Josep A; Engel, Elisabeth

    2008-04-01

    Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

  19. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  20. The Design and Performance Characteristics of a Cellular Logic 3-D Image Classification Processor.

    DTIC Science & Technology

    1981-04-01

    number) Pattern Recognition Cellular Automata " Cellular Logic Target Classificatio4 1Neighborhood Transformation Image Processing Laser Radar iASSTRACT...AND PERFORMANCE CHARACTERISTICS OF A CELLULAR LOGIC 3-D IMAGE CLASSIFICATION PROCESSOR 1 &/. , DISSERTATION AFIT/DS/EE/81-1 Lawrence A. Ankeney... CELLULAR LOGIC 3-D IMAGE - -- A&I PRCSRDTIC T B CLASSIFICATION PROCESSOR Unannounced 0 Justificatio b yD t i u i n Lawrence A. Ankeney, B.S., M.S

  1. A cellular automata approach for modeling surface water runoff

    NASA Astrophysics Data System (ADS)

    Jozefik, Zoltan; Nanu Frechen, Tobias; Hinz, Christoph; Schmidt, Heiko

    2015-04-01

    This abstract reports the development and application of a two-dimensional cellular automata based model, which couples the dynamics of overland flow, infiltration processes and surface evolution through sediment transport. The natural hill slopes are represented by their topographic elevation and spatially varying soil properties infiltration rates and surface roughness coefficients. This model allows modeling of Hortonian overland flow and infiltration during complex rainfall events. An advantage of the cellular automata approach over the kinematic wave equations is that wet/dry interfaces that often appear with rainfall overland flows can be accurately captured and are not a source of numerical instabilities. An adaptive explicit time stepping scheme allows for rainfall events to be adequately resolved in time, while large time steps are taken during dry periods to provide for simulation run time efficiency. The time step is constrained by the CFL condition and mass conservation considerations. The spatial discretization is shown to be first-order accurate. For validation purposes, hydrographs for non-infiltrating and infiltrating plates are compared to the kinematic wave analytic solutions and data taken from literature [1,2]. Results show that our cellular automata model quantitatively accurately reproduces hydrograph patterns. However, recent works have showed that even through the hydrograph is satisfyingly reproduced, the flow field within the plot might be inaccurate [3]. For a more stringent validation, we compare steady state velocity, water flux, and water depth fields to rainfall simulation experiments conducted in Thies, Senegal [3]. Comparisons show that our model is able to accurately capture these flow properties. Currently, a sediment transport and deposition module is being implemented and tested. [1] M. Rousseau, O. Cerdan, O. Delestre, F. Dupros, F. James, S. Cordier. Overland flow modeling with the Shallow Water Equation using a well balanced

  2. Charged group surface accessibility determines micelleplexes formation and cellular interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Yang; Sen, Soumyo; Král, Petr; Gemeinhart, Richard A.

    2015-04-01

    Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The model micelle system was formed from methoxy-poly(ethylene glycol)-b-poly(lactide) (mPEG-PLA) mixed with methoxy-poly(ethylene glycol)-b-poly(lactide)-b-oligoarginine (mPEG-PLA-Rx, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Micelles were observed to have a core-shell conformation in the aqueous environment where the PLA block constituted the hydrophobic core, mPEG and oligoarginine formed a hydrophilic corona. Significantly different thermodynamic behaviors were observed during the interaction of single stranded miRNA with micelles of different surface properties, and the resulting micelleplexes mediated substantial cellular association. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design.Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The

  3. Cellular interactions of surface modified nanoporous silicon particles

    NASA Astrophysics Data System (ADS)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  4. Cellular and Molecular Characteristics of Scarless versus Fibrotic Wound Healing

    PubMed Central

    Satish, Latha; Kathju, Sandeep

    2010-01-01

    The purpose of this paper is to compare and contrast the discrete biology differentiating fetal wound repair from its adult counterpart. Integumentary wound healing in mammalian fetuses is essentially different from wound healing in adult skin. Adult (postnatal) skin wound healing is a complex and well-orchestrated process spurred by attendant inflammation that leads to wound closure with scar formation. In contrast, fetal wound repair occurs with minimal inflammation, faster re-epithelialization, and without the accumulation of scar. Although research into scarless healing began decades ago, the critical molecular mechanisms driving the process of regenerative fetal healing remain uncertain. Understanding the molecular and cellular events during regenerative healing may provide clues that one day enable us to modulate adult wound healing and consequently reduce scarring. PMID:21253544

  5. Localized surface plasmon enhanced cellular imaging using random metallic structures

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  6. The gingival Stillman's clefts: histopathology and cellular characteristics.

    PubMed

    Cassini, Maria Antonietta; Cerroni, Loredana; Ferlosio, Amedeo; Orlandi, Augusto; Pilloni, Andrea

    2015-01-01

    Stillman's cleft is a mucogingival triangular-shaped defect on the buccal surface of a root with unknown etiology and pathogenesis. The aim of this study is to examine the Stillman's cleft obtained from excision during root coverage surgical procedures at an histopathological level. Harvesting of cleft was obtained from two periodontally healthy patients with a scalpel and a bevel incision and then placed in a test tube with buffered solution to be processed for light microscopy. Microscopic analysis has shown that Stillman's cleft presented a lichenoid hand-like inflammatory infiltration, while in the periodontal patient an inflammatory fibrous hyperplasia was identified. Stillman's cleft remains to be investigated as for the possible causes of such lesion of the gingival margin, although an inflammatory response seems to be evident and active from a strictly histopathological standpoint.

  7. The gingival Stillman’s clefts: histopathology and cellular characteristics

    PubMed Central

    Cassini, Maria Antonietta; Cerroni, Loredana; Ferlosio, Amedeo; Orlandi, Augusto; Pilloni, Andrea

    2015-01-01

    Summary Aim of the study Stillman’s cleft is a mucogingival triangular-shaped defect on the buccal surface of a root with unknown etiology and pathogenesis. The aim of this study is to examine the Stillman’s cleft obtained from excision during root coverage surgical procedures at an histopathological level. Materials and method Harvesting of cleft was obtained from two periodontally healthy patients with a scalpel and a bevel incision and then placed in a test tube with buffered solution to be processed for light microscopy. Results Microscopic analysis has shown that Stillman’s cleft presented a lichenoid hand-like inflammatory infiltration, while in the periodontal patient an inflammatory fibrous hyperplasia was identified. Conclusion Stillman’s cleft remains to be investigated as for the possible causes of such lesion of the gingival margin, although an inflammatory response seems to be evident and active from a strictly histopathological standpoint. PMID:26941897

  8. Cellular, particle and environmental parameters influencing attachment in surface waters: a review.

    PubMed

    Liao, C; Liang, X; Soupir, M L; Jarboe, L R

    2015-08-01

    Effective modelling of the fate and transport of water-borne pathogens is needed to support federally required pollution-reduction plans, for water quality improvement planning, and to protect public health. Lack of understanding of microbial-particle interactions in water bodies has sometimes led to the assumption that bacteria move in surface waters not associated with suspended mineral and organic particles, despite a growing body of evidence suggesting otherwise. Limited information exists regarding the factors driving interactions between micro-organisms and particles in surface waters. This review discusses cellular, particle and environmental factors potentially influencing interactions and in-stream transport. Bacterial attachment in the aquatic environment can be influenced by properties of the cell such as genetic predisposition and physiological state, surface structures such as flagella and fimbriae, the hydrophobicity and electrostatic charge of the cell surface, and the presence of outer-membrane proteins and extracellular polymeric substances. The mechanisms and degree of attachment are also affected by characteristics of mineral and organic particles including the size, surface area, charge and hydrophobicity. Environmental conditions such as the solution chemistry and temperature are also known to play an important role. Just as the size and surface of chemical particles can be highly variable, bacterial attachment mechanisms are also diverse.

  9. Ultrasound characteristics of wood fracture surfaces

    Treesearch

    W.A. Côté; R.B. Hanna

    1983-01-01

    This study concentrated on the ultrastructural characteristics of hardwood ftacture surfaces, but it included southern yellow pine as a representative softwood for comparison. Very small specimens were made, tested for impression parallel to the grain, tension parallel to the grain, shear in the radial plane and shear in the tangential plane, and were then prepared for...

  10. [Comperative study of implant surface characteristics].

    PubMed

    Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba

    2013-12-01

    The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.

  11. Tailoring hydrogel surface properties to modulate cellular response to shear loading.

    PubMed

    Meinert, Christoph; Schrobback, Karsten; Levett, Peter A; Lutton, Cameron; Sah, Robert L; Klein, Travis J

    2016-10-08

    Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage.

  12. Identifying Changes in Snowpack Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Corrao, M. V.; Deems, J. S.; Stednick, J. D.

    2006-12-01

    The flow of air over a surface is influenced by its roughness. The surface of a snowpack is smooth relative to the underlying ground surface. The relative roughness of the snowpack surface changes directionally, spatially, and temporally, due to deposition, erosion, and melt. To examine these changes in snowpack surface roughness at the microtopographic scale for a Northern Colorado site, the surface was photographed using a darker-coloured roughness board that was inserted into the snowpack so that a black (board) versus white (snow) contrast existed along the entire length of the board. The board was 1-m long and was inserted 11 times at 10-cm intervals to create a 1-m by 1-m mesh. The orientation of the boards was rotated 90 degrees to provide finer resolution data in perpendicular directions. For the 1-m boards, the pixel resolution was approximately 0.4 mm. To measure the snow grain scale, a crystal card was photographed and yielded a pixel resolution of approximately 0.1 mm. Incorporating image processing issues such as image contrast and brightness, the digital images were translated into individual lines. These lines were used to compute semi- variograms in log-log space, from which the magnitude of semi-variance, the fractal dimensions, and the scale break were computed. The semi-variogram characteristics were used to illustrate directional, spatial, and temporal changes in snowpack surface roughness.

  13. Near surface characteristics of foehn winds

    NASA Astrophysics Data System (ADS)

    Stiperski, Ivana

    2015-04-01

    Downslope windstorms occur commonly in mountainous regions around the world. Their importance is particularly great for air traffic, as well as wind energy, air pollution but also for ice shelf stability in the Antarctica, or deep water formation of the mountainous coasts. In this work we will focus on the foehn type of downslope windstorms and examine it's near surface turbulence characteristics in the Inn Valley, Austria. The foehn in the Inn Valley has been extensively studied throughout the past century, especially in several intensive campaigns. However, the smaller scale turbulence characteristics have only received limited attention. Here we present results from foehn episodes spanning over a year of data. The turbulence measurements at 5 stations within the Inn Valley, Austria as part of the i-Box project are used for the analysis. The general near surface turbulence characteristics of these events are examined and the characteristic scales of dominant transport are determined. Their dependence to horizontal heterogeneity is investigated both on the mesoscale and sub-mesoscale. Special focus is places on the question of energy balance closure during foehn episodes and the influence of advection.

  14. Processing Characteristics and Properties of the Cellular Products Made by Using Special Foaming Agents

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebova, Ludmila

    2012-12-01

    The paper describes the manufacturing process of extruded products by the cellular extrusion method, and presents specifications of the blowing agents used in the extrusion process as well as process conditions. The process of cellular extrusion of thermoplastic materials is aimed at obtaining cellular shapes and coats with reduced density, presenting no hollows on the surface of extruder product and displaying minimal contraction under concurrent maintenance of properties similar to properties of products extruded by means of the conventional method. In order to obtain cellular structure, the properties of extruded product are modified by applying suitable plastic or inserting auxiliary agents.

  15. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    PubMed Central

    SCHMIDLIN, Patrick R.; MÜLLER, Phillip; ATTIN, Thomas; WIELAND, Marco; HOFER, Deborah; GUGGENHEIM, Bernhard

    2013-01-01

    Objective: To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods: Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA). Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results: The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU). At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05) but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion: Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization. PMID:23559112

  16. Controlling cellular activity by manipulating silicone surface roughness.

    PubMed

    Prasad, Babu R; Brook, Michael A; Smith, Terry; Zhao, Shigui; Chen, Yang; Sheardown, Heather; D'souza, Renita; Rochev, Yuri

    2010-07-01

    Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing--which could impact on the degree of contracture--has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (approximately 88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the 'bumpy' (approximately 378 nm) and very rough (approximately 604 and approximately 650 nm) PDMS samples. While the PDMS sample with roughness of approximately 650 nm had significantly fewer fibroblasts at 24h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.

  17. Characteristics of Surface Sterilization using ECR Plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2015-09-01

    Plasma sterilization techniques have superior characteristics such as a short treatment times, non-toxicity and low thermal damages on the sterilized materials. In plasma sterilization, microorganisms can be sterilized by active radicals, energetic charged particles, and vacuum UV radiation. The influence of each factor depends on the plasma operating parameters. Microwave discharges under the electron cyclotron resonance (ECR) condition produce higher electron temperature and density plasma as compared with other plasma generation techniques. In the present study, characteristics of surface sterilization using ECR plasma have been investigated.The experiment was performed in the vacuum chamber which contains a magnet holder. A pair of rectangular Sm-Co permanent magnets is aligned parallel to each other within the magnet holder. The region of the magnetic field for ECR exists near the magnet holder surface. When the microwave is introduced into the vacuum chamber, a ECR plasma is produced around surface of the magnet holder. High energy electrons and oxygen radicals were observed at ECR zone by electric probe method and optical spectroscopic method. Biological indicators (B.I.) having spore of 106 was sterilized in 2min for oxygen discharge. The temperature of the B.I. installation position was about 55°. The sterilization was achieved by the effect of oxygen radicals and high energy electrons.

  18. Effects of surface viscoelasticity on cellular responses of endothelial cells

    PubMed Central

    Hosseini, Motahare-Sadat; Katbab, Ali Asghar

    2014-01-01

    Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC). Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR. PMID:26989733

  19. Tuning cellular responses to BMP-2 with material surfaces

    PubMed Central

    Picart, Catherine; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications. PMID:26704296

  20. Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining1

    PubMed Central

    Behbehani, Gregory K.; Thom, Colin; Zunder, Eli R.; Finck, Rachel; Gaudilliere, Brice; Fragiadakis, Gabriela K.; Fantl, Wendy J.; Nolan, Garry P.

    2015-01-01

    Fluorescent cellular barcoding and mass-tag cellular barcoding are cytometric methods that enable high sample throughput, minimize inter-sample variation, and reduce reagent consumption. Previously employed barcoding protocols require that barcoding be performed after surface marker staining, complicating combining the technique with measurement of alcohol-sensitive surface epitopes. This report describes a method of barcoding fixed cells after a transient partial permeabilization with 0.02% saponin that results in efficient and consistent barcode staining with fluorescent or mass-tagged reagents while preserving surface marker staining. This approach simplifies barcoding protocols and allows direct comparison of surface marker staining of multiple samples without concern for variations in the antibody cocktail volume, antigen-antibody ratio, or machine sensitivity. Using this protocol, cellular barcoding can be used to reliably detect subtle differences in surface marker expression. PMID:25274027

  1. Characteristics of near-surface electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Beamish, David

    1999-04-01

    Naturally occurring electric potentials at the Earth's surface are traditionally studied using self-potential geophysics. Recent theoretical and experimental work has reinvestigated the manner in which the measurement can be made dynamically using a pressure source. The methodology, often referred to as seismoelectric, relies on electrokinetic coupling at interfaces in the streaming potential coefficient. The ultimate aim of the developing methodologies lies in the detection of zones of high fluid mobility (permeability) and fluid geochemical contrasts within the subsurface. As yet there are no standard methods of recording and interpretation: the technique remains experimental. Field measurements are made using a seismic source and by recording electric voltage across arrays of surface dipoles. This study presents observational characteristics of electrokinetic coupling based on experiments carried out in a wide range of environments. Theory concerning the coupled elastic and electromagnetic wave equations in a saturated porous medium is discussed. It is predicted that coupling will produce electromagnetic radiation patterns from vertical electric dipoles generated at interfaces. Surface- and body-wave coupling mechanisms should provide different time-distance patterns. Vertical electric dipole radiation sources are modelled and their spatial characteristics presented. A variety of experimental configurations have been used, and geometries that exploit phase asymmetry to enhance the separation of signal and noise are emphasized. The main experimental results presented are detailed observations in the immediate vicinity of the source. Simultaneous arrivals across arrays of surface dipoles are not common. The majority of such experiments have indicated that shot-symmetric voltages which display low-velocity moveout are the dominant received waveforms.

  2. Tuning cellular responses to BMP-2 with material surfaces.

    PubMed

    Migliorini, Elisa; Valat, Anne; Picart, Catherine; Cavalcanti-Adam, Elisabetta Ada

    2016-02-01

    Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dispersion and surface characteristics of nanosilica suspensions.

    PubMed

    Kumar, Ranganathan; Milanova, Denitsa

    2009-04-01

    Nanofluids consisting of nanometer-sized particles dispersed in base liquids are known to be effective in extending the saturated boiling regime and critical heat flux in pool boiling. The heat transfer characteristics of nanosilica suspensions with particle sizes of 10 and 20 nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When silica is suspended in water with no additives, the surface potential of the nanoparticles determines their movement toward the electrodes. Particles continuously deposit on the wire and extend the burnout heat flux, influenced by the chemical composition of the nanofluids. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. Particle size, zeta potential, and the burnout heat flux values under different volume concentrations are provided. The burnout heat flux of the wire does not increase monotonically with concentration, but depends on the agglomeration characteristics, particle shape, and the hydroxylated surface of the nanoparticles.

  4. Reprogramming cellular signaling machinery using surface-modified carbon nanotubes.

    PubMed

    Zhang, Yi; Wu, Ling; Jiang, Cuijuan; Yan, Bing

    2015-03-16

    Nanoparticles, such as carbon nanotubes (CNTs), interact with cells and are easily internalized, causing various perturbations to cell functions. The mechanisms involved in such perturbations are investigated by a systematic approach that utilizes modified CNTs and various chemical-biological assays. Three modes of actions are (1) CNTs bind to different cell surface receptors and perturb different cell signaling pathways; (2) CNTs bind to a receptor with different affinity and, therefore, strengthen or weaken signals; (3) CNTs enter cells and bind to soluble signaling proteins involved in a signaling pathway. Understanding of such mechanisms not only clarifies how CNTs cause cytotoxicity but also demonstrates a useful method to modulate biological/toxicological activities of CNTs for their various industrial, biomedical, and consumer applications.

  5. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake.

    PubMed

    Cheng, Tangjian; Ma, Rujiang; Zhang, Yumin; Ding, Yuxun; Liu, Jinjian; Ou, Hanlin; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2015-10-18

    Based on the protonation/deprotonation of poly(β-amino ester) (PAE), mixed-shell micelles (MSMs) with adaptive surfaces could rapidly and reversibly change surface properties to prolong circulation time in blood (pH 7.4) and enhance cellular uptake at tumor sites (pH 6.5).

  6. High-frequency electric field and radiation characteristics of cellular microtubule network.

    PubMed

    Havelka, D; Cifra, M; Kučera, O; Pokorný, J; Vrba, J

    2011-10-07

    Microtubules are important structures in the cytoskeleton, which organizes the cell. Since microtubules are electrically polar, certain microtubule normal vibration modes efficiently generate oscillating electric field. This oscillating field may be important for the intracellular organization and intercellular interaction. There are experiments which indicate electrodynamic activity of variety of cells in the frequency region from kHz to GHz, expecting the microtubules to be the source of this activity. In this paper, results from the calculation of intensity of electric field and of radiated electromagnetic power from the whole cellular microtubule network are presented. The subunits of microtubule (tubulin heterodimers) are approximated by elementary electric dipoles. Mechanical oscillation of microtubule is represented by the spatial function which modulates the dipole moment of subunits. The field around oscillating microtubules is calculated as a vector superposition of contributions from all modulated elementary electric dipoles which comprise the cellular microtubule network. The electromagnetic radiation and field characteristics of the whole cellular microtubule network have not been theoretically analyzed before. For the perspective experimental studies, the results indicate that macroscopic detection system (antenna) is not suitable for measurement of cellular electrodynamic activity in the radiofrequency region since the radiation rate from single cells is very low (lower than 10⁻²⁰ W). Low noise nanoscopic detection methods with high spatial resolution which enable measurement in the cell vicinity are desirable in order to measure cellular electrodynamic activity reliably. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Characteristic variations in reflectance of surface soils

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1982-01-01

    Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.

  8. Effect of MWCNT surface and chemical modification on in vitro cellular response

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Menaszek, Elzbieta; Syeda, Tahmina Bahar; Misra, Anil; Alavijeh, Mohammad; Adu, Jimi; Blazewicz, Stanislaw

    2012-10-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

  9. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex.

    PubMed

    Wang, Xiaojie; Studholme, Colin; Grigsby, Peta L; Frias, Antonio E; Cuzon Carlson, Verginia C; Kroenke, Christopher D

    2017-02-22

    Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci.SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new

  11. Surface characteristics of PLA and PLGA films

    NASA Astrophysics Data System (ADS)

    Paragkumar N, Thanki; Edith, Dellacherie; Six, Jean-Luc

    2006-12-01

    Surface segregation and restructuring in polylactides (poly( D, L-lactide) and poly( L-lactide)) and poly( D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly( D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly( L-lactide) (PLLA) thin and clear films with thickness ˜15 μm undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  12. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold.

    PubMed

    Crowley, Claire; Klanrit, Poramate; Butler, Colin R; Varanou, Aikaterini; Platé, Manuela; Hynds, Robert E; Chambers, Rachel C; Seifalian, Alexander M; Birchall, Martin A; Janes, Sam M

    2016-03-01

    Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold

    PubMed Central

    Crowley, Claire; Klanrit, Poramate; Butler, Colin R.; Varanou, Aikaterini; Platé, Manuela; Hynds, Robert E.; Chambers, Rachel C.; Seifalian, Alexander M.; Birchall, Martin A.; Janes, Sam M.

    2016-01-01

    Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design. PMID:26790147

  14. Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation.

    PubMed

    Pillai, Gopikrishna J; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy

    2017-02-01

    In the present work, 2-Methoxyestradiol [2ME2] loaded PLGA nanoparticles [NPs] were stabilized with Casein or poly(ethylene glycol) [PEG] and evaluated for its cellular interactions, pharmacokinetics and tumour accumulation. Surface stabilized PLGA nanoparticles prepared through a modified emulsion route possessed similar size, surface charge, drug loading and release characteristics. Particle-cell interactions as well as the anti-angiogenesis activity were similar for both nanoformulations in vitro. However, in vivo pharmacokinetics and tumour accumulation of the drug were substantially improved for the PEGylated nanoformulation. Reduced protein binding was observed for PEG stabilized PLGA NPs. Thus, it was demonstrated that nanoencapsulation of 2-ME2 within PEGylated PLGA nanocarrier could improve its half-life and plasma concentration and thereby increase the tumour accumulation.

  15. Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy.

    PubMed

    Feng, Guangxue; Qin, Wei; Hu, Qinglian; Tang, Ben Zhong; Liu, Bin

    2015-12-09

    Targeted delivery of drugs toward mitochondria of specific cancer cells dramatically improves therapy efficiencies especially for photodynamic therapy (PDT), as reactive oxygen species (ROS) are short in lifetime and small in radius of action. Different from chemical modification, nanotechnology has been serving as a simple and nonchemical approach to deliver drugs to cells of interest or specific organelles, such as mitochondria, but there have been limited examples of dual-targeted delivery for both cells and mitochondria. Here, cellular and mitochondrial dual-targeted organic dots for image-guided PDT are reported based on a fluorogen with aggregation-induced emission (AIEgen) characteristics. The AIEgen possesses enhanced red fluorescence and efficient ROS production in aggregated states. The AIE dot surfaces are functionalized with folate and triphenylphosphine, which can selectively internalize into folate-receptor (FR) positive cancer cells, and subsequently accumulate at mitochondria. The direct ROS generation at mitochondria sites is found to depolarize mitochondrial membrane, affect cell migration, and lead to cell apoptosis and death with enhanced PDT effects as compared to ROS generated randomly in cytoplasm. This report demonstrates a simple and general nanocarrier approach for cellular and mitochondrial dual-targeted PDT, which opens new opportunities for dual-targeted delivery and therapy.

  16. Effects of Surface Conditions on Boiling Characteristics,

    DTIC Science & Technology

    contact angle . This model for individual cavities was extended to the entire surface providing an expression for the cumulative site density in terms...water and organics at atmospheric pressure and was incorporated into a unified expression showing explicitly the role of surface geometry and contact angle . (Author)

  17. Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kurtz-Chalot, A.; Klein, J. P.; Pourchez, J.; Boudard, D.; Bin, V.; Alcantara, G. B.; Martini, M.; Cottier, M.; Forest, V.

    2014-11-01

    Silica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: (1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol molecules, (2) positively charged silica nanoparticles coated with amine groups, and (3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 h with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay, and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production, and oxidative stress. Results showed that the highly positively charged nanoparticle were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticle types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity.

  18. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    PubMed Central

    Yang, Ming-Hui; Yuan, Shyng-Shiou; Chung, Tze-Wen; Jong, Shiang-Bin; Lu, Chi-Yu; Tsai, Wan-Chi; Chen, Wen-Cheng; Lin, Po-Chiao; Chiang, Pei-Wen; Tyan, Yu-Chang

    2014-01-01

    The purpose of this study was to develop the pathway of silk fibroin (SF) biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs) and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM) greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed. PMID:24818131

  19. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals.

    PubMed

    Mahmoud, Khaled A; Mena, Jimmy A; Male, Keith B; Hrapovic, Sabahudin; Kamen, Amine; Luong, John H T

    2010-10-01

    Probing of cellular uptake and cytotoxicity was conducted for two fluorescent cellulose nanocrystals (CNCs): CNC-fluorescein isothiocyanate (FITC) and newly synthesized CNC-rhodamine B isothiocyanate (RBITC). The positively charged CNC-RBITC was uptaken by human embryonic kidney 293 (HEK 293) and Spodoptera frugiperda (Sf9) cells without affecting the cell membrane integrity. The cell viability assay and cell-based impedance spectroscopy revealed no noticeably cytotoxic effect of the CNC-RBITC conjugate. However, no significant internalization of negatively charged CNC-FITC was observed at physiological pH. Indeed, the effector cells were surrounded by CNC-FITC, leading to eventual cell rupture. As the surface charge of CNC played an important role in cellular uptake and cytotoxicity, facile surface functionalization together with observed noncytotoxicity rendered modified CNC as a promising candidate for bioimaging and drug delivery systems.

  20. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    NASA Astrophysics Data System (ADS)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  1. Characteristics of laser surface melted aluminum alloys.

    PubMed

    Weinman, L S; Kim, C; Tucker, T R; Metzbower, E A

    1978-03-15

    Specimens of Al-Fe 1-4 w/o, 2024 and 6061 Al have been surface melted with a pulsed Nd-glass laser. A TEM and SEM study showed that the dendrite spacings were from 2500 A to 4000 A which corresponds to a cooling rate of over 10(6) degrees C/sec. Melt depths obtained were in the range of 30-100 microm. No significant surface vaporization was observed at energy densities up to 440 J/cm(2). Fracture surfaces of the commerical alloys demonstrated elongated porosity in the melt areas, probably due to internal hydrogen.

  2. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    PubMed

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  3. Surface charge of trypanosoma cruzi. Binding of cationized ferritin and measurement of cellular electrophoretic mobility.

    PubMed

    De Souza, W; Arguello, C; Martinez-Paloma, A; Trissl, D; Gonzáles-Robles, A; Chiari, E

    1977-08-01

    The surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi was evaluated by means of binding of cationized ferritin to the cell surface as visualized by electron microscopy, and by direct measurements of the cellular microelectrophoretic mobility (EPM). Epimastigote forms had a mean EPM of -0.52 micrometer-s-1-V-1-cm and were lightly labeled with cationized ferritin. In contrast, bloodstream trypomastigotes had a much higher EPM (-1.14), and the surface was heavily labeled with cationized ferritin. When trypomastigotes from staionary phase cultures were isolated on DEAE cellulose columns, the mean EPM was found to be significantly lower (-0.63), and labeling with cationized ferritin decreased. With a mixed population containing epimastigote, trypomastigote, and intermediate forms, EPM values ranging between -0.70 to -1.14 were found. From these observations we conclude that there is a definite increase in negative surface charge during development from epi- to trypomastigote forms of T. cruzi.

  4. The Development of Surface Roughness and Implications for Cellular Attachment in Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep

    2001-01-01

    The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.

  5. Light-Scattering Characteristics of Optical Surfaces

    DTIC Science & Technology

    1975-01-01

    UNCLASSIFIED Psd) Accession For NTIS GRA&I DTIC TAB Unannounced d ] Justificatio By - Distributon/_ Availability Codes JAvail and/or_ CHAPTER 1...rejection systems, evaluation of machined metal mirrors for high- energy laser applications , laser-radar backscatter signature programs, and a host of...other applications requiring extensive scattering data. If the scattering mechanism were completely understood, surface prepa- ration techniques or

  6. Nomographs for estimating surface fire behavior characteristics

    Treesearch

    Joe H. Scott

    2007-01-01

    A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.

  7. Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Sanwlani, Shilpa; Rawat, Kamla; Pal, Meena; Bohidar, Himadri B.; Verma, Anita Kamra

    2014-05-01

    Cellular uptake of quantum dots (QDs) by cells is of utmost importance for establishing QDs as biostable fluorescent markers that facilitate early diagnosis and detection of cancer. The surface states of QDs are critical to enhance the cellular uptake. Biocompatible CDSe QDs were synthesized using mercaptopropionic acid, amino-ethanethiol HCl, cyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetrabutylammonium iodide (TBAI), and sodium dodecyl sulfate were functionalized using ligand-exchange method. Cytocompatibility and cellular uptake of QDs were evaluated in human embryonic kidney cells (HEK-29), and breast cancer cells (MCF-7) as reduced cytotoxicity is desirable for biological applications. Approximately, 60 % cytotoxicity was observed in all surface-coated QDs and QD100 in 72 h in both the cell lines, except TBAI that indicated 30 % cytotoxicity in 72 h, and only 10 % in 24 h. Glutathione, the detoxifying molecule, is detrimental for understanding the oxidative stress of the cell. The QDs showed enhanced Glutathione- S-transferase (GST) activity in the MCF-7 cell line. In HEK, CdSe per se was also able to induce a high level of GST. QDs toxicity may either be related to the induction of reactive oxygen species or the direct release of metal ions. Optimization of QDs in terms of quantification and DNA damage is imperative for realistic biological applications.

  8. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    PubMed Central

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers. PMID:22359460

  9. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    PubMed Central

    Hazan, Roshasnorlyza; Mat, Ishak

    2017-01-01

    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics. PMID:28337249

  10. Effect of cleaning and sterilization on titanium implant surface properties and cellular response

    PubMed Central

    Park, Jung Hwa; Olivares-Navarrete, Rene; Baier, Robert E.; Meyer, Anne E.; Tannenbaum, Rina; Boyan, Barbara D.; Schwartz, Zvi

    2013-01-01

    Titanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and sterilization on surface characteristics were bio-determined using contaminated and pure Ti substrata first manufactured to present two different surface structures: pretreated titanium (PT, Ra = 0.4 μm) (i.e. surfaces that were not modified by sandblasting and/or acid etching); (SLA, Ra = 3.4 μm). Previously cultured cells and associated extracellular matrix were removed from all bio-contaminated specimens by cleaning in a sonicator bath with a sequential acetone–isopropanol–ethanol–distilled water protocol. Cleaned specimens were sterilized with autoclave, gamma irradiation, oxygen plasma, or ultraviolet light. X-ray photoelectron spectroscopy (XPS), contact angle measurements, profilometry, and scanning electron microscopy were used to examine surface chemical components, hydrophilicity, roughness, and morphology, respectively. Small organic molecules present on contaminated Ti surfaces were removed with cleaning. XPS analysis confirmed that surface chemistry was altered by both cleaning and sterilization. Cleaning and sterilization affected hydrophobicity and roughness. These modified surface properties affected osteogenic differentiation of human MG63 osteoblast-like cells. Specifically, autoclaved SLA surfaces lost the characteristic increase in osteoblast differentiation seen on starting SLA surfaces, which was correlated with altered surface wettability and roughness. These data indicated that recleaned and resterilized Ti implant surfaces cannot be considered the same as the first surfaces in terms of surface properties and cell responses. Therefore, the reuse of Ti implants after resterilization may not result in the same tissue responses as

  11. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  12. Petrologic Characteristics of the Lunar Surface

    PubMed Central

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  13. Petrologic Characteristics of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  14. Petrologic Characteristics of the Lunar Surface.

    PubMed

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  15. Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake.

    PubMed

    Wu, Luyan; Ni, Caihua; Zhang, Liping; Shi, Gang; Bai, Xue; Zhou, Yamin; He, Fei

    2016-03-01

    To enhance drug cellular uptake, a biodegradable terpolymer is synthesized using taurine, N,N-Bis (acryloyl) cystamine, and dodecylamine as raw materials by Michael addition terpolymerization. The terpolymer is transformed to zwitterionic nanoparticles (NPs) through self-assembly. The surface charge of the NPs is convertible from negative at pH 7.4 to positive at pH 6.5, which endows the NPs' excellent nonfouling feature in bloodstream and effective uptake in tumor cells. The NPs display varied morphologies from solid micelles to polymersomes and nanorods depending on molar ratios of the structural units involved. The NPs can be biodegraded in l-glutathione (GSH) solution due to the split of disulfide bonds in main chains of the terpolymers. The NPs demonstrate good pH/reducing responsiveness in drug delivery and can be potentially used as anticancer drug vehicles for enhancement of cellular uptake of anticancer drug.

  16. Mapping cellular hierarchy by single cell analysis of the cell surface repertoire

    PubMed Central

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    SUMMARY Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insights. The comprehensive single cell dataset permits mapping of the mouse hematopoietic stem cell (HSC) differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. PMID:24035353

  17. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have

  18. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  19. The plasma membrane flattens out to fuel cell surface growth during Drosophila cellularization

    PubMed Central

    Figard, Lauren; Xu, Heng; Garcia, Hernan G.; Golding, Ido; Sokac, Anna Marie

    2014-01-01

    Summary Cell shape change demands cell surface growth, but how growth is fueled and choreographed is still debated. Here, we use cellularization, the first complete cytokinetic event in Drosophila embryos, to show that cleavage furrow ingression is kinetically coupled to the loss of surface microvilli. We modulate furrow kinetics with RNAi against the Rho1-GTPase regulator slam, and show that furrow ingression controls the rate of microvillar depletion. Finally, we directly track microvillar membrane and see it move along the cell surface and into ingressing furrows, independent of endocytosis. Together, our results demonstrate that the kinetics of the ingressing furrow regulate the utilization of a microvillar membrane reservoir. Since the membrane of the furrow and microvilli are contiguous, we suggest that ingression drives unfolding of the microvilli and incorporation of microvillar membrane into the furrow. We conclude that plasma membrane folding/unfolding can contribute to the cell shape changes that promote embryonic morphogenesis. PMID:24316147

  20. Characteristics of Middle School Students Learning Actions in Outdoor Mathematical Activities with the Cellular Phone

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Baya'a, Nimer

    2012-01-01

    Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…

  1. Characteristics of Middle School Students Learning Actions in Outdoor Mathematical Activities with the Cellular Phone

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Baya'a, Nimer

    2012-01-01

    Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…

  2. Adsorption of glycosaminoglycans to the cell surface is responsible for cellular donnan effects.

    PubMed

    Hagenfeld, Daniel; Kathagen, Nadine; Prehm, Peter

    2014-07-01

    In previous publications, we showed that extracellular glycosaminoglycans reduced the membrane potential, caused cell blebbing and swelling and decreased the intracellular pH independently of cell surface receptors. These phenomena were explained by Donnan effects. The effects were so large that they could not be attributed to glycosaminoglycans in solution. Therefore, we tested the hypothesis that glycosaminoglycans were concentrated on the cell membrane and analysed the mechanism of adsorption by fluorescent hyaluronan, chondroitin sulphate and heparin. The influence of the CD44 receptor was evaluated by comparing CD44 expressing human fibroblasts with CD44 deficient HEK cells. Higher amounts of glycosaminoglycans adsorbed to fibroblasts than to HEK cells. When the membrane potential was annihilated by substituting NaCl by KCl in the medium, adsorption was reduced and intracellular pH decrease was abolished. To eliminate other cellular interfering factors, potential-dependent adsorption was demonstrated for hyaluronan which adsorbed to inert gold foils in physiological salt concentrations at pH 7.2 and surface potentials up to 120 mV. From these results, we conclude that large cellular Donnan effects of glycosaminoglycans results from receptor mediated, hydrophobic and ionic adsorption to cell surfaces. © 2014 Wiley Periodicals, Inc.

  3. Spatial characteristics of ocean surface waves

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  4. Surface Characteristics of Titanium during ECM Process for Biomedical Applications

    SciTech Connect

    Dhobe, Shirish D.; Doloi, B.; Bhattacharyya, B.

    2011-01-17

    Electrochemical machining is described as the controlled removal of metal by anodic dissolution of the workpiece in electrolyte cell. Titanium is extensively used in aerospace, defence, biomedical applications. The human response to implanted titanium parts strongly related to the implant surface conditions. The aim of this paper is to present experimental investigation on electrochemically machined surface characteristics acquired on titanium, utilizing developed cross flow electrolyte system. It is observed that applied voltage and electrolyte flow rate are the some of the persuading parameter to attain desired surface characteristics on machined surface. Attempt has made to develop surface along with self-generated oxide layer, which facilitates in improving the corrosion and chemical resistance of titanium implant in biomedical application. The surface roughness of oxide layered machined surface obtained within 2.4 {mu}m to 2.93 {mu}m, which is within acceptable value for functional attachment between bone and implant.

  5. Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.

    PubMed

    Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin

    2017-02-01

    Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.

  6. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  7. Skin characteristics by laser generated surface waves.

    PubMed

    Huang, Zhihong; L'Etang, Adèle

    2009-01-01

    This paper discusses a study into the suitability of using laser generated surface acoustic waves for the characterisation of skin properties without causing any damage to the skin thermally or by mechanical disruption. Using commercial Finite Element Code ANSYS, the effects of laser wavelength, laser beam radius and laser rise time on generation of laser generated ultrasonic waves in a 3-layered elastic isotropic model of human skin were studied. The FE model is an example of a sequential coupled field analysis where the thermal and mechanical analyses are treated separately. The heating of the skin model due to the short laser pulse is simulated by a dynamic thermal analysis with the laser pulse modeled as volumetric heat generation and the results from this analysis subsequently applied as a load in the mechanical analysis where the out-of-plane displacement histories are analyzed. The technique described in this paper also involves measuring the propagation velocity of SAWs, which are directly related to the material properties, and thickness of layers, this is done over a wide frequency range in order to obtain maximum information regarding the material under test.

  8. Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review.

    PubMed

    Guduru, Deepak; Niepel, Marcus; Vogel, Jürgen; Groth, Thomas

    2011-10-01

    Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.

  9. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.

    PubMed

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei M; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  11. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  12. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    PubMed Central

    Biazar, Esmaeil; Heidari, Majid; Asefnezhad, Azadeh; Montazeri, Naser

    2011-01-01

    Background: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds. Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm) compared with those irradiated with inert plasma (16 nm) at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma. Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples. PMID:21698084

  13. Cellular Cholesterol Accumulation Facilitates Ubiquitination and Lysosomal Degradation of Cell Surface-Resident ABCA1.

    PubMed

    Mizuno, Tadahaya; Hayashi, Hisamitsu; Kusuhara, Hiroyuki

    2015-06-01

    By excreting cellular cholesterol to apolipoprotein A-I, ATP-binding cassette transporter A1 (ABCA1) mediates the biogenesis of high-density lipoprotein in hepatocytes and prevents foam cell formation from macrophages. We recently showed that cell surface-resident ABCA1 (csABCA1) undergoes ubiquitination and later lysosomal degradation through the endosomal sorting complex required for transport system. Herein, we investigated the relevance of this degradation pathway to the turnover of csABCA1 in hypercholesterolemia. Immunoprecipitation and cell surface-biotinylation studies with HepG2 cells and mouse peritoneal macrophages showed that the ubiquitination level and degradation of csABCA1 were facilitated by treatment with a liver X receptor (LXR) agonist and acetylated low-density lipoprotein. The effects of an LXR agonist and acetylated low-density lipoprotein on the degradation of csABCA1 were repressed completely by treatment with bafilomycin, an inhibitor of lysosomal degradation, and by depletion of tumor susceptibility gene 101, a major component of endosomal sorting complex required for transport-I. RNAi analysis indicated that LXRβ inhibited the accelerated lysosomal degradation of csABCA1 by the LXR agonist, regardless of its transcriptional activity. Cell surface coimmunoprecipitation with COS1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that LXRβ interacted with csABCA1 and inhibited the ubiquitination of csABCA1. Immunoprecipitates with anti-ABCA1 antibodies from the liver plasma membranes showed less LXRβ and a higher ubiquitination level of ABCA1 in high-fat diet-fed mice than in normal chow-fed mice. Under conditions of high cellular cholesterol content, csABCA1 became susceptible to ubiquitination by dissociation of LXRβ from csABCA1, which facilitated the lysosomal degradation of csABCA1 through the endosomal sorting complex required for transport system. © 2015 American Heart Association, Inc.

  14. Titanium oral implants: surface characteristics, interface biology and clinical outcome.

    PubMed

    Palmquist, Anders; Omar, Omar M; Esposito, Marco; Lausmaa, Jukka; Thomsen, Peter

    2010-10-06

    Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell-cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components.

  15. Titanium oral implants: surface characteristics, interface biology and clinical outcome

    PubMed Central

    Palmquist, Anders; Omar, Omar M.; Esposito, Marco; Lausmaa, Jukka; Thomsen, Peter

    2010-01-01

    Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell–cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components. PMID:20591849

  16. The surface state of hematite and its wetting characteristics.

    PubMed

    Shrimali, Kaustubh; Jin, Jiaqi; Hassas, Behzad Vaziri; Wang, Xuming; Miller, Jan D

    2016-09-01

    Apart from being a resource for iron/steel production, the iron oxide minerals, goethite and hematite, are used in the paint, cosmetics, and other industries as pigments. Surface characteristics of these minerals have been studied extensively both in resource recovery by flotation and in the preparation of colloidal dispersions. In this current research, the wetting characteristics of goethite (FeOOH) and hematite (Fe2O3) have been analyzed by means of contact angle, bubble attachment time, and Atomic Force Microscopy (AFM) measurements as well as by Molecular Dynamics Simulation (MDS). Goethite is naturally hydroxylated and wetted by water at all pH values. In contrast, the anhydrous hematite surface (001) was found to be slightly hydrophobic at natural pH values with a contact angle of about 50°. At alkaline pH hydroxylation of the hematite surface occurs rapidly and the hematite becomes hydrophilic. The wetting characteristics of the hematite surface then vary between the hydrophobic anhydrous hematite and the completely hydrophilic hydroxylated hematite, similar to goethite. The hydrophobicity can be restored by heating of the hydroxylated hematite surface at 60°C. The hydrophobic character of the anhydrous hematite (001) surface is confirmed by MDS which also reveals that after hydrolysis the hematite (001) surface can be wetted by water, similar to the goethite (001) surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity

    PubMed Central

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I.; Nel, André E.; Xia, Tian

    2014-01-01

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored, and in this study we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylated (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2) and polyetherimide (PEI) modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs, and comprehensively characterized by TEM, XPS, FTIR and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1 and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity towards lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEIMWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis

  18. Nano-fabrication of cellular force sensors and surface coatings via dendritic solidification

    NASA Astrophysics Data System (ADS)

    Paneru, Govind

    Directed electrochemical nanowire assembly (DENA) is a method for fabricating nano-structured materials via electrochemical dendritic solidification. This thesis presents two new applications of nano-structured materials that are fabricated via the DENA methodology: cellular force sensors to probe adhesive sites on living cells and single-crystalline metallic dendrites as surface coating materials. Fast migrating cells like D. discoideum, leukocytes, and breast cancer cells migrate by attachment and detachment of discrete adhesive contacts, known as actin foci, to the substrate where the cell transmits traction forces. Despite their importance in migration, the physics by which actin foci bind and release substrates is poorly understood. This gap is largely due to the compositional complexity of actin foci in living cells and to a lack of technique for directly probing these sub-cellular structures. Recent theoretical work predicts these adhesive structures to depend on the density of adhesion receptors in the contact sites, the receptor-substrate potential, and cell-medium surface tension. This thesis describes the fabrication of sub-microscopic force sensors composed of poly(3,4-ethylene dioxythiophene) fibers that can interface directly with sub-cellular targets such as actin foci. The spring constants of these fibers are in the range of 0.07-430 nN mum -1. These fibers were used to characterize the strength and lifetime of adhesion between the single adhesive contacts of D. discoideum cells and the fibers, finding an average force of 3.1 +/- 2.7 nN and lifetime of 23.4 +/- 18.5 s. This capability is significant because direct measurement of these properties will be necessary to measure the cell-medium surface tension and to characterize the receptor-substrate potential in the next (future) stage of this project. The fabrication of smart materials that are capable of the high dynamic range structural reconfiguration would lead to their use to confer hydrophobic

  19. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.

    PubMed

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela A; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I; Nel, André E; Xia, Tian

    2013-03-26

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These

  20. Electronic characteristics of 'real' CdS surfaces.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Balestra, C. L.; Gatos, H. C.

    1972-01-01

    Photovoltage spectroscopy (including photovoltage inversion and photovoltage quenching) was used to determine the electronic characteristics of real (basal and prismatic) surfaces of CdS. In room atmosphere, surface states with the following positions were found in the cadmium surfaces: Ec - Et equal to 0.05, 0.4, and 0.8 eV, and Ev - Et equal to 0.83 eV. The same surface states were present in the sulfur surfaces, with the exception of those at Ec - Et equal to 0.4 eV. In the prismatic and unetched basal surfaces, states at Ec - Et equal to 1.1 eV were found in addition to all of those found on the cadmium surfaces.

  1. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity.

    PubMed

    Xu, Min; Zhao, Yuefang; Feng, Min

    2012-08-07

    Cationic nanocarrier mediated intracellular therapeutic agent delivery acts as a double-edged sword: the carriers promote cellular uptake, but interact nonspecifically and strongly with negatively charged endogenic proteins and cell membranes, which results in aggregates and high cytotoxicity. The present study was aimed at exploring zwitterionic polyaspartamide derivative nanoparticles for efficient intracellular delivery with low cytotoxicity. Poly(aspartic acid) partially grafted tetraethylenepentamine (PASP-pg-TEPA) with different isoelectric points (IEPs) was synthesized. The PASP-pg-TEPA formed zwitterionic nanoparticles with an irregular core and a well-defined shell structure in aqueous medium. Their particle size decreased from about 300 to 80 nm with an increase of the IEP from 7.5 to 9.1. The surface charge of the PASP-pg-TEPA nanoparticles could be tuned from positive to negative with a change of the pH of the medium. The nanoparticles with an IEP above 8.5 exhibited good stability under simulated physiological conditions. It was noted that the zwitterionic PASP-pg-TEPA nanoparticles displayed highly efficient cellular uptake in HeLa cells (approximately 99%) in serum-containing medium and did not adversely affect the cell viability at concentrations up to 1 mg/mL. Furthermore, thermodynamic analysis using isothermal titration calorimetry provided direct evidence that these zwitterionic nanoparticles had low binding affinities for serum protein. Therefore, the zwitterionic PASP-pg-TEPA nanoparticles could overcome limitations of cationic nanocarriers and achieve efficient intracellular delivery with low cytotoxicity.

  2. ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.

    PubMed

    Ben M'barek, Kalthoum; Ajjaji, Dalila; Chorlay, Aymeric; Vanni, Stefano; Forêt, Lionel; Thiam, Abdou Rachid

    2017-06-19

    Cells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis. A key unanswered question in the life of LDs is how they bud off from the ER. Here, we tackle this question by studying the budding of artificial LDs from model membranes. We find that the bilayer phospholipid composition and surface tension are key parameters of LD budding. Phospholipids have differential LD budding aptitudes, and those inducing budding decrease the bilayer tension. We observe that decreasing tension favors the egress of neutral lipids from the bilayer and LD budding. In cells, budding conditions favor the formation of small LDs. Our discovery reveals the importance of altering ER physical chemistry for controlled cellular LD formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect

    Sailor, David Jean

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4°C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  4. Role of Surface Characteristics in Urban Meteorology and Air Quality

    NASA Astrophysics Data System (ADS)

    Sailor, David Jean

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result in higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4^circ C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  5. Effects of surface chemistry on the optical properties and cellular interaction of lanthanide-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Mimun, Lawrence C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2015-03-01

    Fluorescent nanoparticles (NPs) such as KYb2F7:Tm3+ potential in biomedical applications due to their ability to absorb and emit within the biological window, where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. Another big factor in determining their ability to perform in a biological setting is the surface chemistry. Biocompatible coatings, including polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), pluronic and folic acid are commonly used because they pose several advantages such as ease of functionalization, better dispersion, and higher cellular uptake. To study the effects of the NP surface chemistry, KYb2F7:Tm3+ a solvothermal method using PEG, PVP, pluronic acid, and folic acid as a capping agent, followed by thorough optical characterizations. Optical changes were thoroughly studied and compared using absorption, emission, and quantum yield data. Cell viability was obtained by treating Rhesus Monkey Retinal Endothelial cells (RhREC) with KYb2F7:Tm3+ and counting viable cells following a 24 hour uptake period. The work presented will compare the optical properties and toxicity dependency on the surface chemistry on KYb2F7:Tm3+. The results will also indicate that KYb2F7:Tm3+ nanoparticles are viable candidates for various biomedical applications.

  6. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation.

    PubMed

    Keshel, Saeed Heidari; Azhdadi, S Neda Kh; Asefnejad, Azadeh; Asefnezhad, Azadeh; Sadraeian, Mohammad; Montazeri, Mohamad; Biazar, Esmaeil

    2011-01-01

    Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.

  7. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum.

    PubMed

    Shahabi, Shakiba; Döscher, Svea; Bollhorst, Tobias; Treccani, Laura; Maas, Michael; Dringen, Ralf; Rezwan, Kurosch

    2015-12-09

    In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.

  8. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces

    PubMed Central

    Stern, Eric; Jay, Steven M.; Demento, Stacey L.; Murelli, Ryan P.; Reed, Mark A.; Malinski, Tadeusz; Spiegel, David A.; Mooney, David J.; Fahmy, Tarek M.

    2010-01-01

    Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. We demonstrate here a class of lithographically-defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins. We show that precise control can be achieved over the loading capacity and release rates of encapsulated agents and illustrate this aspect using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. We further demonstrate the ability of this technique to enable three-dimensional control over cellular encapsulation. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering. PMID:20445826

  9. Surface properties of lipoplexes modified with mannosylerythritol lipid-a and tween 80 and their cellular association.

    PubMed

    Ding, Wuxiao; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    The surface properties of cationic liposomes and lipoplexes largely determine the cellular association and gene transfection efficiency. In this study, we measured the surface properties, such as zeta potentials, surface pH and hydration levels of MHAPC- and OH-Chol-lipoplexes and their cellular association, without and with the modification of biosurfactant mannosylerythritol lipid-A (MEL-A) or Tween 80 (MHAPC=N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol; OH-Chol=cholesteryl-3beta-carboxyamindoethylene-N-hydroxyethylamine). Compared to OH-Chol-lipoplexes, the higher cellular association of MHAPC-lipoplexes correlated with the significantly higher zeta potentials, lower surface pH levels and "drier" surface, as evaluated by the generalized polarization of laurdan. Both MEL-A and Tween 80 modification of MHAPC-lipoplexes did not significantly change zeta potentials and surface pH levels, while MEL-A modification of OH-Chol-lipoplexes seriously decreased them. MEL-A hydrated the liposomal surface of MHAPC-lipoplexes but dehydrated that of OH-Chol-lipoplexes, while Tween 80 hydrated those of MHAPC- and OH-Chol-lipoplexes. In all, cationic liposomes composed of lipids with secondary and tertiary amine exhibited different surface properties and cellular associations of lipoplexes, and modification with surfactants further enlarged their difference. The strong hydration ability of Tween 80 may relate to the low cellular association of lipoplexes, while the dehydration of MEL-A-modified OH-Chol-lipoplexes seemed to compensate the negative zeta potential for the cellular association of lipoplexes.

  10. Synthesis and surface structural characteristics of new polysiloxane xerogel

    NASA Astrophysics Data System (ADS)

    Zasukhin, A. S.; Neudachina, L. K.; Yatluk, Yu. G.; Adamova, L. V.; Osipova, V. A.; Gorbunova, E. M.; Moskaleva, Yu. S.; Larina, T. Yu.

    2011-03-01

    Pyridylethylaminopropylpolysiloxane xerogel (PEAPPSX) was synthesized by sol-gel technology. The composition of the substance was determined via elemental analysis and 1H NMR spectroscopy. The surface structural characteristics of the xerogel were determined by electron microscopy and low-temperature nitrogen sorption; thermal analysis was also performed. It was established that the content of functional groups in PEAPPSX was 2.43 mmol/g, and that xerogel is a mesoporous substance with a developed surface (121.71 m2/g).

  11. Biocompatilibity-related surface characteristics of oxidized NiTi.

    PubMed

    Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo

    2007-09-15

    In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible.

  12. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  13. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation,...

  14. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation,...

  15. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation,...

  16. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation,...

  17. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation,...

  18. The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness

    NASA Technical Reports Server (NTRS)

    HOCKER RAY W

    1933-01-01

    The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

  19. Surface Characteristics and Biofilm Development on Selected Dental Ceramic Materials

    PubMed Central

    Kim, Kyoung H.; Loch, Carolina; Waddell, J. Neil; Tompkins, Geoffrey

    2017-01-01

    Background Intraoral adjustment and polishing of dental ceramics often affect their surface characteristics, promoting increased roughness and consequent biofilm growth. This study correlated surface roughness to biofilm development with four commercially available ceramic materials. Methods Four ceramic materials (Vita Enamic®, Lava™ Ultimate, Vitablocs Mark II, and Wieland Reflex®) were prepared as per manufacturer instructions. Seventeen specimens of each material were adjusted and polished to simulate clinical intraoral procedures and another seventeen remained unaltered. Specimens were analysed by SEM imaging, confocal microscopy, and crystal violet assay. Results SEM images showed more irregular surface topography in adjusted specimens than their respective controls. Surface roughness (Ra) values were greater in all materials following adjustments. All adjusted materials with the exception of Vitablocs Mark II promoted significantly greater biofilm growth relative to controls. Conclusion Simulated intraoral polishing methods resulted in greater surface roughness and increased biofilm accumulation. PMID:28567055

  20. Noise characteristics of upper surface blown configurations: Summary

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Gibson, J. S.

    1978-01-01

    A systematic experimental program was conducted to develop a data base for the noise and related flow characteristics of upper surface blown configurations. The effect of various geometric and flow parameters was investigated experimentally. The dominant noise was identified from the measured flow and noise characteristics to be generated downstream of the trailing edge. The possibilities of noise reduction techniques were explored. An upper surface blown (USB) noise prediction program was developed to calculate noise levels at any point and noise contours (footprints). Using this noise prediction program and a cruise performance data base, aircraft design studies were conducted to integrate low noise and good performance characteristics. A theory was developed for the noise from the highly sheared layer of a trailing edge wake. Theoretical results compare favorably with the measured noise of the USB model.

  1. A Cellular Automata Based Model for Simulating Surface Hydrological Processes in Catchments

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Baumgartl, Thomas; Huang, Longbin; Weatherley, Dion

    2014-05-01

    The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate the surface hydrological processes at the catchment scale by integrating basic cellular automata (CA) rules with fundamental measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of rectangular cells was employed to cover the study area. Runoff production within each cell was simulated by determining its water depth based on the rainfall, interception, infiltration and the balance between inflows and outflows. Particularly different infiltration equations were incorporated to make the model applicable for both single rainfall event (short term simulation) and multiple rainfall events (long term simulation). The distribution of water flow among cells was determined by applying CA transition rules based on the improved minimization-of-difference algorithm and the calculated spatially and temporally varied flow velocities according to the Manning's equation. RunCA was tested and validated at two catchments (Pine Glen Basin and Snow Shoe Basin, USA) with data taken from literature. The predicted hydrographs agreed well with the measured results. Simulated flow maps also demonstrated the model capability in capturing both the spatial and temporal variations in the runoff process. Model sensitivity analysis results showed that the simulated hydrographs were mostly influenced by the input parameters that represent the final steady infiltration rate, as well as the model settings of time step and cell size. Compared to some conventional distributed hydrologic models that calculate the runoff routing process by solving complex continuity equations, this model integrates a novel method and is expected to be more computationally efficient as it is based on simple CA transition rules when determining the flow distribution.

  2. Cellular fibroma of the ovary with multiloculated macroscopic characteristics: case report.

    PubMed

    Adad, Sheila Jorge; Laterza, Valeria Lima; Dos Santos, Carlos David Teixeira; Ladeia, Antonio Alexandre Lisboa; Saldanha, Joao Carlos; da Silva, Cleber Sergio; E Souza, Luis Ronan Marquez Ferreira; Murta, Eddie Fernando Candido

    2012-01-01

    Ovarian fibroma is the commonest benign tumor of the ovarian stroma. The cellular subtype accounts for around 10% of ovarian fibromatous tumors. The cellular fibroma is a tumor of uncertain malignant potential that may recur or be associated with peritoneal implants. Usually these are solid tumors, sometimes with small areas of cystic degeneration. This case is reported to highlight an unusual feature for an ovarian fibroma: the tumor was predominantly cystic with a small solid part; the multiple cavities contents consisted of viscous liquid that solidified under room temperature. The multiloculated cysts, the mucinous contents, and the solid areas simulated a borderline mucinous ovarian tumor on both CT scan and gross pathologic examination.

  3. Effect of surface roughness on characteristics of spherical shock waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W; Mcfarland, Donald R

    1955-01-01

    An investigation has been conducted on a small-scale test layout in which direct observation of the shock wave movement with time could be made in order to determine the effects of surface roughness on the characteristics of spherical shock waves. Data were obtained with 15-gram pentolite charges at four heights of burst, both for a smooth surface and for a surface completely covered with pyramid-shaped roughness elements. The observations resulted in determinations of shock peak overpressure and Mach stem height as a function of distance for each test. Comparison of the smooth-surface data with those obtained for the extremely rough condition showed a small net effort of roughness on the shock peak overpressures at the surface for all burst heights, the effect being to lower the overpressures. The effect of surface roughness on the Mach stem formation and growth was to delay the formation at the greatest charge height and to lower the height of the Mach stem for all heights.Comparison of the free-air shock peak overpressures with larger scale data showed good similarity of the overpressure-distance relationships. The data did not fit a geometrical similarity parameter for the path of the triple point at different heights of burst suggested by other investigators. A simple similarity parameter (relating the horizontal distance to the theoretical point of Mach formation) was found which showed only a small influence of burst height on the path of the triple point. While the data presented provide knowledge of the effect of many surface-roughness elements on the overall shock characteristics, the data do not provide insight into the details of the air-flow characteristics along the surface, nor the relative contribution of individual roughness elements to the results obtained.

  4. Effect of Nanoparticle Surface Chemistry on Adsorption and Fluid Phase Partitioning in Aqueous/Toluene and Cellular Systems.

    PubMed

    Gambinossi, Filippo; Lapides, Dana; Anderson, Chris; Chanana, Munish; Ferri, James K

    2015-05-01

    Copolymers of di(ethylene glycol) methyl ether methacrylate (x = MeO2MA) and oligo(ethylene glycol) methyl ether methacrylate (y = OEGMA) display lower critical solution phenomena in aqueous systems that are tunable by the copolymer ratio (x:y), ionic strength, and temperature. These properties enable tuning the hydrophobicity of macromolecular systems by variation of (x:y). For nanoparticles stabilized with these macromolecules, this provides a systematic approach to understanding the impact of surface chemistry, specifically hydrophobicity, on the equilibrium and transport properties of nanomaterials in biphasic systems. We synthesized a homologous series of gold nanoparticles capped by these copolymers, Au@(MeO2MA(x)-co-OEGMA(y)). By varying the copolymer 95:5 < (x:y) < 80:20 ratio, we studied the effect of surface hydrophobicity on the nanoparticle equilibrium adsorption isotherm and phase transfer at the aqueous-toluene interface. The increase in hydrophobicity from (x:y) = 80:20 to (x:y) = 95:5 is accompanied by an increase in the fractional coverage of the aqueous-toluene interface from f = 0.3 to f > 1, or multilayer adsorption and an increase in the characteristic adsorption timescale from τ(D) = 31 to τ(D) = 450 seconds. The equilibrium partition coefficient for the aqueous/toluene systems, K(T/W) is also a strong function of (x:y), increasing from K(T/W) (80:20) = 0.7 to K(T/W) (95:5) = 9.8. We also observed an increase in cellular uptake for increasing (x:y) suggesting that surface chemistry alone plays a significant role in intercellular transport processes.

  5. Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays

    EPA Science Inventory

    Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...

  6. Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays

    EPA Science Inventory

    Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...

  7. Characteristics of pulse corona discharge over water surface

    NASA Astrophysics Data System (ADS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  8. Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol.

    PubMed

    Jain, Ratnesh; Dandekar, Prajakta; Loretz, Brigitta; Melero, Ana; Stauner, Thomas; Wenz, Gerhard; Koch, Marcus; Lehr, Claus-Michael

    2011-11-25

    Enhanced intracellular internalization of the anti-cancer active idarubicin (IDA) was achieved through appropriate surface modification of IDA loaded propyl starch nanoparticles. This was conducted by synthesizing pteroic acid modified polyvinyl alcohol (ptPVA) and employing this stabilizer for formulating the said nanoparticles. Pteroic acid attached at the nanoparticles improved the surface protein adsorption of the nanoparticle, a condition which the nanoparticles would largely experience in vitro and in vivo and hence improve their cellular internalization. Spherical, homogenous IDA nanoparticles (214 ± 5 nm) with surface modified by ptPVA were formulated using the solvent emulsification-diffusion technique. The encapsulation efficiency and drug loading amounted around 85%. In vitro release studies indicated a controlled release of IDA. Safety and efficacy of the nanoparticles was confirmed by suitable cellular cytotoxicity assays. Protein binding studies indicated a higher adsorption of the model protein on nanoparticles formulated with ptPVA as compared to PVA. Cellular uptake studies by confocal laser scanning microscopy revealed a higher cellular uptake of ptPVA stabilized nanoparticles thus confirming the proposed hypothesis of higher protein adsorption being responsible for higher cellular internalization.

  9. Surface Plasmon Resonance Fiber Sensor for Real-Time and Label-Free Monitoring of Cellular Behavior

    PubMed Central

    Shevchenko, Yanina; Camci-Unal, Gulden; Cuttica, Davide F.; Dokmeci, Mehmet R.; Albert, Jacques; Khademhosseini, Ali

    2014-01-01

    This paper reports on the application of an optical fiber biosensor for real-time analysis of cellular behavior. Our findings illustrate that a fiber sensor manufactured from a traditional telecommunication fiber can be integrated into conventional cell culture equipment and used for real-time and label-free monitoring of cellular responses to chemical stimuli. The sensing mechanism used for the measurement of cellular responses is based on the excitation of Surface Plasmon Resonance (SPR) on the surface of the optical fiber. In this proof of concept study, the sensor was utilized to investigate the influence of a number of different stimuli on cells - we tested the effects of trypsin, serum and sodium azide. These stimuli induced detachment of cells from the sensor surface, uptake of serum and inhibition of cellular metabolism, accordingly. The effects of different stimuli were confirmed with alamar blue assay, phase contrast and fluorescence microscopy. The results indicated that the fiber biosensor can be successfully utilized for real-time and label-free monitoring of cellular response in the first 30 minutes following the introduction of a stimulus. Furthermore, we demonstrated that the optical fiber biosensors can be easily regenerated for repeated use, proving this platform as a versatile and cost-effective sensing tool. PMID:24549115

  10. Determining the source characteristics of explosions near the Earth's surface

    NASA Astrophysics Data System (ADS)

    Pasyanos, Michael E.; Ford, Sean R.

    2015-05-01

    We present a method to determine source characteristics of explosions near the Earth's surface. The technique accounts for the reduction in amplitudes as the explosion depth approaches the free surface and less energy is coupled into the ground. We apply the method to the Humming Roadrunner series of shallow explosions in New Mexico where the yields and depths are known. Knowledge of the material properties is needed for both source coupling/excitation and the free surface effect. Although there is the expected trade-off between depth and yield, the estimated yields are close to the known values when the depth is constrained to the free surface. We then apply the method to a regionally recorded explosion in Syria. We estimate an explosive yield less than the 60 t claimed by sources in the open press. The modifications to the method allow us to apply the technique to new classes of events.

  11. Anatomical characteristics of the cerebral surface in bulimia nervosa.

    PubMed

    Marsh, Rachel; Stefan, Mihaela; Bansal, Ravi; Hao, Xuejun; Walsh, B Timothy; Peterson, Bradley S

    2015-04-01

    The aim of this study was to examine morphometric features of the cerebral surface in adolescent and adult female subjects with bulimia nervosa (BN). Anatomical magnetic resonance images were acquired from 34 adolescent and adult female subjects with BN and 34 healthy age-matched control subjects. We compared the groups in the morphological characteristics of their cerebral surfaces while controlling for age and illness duration. Significant reductions of local volumes on the brain surface were detected in frontal and temporoparietal areas in the BN compared with control participants. Reductions in inferior frontal regions correlated inversely with symptom severity, age, and Stroop interference scores in the BN group. These findings suggest that local volumes of inferior frontal regions are smaller in individuals with BN compared with healthy individuals. These reductions along the cerebral surface might contribute to functional deficits in self-regulation and to the persistence of these deficits over development in BN. © 2014 Society of Biological Psychiatry.

  12. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    PubMed Central

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  13. The cellular automata for modelling of spreading of lava flow on the earth surface

    NASA Astrophysics Data System (ADS)

    Jarna, Alexandra; Cirbus, Juraj

    2013-04-01

    Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow.

  14. The Cellular Automata for modelling of spreading of lava flow on the earth surface

    NASA Astrophysics Data System (ADS)

    Jarna, A.

    2012-12-01

    Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow. Comparison of the simulation results with real lava flows mapped out from satellite images will be presented.

  15. Cellular Fibroma of the Ovary with Multiloculated Macroscopic Characteristics: Case Report

    PubMed Central

    Adad, Sheila Jorge; Laterza, Valeria Lima; dos Santos, Carlos David Teixeira; Ladeia, Antonio Alexandre Lisboa; Saldanha, Joao Carlos; da Silva, Cleber Sergio; e Souza, Luis Ronan Marquez Ferreira; Murta, Eddie Fernando Candido

    2012-01-01

    Ovarian fibroma is the commonest benign tumor of the ovarian stroma. The cellular subtype accounts for around 10% of ovarian fibromatous tumors. The cellular fibroma is a tumor of uncertain malignant potential that may recur or be associated with peritoneal implants. Usually these are solid tumors, sometimes with small areas of cystic degeneration. This case is reported to highlight an unusual feature for an ovarian fibroma: the tumor was predominantly cystic with a small solid part; the multiple cavities contents consisted of viscous liquid that solidified under room temperature. The multiloculated cysts, the mucinous contents, and the solid areas simulated a borderline mucinous ovarian tumor on both CT scan and gross pathologic examination. PMID:22567015

  16. Reflection characteristics of a composite planar AMC surface

    NASA Astrophysics Data System (ADS)

    Hwang, Ruey-Bing; Tsai, Yueh-Lin

    2012-03-01

    This study investigates the reflection characteristics of a composite Artificial Magnetic Conductor (AMC) surface consisting of multiple orthogonal gradient AMC surfaces arranged in a two-dimensional periodic pattern. The gradient AMC surface in this study consists of square metal patches of variable size printed on a grounded dielectric substrate. Due to the orthogonal placement of the gradient AMC surface, the incident energy of a plane wave normally incident on the composite AMC surface will be reflected into four major lobes away from the impinging direction. To achieve a systematical design, a simple formula based on array antenna theory was developed to determine the reflection pattern of the gradient AMC surface illuminated by a normal incident plane wave. A time-domain full-wave simulation was also carried out to calculate the electromagnetic fields in the structure and the far-field patterns. The scattering patterns of the structure were measured in an electromagnetic anechoic chamber. Results confirm the design principle and procedures in this research. Since such a composite AMC surface can be easily fabricated using the standard printed circuit board technique without via-hole process, it may have potential applications in beam-steering and radar cross section reduction.

  17. Characteristics of surface signatures of Mediterranean water eddies

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I.; Carton, X.; Belonenko, T. V.

    2014-10-01

    In this work, we obtain new results on the manifestation of meddies (or of other deep eddies) at the sea-surface, further developing the results by Bashmachnikov and Carton (2012). The quasi-geostrophic equations are used to describe a near-axisymmetric vortex in the upper ocean, forced at its lower boundary by the isopycnal elevation of a moving meddy. The solution thus obtained provides a better approximation of the characteristics of meddy surface signals. The results show that in subtropics large meddies with dynamic radius Rm ≥ 30 km are always seen at the sea-surface with AVISO altimetry, that medium-size meddies with Rm = 20 km may be seen at the sea-surface only if they are sufficiently shallow and strong, while small meddies with Rm = 10 km generally cannot be detected with the present accuracy of altimetry data. The intensity of meddy surface signals decreases to the south with the decrease of the f/N ratio. The seasonal variation in intensity of the surface signal for northern meddies (45°N) is on the order of 2-3 cm, but for subtropical meddies (35°N) it can be on the order of 5-10 cm. The radii of meddy surface signals range from 1 to 2 times the radii of the corresponding meddies. For most of the observed subtropical meddies, the upper limit should be used. Numerical experiments show that surface signals of meddies translated with β-drift are efficiently dispersed by the radiation of Rossby waves. At the same time, for meddies translated by a background current, the surface signal does not show strong dissipation.

  18. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  19. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  20. Survey of the finish characteristics of machined optical surfaces

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1984-08-01

    This paper reports the findings of a survey of the finished characteristics of machined optical surfaces. The names, addresses, points of contact and telephone numbers of each of the nine participating suppliers are listed alphabetically. The machining parameters provided by and/or derived from information supplied by the manufacturer are summarized. These parameters include: surface material; machine feeds and speeds; tool-mark spacing (d); tool tip radius (R); and ideal RMS surface roughness computed using the expression (Comments) section includes general remarks about the sample or its measurement. For example: discoloration, scratches, graininess, excrescences, homogeneity. Several measurements were made on each sample at different positions. The present report includes data from one such measurement. For surfaces turned off-center, this position is generally at the center of the sample. For surfaces turned on-center, this position is somewhere near the edge. Data are presented in the form of two pages for each measurement, consisting of two graphs of the surface profile on one page and two graphs of the periodogram on the second page.

  1. Chemical and morphological characteristics of lithium electrode surfaces

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.

    1981-01-01

    Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.

  2. Chemical and morphological characteristics of lithium electrode surfaces

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.

    1981-01-01

    Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.

  3. Characteristics of the South Pacific subtropical surface salinity maximum

    NASA Astrophysics Data System (ADS)

    Bingham, F.; Busecke, J. J. M.; Gordon, A. L.; Giulivi, C. F.

    2016-02-01

    The surface salinity (SSS) in the eastern South Pacific has a large maximum centered near (21°S, 120°W). It extends approximately 5000 km in the east-west direction and is bounded by the Humboldt Current on the east and the South Pacific Convergence Zone on the west. It is distinct from another much smaller and less distinct SSS maximum feature in the western South Pacific near Australia. It is associated with High evaporation and surface Ekman convergence Weak variability and seasonality on the northern side Fluctuating size driven by changes in southward extent Mean surface currents flowing toward and through the feature from the north Higher tendency for fresh anomalies on northern side These characteristics highlight the role of mesoscale stirring and northward Ekman transport in the formation and maintenance of this prominent feature.

  4. Surface complement C3 fragments and cellular binding of microparticles in patients with SLE

    PubMed Central

    Winberg, Line Kjær; Nielsen, Claus Henrik; Jacobsen, Søren

    2017-01-01

    Objectives To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes. These features may be relevant for clearance of MPs in SLE pathogenesis. Methods Attached C3 fragments (C3b, iC3b, C3d), membrane integrity and cell surface markers of MPs from 18 patients with SLE and 11 HCs were measured by adding specific antibodies, 7-aminoactinomycin D (7AAD) and annexin V. MPs from all subjects were labelled with carboxyfluorescein diacetate succinimidyl ester and allowed to bind to autologous phagocytes and erythrocytes in the presence of autologous serum, and the binding to individual cell populations was assessed by flow cytometry. Results The proportion of MPs bearing C3 fragments was higher in patients with SLE than in HCs (p=0.026), but the amount of opsonising C3b/iC3b molecules was lower (p=0.004). The C3b/iC3b level correlated with the concentration of circulating C3 (rs=0.53, p=0.036). Phagocytes and erythrocytes from patients and HCs bound autologous MPs, and granulocytes from patients bound 13% more MPs than those from HCs (p=0.043). The presence of erythrocytes inhibited the MP binding to granulocytes by approximately 50%. Conclusions Our demonstration of altered composition of C3 fragments on MPs from patients with SLE, including decreased numbers of opsonising C3 fragments, and competitive binding of MPs to circulating phagocytes and erythrocytes corroborates the hypothesis of defective clearance of apoptotic material in SLE, and indicates that differences in both MP opsonisation and binding of MPs to cells are important in the pathogenesis of SLE. PMID:28409016

  5. Virus-Surface-Mimicking Surface Clustering of AuNPs onto DNA-Entrapped Polymeric Nanoparticle for Enhanced Cellular Internalization and Nanocluster-Induced NIR Photothermal Therapy.

    PubMed

    Jia, Hui-Zhen; Chen, Wei-Hai; Wang, Xuli; Lei, Qi; Yin, Wei-Na; Wang, Yan; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2015-12-01

    Virus-surface-mimicking decoration of deoxyribonucleic acid (DNA)-entrapped polymeric nanoparticle with AuNPs is demonstrated to lead to enhanced cellular uptake, improved gene transfection, and particularly efficient near-infrared photothermal therapy that cannot be achieved by both of them separately. This hybrid nanosystem represents a novel paradigm of multipurpose organic-inorganic nanoplatform, especially for cancer treatments.

  6. Effects of simulated weightlessness on cellular morphology and biological characteristics of cell lines SGC-7901 and HFE-145.

    PubMed

    Zhu, M; Jin, X W; Wu, B Y; Nie, J L; Li, Y H

    2014-08-07

    We investigated the effects of simulated weightlessness on cellular morphology, proliferation, cell cycle, and apoptosis of the human gastric carcinoma cell line SGC-7901 and the human gastric normal cell line HFE-145. A rotating clinostat was used to simulate weightlessness. The Image-Pro4.5 image analysis system was used for morphometric analysis. Proliferating cell nuclear antigen expression was examined by immunohistochemical staining. Changes in the cell cycle were examined using a cytometer. Apoptosis was measured using the terminal dUTP nick-end labeling (TUNEL) method. When subjected to simulated weightlessness, the cellular morphology of SGC-7901 cells was changed at 12, 24, 48, and 72 h, cell conversion from the G1 to S phase was blocked, proliferation was inhibited at 48 and 72 h, and the apoptosis index was increased at 72 h. The same changes were observed for HFE-145 cells at 12 h when subjected to simulated weightlessness, but no significant changes were found afterward compared with controls. SGC-7901 cells change their cellular morphology and biological characteristics during clinostat-simulated weightlessness at 72 h, but HFE-145 cells only change at 12 h and adapt to simulated weightlessness after that point.

  7. Surface characteristics of isopod digestive gland epithelium studied by SEM.

    PubMed

    Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco

    2010-05-01

    The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.

  8. Arecibo radar observations of Martian surface characteristics near the equator

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Tyler, G. L.; Campbell, D. B.

    1978-01-01

    Mars radar observations at 12.6-cm wavelength indicate that many of what were potential Viking landing sites along the planet's equator are rougher than interpretations of Mariner 9 images suggested. Root mean square surface slopes are typically 5 degrees in the region bounded by 160 and 200 degrees W, 0 and 12 degrees S. From Tharsis Montes west to 160 degrees W, radar-scattering characteristics suggest extreme roughness on small scales, perhaps exceeding 10 degrees in rms magnitude. East of Tharsis and north of Valles Marineris the surface is smooth, with values of rms slope as low as 1 degree; the elevation of this plateau was too high for a Viking landing. Study of spectral shapes indicates the Hagfors scattering law remains the best descriptor of quasi-specular surface scattering properties in an average sense; widespread variations in the surface argue against its indiscriminate use, however. Backscattering at moderate (25-40 degrees) incidence angles was studied qualitatively and was found to be significantly above the level predicted by a strictly quasi-specular (e.g., Hagfors) process; it also is variable over the surface.

  9. Characteristic features of stem cells in glioblastomas: from cellular biology to genetics.

    PubMed

    Knights, Mark J; Kyle, Stuart; Ismail, Azzam

    2012-09-01

    Glioblastoma is the most common type of primary brain tumor in adults and is among the most lethal and least successfully treated solid tumors. Recently, research into the area of stem cells in brain tumors has gained momentum. However, due to the relatively new and novel hypothesis that a subpopulation of cancer cells in each malignancy has the potential for tumor initiation and repopulation, the data in this area of research are still in its infancy. This review article is aimed at attempting to bring together research carried out so far in order to build an understanding of glioblastoma stem cells (GSCs). Initially, we consider GSCs at a morphological and cellular level, and then discuss important cell markers, signaling pathways and genetics. Furthermore, we highlight the difficulties associated with what some of the evidence indicates and what collectively the studies contribute to further defining the interpretation of GSCs. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  10. Spreading characteristics of nanofluid droplets impacting onto a solid surface.

    PubMed

    Murshed, S M Sohel; de Castro, C A Nieto

    2011-04-01

    This paper reports an experimental investigation on the spreading characteristics of nanofluid droplets impinging on aluminum substrate under the influence of several key factors such as nanoparticle volume fraction, substrate temperature, and the Weber number. Sample nanofluid used is prepared by dispersing several volumetric concentrations (1 to 5%) of titanium dioxide nanoparticles in ethylene glycol. The entire dynamic process of each droplet collision with the substrate surface and the spreading phenomena is captured by using a high speed camera and then the transient spreading diameter and height of droplet are determined. It is found that the higher the concentration of nanoparticles the larger the spreading diameter of nanofluid droplet. As the surface temperature increases, the overall spreading diameter and height of nanofluid droplet significantly decreases and increases, respectively. At larger Weber number, the final spreading of the nanofluid droplet is also found to be larger than that of lower Weber number. Present results demonstrate that spreading characteristics of nanofluid droplets impacting onto solid surface are greatly influenced by each of the aforementioned factors.

  11. Dynamic corona characteristics of water droplets on charged conductor surface

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  12. Impact of poly(lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions.

    PubMed

    Pillai, Gopikrishna J; Greeshma, M M; Menon, Deepthy

    2015-12-01

    The initial interactions of nanoparticles with biomolecules have a great influence on its toxicity, efficacy, biodistribution and clearance. The present work is an attempt to understand the impact of surface charge of polymeric nanoparticles on its plasma protein and cellular interactions. Negative, near-neutral and positively charged poly(lactic-co-glycolic acid) [PLGA] nanoparticles were prepared using casein, poly(vinyl alcohol) and poly(ethylene imine) respectively, as surface stabilizers. A significant temporal variation in the hydrodynamic diameter of PLGA nanoparticles was observed in the presence of plasma proteins, which correlated with the amount of proteins adsorbed to each surface. Positively charged particles displayed the maximum size variation and protein adsorption. Cellular uptake of differentially charged nanoparticles was also concurrent with the quantity of adsorbed proteins, though there was no significant difference in their cytotoxicity. Haematological interactions (haemolysis and plasma coagulation times) of positively charged nanoparticles were considerably different from near-neutral and negative nanoparticles. Collectively, the results point to the interplay between plasma protein adsorption and cellular interactions of PLGA nanoparticles, which is governed by its surface charge, thereby necessitating a rational design of nanoparticles.

  13. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Richardson, David E. (Inventor); Stratton, Troy C. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  14. Modeling of polarimetric BRDF characteristics of painted surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wang, Zeying; Zhao, Huijie

    2014-11-01

    In this paper a pBRDF (polarimetric Bidirectional Reflectance Distribution Function) model of painted surfaces coupled with atmospheric polarization characteristics is built and the method of simulating polarimetric radiation reaching the imaging system is advanced. Firstly, the composition of the radiation reaching the sensor is analyzed. Then, the pBRDF model of painted surfaces is developed according to the microfacet theory presented by G. Priest and the downwelled skylight polarization is modeled based on the vector radiative transfer model RT3. Furthermore, the modeled polarization state of reflected light from the surfaces was achieved through integrating the directional polarimetric information of the whole hemisphere, adding the modeled polarimetric factors of incident diffused skylight. Finally, the polarimetric radiance reaching the sensor is summed up with the assumption that the target-sensor path is assumed to be negligible since it is relatively short in the current imaging geometry. The modeled results are related to the solar-sensor geometry, atmospheric conditions and the features of the painted surfaces. This result can be used to simulate the imaging under different weather conditions and further work for the validation experiments of the model need to be done.

  15. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Döring, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2, and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

  16. Magnetic characteristics of surface sediments of Liaodong Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Wang, Yonghong; Liu, Jian; Yu, Yiyong

    2015-06-01

    Analysis of magnetic properties of marine surface sediments has been gradually proved to be one of the effective means for researching the source of marine sediments. In this paper, samples from 39 sites in Liaodong Bay were collected to analyze the magnetic characteristics of the surface sediments. Magnetic study indicated that the surface sediments of the Liaodong Bay are characterized by magnetite. In the middle and eastern part and the southwest corner of the Bay, the main magnetic grains were coarse multidomain and pseudo-single-domain particles, while in other areas single-domain and pseudo-single-domain particles constitute the majority. Based on grain size and environmental magnetism data, the content of magnetic minerals has a positive correlation with the hydrodynamic environment when the magnetic mineral domain is finer. However, the content of magnetic minerals is in a complex relationship with the hydrodynamic environment in the coarse magnetic domain of magnetic minerals found in central Liaodong Bay and places outside the Fuzhou Bay, implying that the strong hydrodynamic environment accelerates the sedimentation of coarse magnetic minerals. Based on geographic pattern of magnetic properties, it can be inferred that the main provenance of the surface sediments of the Liaodong Bay is the surrounding rivers, and the comparative analysis indicates that Yellow River substances maybe also exist in the bay.

  17. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  18. Cellular, histomorphologic, and clinical characteristics of a new octyl-2-cyanoacrylate skin adhesive.

    PubMed

    Nitsch, Axel; Pabyk, Alfred; Honig, Johannes Franz; Verheggen, Raphaela; Merten, Hans-Albert

    2005-01-01

    Short-chained cyanoacrylates have been used for many years for topical skin closure. Toxic effects in cell culture of a new long-chained octyl-2-cyanoacrylate tissue adhesive are compared with those of short-chained ethyl-2- and butyl-2-cyanoacrylates. Two cellular tests were used: the agar overlay test and the MTT test. An in vitro test using copper plates coated with the three types of cyanoacrylates serves for evaluating the stability of polymerized skin adhesives. Bilateral neck skin incisions in Goettingen miniature pigs were glued on one side with Dermabond. On the other side, conventional sutures were applied. After the pigs were killed, the resulting skin samples were tested for the tensile strength of their wound stability. Samples of pig dermis were exemplarily and histomorphologically characterized. A clinical examination after submandibular lymph node dissection should examine the application in humans. Cell culture tests were used to show the toxic effects of the three cyanoacrylates. In a copper test, octyl-2-cyanoacrylate was more stabile than ethyl- and butyl-cyanoacrylates. Breaking strength was 30% lower 28 days after operation with the new product than with sutures. In electron microscopy, octyl-2-cyanoacrylate showed no disadvantages with regard to tissue regeneration and no histotoxicity. For plastic surgery, this new topical skin adhesive is a real alternative with attractive results, as compared with conventional suture.

  19. Soil and water characteristics of a young surface mine wetland

    NASA Astrophysics Data System (ADS)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  20. Secretory proteins characteristic of environmental changes in cellular signal transduction: Expression in oral fluid

    NASA Astrophysics Data System (ADS)

    Mednieks, M. I.; Burke, J. C.; Sivakumar, T. P.; Hand, A. R.; Grindeland, R. E.

    2000-01-01

    Past studies have shown that both hypo- and hyper-gravity have significant consequences on a variety of tissues and organ systems. It is not known if the effects of environmental stimuli such as altered gravity are beneficial or detrimental, and if the effects can be prevented or reversed. Animal experiments from the Space Lab and Cosmos missions indicate that events that are mediated by cyclic AMP, such as cellular responses to catecholamine and peptide hormone action, are significantly altered in a number of tissues as a consequence of space flight. A secretory cyclic AMP-receptor protein (cARP), is present in saliva, and can serve as an indicator of individual responses to physiologic and environmental stress. Animal experiments have shown that the hypergravity component of space flight is a significant stress factor. In humans, cARP levels in each individual are constant under normal conditions, but elevated after acute stress. Additionally, the levels of cARP in secreted saliva can be compared to those in gingival crevicular fluid (GCF), which reflects the protein composition of serum. The ratio of cARP in saliva to that in GCF can be used as a measure of basal compared to hyper-or hypo-gravity values. An ultimate goal is to test hyper and zero G responses in human saliva to determine if cARP is a suitable index of acute and chronic stress. A miniaturized test kit for saliva collection has been designed. Samples can be collected and stored till analyses are carried out that will distinguish the effects of increased gravity from those of one and zero G. Such tests can serve as an individualized monitoring system for physiologic responses either in space or on earth. .

  1. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.

    PubMed

    Ding, Chenyue; Li, Hong; Wang, Yun; Wang, Fuxin; Wu, Huihua; Chen, Rulei; Lv, Jinghuan; Wang, Wei; Huang, Boxian

    2017-07-27

    Many reports have shown that various kinds of stem cells have the ability to recover premature ovarian aging (POA) function. Transplantation of human amniotic epithelial cells (hAECs) improves ovarian function damaged by chemotherapy in a mice model. Understanding of how to evaluate the distinct effects of adult stem cells in curing POA and how to choose stem cells in clinical application is lacking. To build a different degrees of POA model, mice were administered different doses of cyclophosphamide: light dose (70 mg/kg, 2 weeks), medium dose (70 mg/kg, 1 week; 120 mg/kg, 1 week), and high dose (120 mg/kg, 2 weeks). Enzyme-linked immunosorbent assay detected serum levels of sex hormones, and hematoxylin and eosin staining allowed follicle counting and showed the ovarian tissue structure. DiIC18(5)-DS was employed to label human amniotic mesenchymal stem cells (hAMSCs) and hAECs for detecting the cellular retention time in ovaries by a live imaging system. Proliferation of human ovarian granule cells (ki67, AMH, FSHR, FOXL2, and CYP19A1) and immunological rejection of human peripheral blood mononuclear cells (CD4, CD11b, CD19, and CD56) were measured by flow cytometry (fluorescence-activated cell sorting (FACS)). Distinction of cellular biological characteristics between hAECs and hAMSCs was evaluated, such as collagen secretory level (collagen I, II, III, IV, and VI), telomerase activity, pluripotent markers tested by western blot, expression level of immune molecules (HLA-ABC and HLA-DR) analyzed by FACS, and cytokines (growth factors, chemotactic factors, apoptosis factors, and inflammatory factors) measured by a protein antibody array methodology. After hAMSCs and hAECs were transplanted into a different degrees of POA model, hAMSCs exerted better therapeutic activity on mouse ovarian function in the high-dose administration group, promoting the proliferation rate of ovarian granular cells from premature ovarian failure patients, but also provoking immune

  2. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  3. Starvation-induced effects on bacterial surface characteristics.

    PubMed

    Kjelleberg, S; Hermansson, M

    1984-09-01

    Changes in bacterial surface hydrophobicity, charge, and degree of irreversible binding to glass surfaces of seven marine isolates were followed during starvation. The degree of hydrophobicity was measured by hydrophobic interaction chromatography and by two-phase separation in a hexadecane-water system, whereas changes in charge were measured by electrostatic interaction chromatography. All isolates underwent the starvation-induced responses of fragmentation, which is defined as division without growth, and continuous size reduction, which results in populations with increased numbers of smaller cells. The latter process was also responsible for a significant proportion of the total drop in cell volume; this was observed by noting the biovolume (the average cell multiplied by the number of bacteria) of a population after various times of starvation. Four strains exhibited increases in both hydrophobicity and irreversible binding, initiated after different starvation times. The most hydrophilic and most hydrophobic isolates both showed a small increase in the degree of irreversible binding after only 5 h, followed by a small decrease after 22 h. Their hydrophobicity remained constant, however, throughout the entire starvation period. On the other hand, one strain, EF190, increased its hydrophobicity after 5 h of starvation, although the degree of irreversible binding remained constant. Charge effects could not be generally related to the increase in irreversible binding. Scanning electron micrographs showed a large increase in surface roughness throughout the starvation period for all strains that showed marked changes in physicochemical characteristics.

  4. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  5. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  6. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    PubMed

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  7. Understanding the nano-topography changes and cellular influences resulting from the surface adsorption of human hair keratins.

    PubMed

    Taraballi, Francesca; Wang, Shuai; Li, Jian; Lee, Fiona Yann Yann; Venkatraman, Subbu S; Birch, William R; Teoh, Swee Hin; Boey, Freddy Yin Chiang; Ng, Kee Woei

    2012-07-01

    Recent interest in the use of human hair keratins as a biomaterial has grown, fuelled by improvements in keratin extraction methods and better understanding of keratin bioactivity. The use of keratins as a bioactive coating for in vitro cell culture studies is an attractive proposition. In this light, the surface adsorption of human hair keratins onto tissue culture polystyrene surfaces has been investigated. Keratin density, nano-topography and hydrophobicity of keratin coated surfaces were characterized. To understand the cellular influence of these coated surfaces, murine L929 fibroblasts were cultured on them and evaluated for cytotoxicity, proliferation, metabolic activity and detachment behaviors compared to collagen type 1 coated surfaces. Keratins were deposited up to a density of 650 ng/cm(2) when a coating concentration of 80 μg/ml or higher was used. The surface features formed by adsorbed keratins also changed in a coating concentration dependent manner. These surfaces improved L929 mouse fibroblast adhesion and proliferation in comparison to uncoated and collagen type 1 coated tissue culture polystyrene. Furthermore, the expression of fibronectin was accelerated on surfaces coated with solutions of higher keratin concentrations. These results suggest that human hair keratins can be used as a viable surface coating material to enhance substrate compliance for culturing cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    PubMed

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering.

  9. Effects of 3-hydroxyflavone on the cellular and molecular characteristics of bovine embryos produced by somatic-cell nuclear transfer.

    PubMed

    Su, Jianmin; Wang, Yongsheng; Li, Wenzhe; Gao, Mingqing; Ma, Yefei; Hua, Song; Quan, Fusheng; Zhang, Yong

    2014-03-01

    This study aimed to investigate the effects of 3-hydroxyflavone, a natural antioxidant pigment enriched in vegetables, on the developmental cellular and molecular characteristics of bovine somatic-cell nuclear transfer (SCNT) embryos. There were no significant differences in the cleavage rate at 48 hr of culture or in the inner cell mass (ICM)-to-trophectoderm (TE) ratio between 3-hydroxyflavone addition and untreated (control) groups (P > 0.05). 3-hydroxyflavone (20 µM) did, however, increase the cleavage rate at 24 hr of culture and the blastocyst-formation rate on Days 6 and 7 (P < 0.05); decrease the levels of intracellular reactive oxygen species in two-, four-, and eight-cell stage embryos (P < 0.05); increase H3K9ac levels in two- and four-cell stages (P < 0.05); increase the total cell number; and decrease the apoptosis index in Day-7 blastocysts. Furthermore, the addition of 3-hydroxyflavone resulted in lower expression of the stress-related gene HSP70.1 and pro-apoptotic gene BAX, as well as higher expression of the anti-apoptotic gene BCL-xL and pluripotency-related genes OCT4 and SOX2 in Day-7 blastocysts produced by SCNT (P < 0.05). The addition of 3-hydroxyflavone during in vitro culture thus exerted beneficial effects on preimplantation development of bovine SCNT embryos both at the cellular and molecular levels. © 2014 Wiley Periodicals, Inc.

  10. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    NASA Astrophysics Data System (ADS)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  11. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Characteristics of Planar Monopole Antenna on High Impedance Electromagnetic Surface

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Jastram, Nathan; Ponchak, George E.; Franklin, Rhonda R.

    2011-01-01

    This paper presents for the first time measured characteristics of a planar monopole antenna placed directly on a high impedance electromagnetic surface or artificial magnetic conductor (AMC). The return loss and radiation patterns are compared between the antenna in free space, and when placed directly on a perfect electrical conductor (PEC), and on the AMC. The antenna measured in free space has a wide pass band from 3 to 10 GHz. The return loss for the antenna on the PEC is nearly all reflected back and the return loss for the antenna on the AMC has a 10 dB bandwidth from 7.5 to 9.5 GHz. The gain of the antenna in free space, on PEC and on AMC is 1, -12 and 10 dBi, respectively. This indicates that the AMC is working properly, sending all the radiation outward with little loss.

  13. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  14. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.

    PubMed

    Chikarakara, Evans; Fitzpatrick, Patricia; Moore, Eric; Levingstone, Tanya; Grehan, Laura; Higginbotham, Clement; Vázquez, Mercedes; Bagga, Komal; Naher, Sumsun; Brabazon, Dermot

    2014-12-29

    The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.

  15. Osteochondral Biopsy Analysis Demonstrates That BST-CarGel Treatment Improves Structural and Cellular Characteristics of Cartilage Repair Tissue Compared With Microfracture

    PubMed Central

    Méthot, Stéphane; Changoor, Adele; Tran-Khanh, Nicolas; Hoemann, Caroline D.; Stanish, William D.; Restrepo, Alberto; Shive, Matthew S.; Buschmann, Michael D.

    2016-01-01

    Objective The efficacy and safety of BST-CarGel, a chitosan-based medical device for cartilage repair, was compared with microfracture alone at 1 year during a multicenter randomized controlled trial (RCT) in the knee. The quality of repair tissue of osteochondral biopsies collected from a subset of patients was compared using blinded histological assessments. Methods The international RCT evaluated repair tissue quantity and quality by 3-dimensional quantitative magnetic resonance imaging as co-primary endpoints at 12 months. At an average of 13 months posttreatment, 21/41 BST-CarGel and 17/39 microfracture patients underwent elective second look arthroscopies as a tertiary endpoint, during which ICRS (International Cartilage Repair Society) macroscopic scoring was carried out, and osteochondral biopsies were collected. Stained histological sections were evaluated by blinded readers using ICRS I and II histological scoring systems. Collagen organization was evaluated using a polarized light microscopy score. Results BST-CarGel treatment resulted in significantly better ICRS macroscopic scores (P = 0.0002) compared with microfracture alone, indicating better filling, integration, and tissue appearance. Histologically, BST-CarGel resulted in a significant improvement of structural parameters—Surface Architecture (P = 0.007) and Surface/Superficial Assessment (P = 0.042)—as well as cellular parameters—Cell Viability (P = 0.006) and Cell Distribution (P = 0.032). No histological parameters were significantly better for the microfracture group. BST-CarGel treatment also resulted in a more organized repair tissue with collagen stratification more similar to native hyaline cartilage, as measured by polarized light microscopy scoring (P = 0.0003). Conclusion Multiple and independent analyses in this biopsy substudy demonstrated that BST-CarGel treatment results in improved structural and cellular characteristics of repair tissue at 1 year posttreatment compared with

  16. Silent Corticogonadotroph Adenomas: Clinical and Cellular Characteristics and Long-Term Outcomes

    PubMed Central

    Cooper, Odelia; Ben-Shlomo, Anat; Bonert, Vivien; Bannykh, Serguei; Mirocha, James

    2010-01-01

    Silent corticotrophins adenomas (SCAs) are clinically silent and non-secreting but immunostain positively for ACTH. We hypothesize that SCAs comprise both corticotroph and gonadotroph characteristics. Cohort analysis from 1994–2008 with follow-up time ranging from 1–15 years in a tertiary referral center. We compared preoperative and postoperative clinical results and tumor cytogenesis in 25 SCAs and 84 nonfunctioning adenomas in 109 consecutive patients diagnosed pre-operatively with nonfunctioning pituitary adenomas. Clinical outcomes were radiologic and hormonal measures. Pathologic outcomes were expression of relevant pituitary hormones, tissue-specific transcription factors, and electron microscopy features. Preoperative SCA presentation was similar to that observed for nonfunctioning adenomas. However, SCAs recurred postoperatively at a median of 3 years vs. 8 years for nonfunctioning adenomas (p<0.0001). Fifty-four percent of patients with SCAs had new onset postoperative hypopituitarism vs. 17% of nonfunctioning adenomas (p<0.025). SCAs (n=18) were immunopositive for ACTH, cytoplasmic and nuclear SF-1, NeuroD1, DAX-1, and alpha-gonadotropin subunit, but Tpit negative, and co-expression of tumor ACTH with either SF-1 or LH was detected. In contrast, functional corticotroph adenomas (n=11) were immunopositive for ACTH, nuclear SF-1, NeuroD1, and Tpit, but negative for DAX-1, a gonadotroph cell transcription factor. Gonadotroph adenomas (n=23) were immunonegative for ACTH and Tpit but positive for nuclear SF-1, NeuroD1, and DAX-1. SCA electron microscopy demonstrated ultrastructural features consistent with corticotroph and gonadotroph cells. As SCAs exhibit features consistent with both corticotroph and gonadotroph cytologic origin, we propose a pathologic and clinically distinct classification of SCAs as silent corticogonadotroph adenomas. PMID:20717480

  17. [Surface ECG characteristics of right and left atrial flutter].

    PubMed

    Rostock, Thomas; Konrad, Torsten; Sonnenschein, Sebastian; Mollnau, Hanke; Ocete, Blanca Quesada; Bock, Karsten; Spittler, Raphael; Huber, Carola; Theis, Cathrin

    2015-09-01

    Atrial tachycardia in virtually all areas of both atria has become more important in the clinical management of patients with previous complex atrial fibrillation ablation. Accurate interpretation of surface electrocardiogram (ECG) characteristics is of paramount importance to localize the origin of atrial tachycardia, particularly for planning interventional treatment. This article highlights the ECG features of different types of right and left atrial tachycardia. Typical right atrial flutter through the cavotricuspid isthmus conducts septally in a cranial direction and demonstrates sawtooth-like flutter waves which start negative in II, III and aVF and then show a steep slope upwards to the isoelectric line. The flutter rate typically ranges between 240-250 beats/min. In contrast, right atrial flutter in a clockwise rotation, flutter around the vena cava inferior or superior and around a scar (e.g. after cardiac surgery) show positive or biphasic flutter waves (lower or upper loop reentry). Left atrial flutter waves (e.g. around the mitral valve or around the pulmonary veins) are very heterogeneous and are typically positive in V1 as the left atrium is located in the posterior mediastinum. Specific knowledge of flutter wave morphology in surface ECG facilitates planning and performance of the ablation strategy.

  18. Surface Characteristics of Green Island Wakes from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  19. Investigation Into the Accuracy of 3D Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Kumermanis, M.; Rudzitis, J.; Mozga, N.; Ancans, A.; Grislis, A.

    2014-04-01

    The existing standards for surface roughness cover only two dimensions, while in reality this is three-dimensional (3D). In particular, the 3D surface roughness parameters are important for solving the contact surface mechanics problems as related to the accuracy of 3D surface roughness characteristics. One of the most important factors for determination of 3D characteristics is the number of data points (NDP) on the x- and y-axes (i.e. in cut-off length). The NDP has a profound effect on the accuracy of measurement results, measuring time and volume of the output data (especially along the y-axis, where the NDP is identical to the number of parallel profiles). At a too small NDP the results will be incorrect and with too broad scatter, while a too large NDP - though not enlarging the range of basic information - considerably increases the measuring time. Therefore, the aim of the work was to find the optimal NDP for such surface processing methods as grinding, spark erosion and shot methods of surface treatment. Eksistējošie virsmas raupjuma standarti apskata virsmas raupjumu tikai divās dimensijās. Tomēr reālais virsmas raupjums pēc savas dabas ir trīsdimensiju (3D) objekts. Līdz ar to virsmas raupjums ir jāraksturo ar 3D parametriem. Un no šo parametru noteikšanas precizitātes ir atkarīgi tālākie virsmas aprēķini, piemēram, virsmu kontaktēšanās process. Viens no svarīgākajiem faktoriem, raksturojot virsmas raupjumu 3D, pielietojot kontakta tipa mēriekārtas, ir datu punktu skaits pa abām mērīšanas asīm x un y. Ar datu punktu skaitu mēs saprotam to skaitu mērīšanas bāzes garumā. Datu punktu skaits būtiski ietekmē sagaidāmo mērījumu rezultātu precizitāti, mērīšanai nepieciešamo laiku un izejas datu faila izmērus (sevišķi y-ass virzienā, kur katrs datu punkts ir paralēls profils). Datu punktu skaitam ir jābūt optimālam. Pārāk mazs punktu skaits noved pie neprecīziem rezultātiem un lielas to izkliedes, savuk

  20. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels.

    PubMed

    Migliorini, Elisa; Thakar, Dhruv; Sadir, Rabia; Pleiner, Tino; Baleux, Françoise; Lortat-Jacob, Hugues; Coche-Guerente, Liliane; Richter, Ralf P

    2014-10-01

    Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method to create well-defined biomimetic surfaces that display GAGs, either alone or together with other cell ligands, in a background that suppresses non-specific binding. Through the design of the immobilization platform - a streptavidin monolayer serves as a molecular breadboard for the attachment of various biotinylated ligands - and a set of surface-sensitive in situ analysis techniques (including quartz crystal microbalance and spectroscopic ellipsometry), the biomimetic surfaces are tailor made with tight control on biomolecular orientation, surface density and lateral mobility. Analysing the interactions between a selected GAG (heparan sulphate, HS) and the HS-binding chemokine CXCL12α (also called SDF-1α), we demonstrate that these surfaces are versatile for biomolecular and cellular interaction studies. T-lymphocytes are found to adhere specifically to surfaces presenting CXCL12α, both when reversibly bound through HS and when irreversibly immobilized on the inert surface, even in the absence of any bona fide cell adhesion ligand. Moreover, surfaces which present both HS-bound CXCL12α and the intercellular adhesion molecule 1 (ICAM-1) synergistically promote cell adhesion. Our surface biofunctionalization strategy should be broadly applicable for functional studies that require a well-defined supramolecular presentation of GAGs along with other matrix or cell-surface components.

  1. Changes in the cellular membrane surface coat of lymphocytes and thymocytes after incubation in vitro with cystein as revealed with electronmicroscopy.

    PubMed

    Borowicz, J; Olszewska, K; Roszkowski-Sliz, W; Ryzewski, J

    1977-01-01

    Changes in the cellular membrane surface coat of lymphocytes and thymocytes after incubation with cystein in vitro were revealed with electronmicroscope, while performing the reaction with Ruthenium Red and Concanavaline A. Lymphocytes and thymocytes not incubated with cystein to which reaction with Ruthenium red and Cocanavaline A was applied have shown a well developed and preserved surface coat of the cellular membrane. Contrary to this finding when lymphocytes and thymocytes were incubated with cystein and thereafter treated with Ruthenium Red and Concanavaline A no reaction product on the surface of the cellular membrane was observed. The experimental results could indicate on the influence of cystein on the glycoside bonds.

  2. Platelets Cellular and Functional Characteristics in Patients with Atrial Fibrillation: A Comprehensive Meta-Analysis and Systematic Review

    PubMed Central

    Weymann, Alexander; Ali-Hasan-Al-Saegh, Sadeq; Sabashnikov, Anton; Popov, Aron-Frederik; Mirhosseini, Seyed Jalil; Nombela-Franco, Luis; Testa, Luca; Lotfaliani, Mohammadreza; Zeriouh, Mohamed; Liu, Tong; Dehghan, Hamidreza; Yavuz, Senol; de Oliveira Sá, Michel Pompeu Barros; Baker, William L.; Jang, Jae-Sik; Gong, Mengqi; Benedetto, Umberto; Dohmen, Pascal M.; D’Ascenzo, Fabrizio; Deshmukh, Abhishek J.; Biondi-Zoccai, Giuseppe; Calkins, Hugh; Stone, Gregg W.

    2017-01-01

    Background This systematic review with meta-analysis aimed to determine the strength of evidence for evaluating the association of platelet cellular and functional characteristics including platelet count (PC), MPV, platelet distribution width (PDW), platelet factor 4, beta thromboglobulin (BTG), and p-selectin with the occurrence of atrial fibrillation (AF) and consequent stroke. Material/Methods We conducted a meta-analysis of observational studies evaluating platelet characteristics in patients with paroxysmal, persistent and permanent atrial fibrillations. A comprehensive subgroup analysis was performed to explore potential sources of heterogeneity. Results Literature search of all major databases retrieved 1,676 studies. After screening, a total of 73 studies were identified. Pooled analysis showed significant differences in PC (weighted mean difference (WMD)=−26.93 and p<0.001), MPV (WMD=0.61 and p<0.001), PDW (WMD=−0.22 and p=0.002), BTG (WMD=24.69 and p<0.001), PF4 (WMD=4.59 and p<0.001), and p-selectin (WMD=4.90 and p<0.001). Conclusions Platelets play a critical and precipitating role in the occurrence of AF. Whereas distribution width of platelets as well as factors of platelet activity was significantly greater in AF patients compared to SR patients, platelet count was significantly lower in AF patients. PMID:28302997

  3. Surface Energy Budget Characteristics and Surface Energy Imbalance over Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Qiang; Guo, Weidong; Fu, Congbin; Shi, Jinsen

    2013-04-01

    Field observation of land-surface processes is a fundamental approach to quantitatively measure mass and energy exchanges between the land surface and the atmosphere. Chinese Loess Plateau, a unique landscape in the world, is known as a transitional zone both in terms of climate and ecosystem. Land-surface process measurement helps to better understand the aridity trend and the ecosystem change over Chinese Loess Plateau. Based on data collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from June 2008 to June 2010, we analyzed the characteristics of land surface radiation and energy budget in summer, as well as the surface energy imbalance issues over Chinese Loess Plateau. Main results are concluded as follows: (1)By studying impacts of different weather conditions on micrometeorological characteristics, the clouds and the precipitation contribute disturbances by about 25 to each component of energy balance. Weakening impact of clouds and precipitation on surface energy budget is much stronger than that in desert and Gobi region. Furthermore, it shows that the mean climatic characteristics in summer relatively close to those of cloudy days. (2)To investigate the land surface energy imbalance over the Loess Plateau, we estimated the heat storage associated with change of air temperature and humidity as well as the energy stored in plants due to the photosynthesis, which determines the vertical water transport and soil temperature at the shadow soil layers. The peaks of averaged diurnal variation of energy storages by air and plant photosynthesis reach 1.5 and 2.0 W m-2 respectively. In addition, the peak of diurnal variation of mean heat flux transferred by vertical water movement can reach nearly 8.0 W m-2. The closure of energy balance is improved from 88.1% to 89.6% by adding the three additional energy terms mentioned above to the energy balance equation. We found that the special climate background and vegetation

  4. Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake.

    PubMed

    Koshkina, Olga; Westmeier, Dana; Lang, Thomas; Bantz, Christoph; Hahlbrock, Angelina; Würth, Christian; Resch-Genger, Ute; Braun, Ulrike; Thiermann, Raphael; Weise, Christoph; Eravci, Murat; Mohr, Benjamin; Schlaad, Helmut; Stauber, Roland H; Docter, Dominic; Bertin, Annabelle; Maskos, Michael

    2016-09-01

    Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.

  5. Relevant aspects in the surface properties in titanium dental implants for the cellular viability.

    PubMed

    Velasco-Ortega, E; Alfonso-Rodríguez, C A; Monsalve-Guil, L; España-López, A; Jiménez-Guerra, A; Garzón, I; Alaminos, M; Gil, F J

    2016-07-01

    Roughness and topographical features are the most relevant of the surface properties for a dental implant for its osseointegration. For that reason, we studied the four surfaces more used in titanium dental implants: machined, sandblasted, acid etching and sandblasted plus acid etching. The roughness and wettability (contact angle and surface free energy) was studied by means 3D-interferometric microscope and sessile drop method. Normal human gingival fibroblasts (HGF) were obtained from small oral mucosa biopsies and were used for cell cultures. To analyze cell integrity, we first quantified the total amount of DNA and LDH released from dead cells to the culture medium. Then, LIVE/DEAD assay was used as a combined method assessing cell integrity and metabolism. All experiments were carried out on each cell type cultured on each Ti material for 24h, 48h and 72h. To evaluate the in vivo cell adhesion capability of each Ti surface, the four types of discs were grafted subcutaneously in 5 Wistar rats. Sandblasted surfaces were significantly rougher than acid etching and machined. Wettability and surface free energy decrease when the roughness increases in sand blasted samples. This fact favors the protein adsorption. The DNA released by cells cultured on the four Ti surfaces did not differ from that of positive control cells (p>0.05). The number of cells per area was significantly lower (p<0.05) in the sand-blasted surface than in the machined and surface for both cell types (7±2 cells for HGF and 10±5 cells for SAOS-2). The surface of the machined-type discs grafted in vivo had a very small area occupied by cells and/or connective tissue (3.5%), whereas 36.6% of the sandblasted plus acid etching surface, 75.9% of sandblasted discs and 59.6% of acid etching discs was covered with cells and connective tissue. Cells cultured on rougher surfaces tended to exhibit attributes of more differentiated osteoblasts than cells cultured on smoother surfaces. These surface

  6. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  7. Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus.

    PubMed

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Guion, Lucile G; Sapp, Martin

    2017-03-02

    The non-enveloped human papillomaviruses (HPVs) specifically target epithelial cells of the skin and mucosa. Successful infection requires a lesion in the stratified tissue for access to the basal cells. Herein, we discuss our recent progress in understanding binding, internalization, uncoating, and intracellular trafficking of HPV particles. Our focus will be on HPV type 16, which is the most common HPV type associated with various anogenital and oropharyngeal carcinomas. The study of HPV entry has revealed a number of novel cellular pathways utilized during infection. These include but are not restricted to the following: a previously uncharacterized form of endocytosis, membrane penetration by a capsid protein, the use of retromer complexes for trafficking to the trans-Golgi network, the requirement for nuclear envelope breakdown and microtubule-mediated transport during mitosis for nuclear entry, the existence of membrane-bound intranuclear vesicles harboring HPV genome, and the requirement of PML protein for efficient transcription of incoming viral genome. The continued study of these pathways may reveal new roles in basic biological cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation.

    PubMed

    Nakashima, Y; Tsusu, K; Minami, K; Nakanishi, Y

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  9. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  10. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    SciTech Connect

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  11. Effect of mixing technique on surface characteristics of impression materials.

    PubMed

    Lepe, X; Johnson, G H; Berg, J C; Aw, T C

    1998-05-01

    Previous studies have shown a relationship between the disinfection process, wettability, and mass change of impression materials. Hand-mixed high viscosity impression materials usually result in a material with numerous voids, which contribute to surface roughness and affect the surface characteristics of the material. This study evaluated the effect of mixing technique on advancing contact angle, receding contact angle, imbibition, and mass loss of various high and low viscosity polyether and polyvinyl siloxane materials. The null hypothesis tested was no differences exist between the different mixing systems. The Wilhelmy technique was used for deriving wetting properties of the materials used (Impregum F and Penta, Permadyne Syringe, Garant and Penta, Dimension Penta and Garant L, Aquasil). Conditions included no disinfection (0 hours) and 1, 5, and 18 hours of immersion disinfection in a full-strength solution of 2% acid glutaraldehyde disinfectant (Banicide). Weight changes before and after disinfection were measured to detect weight loss or mass increase over time. Weight loss in air was also measured to detect mass loss. Data were analyzed with a one-way analysis of variance at alpha = 0.05. All materials displayed some degree of imbibition of the disinfectant and experienced mass loss with polymerization, except the light viscosity polyvinyl that gained 0.18% at 5 hours. No significant differences were found in wettability among the polyether materials after 1 hour of disinfection. Less imbibition was observed for high viscosity mechanically mixed materials compared with the hand-mixed materials for both polyether and polyvinyl siloxane at 1-hour disinfection time. Polyether materials were more wettable than polyvinyl. Imbibition of high viscosity polyether and polyvinyl materials after 1 and 18 hours of disinfection were affected by the mixing system used.

  12. Influence of water/O₂ plasma treatment on cellular responses of PCL and PET surfaces.

    PubMed

    Türkoğlu Şaşmazel, Hilal; Aday, Sezin; Manolache, Sorin; Gümüşderelioğlu, Menemşe

    2011-01-01

    In this study, low pressure water/O₂ plasma treatment was performed in order to obtain COOH functionalities on the surface of poly-ε-caprolactone (PCL) membranes as well as non-woven polyester fabric (NWPF) discs. The plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor and then following steps were performed: in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis under open laboratory conditions using air moisture for final-COOH functionalities. COOH and OH functionalities on modified surfaces were detected quantitatively by using fluorescent labeling technique and an UVX 300G sensor. Electron spectroscopy for chemical analysis (ESCA) was used to evaluate the relative surface atomic compositions and the carbon and oxygen linkages located in non-equivalent atomic positions of untreated and modified surfaces. Atomic force microscope (AFM) analysis showed that nanoscale features of the PCL surfaces are dramatically changed during the surface treatments. Scanning electron microscopy (SEM) results indicated the changes in the relatively smooth appearance of the untreated NWPF discs after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. Cell culture results showed that plasma treated PCL membranes and NWPF discs were favorable for the PDL cell spreading, growth and viability due to the presence of functional groups and/or nanotopographies on their surfaces.

  13. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery.

    PubMed

    Kulkarni, Sneha A; Feng, Si-Shen

    2013-10-01

    To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood-brain barrier (BBB) for imaging and therapy of brain cancer. Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized. The Caco-2 and MDCK cells were employed as an in vitro model of the GI barrier for oral and the BBB for drug delivery into the central nerve system respectively. The distribution of fluorescent NPs after i.v. administration to rats was analyzed by the high performance liquid chromatography (HPLC). The in vitro investigation showed enhanced cellular uptake efficiency for PS NPs in both of Caco-2 and MDCK cells after TPGS surface coating. In vivo investigation showed that the particle size and surface coating are the two parameters which can dramatically influence the NPs biodistribution after intravenous administration. The TPGS coated NPs of smaller size (< 200 nm) can escape from recognition by the reticuloendothelial system (RES) and thus prolong the half-life of the NPs in the blood system. TPGS-coated PS NPs of 100 and 200 nm sizes have potential to deliver the drug across the GI barrier and the BBB.

  14. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    NASA Astrophysics Data System (ADS)

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  15. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].

    PubMed

    Tao, Hui-rong; Zhang, Fu-min; Qu, Xing-hua

    2015-07-01

    For no cooperation target laser ranging, the backscattering properties of the long-range and real machined surfaces are uncertain which seriously affect the ranging accuracy. It is an important bottleneck restricting the development of no cooperation ranging technology. In this paper, the backscattering characteristics of three typical machining surfaces (vertidal milling processing method, horizontal milling processing method and plain grinding processing method) under the infrared laser irradiation with 1550 nm were measured. The relation between the surface nachining texture, incident azimuth, roughness and the backscattering distribution were analyzed and the reasons for different processing methods specific backscattering field formed were explored. The experimental results show that the distribution of backscattering spectra is greatly affected by the machined processing methods. Incident angle and roughness have regularity effect on the actual rough surface of each mode. To be able to get enough backscattering, knowing the surface texture direction and the roughness of machined metal is essential for the optimization of the non-contact measurement program in industry. On this basis, a method based on an artificial neural network (ANN) and genetic algorithm (GA), is proposed to retrieve the surface multi-parameters of the machined metal. The generalized regression neural network (GRNN) was investigated and used in this application for the backscattering modeling. A genetic algorithm was used to retrieve the multi-parameters of incident azimuth angle, roughness and processing methods of machined metal sur face. Another processing method of sample (planer processing method) was used to validate data. The final results demonstrated that the method presented was efficient in parameters retrieval tasks. This model can accurately distinguish processing methods and the relative error of incident azimuth and roughness is 1.21% and 1.03%, respectively. The inversion

  16. Quantification of Inert Gas Monolayer Evolution on an Atomically Rough Calcium (111) Surface Using Cellular Automata

    DTIC Science & Technology

    2007-11-02

    role in determining surface coverage at these high fluxes2. -4.8- -5.0- curves statistics (averaged over 10 runs) -5.2 - 0020 - -5.4 0.0401 eV -0,025 2c...imperfection in figure 12 for an 8% Ar flux at 90 K. The total perimeter does not approach zero for a perfect initial surface due to thermal fluctuation

  17. A propagating ATPase gradient drives transport of surface-confined cellular cargo

    NASA Astrophysics Data System (ADS)

    Vecchiarelli, Anthony; Neuman, Keir; Mizuuchi, Kiyoshi

    2014-03-01

    The process of DNA segregation is of central importance for all organisms. Although eukaryotic mitosis is relatively well established, the most common mechanism employed for bacterial DNA segregation has been unclear. ParA ATPases form dynamic patterns on the bacterial nucleoid, to spatially organize plasmids, chromosomes and other large cellular cargo, but the force generating mechanism has been a source of controversy and debate. A dominant view proposes that ParA-mediated transport and cargo positioning occurs via a filament-based mechanism that resembles eukaryotic mitosis. Here we present direct evidence against such models. Our cell-free reconstitution supports a non-filament-based mode of transport that may be as widely found in nature as actin filaments and microtubules.

  18. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan A.; Larson, Amanda; Pohl, Karsten

    2017-06-01

    Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.

  19. Cellular automaton simulation of the diffusive motion of bacteria and their adhesion to nanostructures on a solid surface.

    PubMed

    Yamamoto, Takehiro; Emura, Chie; Oya, Masashi

    2016-12-01

    The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures.

  20. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  1. His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display.

    PubMed

    Koho, Tiia; Ihalainen, Teemu O; Stark, Marie; Uusi-Kerttula, Hanni; Wieneke, Ralph; Rahikainen, Rolle; Blazevic, Vesna; Marjomäki, Varpu; Tampé, Robert; Kulomaa, Markku S; Hytönen, Vesa P

    2015-10-01

    In addition to vaccines, noninfectious virus-like particles (VLPs) that mimic the viral capsid show an attractive possibility of presenting immunogenic epitopes or targeting molecules on their surface. Here, functionalization of norovirus-derived VLPs by simple non-covalent conjugation of various molecules is shown. By using the affinity between a surface-exposed polyhistidine-tag and multivalent tris-nitrilotriacetic acid (trisNTA), fluorescent dye molecules and streptavidin-biotin conjugated to trisNTA are displayed on the VLPs to demonstrate the use of these VLPs as easily modifiable nanocarriers as well as a versatile vaccine platform. The VLPs are able to enter and deliver surface-displayed fluorescent dye into HEK293T cells via a surface-attached cell internalization peptide (VSV-G). The ease of manufacturing, the robust structure of these VLPs, and the straightforward conjugation provide a technology, which can be adapted to various applications in biomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response.

    PubMed

    Lee, Wing-Hin; Loo, Ching-Yee; Rohanizadeh, Ramin

    2014-10-01

    Calcium phosphates (CaPs) are ideal biomaterials for bone repair because of the similarities between their chemical structure and the mineral phase of hard biological tissues (e.g., bones and teeth). Since CaP bone grafts exhibit superior biocompatibility and strong osseointegration properties, they have been widely investigated for use as an in situ carrier for delivery of anti-resorptive and osteogenic drugs. The surface properties of CaP govern the affinity and the binding mechanisms between biological macromolecules (e.g., proteins) and the CaP surface, which indirectly determines the interactions between bone cells and implanted CaP biomaterials. These surface properties ultimately play a pivotal role in determining the success of CaP as bone implants and/or drug carriers. This review provides an in-depth discussion of the current methodologies used to regulate the surface chemistry of CaP and their subsequent effects in regards to protein adsorption and delivery, as well as cell/materials interactions.

  3. Cell-surface sensors for real-time probing of cellular environments

    PubMed Central

    Zhao, Weian; Schafer, Sebastian; Choi, Jonghoon; Yamanaka, Yvonne J.; Lombardi, Maria L.; Bose, Suman; Carlson, Alicia L.; Phillips, Joseph A.; Teo, Weisuong; Droujinine, Ilia A.; Cui, Cheryl H.; Jain, Rakesh K.; Lammerding, Jan; Love, J. Christopher; Lin, Charles P.; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy. PMID:21765401

  4. Cell-surface sensors for real-time probing of cellular environments

    NASA Astrophysics Data System (ADS)

    Zhao, Weian; Schafer, Sebastian; Choi, Jonghoon; Yamanaka, Yvonne J.; Lombardi, Maria L.; Bose, Suman; Carlson, Alicia L.; Phillips, Joseph A.; Teo, Weisuong; Droujinine, Ilia A.; Cui, Cheryl H.; Jain, Rakesh K.; Lammerding, Jan; Love, J. Christopher; Lin, Charles P.; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-08-01

    The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.

  5. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    USDA-ARS?s Scientific Manuscript database

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  6. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  7. Morphological characteristics of primary enamel surfaces versus permanent enamel surfaces: SEM digital analysis.

    PubMed

    Lucchese, A; Storti, E

    2011-09-01

    The morphology of permanent and primary enamel surface merits further analysis. The objective of this study was to illustrate a method of SEM digital image processing able to quantify and discriminate between the morphological characteristics of primary and permanent tooth enamel. Sixteen extracted teeth, 8 primary teeth and 8 permanent teeth, kept in saline solution, were analysed. The teeth were observed under SEM. The SEM images were analysed by means of digitally processed algorithms. The two algorithms used were: Local standard deviation to measure surface roughness with the roughness index (RI); Hough's theorem to identify linear structures with the linear structure index (LSI). The SEM images of primary teeth enamel show smooth enamel with little areas of irregularity. No linear structures are apparent. The SEM images of permanent enamel show a not perfectly smooth surface; there are furrows and irregularities of variable depth and width. In the clinical practice a number of different situations require the removal of a thin layer of enamel. Only a good morphological knowledge of both permanent and primary tooth enamel gives the opportunity to identify and exploit the effects of rotary tools on enamel, thus allowing for a correct finishing technique.

  8. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    PubMed

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.

  9. Effect of Gold Nanorod Surface Chemistry on Cellular Interactions In Vitro

    DTIC Science & Technology

    2010-09-01

    properties of GNRs on cells. Previous studies on the cytotoxicity of various nanoparticles indicated that surface chemistry has a strong influence on cell...supplemented with 10% fetal bovine serum (FBS, ATCC) and 1% penicillin/streptomycin (pen/strep, Sigma). For nanoparticle exposure, media was supplemented...reagent ( phenazine ethosulfate; PES). Metabolically active cells reduce the MTS compound into a colored formazan product that is soluble in tissue

  10. Surface characteristics of two-component thallium-bismuth melts

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Aleroev, M. A.; Bliev, A. P.; Magkoev, T. T.

    2017-02-01

    The surface tension of pure Tl and Bi, and two-component alloys of them over the range of volume concentrations and temperatures starting from the liquidus temperature up to 623 K are measured by the lying-drop method with strong control over the surface condition by means of Auger electron spectroscopy. The results from in situ measurements of the surface tensions of Tl and Bi with surfactant impurities, and for atomically pure surfaces and Tl-Bi solutions, are given. It is shown that surfaces are enriched by bismuth, the concentration of which grows along with temperature.

  11. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores.

    PubMed

    Bradburne, Christopher E; Delehanty, James B; Boeneman Gemmill, Kelly; Mei, Bing C; Mattoussi, Hedi; Susumu, Kimihiro; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L

    2013-09-18

    Interest in taking advantage of the unique spectral properties of semiconductor quantum dots (QDs) has driven their widespread use in biological applications such as in vitro cellular labeling/imaging and sensing. Despite their demonstrated utility, concerns over the potential toxic effects of QD core materials on cellular proliferation and homeostasis have persisted, leaving in question the suitability of QDs as alternatives for more traditional fluorescent materials (e.g., organic dyes, fluorescent proteins) for in vitro cellular applications. Surprisingly, direct comparative studies examining the cytotoxic potential of QDs versus these more traditional cellular labeling fluorophores remain limited. Here, using CdSe/ZnS (core/shell) QDs as a prototypical assay material, we present a comprehensive study in which we characterize the influence of QD dose (concentration and incubation time), QD surface capping ligand, and delivery modality (peptide or cationic amphiphile transfection reagent) on cellular viability in three human cell lines representing various morphological lineages (epithelial, endothelial, monocytic). We further compare the effects of QD cellular labeling on cellular proliferation relative to those associated with a panel of traditionally employed organic cell labeling fluorophores that span a broad spectral range. Our results demonstrate the important role played by QD dose, capping ligand structure, and delivery agent in modulating cellular toxicity. Further, the results show that at the concentrations and time regimes required for robust QD-based cellular labeling, the impact of our in-house synthesized QD materials on cellular proliferation is comparable to that of six commercial cell labeling fluorophores. Cumulatively, our results demonstrate that the proper tuning of QD dose, surface ligand, and delivery modality can provide robust in vitro cell labeling reagents that exhibit minimal impact on cellular viability.

  12. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways

    PubMed Central

    Kim, Eunjoo; Kim, Joon Mee; Kim, Lucia; Choi, Suk Jin; Park, In Suh; Han, Jee Young; Chu, Young Chae; Choi, Eun Sook; Na, Kun; Hong, Soon-Sun

    2016-01-01

    In recent years, iron oxide nanoparticles (IONPs) have been applied widely to biomedical fields. However, the relationship between the physicochemical properties of IONPs and their biological behavior is not fully understood yet. We prepared 3-methacryloxypropyltrimethoxysilane (MPS)-coated IONPs, which have a neutral hydrophobic surface, and compared their biological behavior to that of Resovist (ferucarbotran), a commercialized IONP formulation modified with carboxymethyl dextran. The rate of MPS-IONP uptake by human aortic endothelial cells (HAoECs) was higher than ferucarbotran uptake, indicating that the neutral hydrophobic nature of MPS-IONPs allowed them to be absorbed more readily through the plasma membrane. However, the signaling pathways activated by MPS-IONPs and ferucarbotran were comparable, suggesting that surface charge is not a key factor for inducing changes in HAoECs. In vivo fate analysis showed that MPS-IONPs accumulated for longer periods in tissues than hydrophilic ferucarbotran. These findings could enlarge our understanding of NP behavior for advanced applications in the biomedical field. PMID:27695320

  13. Surface-Modified Gold Nanoparticles with Folic Acid as Optical Probes for Cellular Imaging.

    PubMed

    Tsai, Shiao-Wen; Liaw, Jiunn-Woei; Hsu, Fu-Yin; Chen, Yi-Yun; Lyu, Mei-Jhih; Yeh, Ming-His

    2008-10-24

    In this study, we demonstrate that the uptake rate of the surface-modified gold nanoparticles (GNPs) with folic acid by specific cells can be increased significantly, if the membranes of these cells have sufficient folic-acid receptors. Two human breast cancer cell lines were studied; one is MDA-MB-435S cell, and the other T-47D cell. The expression of the folic acid receptors of the former is much higher than that of the latter. These cells were incubated with media containing bare GNPs or GNPs conjugated with folic acid individually. Due to the unique optical behavior (i.e. surface plasmon resonance) of GNPs, the uptake amount of GNPs by cells can be identified by using the laser scanning confocal microscopy. Our experiments show that the uptake amount of GNPs in MDAMB-435S cells is higher than that in T-47D cells for the same culture time, if the culture medium contains bare GNPs. Moreover, if the GNPs conjugated with folic acid are used for the culture, the uptake rate of GNPs by MDA-MB-435S cells is improved more. In contrast, the uptake rates of both GNPs are almost the same by T-47D cells. The phenomenon indicates that the uptake rate of GNPs can be improved via the ligand-receptor endocytosis, compared with the nonspecific endocytosis. Therefore, the uptake rate of GNPs conjugated with folic acid by MDA-MB-435S cells is higher than that of bare GNPs.

  14. Atomization characteristics on the surface of a round liquid jet

    NASA Astrophysics Data System (ADS)

    Mayer, W. O. H.; Branam, R.

    Fundamental mechanisms of liquid jet breakup are identified and quantified. The quality of the atomization of liquids is an important parameter of many technological processes and is, e.g. for fuels and propellants critical in defining engine performance. This investigation takes a look at the jet behavior for a single injector element to determine the influence of the injection conditions on a round liquid jet. The study focuses on the atomization of a liquid forming a classical spray. To adjust the relative velocity between the liquid jet and the gaseous ambient a wind tunnel-like coaxial flow configuration was used. This made it possible to distinguish between effects of aerodynamic forces, chamber pressure and jet velocity, which determine the liquid Reynolds number and thereby the internal jet turbulence. Shadowgraphy and a novel image-processing approach was used to determine the jet surface characteristics: wavelength and amplitude. The absolute injection velocity of the jet seems to affect the structures the most with an increasing velocity causing the wavelengths to be smaller. An increase in chamber pressure seemed to have little influence on the jet with no relative velocity between the gas and liquid jet, but increased the amplitude and drop formation frequency at other testing conditions with relative motion. The wave amplitude trends provide information about the likelihood of drop formation but are limited in maximum size due to this breakup phenomenon of the jet. The study of the direction of the relative velocity demonstrated that injector performance cannot simply be described by scalar geometrical and operational injection parameters (e.g., We , Re or Oh), but has to include the injection direction of the atomizing fluids in relation to each other and to the ambient (e.g., combustion chamber). The undisturbed jet length and the spread angle were investigated, and a correlation for the droplet separation position was proposed. The data led to an

  15. The effect of surface modification and aprotinin on cellular injury during simulated cardiopulmonary bypass.

    PubMed

    Greenfield, Benjamin L; Brinkman, Kelly R; Koziol, Kelly L; McCann, Martin W; Merrigan, Kellie A; Steffen, Lee P; Woods, Kylie A; Stammers, Alfred H; Hock, Lynette M

    2002-12-01

    Cardiopulmonary bypass (CPB) elicits derangements to the formed elements of blood because of the physical stresses of extracorporeal flow. Methods of reducing the impact of CPB include circuit surface modification and pharmacological supplementation. The purpose of this study was to examine the effects of aprotinin in combination with surface modification during simulated CPB. Fresh whole bovine blood was used to prime standard CPB circuits divided into four groups (N = 3): control (CTR), aprotinin 300 KIU/mL (APR), Poly (2-methoxyethylacrylate) coating (PMEA), and APR with PMEA (APR-PMEA). Physical stresses included venous reservoir negative pressure (-85 mmHg), arterial line pressure of 150 mmHg at 5 LPM, and air-blood interface, applied over a 90-minute period. Samples were drawn at the following times: 0, 10, 45, and 90 minutes. Endpoints included platelet count (PLT), plasma-free hemoglobin (PFHb), and thromboelastography (TEG). PLT did not change (138.9 +/- 15.0 vs. 102.9 +/- 21.0, p = ns) throughout the 90-minute experimental periods in any group. PFHb increased significantly (mean of 19- fold) throughout the experiment, but was not affected by any treatment. The TEG index declined in the CTR (3.6 +/- 0.4 vs. -16.2 +/- 2.9, p < .0003), PMEA (5.9 +/- 0.8 vs. -2.7 +/- 3.8, p < .02), and APR-PMEA (4.6 +/- 1.0 vs. -2.8 +/- 0.3 p < .0003) groups, but not in the APR group (3.6 +/- 2.2 vs. -1.3 +/- 3.3 p = .10). In conclusion, neither APR nor PMEA had an effect on either red cell hemolysis or PLT, but APR treatment alone significantly attenuated the derangements in coagulation induced in this extracorporeal model.

  16. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    PubMed

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications.

  17. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry.

    PubMed

    Hama, Susumu; Itakura, Shoko; Nakai, Mayumi; Nakayama, Kayoko; Morimoto, Satoshi; Suzuki, Satoko; Kogure, Kentaro

    2015-05-28

    Modification with polyethylene glycol (PEG) is currently considered an important strategy for anti-cancer drug delivery, because PEGylated-nanoparticles would be effectively delivered to tumor tissue by enhanced permeation and retention effects. However, PEGylation suppresses the cellular uptake of nanoparticles (NPs) to target cells (known as the PEG dilemma). Here, we propose a novel strategy, namely conferring a pathological environment-sensitive property of nanoparticles for overcoming the PEG dilemma. Specifically, although nanoparticles have an overall negative surface charge to avoid interactions with biogenic substances in blood circulation, inversion of surface charge (to positive) at the pH of the tumor microenvironment may allow the nanoparticles to be taken up by cancer cells. To prove this concept, charge-invertible nanoparticles modified with novel slightly acidic pH-sensitive peptide (SAPSP-NPs) were developed. The negatively-charged SAPSP-NPs were delivered to tumor tissue, and were successfully taken up by cancer cells upon inversion of the surface charge to positive at intratumoral pH. SAPSP-NPs may serve as an alternative carrier to the PEGylated NP for anti-cancer drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  19. Characteristics of surface plasmon coupled quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Cheng; Ling, Hong-Shi; Wang, Shiang-Yu; Lee, Chien-Ping

    2017-06-01

    Quantum Well Infrared Photodetectors (QWIPs) with different structures were characterized for the study of surface plasmon wave coupling. Detailed comparisons between surface plasmon coupled and etched grating coupled devices were investigated. A bias dependence for the enhancement of the responsivity of surface plasmon coupled devices was found, especially for the samples with non-uniform quantum wells. The non-uniform QWIPs with surface plasmon coupling showed an asymmetric enhancement with respect to the bias directions. Stronger enhancements were shown under the biases when a higher effective electric field region is close to the collector. The change of the photocarrier escape probability due to the narrow coupling bandwidth of the surface plasmon wave is attributed to this unexpected bias dependence.

  20. [Influence of microcystin-LR on cell viability and surface characteristics of Pseudomonas putida].

    PubMed

    Deng, Ting-jin; Ye, Jin-shao; Peng, Hui; Liu, Zhi-chen; Liu, Ze-hua; Yin, Hua; Chen, Shuo-na

    2015-01-01

    In microcystin-LR (MC-LR) degradation system, the change in surface characteristics and cell viability of Pseudomonas putida was studied. The purpose of this study was to reveal the influence of MC-LR on P. putida and elucidate the toxicity of MC-LR on microorganisms. The result demonstrated that MC-LR enhanced the cytoplasmic membrane permeability, as well as affected the ion metabolism and protein release of P. putida. The soluble sugar and Na+, Cl-release increased with the rising concentration of MC-LR ranging from 0 mg x L(-1) to 2.0 mg x L(-1). Flow Cytometry Method(FCM) analysis revealed that MC-LR accelerated the death of P. putida, and the death rate increased with the ascending concentration of MC-LR. Compared with the control, the death rate on day 5 increased by nearly 30% when 2.5 mg x L(-1) MC-LR was added. Scanning electron microscopy (SEM) analysis showed that the cells were deformed under the toxicity of MC-LR. After 5-day exposure to 2.5 mg x L(-1) MC-LR, the majority of the cells were ruptured and the intracellular materials flew out. The cellular structure was severely damaged under this condition.

  1. Origami interleaved tube cellular materials

    NASA Astrophysics Data System (ADS)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  2. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization

    NASA Astrophysics Data System (ADS)

    Eslami, Sohrab; Zareian, Ramin; Jalili, Nader

    2012-10-01

    Surface microscopy of individual biological cells is essential for determining the patterns of cell migration to study the tumor formation or metastasis. This paper presents a correlated and effective theoretical and experimental technique to automatically address the biophysical and mechanical properties and acquire live images of biological cells which are of interest in studying cancer. In the theoretical part, a distributed-parameters model as the comprehensive representation of the microcantilever is presented along with a model of the contact force as a function of the indentation depth and mechanical properties of the biological sample. Analysis of the transfer function of the whole system in the frequency domain is carried out to characterize the stiffness and damping coefficients of the sample. In the experimental section, unlike the conventional atomic force microscope techniques basically using the laser for determining the deflection of microcantilever's tip, a piezoresistive microcantilever serving as a force sensor is implemented to produce the appropriate voltage and measure the deflection of the microcantilever. A micromanipulator robotic system is integrated with the MATLAB® and programmed in such a way to automatically control the microcantilever mounted on the tip of the micromanipulator to achieve the topography of biological samples including the human corneal cells. For this purpose, the human primary corneal fibroblasts are extracted and adhered on a sterilized culture dish and prepared to attain their topographical image. The proposed methodology herein allows an approach to obtain 2D quality images of cells being comparatively cost effective and extendable to obtain 3D images of individual cells. The characterized mechanical properties of the human corneal cell are furthermore established by comparing and validating the phase shift of the theoretical and experimental results of the frequency response.

  3. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization.

    PubMed

    Eslami, Sohrab; Zareian, Ramin; Jalili, Nader

    2012-10-01

    Surface microscopy of individual biological cells is essential for determining the patterns of cell migration to study the tumor formation or metastasis. This paper presents a correlated and effective theoretical and experimental technique to automatically address the biophysical and mechanical properties and acquire live images of biological cells which are of interest in studying cancer. In the theoretical part, a distributed-parameters model as the comprehensive representation of the microcantilever is presented along with a model of the contact force as a function of the indentation depth and mechanical properties of the biological sample. Analysis of the transfer function of the whole system in the frequency domain is carried out to characterize the stiffness and damping coefficients of the sample. In the experimental section, unlike the conventional atomic force microscope techniques basically using the laser for determining the deflection of microcantilever's tip, a piezoresistive microcantilever serving as a force sensor is implemented to produce the appropriate voltage and measure the deflection of the microcantilever. A micromanipulator robotic system is integrated with the MATLAB(®) and programmed in such a way to automatically control the microcantilever mounted on the tip of the micromanipulator to achieve the topography of biological samples including the human corneal cells. For this purpose, the human primary corneal fibroblasts are extracted and adhered on a sterilized culture dish and prepared to attain their topographical image. The proposed methodology herein allows an approach to obtain 2D quality images of cells being comparatively cost effective and extendable to obtain 3D images of individual cells. The characterized mechanical properties of the human corneal cell are furthermore established by comparing and validating the phase shift of the theoretical and experimental results of the frequency response.

  4. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a

  5. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a

  6. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  7. Cellular distribution and molecular heterogeneity of MAC393 antigen (clusterin, beta-chain) on the surface membrane of bull spermatozoa.

    PubMed

    Howes, E A; Hurst, S; Laslop, A; Jones, R

    1998-07-01

    The distribution and size of a surface membrane antigen identified by a monoclonal antibody (MAC9393) have been examined in testicular and epididymal bovine sperm preparations. Western blots indicated a substantial decrease in molecular mass of the antigen during epididymal maturation from approximately 87 kDa in the testis to approximately 35 kDa in the cauda epididymidis. This was accompanied by a change in its cellular localization from the neck and whole head to the acrosomal region. N-terminal microsequencing identified MAC393 antigen as the beta-chain of clusterin. A polyclonal antiserum to the alpha-chain of clusterin recognized both testicular and epididymal forms and revealed that the heterodimer was present on the sperm tail as well as the acrosome. These findings are explained by the co-existence of dimeric and monomeric pools of clusterin on spermatozoa. The polyclonal antiserum recognizes both testicular and epididymal forms of the heterodimer and although the monoclonal antibody binds to the testicular heterodimer, it only recognizes the beta-chain monomer of epididymal clusterin. These findings support previous observations made on human spermatozoa that two forms of clusterin, the beta-chain monomer and the heterodimer, are present on the surface membrane and in seminal plasma.

  8. Surface characteristics of aesthetic restorative materials - an SEM study.

    PubMed

    Bagheri, R; Burrow, M F; Tyas, M J

    2007-01-01

    To determine the degree of surface roughness of glass-ionomer cements (GICs) and polyacid-modified resin composite (PAMRC) after polishing and immersion in various foodstuffs. Three tooth-coloured restorative materials were used: a PAMRC (F2000), a conventional glass-ionomer cement (CGIC) (Fuji IX) and a resin-modified glass-ionomer cements (RM-GIC) (Fuji II LC). Disk-shaped specimens were prepared and tested with either a plastics matrix finish or after polishing with wet silicon carbide papers up to 2000-grit. All specimens were immersed in 37 degrees C-distilled water for 1 week, followed by three different foodstuffs (red wine, coffee or tea) for a further 2 weeks. Replicas of specimens were prepared by taking polyvinyl siloxane impressions, casting in epoxy resin, gold sputter-coating and examining using a Field-Emission Scanning Electron Microscope. The polished and matrix finish specimens of F2000 showed many microcracks at low magnification, and eroded surfaces with missing and protruding particles at high magnification in the polished specimens. The surface-polished specimens of Fuji II LC were considerably rougher than the matrix-finish specimens, with large voids and protruding filler particles. The effects of foodstuffs on Fuji II LC and F2000 were not noticeable. The CGIC became noticeably rougher after exposure to coffee and tea. All specimens had the smoothest surface when they were cured against a plastics matrix strip, and all materials had a rougher surface after polishing. None of the foodstuffs produced a perceptible increase in roughness on RM-GIC and PAMRC surfaces, whereas coffee and tea markedly increased the surface roughness of Fuji IX.

  9. Evaluating Geometric Characteristics of Planar Surfaces using Improved Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pathak, Vimal Kumar; Kumar, Sagar; Nayak, Chitresh; Gowripathi Rao, NRNV

    2017-08-01

    This paper presents a modified particle swarm optimization (MPSO) algorithm for the evaluation of geometric characteristics defining form and function of planar surfaces. The geometric features of planar surfaces are decomposed into four components; namely straightness, flatness, perpendicularity, and parallelism. A non-linear minimum zone objective function is formulated mathematically for each planar surface geometric characteristic. Finally, the result of the proposed method is compared with previous work on the same problem and with other nature inspired algorithms. The results demonstrate that the proposed MPSO algorithm is more efficient and accurate in comparison to other algorithms and is well suited for effective and accurate evaluation of planar surface characteristics.

  10. Effect of Surface Roughness on Characteristics of Spherical Shock Waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; McFarland, Donald R.

    1959-01-01

    Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.

  11. Wind Characteristics of Coastal and Inland Surface Flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  12. Drag reduction characteristics of small amplitude rigid surface waves

    NASA Technical Reports Server (NTRS)

    Cary, A. M., Jr.; Weinstein, L. M.; Bushnell, D. M.

    1980-01-01

    The possibility of reducing drag by using rigid, wavy surfaces is investigated both analytically and experimentally. Although pressure drag for rigid sine-wave surfaces can be predicted empirically, viscous drag for even shallow waves was poorly predicted by state-of-the-art turbulent boundary layer calculation procedures. Calculations for the effects of geometric and fluid variables on total wave drag are presented under the philosophy that trends will be nearly correct even though levels are probably incorrect. Experiments by the present authors indicate that a total drag reduction with wavy walls is possible.

  13. Effect of nitride chemical passivation of the surface of GaAs photodiodes on their characteristics

    NASA Astrophysics Data System (ADS)

    Kontrosh, E. V.; Lebedeva, N. M.; Kalinovskiy, V. S.; Soldatenkov, F. Yu; Ulin, V. P.

    2016-11-01

    Characteristics of GaAs photodiodes have been studied before and after the chemical nitridation of their surface in hydrazine sulfide solutions, which leads to substitution of surface As atoms with N atoms to give a GaN monolayer. The resulting nitride coatings hinder the oxidation of GaAs in air and provide a decrease in the density of surface states involved in recombination processes. The device characteristics improved by nitridation are preserved during a long time.

  14. Composite cellular defence stratagem in the avian respiratory system: functional morphology of the free (surface) macrophages and specialized pulmonary epithelia.

    PubMed

    Nganpiep, L N; Maina, J N

    2002-05-01

    Qualitative and quantitative attributes of the free respiratory macrophages (FRMs) of the lung--air sac systems of the domestic fowl (Gallus gallus variant domesticus) and the muscovy duck (Cairina moschata) were compared with those of the alveolar macrophages of the lung of the black rat (Rattus rattus). The birds had significantly fewer FRMs compared to the rat. In the birds, the FRMs were found both in the lungs and in the air sacs. Under similar experimental conditions, the most robust FRMs were those of the domestic fowl followed by those of the rat and the duck. Flux of macrophages onto the respiratory surface from the subepithelial compartment and probably also from the pulmonary vasculature was observed in the birds but not in the rat. In the duck and the domestic fowl, a phagocytic epithelium that constituted over 70% of the surface area of the blood-gas (tissue) barrier lines the atrial muscles, the atria and the infundibulae. The epithelial cells of the upper respiratory airways contain abundant lysosomes, suggesting a high lytic capacity. By inference, the various defence strategies in the avian lung may explain the dearth of FRMs on the respiratory surface. We counter-propose that rather than arising directly from paucity of FRMs, an aspect that has been over-stressed by most investigators, the purported high susceptibility of birds (particularly table birds) to respiratory ailments and afflictions may be explained by factors such as inadequate management and husbandry practices and severe genetic manipulation for fast growth and high productivity, manipulations that may have weakened cellular and immunological defences.

  15. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    PubMed

    Klymov, Alexey; Song, Jiankang; Cai, Xinjie; Te Riet, Joost; Leeuwenburgh, Sander; Jansen, John A; Walboomers, X Frank

    2016-02-01

    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric (∼50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with Ca

  16. Approximating the head characteristics and characteristic surfaces of dynamic pumps by means of an exponential function

    NASA Astrophysics Data System (ADS)

    Shekun, G. D.

    2009-08-01

    Results obtained from statistical and experimental studies of the head characteristics of commercially available centrifugal and free-vortex pumps are presented. A regression equation in the form of an exponential function written in a reduced-relative system of coordinates for approximating the head characteristics of blade pumps is obtained.

  17. Friction-factor characteristics for narrow channels with honeycomb surfaces

    NASA Technical Reports Server (NTRS)

    Ha, T. W.; Morrison, G. L.; Childs, D. W.

    1992-01-01

    The experimental determination of friction-factors for the flow of air in a narrow channel lined with various honeycomb geometries has been carried out. Test results show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Reynolds number increases. This phenomenon can be characterized as a 'friction-factor jump'. Further investigations of the acoustic spectrum and friction-factor measurements for a broad range of Reynolds numbers indicate that the 'friction-factor jump' phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of 10,000. The purpose of this paper is to explain the friction-factor-jump phenomenon and friction-factor characteristics.

  18. Application of surface-linked liposomal antigens to the development of vaccines that induce both humoral and cellular immunity.

    PubMed

    Uchida, Tetsuya; Taneichi, Maiko

    2014-01-01

    The first characteristic identified in surface-linked liposomal antigens was the ability to induce antigen-specific, IgE-selective unresponsiveness. These results remained consistent even when different coupling procedures were employed for antigens with liposomes or for liposomes with different lipid components. The potential usefulness of surface-linked liposomal antigens for application to vaccine development was further investigated. During this investigation, a significant difference was observed in the recognition of liposomal antigens by antigen-presenting cells between liposomes with different lipid components, and this difference correlated closely with the adjuvant activity of liposomes. In addition to this "quantitative" difference between liposomes with differential lipid components, a "qualitative" difference (i.e., a differential ability to induce cross-presentation) was observed between liposomes with different lipid components. Therefore, by utilizing the ability to induce cross-presentation, surface-linked liposomal antigens might be used to develop virus vaccines that would induce cytotoxic T lymphocyte (CTL) responses. We have successfully developed a liposome vaccine that is capable of inducing CTL responses against internal antigens of influenza viruses and thus removing virus-infected cells in the host. This CTL-based liposomal vaccine might be applicable to the development of vaccines against influenza and other viruses that frequently undergo changes in their surface antigenic molecules.

  19. Radar, visual and thermal characteristics of Mars - Rough planar surfaces

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1980-01-01

    High-resolution Viking Orbiter images contain significant information on Martian surface roughness at 25- to 100-m lateral scales, while earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns are qualitatively confirmed by the Viking image data. Large-scale, curvilinear ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.

  20. Tribological characteristics of a composite total-surface hip replacement

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Roberts, J. C.; Ling, F. F.

    1982-01-01

    Continuous fiber, woven E glass composite femoral shells having the same elastic properties as bone were fabricated. The shells were then encrusted with filled epoxy wear resistant coatings and run dry against ultrahigh molecular weight polyethylene acetabular cups in 42,000 and 250,000 cycle wear tests on a total hip simulator. The tribological characteristics of these continuous fiber particulate composite femoral shells articulating with ultrahigh molecular weight polyethylene acetabular cups were comparable to those of a vitallium ball articulating with an ultrahigh molecular weight polyethylene acetabular cup.

  1. Characteristics of Immunochemical Interrelations between Cellular Components Included into the Composition of Allergenoactive Fractions of Enterobacteria of Various Genera,

    DTIC Science & Technology

    Cellular components which form allergenoactive fractions include antigens common to enterobacteria of different genera. In Escherichia, Shigella...The degree of immunochemical community is expressed identically for individual examples of enterobacteria . According to the number of common antigens...in the allergenic fractions, enterobacteria can be divided into four immunochemical types: Escherichia (combines the genera Escherichia, Salmonella

  2. Alkyne-Modulated Surface-Enhanced Raman Scattering-Palette for Optical Interference-Free and Multiplex Cellular Imaging.

    PubMed

    Chen, Yong; Ren, Jia-Qiang; Zhang, Xia-Guang; Wu, De-Yin; Shen, Ai-Guo; Hu, Ji-Ming

    2016-06-21

    The alkyne tags possess unique interference-free Raman emissions but are still hindered for further application in the field of biochemical labels due to its extremely weak spontaneous Raman scattering. With the aid of computational chemistry, herein, an alkyne-modulated surface-enhanced Raman scattering (SERS) palette is constructed based on rationally designed 4-ethynylbenzenethiol derivatives for spectroscopic signature, Au@Ag core for optical enhancement and an encapsulating polyallylamine shell for protection and conjugation. Even for the pigment rich plant cell (e.g., pollen), the alkyne-coded SERS tag can be highly discerned on two-dimension distribution impervious to strong organic interferences originating from resonance-enhanced Raman scattering or autofluorescence. In addition, the alkynyl-containing Raman reporters contribute especially narrow emission, band shift-tunable (2100-2300 cm(-1)) and tremendously enhanced Raman signals when the alkynyl group locates at para position of mercaptobenzene ring. Depending on only single Raman band, the suggested alkyne-modulated SERS-palette potentially provides a more effective solution for multiplex cellular imaging with vibrant colors, when the hyperspectral and fairly intense optical noises originating from lower wavenumber region (<1800 cm(-1)) are inevitable under complex ambient conditions.

  3. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    PubMed

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  4. Radar, visual and thermal characteristics of Mars: Rough planar surfaces

    USGS Publications Warehouse

    Schaber, G.G.

    1980-01-01

    High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249-4291), were found to possess such a recent mantle. At predawn residual temperatures ??? -10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin. ?? 1980.

  5. How the knowledge of genetic "makeup" and cellular data can affect the analysis of repolarization in surface electrocardiogram.

    PubMed

    Shimizu, Wataru

    2010-01-01

    This review article sought to describe patterns of repolarization on the surface electrocardiogram in inherited cardiac arrhythmias and to discuss how the knowledge of genetic makeup and cellular data can affect the analysis based on the data derived from the experimental studies using arterially perfused canine ventricular wedge preparations. Molecular genetic studies have established a link between a number of inherited cardiac arrhythmia syndromes and mutations in genes encoding cardiac ion channels or membrane components during the past 2 decades. Twelve forms of congenital long QT syndrome have been so far identified, and genotype-phenotype correlations have been investigated especially in the 3 major genotypes-LQT1, LQT2, and LQT3. Abnormal T waves are reported in the LQT1, LQT2, and LQT3, and the differences in the time course of repolarization of the epicardial, midmyocardial, and endocardial cells give rise to voltage gradients responsible for the manifestation of phenotypic appearance of abnormal T waves. Brugada syndrome is characterized by ST-segment elevation in leads V1 to V3 and an episode of ventricular fibrillation, in which 7 genotypes have been reported. An intrinsically prominent transient outward current (I(to))-mediated action potential notch and a subsequent loss of action potential dome in the epicardium, but not in the endocardium of the right ventricular outflow tract, give rise to a transmural voltage gradient, resulting in ST-segment elevation, and a subsequent phase 2 reentry-induced ventricular fibrillation. In conclusion, transmural electrical heterogeneity of repolarization across the ventricular wall profoundly affects the phenotypic manifestation of repolarization patterns on the surface electrocardiogram in inherited cardiac arrhythmias. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Surface and semantic processing of cellular transport representations by high school students with low and high prior knowledge

    NASA Astrophysics Data System (ADS)

    Cook, Michelle Patrick

    The purpose of this study was to examine the influence of prior knowledge of cell transport processes on how students viewed and interpreted visual representations related to that topic. The participants were high school students (n=65) enrolled in Advanced Placement biology. Prior knowledge was assessed using a modified version of the Diffusion and Osmosis Diagnostic Test (Odom & Barrow, 1995). Eye movements were measured to reveal how students distribute their visual attention as they perceive and interpret graphics; in addition, interviews and questionnaires were employed to provide more interpretive data sources. The first manuscript of the study investigates the relationship between prior knowledge and students' ability to perceive salient features and interpret graphic representations of cellular transport. The results from eye tracking data, interviews, and questionnaire responses were triangulated and revealed differences in how high and low prior knowledge students attended to and interpreted various features of the graphic representations. Without adequate domain knowledge, low prior knowledge students focused on surface features of the graphics to build an understanding of the concepts represented. High prior knowledge students, with more abundant and better organized domain knowledge, were more likely to attend to thematically relevant content in the graphics and construct deeper understandings. The second manuscript of the study examines the influence of prior knowledge on how students transitioned among the macroscopic and molecular representations of selected graphics. Eye tracking and sequential analysis results indicated that high prior knowledge students transitioned more frequently between the molecular representations, where as low prior knowledge students transitioned more frequently between the macroscopic representations. In addition, low prior knowledge students transitioned more frequently between macroscopic and molecular representations

  7. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    PubMed

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca(2+) concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH2) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of In-Plane Microdeformation Distribution Characteristics of Polishing Pad Surface

    NASA Astrophysics Data System (ADS)

    Uneda, Michio; Omote, Tatsunori; Shibuya, Kazutaka; Nakamura, Yoshio; Ichikawa, Daizo; Ishikawa, Ken-ichi

    2013-05-01

    In the chemical mechanical polishing (CMP) of a Si wafer, the physical properties of the polishing pad affect the processing characteristics. There have been several studies on the evaluation of pad surface asperity. In this study, we investigate the fundamental characteristics of polishing pads by the digital image correlation (DIC) method from two viewpoints. It was found that the pad surface deforms owing to shrinkage. Moreover, there is a strong relationship between the in-plane microdeformation characteristics and the amount of material removed from the pad in the conditioning process. Since the DIC method can measure changes in pad surface conditions, it can be used to evaluate future CMP monitoring systems.

  9. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining

    NASA Astrophysics Data System (ADS)

    Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef

    2016-12-01

    One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.

  10. Noise characteristics of upper surface blown configurations: Analytical Studies

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Tibbetts, J. G.; Pennock, A. P.; Tam, C. K. W.

    1978-01-01

    Noise and flow results of upper surface blown configurations were analyzed. The dominant noise source mechanisms were identified from experimental data. From far-field noise data for various geometric and operational parameters, an empirical noise prediction program was developed and evaluated by comparing predicted results with experimental data from other tests. USB aircraft compatibility studies were conducted using the described noise prediction and a cruise performance data base. A final design aircraft was selected and theory was developed for the noise from the trailing edge wake assuming it as a highly sheared layer.

  11. Micromorphology and surface characteristics of lunar dust and breccia.

    PubMed

    Cloud, P; Margolis, S V; Moorman, M; Barker, J M; Licari, G R; Krinsley, D; Barnes, V E

    1970-01-30

    Although nothing of direct biologic interest was observed in the sample studied, small shaped glass particles and glazed pits resemble objects which elsewhere have been described as fossils. These features, although nonbiological, do bear on processes of lunar weathering and outgassing. The glazed pits are impact features. Fusion of their surfaces released gases. Electron microscopy of the glasses, pits, and angular microfractured mineral grains indicates a prevalence of destructive weathering processes-thermal expansion and contraction, abrasion by by-passing particles, and, of course, impact. ous at room temperature.

  12. Characteristics of density currents over regular and irregular rough surfaces

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.

    2013-12-01

    Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).

  13. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating.

    PubMed

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-09

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  14. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  15. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    PubMed Central

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-01-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts. PMID:27934970

  16. Membrane Surface-Associated Helices Promote Lipid Interactions and Cellular Uptake of Human Calcitonin-Derived Cell Penetrating Peptides

    PubMed Central

    Herbig, Michael E.; Weller, Kathrin; Krauss, Ulrike; Beck-Sickinger, Annette G.; Merkle, Hans P.; Zerbe, Oliver

    2005-01-01

    hCT(9-32) is a human calcitonin (hCT)-derived cell-penetrating peptide that has been shown to translocate the plasma membrane of mammalian cells. It has been suggested as a cellular carrier for drugs, green fluorescent protein, and plasmid DNA. Because of its temperature-dependent cellular translocation resulting in punctuated cytoplasmatic distribution, its uptake is likely to follow an endocytic pathway. To gain insight into the molecular orientation of hCT(9-32) when interacting with lipid models, and to learn more about its mode of action, various biophysical techniques from liposome partitioning to high-resolution NMR spectroscopy were utilized. Moreover, to establish the role of individual residues for the topology of its association with the lipid membrane, two mutants of hCT(9-32), i.e., W30-hCT(9-32) and A23-hCT(9-32), were also investigated. Although unstructured in aqueous solution, hCT(9-32) adopted two short helical stretches when bound to dodecylphosphocholine micelles, extending from Thr10 to Asn17 and from Gln24 to Val29. A23-hCT(9-32), in which the helix-breaking Pro23 was replaced by Ala, displayed a continuous α-helix extending from residue 12 to 26. Probing with the spin label 5-doxylstearate revealed that association with dodecylphosphocholine micelles was such that the helix engaged in parallel orientation to the micelle surface. Moreover, the Gly to Trp exchange in W30-hCT(9-32) resulted in a more stable anchoring of the C-terminal segment close to the interface, as reflected by a twofold increase in the partition coefficient in liposomes. Interestingly, tighter binding to model membranes was associated with an increase in the in vitro uptake in human cervix epithelial andenocarcinoma cell line cells. Liposome leakage studies excluded pore formation, and the punctuated fluorescence pattern of internalized peptide indicated vesicular localization and, in conclusion, strongly suggested an endocytic pathway of translocation. PMID:16183886

  17. Phosphate filtering characteristics of a hybridized porous Al alloy prepared by surface modification.

    PubMed

    Seo, Young Ik; Lee, Young Jung; Hong, Ki Ho; Chang, Duk; Kim, Dae-Gun; Lee, Kyu Hwan; Kim, Young Do

    2010-01-15

    In this study, a porous Al alloy filter was designed for water purification systems. The combination of higher permeability for fluid flow and excellent filtering characteristics for removing pollutants is required for water purification. The filter's macropore structure was controlled by a powder metallurgical process using granulated powders for high permeability and its micropore structure was generated by alkali surface modification on the macroporous sintered body for enhanced filtration efficiency. After surface modification, the specific surface area was increased by 10 times over the as-sintered specimen. Phosphate filtering characteristic was noticeably improved by a ligand exchange between phosphate and aluminum hydroxide formed by alkali surface modification.

  18. Electrical surface characteristics of a technical T emulsion

    SciTech Connect

    Baran, A.A.; Tarovskii, A.A.; Men, S.K.

    1988-07-01

    Technical emulsions are removed from the waste water of industrial plants by flocculation and coagulation methods. These processes can be regulated by information on the structure of the electric double layers of the emulsions and the changes which occur when reagents are added. In this paper the structure of the electric double layer of a technical T emulsion was studied by the methods of potentiometric titration, conductometry, and microelectrophoresis. A considerably higher value of the surface charge in comparison to the electrokinetic value has been established over a broad range of concentrations of 1-1, 2-1/sub 2/, and 3-1/sub 3/ electrolytes. Reversal of the charge of the droplets of the emulsion in the presence of AlCl/sub 3/ has been discovered.

  19. Statistical characteristics of topographic surfaces and dynamic smoothing of landscapes

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Laio, F.; Ridolfi, L.; Vico, G.; Porporato, A. M.

    2011-12-01

    We analyze the local statistics of topographic surfaces, including slope and aspect, as a function of scale, and explore their relations with landscape features, such as age, vegetation, and geology. These results build upon the previous work of Vico and Porporato (JGR 114, F01011, 2009), which characterized slope using generalized t-Student distributions. We find that the number of degrees of freedom of such distributions, which determines the heaviness of their tails, is linked to the age of the topographic relief of the considered regions, tending to normal distributions for very old mountain ranges. Based on these findings, and inspired by models of critical phenomena, we develop physically-based, space-time stochastic differential equations that reproduce this dynamic smoothing of rough landscapes.

  20. Heterogeneous chemistry of HOBR on surfaces characteristic of atmospheric aerosols

    SciTech Connect

    Abbatt, J.P.D.

    1995-12-31

    The heterogeneous interactions of HOBr, HBr and HCl with ice and supercooled sulfuric acid solutions have been studied in a low temperatures low pressure flow tube coupled to a mass spectrometer. The heterogeneous reactions HOBr + HCl {yields} BrCl + H{sub 2}O and HOBr + HBr {yields} Br{sub 2} + H{sub 2}O have been demonstrated to proceed readily on these surfaces, and it has been shown that both HOBr and HBr are more easily partitioned to the condensed phase than their chlorine analogues. These heterogeneous reactions represent routes for the activation of halogen species in the atmosphere. In particular, the implications of this research to the depletion of stratospheric ozone after the Mt. Pinatubo volcanic eruption and to the depletion of ozone in the springtime Arctic boundary layer will be discussed.

  1. Humic substances isolated from surface sediments: analytical characteristics

    SciTech Connect

    Schultz, D.M.; Miller, R.E.

    1986-01-01

    The elemental composition and infrared spectra of humic and fulvic acids isolated from Mid-Atlantic Continental Shelf and Slope surface sediments indicated relatively hydrogen-rich humic substance. The stable carbon isotopic ratios of the humic and fulvic acids range from -21.2 to -23.8 per mil with an average of -22.4 per mil. Pyrolysis-gas chromatographic patterns of humic acids and protokerogens showed longer carbon-chain length which are indicative of gas-condensate-to-oil prone, hydrogen-rich organic components. These humic substances are believed to be derived from a marine organic source and may be precursors in the formation of Type II kerogens. A succession of fulvic acid to humic acid to protokerogen is a possible evolutionary pathway for a portion of the protokerogens identified in this study.

  2. Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum

    NASA Astrophysics Data System (ADS)

    Zheng, Nan; Huang, Xuezeng; Mu, Haibao; Zhang, Guanjun

    2011-12-01

    For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface flashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.

  3. Surface characteristics of hot-dip metallic coatings on steel strip

    NASA Astrophysics Data System (ADS)

    Kilbane, Farrell M.

    1982-05-01

    Surfaces of hot-dip metallic coatings are frequently enriched in minor alloying elements because of the large diffusion rates of elements in the liquid state. In this study, scanning Auger microscopy is used to measure the surface chemical compositions of zinc, aluminum, and lead coatings that were applied to steel strip on continuous coating lines. Comparisons are made between the surface and bulk compositions. Surface enrichments up to 1000X the bulk concentration are reported. Processing steps after coating application are shown to further alter the coatings' surface characteristics. Finally, the effects of the variable surfaces on the products' engineering properties are discussed.

  4. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments.

    PubMed

    Han, Mee-Jung

    2016-07-01

    Escherichia coli, one of the well-characterized prokaryotes, has been the most widely used bacterial host in scientific studies and industrial applications. Many different strains have been developed for the widespread use of E. coli in biotechnology, and selecting an ideal host to produce a specific protein of interest is a critical step in developing a production process. The E. coli B and K-12 strains are among the most frequently used bacterial hosts for the production of recombinant proteins as well as small-molecule metabolites such as amino acids, biofuels, carboxylic acids, diamines, and others. However, both strains have distinctive differences in genotypic and phenotypic attributes, and their behaviors can still be unpredictable at times, especially while expressing a recombinant protein. Therefore, in this review, an in-depth analysis of the physiological behavior on the proteomic level was performed, wherein the particularly distinct proteomic differences between the E. coli B and K-12 strains were investigated in the four distinctive cellular compartments. Interesting differences in the proteins associated with key cellular properties including cell growth, protein production and quality, cellular tolerance, and motility were observed between the two representative strains. The resulting enhancement of knowledge regarding host physiology that is summarized herein is expected to contribute to the acceleration of strain improvements and optimization for biotechnology-related processes.

  5. A Novel Water-Soluble Fluorescence Probe with Wash-Free Cellular Imaging Capacity Based on AIE Characteristics.

    PubMed

    Qian, Yunxia; Liu, Hongmei; Tan, Haijian; Yang, Qingmin; Zhang, Shuchen; Han, Lingui; Yi, Xuegang; Huo, Li; Zhao, Hongchi; Wu, Yonggang; Bai, Libin; Ba, Xinwu

    2017-03-21

    A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. (1) H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 μg mL(-1) . In addition, the pH-responsive and Cd(2+) -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd(2+) , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe.

  6. The study of non-fouling and non-specific cellular binding on functionalized surface for mammalian cell identification and manipulation

    NASA Astrophysics Data System (ADS)

    Zainudin, Nor Syuhada; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2017-04-01

    Surface functionalization has emerged as a powerful tool for mapping limitless surface-cell membrane interaction in diverse biomolecular applications. Inhibition of non-specific biomolecular and cellular adhesion to solid surfaces is critical in improving the performance of some biomedical devices, particularly for in vitro bioassays. Some factors have to be paid particular attention in determining the right surface modification which are the types of surface, the methods and chemical solution that being used during the experimentation and also tools for analyzing the results. Improved surface functionalization technologies that provide better non-fouling performance in conjunction with specific attachment chemistries are sought for these applications. Hence, this paper serves as a review for multiple surface treatment methods including PEG grafting, adsorptive chemistries, self-assembled monolayers (SAMs) and plasma treatments.

  7. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  8. Characteristics of a horizontal square jet interacting with the free surface

    NASA Astrophysics Data System (ADS)

    Tay, Godwin F. K.; Rahman, Mohammad S.; Tachie, Mark F.

    2017-06-01

    The characteristics of a horizontal submerged square jet interacting with the free surface are investigated experimentally. A particle image velocimetry system is used to measure the mean flow and turbulent characteristics in the vertical symmetry plane of the jet at a Reynolds number of approximately 5500. It is shown that the effect of the free surface is to cancel the turbulent-nonturbulent interface and reduce the mean spanwise vorticity, Reynolds shear stress, and jet spreading rate in the upper shear layer in comparison to those measured in the lower shear layer. The results indicate that lowering of the jet offset height ratio increases the confinement effect of the free surface. Stronger confinement reduces the maximum mean streamwise velocity decay rate and mean surface velocity defect in the interaction region. The results also indicate a dramatic reduction in surface-normal turbulence intensity in the interaction region due to the damping effect of the free surface on the surface-normal velocity fluctuations. The decay of the surface-normal turbulence intensity near the free surface produces commensurate reductions in the surface-normal velocity fluctuation autocorrelation in the upper shear layer while enhancing the streamwise velocity fluctuation autocorrelation. The damping effect of the free surface on the surface-normal velocity fluctuations is found to be connected to the redistribution of the turbulent kinetic energy from the surface-normal velocity fluctuations to the streamwise velocity fluctuations.

  9. Scalar scattering characteristics of a periodic, impenetrable surface: Effect of surface modeling errors

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh; Varadan, Vijay K.; Varadan, Vasundara V.

    1986-12-01

    Use is made of the T-matrix method to examine the effect of surface profile modeling errors in studying the scalar scattering responses of impenetrable, periodic surfaces. It is shown that even small errors can alter the maximum surface slope significantly, thereby taxing the resources of numerical procedures and severely limiting their scopes of applicability. However, it is possible that the power diffraction coefficients are not very different when calculations are made with and without these errors. Possible implications for using such methods in order to understand the scattering behavior of fractal surfaces are discussed.

  10. Surface characteristics and evolution of debris covered glaciers

    NASA Astrophysics Data System (ADS)

    Mölg, Nico; Vieli, Andreas; Bolch, Tobias; Bauder, Andreas; Bhattacharya, Atanu

    2016-04-01

    Global climate change has led to increasing glacier retreat in most parts of the world. However, many heavily debris-covered glaciers have shown much smaller recession rates than their clean-ice neighbours. This can be attributed to the insulation effect of the supraglacial debris. Remote-sensing based investigations revealed that recent mass balances of debris-covered glaciers are equally negative. This fact is partly due to enhanced melting at supra-glacial lakes and ice cliffs but can also be caused by reduced mass flux. In this context, insufficient process understanding constitutes a major challenge for large scale glacier change assessment and modelling. In this project, we aim at better understanding the evolution of glaciers in connection with changes in supra-glacial debris coverage. It is performed on Zmutt Glacier in Matter valley in Switzerland and on Gangotri Glacier in Garwhal Himalaya in India. Changes in glacier length, area, debris coverage, and surface elevation were compiled based on topographic maps, oblique photos, aerial and satellite orthoimages, digital terrain models (DTMs), and glacier monitoring data for a 50 (Gangotri) and 120 (Zmutt) year period, respectively. The subsequent analysis revealed that Zmutt Glacier has been in a slow but almost continuous retreating state since the end of the 19th century and showed a clear reduction in glacier area and volume. Similarly, Gangotri Glacier has retreated and, to a smaller degree, lost volume. However, the change in glacier length and area is clearly smaller than for other nearby, less debris-covered or debris-free glaciers. This fact is attributed to the larger debris-covered area that has steadily increased. Further in the project, this data will serve as an important input and validation for the envisaged 3D flow modelling and, hence, will contribute to the understanding of the development of glaciers and debris-covered ice in a period of fast climatic changes.

  11. Humoral and Cellular Immunity to Plasmodium falciparum Merozoite Surface Protein 1 and Protection From Infection With Blood-Stage Parasites

    PubMed Central

    Moormann, Ann M.; Sumba, Peter Odada; Chelimo, Kiprotich; Fang, Hua; Tisch, Daniel J.; Dent, Arlene E.; John, Chandy C.; Long, Carole A.; Vulule, John; Kazura, James W.

    2013-01-01

    Background. Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts. Methods. The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya. Results. Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia. Conclusions. Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone. PMID:23539744

  12. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites.

    PubMed

    Moormann, Ann M; Sumba, Peter Odada; Chelimo, Kiprotich; Fang, Hua; Tisch, Daniel J; Dent, Arlene E; John, Chandy C; Long, Carole A; Vulule, John; Kazura, James W

    2013-07-01

     Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts.  The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya.  Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia.  Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.

  13. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits.

    PubMed

    Kanner, Sivan; Bisio, Marta; Cohen, Gilad; Goldin, Miri; Tedesco, Marieteresa; Hanein, Yael; Ben-Jacob, Eshel; Barzilai, Ari; Chiappalone, Michela; Bonifazi, Paolo

    2015-04-15

    The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity. A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization

  14. Evaluating the Influence of Surface and Precipitation Characteristics on TMI and GMI Precipitation Retrievals.

    NASA Astrophysics Data System (ADS)

    Carr, N.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Ferraro, R. R.; Kummerow, C. D.; Petersen, W. A.; Schwaller, M.; Wang, N. Y.

    2014-12-01

    To evaluate the influence of surface and precipitation characteristics on Passive microwave (PMW) precipitation retrievals, precipitation products obtained from both the TRMM Microwave Imager (TMI) and the GPM Microwave Imager (GMI) were evaluated relative to independent high-resolution reference precipitation products obtained using the NOAA/NSSL ground radar-based Multi-Radar Multi-Sensor (MRMS) system. Specifically the ability of each sensor to detect, classify, and quantify instantaneous surface precipitation at its native pixel resolution is examined and linked to surface and precipitation characteristics. Surface characteristics were derived optically using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). Precipitation mesoscale characteristics such as convective-stratiform classification and spatial structure were obtained from the high-resolution reference data. The quality of both PMW sensors' retrievals varied considerably with surface characteristics; both sensors displayed decreased detection and quantification statistics over sparsely vegetated and dry surfaces. Similarly, the quality of the precipitation retrievals was affected by precipitation characteristics and high relative errors were evident in isolated and small-scale precipitation events as well as in mixed stratiform-convective events. The error characteristics of the two sensors also differed in several significant aspects, namely TMI tended to overestimate precipitation relative to the reference, while GMI underestimated precipitation. The influence of the precipitation and surface characteristics was less evident in the more sophisticated GMI retrievals. An additional outcome of the study was the adaptation of the comparison framework between space and ground precipitation estimates to accommodate the new probabilistic features of the GPM-era PMW precipitation retrievals.

  15. Optical device for measuring a surface characteristic of an object by multi-color interferometry

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Smart, Anthony E. (Inventor)

    2001-01-01

    An interferometer having a light beam source that produces a plurality of separate and distinct wavelengths of light. Optic fibers are used to transport the wavelengths of light toward an object surface and to allow light reflected from the object to pass through a polarizer to improve the polarization ratio of the reflected light to determine a characteristic of the object surface.

  16. Bioactivity and Surface Characteristics of Titanium Implants Following Various Surface Treatments: An In Vitro Study.

    PubMed

    Kumar K, Aswini; Bhatt, Vinaya; Balakrishnan, Manilal; Hashem, Mohamed; Vellappally, Sajith; Aziz A Al Kheraif, Abdul; Halawany, Hassan Suliman; Abraham, Nimmi Biju; Jacob, Vimal; Anil, Sukumaran

    2015-10-01

    This study compared the surface topography, hydrophilicity, and bioactivity of titanium implants after 3 different surface treatments (sandblasting and acid etching, modified sandblasting and acid etching, and thermal oxidation) with those of machined implants. One hundred indigenously manufactured threaded titanium implants were subjected to 3 methods of surface treatment. The surface roughness of the nontreated (Group A) and treated samples (Groups B through D) was evaluated with a scanning electron microscope (SEM) and profilometer. The wettability was visually examined using a colored dye solution. The calcium ions attached to the implant surface after immersing in simulated body fluid (SBF) were assessed on days 1, 2, and 7 with an atomic electron spectroscope. The data were analyzed statistically. The SBF test allowed the precipitation of a calcium phosphate layer on all surface-treated samples, as evidenced in the SEM analysis. A significantly higher amount of calcium ions and increased wettability were achieved in the thermally oxidized samples. The mean roughness was significantly lower in Group A (0.85 ± 0.07) compared to Group B (1.35 ± 0.17), Group C (1.40 ± 0.14), and Group D (1.36 ± 0.18). The observations from this in vitro study indicated that surface treatment of titanium improved the bioactivity. Moreover, results identified the implants that were sandblasted, acid etched, and then oxidized attracted more calcium ions.

  17. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  18. Lunar Surface Gravimeter Experiment. [characteristics of test equipment installed on lunar surface during Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Weber, J.

    1973-01-01

    The lunar surface gravimeter which was emplaced on the moon by the Apollo 17 flight is described and a schematic diagram of the sensor is provided. The objective of the lunar surface gravimeter is to use the moon as an instrumented antenna to detect gravitational waves. Another objective is to measure tidal deformation of the moon. Samples of signals received during lunar sunrise activity and during quiet periods are presented in graph form based on power spectrum analysis

  19. The effect of bonding system application on surface characteristics of bovine dentin and enamel.

    PubMed

    Okulus, Zuzanna; Buchwald, Tomasz; Czarnecka, Beata; Voelkel, Adam

    2017-07-01

    The main objective of this study was to examine the surface changes of bovine teeth hard tissues (dentin and enamel) after surface preparation with the use of commercial 3-component etch-and-rinse bonding system. Surface composition changes, morphology, BET specific surface area and surface energy parameters were examined after etching, application of primer and adhesive. Characteristic of tissues composition was carried out with the use of Raman spectroscopy. Morphological changes were followed by scanning electron microscopy, while specific surface area values were measured by the means of gas porosimetry. For the first time surface energy of prepared teeth hard tissues was studied with the use of inverse gas chromatography. A detailed characteristic of surface parameters of bovine teeth hard tissues was made. Obtained results show that each step of dentin and enamel preparation is reflected in all studied parameters. Application of etchant, primer and adhesive causes an increase of surface activity of all examined tissues, measured as surface energy parameters. Surface parameters changes caused by the application of bonding system are crucial from dentin/enamel - restorative material adhesion point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of forelimb horseshoe characteristics of thoroughbreds racing on dirt surfaces.

    PubMed

    Gross, Diane K; Stover, Susan M; Hill, Ashley E; Gardner, Ian A

    2004-07-01

    To describe forelimb horseshoe characteristics of horses racing on dirt surfaces and determine whether these characteristics vary with region of California, season, horse characteristics, and race-related factors. 5,730 Thoroughbred racehorses. From June 17, 2000, to June 16, 2001, the characteristics of 1 forelimb horseshoe of horses that raced on dirt surfaces at 5 major racetracks in California were recorded. These characteristics included shoe type; toe grab height; and presence of a rim, pad, and heel traction devices (jar caulks, heel stickers, heel blocks, and special nails). Horse and race information was obtained from commercial records. One race/horse was randomly selected. 99% of forelimb horseshoes were aluminum racing plates, 35% had a pad, 23% had a rim, and 8% had a heel traction device. A toe grab was observed on 75% of forelimb horseshoes (14% very low [< or = 2 mm], 30% low [> 2 and < or = 4 mm], 30% regular [> 4 and < or = 6 mm], and 1% high [> 6 and < or = 8 mm]). Forelimb horseshoe characteristics varied with region of California, season, age and sex of the horse, race purse and distance, and track surface condition. Log-linear modeling revealed that all of these factors were significantly interrelated. Complex interrelationships among forelimb horseshoe characteristics and region, season, age and sex of the horse, and race-related factors need to be considered when evaluating the relationships between injury and horseshoe characteristics in Thoroughbred racehorses.

  1. Gaussian beam reflection characteristics on 2D randomly rough sea surface influenced by incident laser parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2014-12-01

    Laser reflection characteristics from the two-dimensional randomly rough sea surface are affected by the sea state, weather conditions, the incident laser parameters and other factors. All of the factors could not be artificially changed except the incident laser parameters. Therefore, the research of the relationship between laser reflection characteristics from 2-D randomly rough sea surface and incident laser parameters will give support to laser detection on the sea surface. This paper deals with the simulated calculation of the Gaussian beam reflection characteristics from the 2-D randomly rough sea surface with different incident laser parameters. In this paper, the 2-D rough sea surface is simulated with fractal method, after which the sea surface is divided into a lot of small planes, the width or length of which is much greater than the wavelength of the incident laser. Then the geometrical optics method is used to calculate the Gaussian beam reflection from 2-D randomly and rough sea surface. After that, the Gaussian beam reflection characteristics varies different incident laser parameters are numerical calculated. Finally, the detailed discussion of some factors including the divergence angle and the incident angle of the Gaussian beam which have influences on reflection properties is given.

  2. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio).

    PubMed

    Burzio, Veronica; Antonelli, Marcelo; Allende, Catherine C; Allende, Jorge E

    2002-01-01

    Protein kinase CK1 (previously known as casein kinase I) conforms to a subgroup of the great protein kinase family found in eukaryotic organisms. The CK1 subgroup of vertebrates contains seven members known as alpha, beta, gamma1, gamma2, gamma3, delta, and epsilon. The CK1alpha gene can generate four variants (CK1alpha, CK1alphaS, CK1alphaL, and CK1alphaLS) through alternate splicing, characterized by the presence or absence of two additional coding sequences. Exon "L" encodes a 28-amino acid stretch that is inserted after lysine 152, in the center of the catalytic domain. The "S" insert encodes 12 amino acid residues and is located close to the carboxyl terminus of the protein. This work reports some biochemical and cellular properties of the four CK1alpha variants found to be expressed in zebrafish (Danio rerio). The results obtained indicate that the presence of the "L" insert affects several biochemical properties of CK1alpha: (a) it increases the apparent Km for ATP twofold, from approximately 30 to approximately 60 microM; (b) it decreases the sensitivity to the CKI-7 inhibitor, raising the I50 values from 113 to approximately 230 microM; (c) it greatly decreases the heat stability of the enzyme at 40 degrees C. In addition, the insertion of the "L" fragment exerts very important effects on some cellular properties of the enzyme. CK1alphaL concentrates in the cell nucleus, excluding nucleoli, while the CK1alpha variant is predominantly cytoplasmic, although some presence is observed in the nucleus. This finding supports the thesis that the basic-rich region found in the "L" insert acts as a nuclear localization signal. The "L" insert-containing variant was also found to be more rapidly degraded (half-life of 100 min) than the CK1alpha variant (half-life of 400 min) in transfected Cos-7 cells.

  3. Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

    PubMed Central

    Ha, Ho-Kyung; Kim, Jin Wook; Lee, Mee-Ryung; Jun, Woojin; Lee, Won-Jae

    2015-01-01

    It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as β-lactoglobulin (β-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of β-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of β-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of β-lg nanoparticles. The β-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (−14.8 to −17.6 mV) were successfully formed. A decrease in heating temperature from 70°C to 60°C resulted in a decrease in the particle size and an increase in the zeta-potential value of β-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. There was an increase in cellular uptake of β-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake β-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of β-lg nanoparticles play an important role in the cellular uptake. The β-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity. PMID:25656189

  4. Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge.

    PubMed

    Ha, Ho-Kyung; Kim, Jin Wook; Lee, Mee-Ryung; Jun, Woojin; Lee, Won-Jae

    2015-03-01

    It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as β-lactoglobulin (β-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of β-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of β-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of β-lg nanoparticles. The β-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from 70°C to 60°C resulted in a decrease in the particle size and an increase in the zeta-potential value of β-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. There was an increase in cellular uptake of β-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake β-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of β-lg nanoparticles play an important role in the cellular uptake. The β-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

  5. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: importance of surface modification.

    PubMed

    Alkilany, Alaaldin M; Shatanawi, Alia; Kurtz, Timothy; Caldwell, Ruth B; Caldwell, R William

    2012-04-23

    Gold nanorods (GNRs) have promising applications in drug delivery and cancer treatment and are generally administered via direct injection into the circulation. Thus it is necessary to evaluate their potential adverse effects on blood vessels. Herein, GNRs with various surface modifications are used to evaluate the toxicity and cellular uptake of GNRs into vascular endothelial and smooth muscle cells of isolated rat aortic rings. Surfactant-capped GNRs are synthesized and either coated with polyelectrolyte (PE) to prepare PE-GNRs, or modified with thiolated polyethylene glycol (PEG) to prepare PEG-GNRs. Using toxicity assays, small-vessel myography, fluorescence microscopy, and electron microscopy, it is shown that therapeutic concentrations of PE-GNRs but not PEG-GNRs are toxic to the vascular endothelium, which leads to an impaired relaxation function of aortic rings. However, no toxicity to smooth muscles is observed. Moreover, electron microscopy analysis confirms the cellular uptake of PE-GNRs but not PEG-GNRs into the endothelium of exposed aortic rings. The difference in toxicity and cellular uptake of PE-GNRs versus PEG-GNRs is explained and linked to free surfactant molecules and protein adsorption, respectively. The results indicate that toxicity and cellular uptake in the vascular endothelium in blood vessels are potential adverse effects of systemically administered GNR solutions, which can be prevented by appropriate surface functionalization.

  6. Lubrication characteristics of nano-oil with different degrees of surface hardness of sliding members.

    PubMed

    Ku, Boncheol; Han, Youngcheol; Lee, Kwangho; Choi, Youngmin; Koo, Bonyoung; Hwang, Yujin; Lee, Jaekeun

    2011-01-01

    In this study, the lubrication characteristics of sliding members were compared with the changes in the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35 and AISI 60) and nickel chromium molybdenum steel (AISI 4320). The friction coefficients and the temperature variations of the frictional surfaces were measured with a disk-on-disk tribotester under a fixed rotation speed. The friction surfaces were observed with a scanning electron microscope (SEM). The friction coefficients of the plate surface increased as the hardness difference increased. The friction coefficient after the lubrication with nano-oil was less than that after lubrication with mineral oil. This is because a spherical nanoparticle plays the role of a tiny ball bearing between the frictional surfaces that improve the lubrication characteristics.

  7. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  8. Recontextualising Cellular Respiration in Upper Secondary Biology Education. Characteristics and Practicability of a Learning and Teaching Strategy

    ERIC Educational Resources Information Center

    Wierdsma, Menno; Knippels, Marie-Christine; van Oers, Bert; Boersma, Kerst

    2016-01-01

    Since concepts may have different meanings in different contexts, students have to learn to recontextualise them, i.e. to adapt their meanings to a new context. It is unclear, however, what characteristics a learning and teaching strategy for recontextualising should have. The study aims to develop such a learning and teaching strategy for…

  9. Recontextualising Cellular Respiration in Upper Secondary Biology Education. Characteristics and Practicability of a Learning and Teaching Strategy

    ERIC Educational Resources Information Center

    Wierdsma, Menno; Knippels, Marie-Christine; van Oers, Bert; Boersma, Kerst

    2016-01-01

    Since concepts may have different meanings in different contexts, students have to learn to recontextualise them, i.e. to adapt their meanings to a new context. It is unclear, however, what characteristics a learning and teaching strategy for recontextualising should have. The study aims to develop such a learning and teaching strategy for…

  10. Deletion of the Hoc and Soc capsid proteins affects the surface and cellular uptake properties of bacteriophage T4 derived nanoparticles

    PubMed Central

    Robertson, Kelly; Furukawa, Yoko; Underwood, Alison; Black, Lindsay; Liu, Jinny L.

    2014-01-01

    Recently the use of engineered viral scaffolds in biotechnology and medical applications has been increasing dramatically. T4 phage capsid derived nanoparticles (NPs) have potential advantages as sensors and in biotechnology. These applications require that the physical properties and cellular uptake of these NPs be understood. In this study we used a T4 deletion mutant to investigate the effects of removing both the Hoc and Soc proteins from the capsid surface on T4 tailless NPs. The surface charge, zeta potential, size, and cellular uptake efficiencies for both the T4 NP and T4ΔHocΔSoc NP mutant were measured and compared using dynamic light scattering and flow cytometry and significant differences were detected. PMID:22285187

  11. Relationship between powder surface characteristics and viscoelastic properties of powder-filled semisolids.

    PubMed

    Radebaugh, G W; Simonelli, A P

    1985-01-01

    The viscoelastic properties of dispersions of powdered zinc oxide in anhydrous lanolin and colloidal sulfur in anhydrous lanolin were characterized by dynamic mechanical testing. The elastic shear modulus, G', viscous shear modulus, G", and loss tangent (damping), tan delta, were determined as a function of shear frequency, v, temperature, T, and volume fraction of powder, phi 2. A priori, it might be expected that zinc oxide and colloidal sulfur would elicit different viscoelastic properties due to their contrasting surface characteristics; zinc oxide has a hydrophilic surface and colloidal sulfur has a hydrophobic surface. Even though constitutive mathematical models, derived to predict the mechanical behavior of solid-filled polymeric materials, were not designed to account for differences in surface characteristics of the filler, the findings of these experiments show that these models are useful in explaining the differences in viscoelastic behavior of powder-filled semisolids due to surface characteristics of the filler. One model of particular value was the Kerner equation. With it, mechanisms were postulated for zinc oxide-zinc oxide interactions, sulfur-sulfur interactions, zinc oxide-anhydrous lanolin interactions, and sulfur-anhydrous lanolin interactions, within dispersions as a function of nu, T, and phi 2. In addition, damping was used to further identify the influence of temperature. Data obtained from three temperatures, where anhydrous lanolin exists in three different structural states, shows that the influence of the powder on damping is not only determined by the surface characteristics of the powder but also the structural state of anhydrous lanolin.

  12. Parametric three-way receiver operating characteristic surface analysis using mathematica.

    PubMed

    Heckerling, P S

    2001-01-01

    Three-way receiver operating characteristic (ROC) surface analysis involves the calculation of a volume under an ROC surface (VUS), which is a measure of discriminatory accuracy of 2 diagnostic tests for 3 diseases. Nonparametric methods for calculating VUS and its standard error have been developed. The author presents the code for roc3D, a Mathematica computer program for performing parametric ROC surface analysis. roc3D calculates VUS assuming a multinormal distribution of test results in the 3 diseased populations, provides user-specified pointwise confidence limits for VUS, and displays a 3-dimensional plot of the ROC surface. Limitations of the roc3D program are discussed.

  13. Enhancing the Representation of Subgrid Land Surface Characteristics in Land Surface Models

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Li, Hongyi

    2013-09-27

    Land surface heterogeneity has long been recognized and increasingly incorporated in the land surface modelling. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC) that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM) was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0°) with three maximum-allowed total number of classes N_class of 24, 18 and 12 representing different computational burdens over the North America (NA) continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational intensity (N_class = 18) as it

  14. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles

    PubMed Central

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio–nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14+ monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism. PMID:28352171

  15. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles.

    PubMed

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio-nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14(+) monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism.

  16. Geometry and Surface Characteristics of Gold Nanoparticles Influence their Biodistribution and Uptake by Macrophages

    PubMed Central

    Arnida; Janát-Amsbury, M.M.; Ray, A.; Peterson, C. M.; Ghandehari, H.

    2010-01-01

    Spherical and rod-shaped gold nanoparticles with surface poly (ethylene glycol) (PEG) chains were characterized for size, shape, charge, poly dispersity and surface plasmon resonance. The nanoparticles were injected intravenously to 6–8 weeks old female nu/nu mice bearing orthotopic ovarian tumors and their biodistribution in vital organs was compared. Gold nanorods were taken up to a lesser extent by the liver, had longer circulation time in the blood, and higher accumulation in the tumors, compared with their spherical counterparts. The cellular uptake of PEGylated gold nanoparticles by a murine macrophage-like cell line as a function of geometry was examined. Compared to nanospheres, PEGylated gold nanorods were taken up to a lesser extent by macrophages. These studies point to the importance of gold nanoparticle geometry and surface properties on transport across biological barriers. PMID:21093587

  17. Biochar production from coffee residues: Optimization of surface characteristics and sorptive behavior

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2015-04-01

    Biochar with high surface area is a promising sorbent for environmental remediation and is produced by heating biomass in an oxygen-limited environment. Knowing the surface characteristics increases our understanding of biochar interactions with pollutants. The hypothesis of the present study is that by controlling pyrolysis conditions, the surface characteristics and subsequently the sorption behavior of produced biochars can be optimized. Coffee residues were dried overnight at 50oC and then pyrolized into a gradient furnace at 850oC. Different solid/oxygen ratios during pyrolysis were tested as well as the up scaling of the process. The biochars produced were systematically characterized for their surface characteristics such as BET surface area, open surface area, pore and micropore volume, and average pore size. The effect of pyrolysis on the biochar suspension pH was examined with the mass addition technique that involves the addition of increasing amounts of the biochar to bottles containing 0.1 M NaNO3. FTIR analysis was used in order to determine the functional groups of the coffee residue and of the biochars. The macrostructure of the biochars was visualized by Scanning Electron Microscopy (SEM). Total Carbon (TC) in the samples was determined by Carlo Erba Elemental Analyzer CHNS, EO 1108 after calibration with standard samples. The sorption behavior of produced biochars was tested with two different pollutants (Hg(II), phenanthrene) using batch reactors with the same initial single-compound solution and the same mass of coffee residue and different biochars. The biochars produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area due to macropores from 21 to 65 m2/g. This suggests that the surface area in the biochars with high surface area results from the formation of pores. Actually for the biochar with the highest surface area, it was calculated that up to 90

  18. Effects of storage medium and UV photofunctionalization on time-related changes of titanium surface characteristics and biocompatibility.

    PubMed

    Shen, Jian-Wei; Chen, Yun; Yang, Guo-Li; Wang, Xiao-Xiang; He, Fu-Ming; Wang, Hui-Ming

    2016-07-01

    Storage in aqueous solution and ultraviolet (UV) photofunctionalization are two applicable methods to overcome the biological aging and increase the bioactivity of titanium. As information regarding the combined effects of storage medium and UV photofunctionalization has never been found in published literatures, this study focused on whether appropriate storage methods and UV photofunctionalization have synergistic effects on the biological properties of aged titanium surfaces. Titanium plates and discs were sandblasted and acid etched and then further prepared in five different modes as using different storage mediums (air or dH2 O) for 4 weeks and then with or without UV treatment. The surface characteristics were evaluated with scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. MC3T3-E1 cells were cultured on the surfaces, and cellular morphology, proliferation, alkaline phosphatase activity, and osteocalcin release were evaluated. The results showed that nanostructures were observed on water-stored titanium surfaces with a size of about 15 × 20 nm(2) . UV treatment was effective to remove the hydrocarbon contamination on titanium surfaces stored in either air or water. UV photofunctionalization further enhanced the already increased bioactivity of modSLA on initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin release. Overall, UV photofunctionalization was effective in further enhancing the already increased bioactivity by using dH2 O as storage medium, and the effect of UV treatment was much more overwhelming than that of the storage medium. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 932-940, 2016.

  19. Vincristine and ɛ-viniferine-loaded PLGA-b-PEG nanoparticles: pharmaceutical characteristics, cellular uptake and cytotoxicity.

    PubMed

    Öğünç, Yüksel; Demirel, Müzeyyen; Yakar, Arzu; İncesu, Zerrin

    2017-02-02

    The objective of this study was to prepare the ɛ-viniferine and vincristine-loaded PLGA-b-PEG nanoparticle and to investigate advantages of these formulations on the cytotoxicity of HepG2 cells. Prepared nanoparticle has shown a homogeneous distribution with 113 ± 0.43 nm particle size and 0.323 ± 0.01 polydispersity index. Zeta potential was determined as -35.03 ± 1.0 mV. The drug-loading percentages were 6.01 ± 0.23 and 2.01 ± 0.07 for ɛ-viniferine and vincristine, respectively. The cellular uptake efficiency of coumarin-6-loaded nanoparticles was increased up to 87.8% after 4 h. Nanoparticles loaded with high concentrations of both drugs showed a cytotoxic effect on HepG2 cells, having the percentage of cell viability of between 43.23% and 47.37%. Unfortunately, the percentage of apoptotic cells after treated with drugs-loaded nanaoparticles (10.93%) was similar to free forms of drugs (12.1%) that might be due to low ɛ-viniferine release in biological pH at 24 h.

  20. The impact of airport characteristics on airport surface accidents and incidents.

    PubMed

    Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y

    2015-06-01

    Airport surface safety and in particular runway and taxiway safety is acknowledged globally as one of aviation's greatest challenges. To improve this key area of aviation safety, it is necessary to identify and understand the causal and contributing factors on safety occurrences. While the contribution of human factors, operations, and procedures has been researched extensively, the impact of the airport and its associated characteristics itself has received little or no attention. This paper introduces a novel methodology for risk and hazard assessment of airport surface operations, and models the relationships between airport characteristics, and (a) the rate of occurrences, (b) the severity of occurrences, and (c) the causal factors underlying occurrences. The results show for the first time how the characteristics of airports, and in particular its infrastructure and operations, influence the safety of surface operations. Copyright © 2015 Elsevier Ltd. and National Safety Council. Published by Elsevier Ltd. All rights reserved.

  1. Surface elastic modulus of barnacle adhesive and release characteristics from silicone surfaces.

    PubMed

    Sun, Yujie; Guo, Senli; Walker, Gilbert C; Kavanagh, Christopher J; Swain, Geoffrey W

    2004-12-01

    The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E<0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.

  2. [Surface physicochemical and fractal characteristics of sediments in desilting basin from Yellow River diversion reservoir].

    PubMed

    Hu, Kang-Bo; Wang, Yi-Li; Li, Jun-Qing; Gui, Ping; Jiang, Yan-Ling

    2011-07-01

    Surface morphology and pore surface fractal characteristics of the sediment in the desilting basin of Queshan Reservoir were studied. Six sediment samples were collected and particle size, morphology, pore structure and fractal characteristics, surface elements distribution were analyzed as well. The objectives of this study were to investigate the reason for the differences among the pore surface fractal dimensions and fractal scales on the basis of different models, and discuss the effect of surface morphology of these sediment particles on their surface elements distribution. The results showed that these sediment particles with average diameter of 18-83 microm were mainly composed of clay, silt and fine sand. Their complex surface morphology and pore size distribution were reflected by wide range of the BET surface area (8.248-31.60 m2/g), average pore diameter (3.977-7.850 nm) and pore-size distribution (1.870-60.78 nm). Although the pore surface fractal dimensions (D(s)), based on fractal FHH or thermodynamic models, were 2.67-2.89, and their fractal scales generally ranged from several nanometers to tens of nanometers, the differences were still observed in D(s) values calculated from above two models because of inhomogeneity in surface pore size distribution. Therefore, the D(s) based on pore-size distribution were 2.12-2.60, these values close to D(s) calculated from fractal FHH models revealed that pore-size distribution could contribute significantly to D(s) calculation. In addition, the heterogeneous surface adsorption sites of these sediment particles caused by much complex surface morphology had strong influence on the each element distribution on the particle surface.

  3. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces.

    PubMed

    Dohan Ehrenfest, David M; Vazquez, Lydia; Park, Yeong-Joon; Sammartino, Gilberto; Bernard, Jean-Pierre

    2011-10-01

    Dental implants are commonly used in daily practice; however, most surgeons do not really know the characteristics of these biomedical devices they are placing in their patients. The objective of this work is to describe the chemical and morphological characteristics of 14 implant surfaces available on the market and to establish a simple and clear identification (ID) card for all of them, following the classification procedure developed in the Dohan Ehrenfest et al (2010) Codification (DEC) system. Fourteen implant surfaces were characterized: TiUnite (Nobel Biocare), Ospol (Ospol), Kohno HRPS (Sweden & Martina), Osseospeed (AstraTech), Ankylos (Dentsply Friadent), MTX (Zimmer), Promote (Camlog), BTI Interna (Biotechnology Institute), EVL Plus (SERF), Twinkon Ref (Tekka), Ossean (Intra-Lock), NanoTite (Biomet 3I), SLActive (ITI Straumann), Integra-CP/NanoTite (Bicon). Three samples of each implant were analyzed. Superficial chemical composition was analyzed using X-ray photoelectron spectroscopy/electron spectroscopy for chemical analysis, and the 100 nm in-depth profile was established using Auger electron spectroscopy. The microtopography was quantified using light interferometry. The general morphology and nanotopography were evaluated using a field emission-scanning electron microscope. Finally, the characterization code of each surface was established using the DEC system, and the main characteristics of each surface were summarized in a reader-friendly ID card. From a chemical standpoint, of the 14 different surfaces, 10 were based on a commercially pure titanium (grade 2 or 4), 3 on a titanium-aluminum alloy (grade 5 titanium), and one on a calcium phosphate core. Nine surfaces presented different forms of chemical impregnation or discontinuous coating of the titanium core, and 3 surfaces were covered with residual aluminablasting particles. Twelve surfaces presented different degrees of inorganic pollutions, and 2 presented a severe organic pollution

  4. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  5. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation.

    PubMed

    Boori, Mukesh Singh; Ferraro, Ralph R; Choudhary, Komal; Kupriyanov, Alexander

    2016-12-01

    This data article contains data related to the research article entitled "Global land cover classification based on microwave polarization and gradient ratio (MPGR)" [1] and "Microwave polarization and gradient ratio (MPGR) for global land surface phenology" [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E). This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE), digital elevation model (DEM) and Brightness Temperature (BT) information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  6. The implant surface characteristics and peri-implantitis. An evidence-based update.

    PubMed

    Peixoto, C Davila; Almas, K

    2016-03-01

    Peri-implantitis is an inflammatory disease of the peri-implant mucosa with the loss of supporting bone. Because of the absence of an un-inflamed connective tissue zone between the healthy and diseased sites, peri-implant lesions are thought to progress more rapidly than periodontal lesions, suggesting the importance of early diagnosis and intervention if possible. A number of risk factors have been identified that may lead to the initiation and progression of peri-implant mucositis and peri-implantitis, eg., previous periodontal disease, poor plaque control, inability to clean, residual cement, smoking, genetic factors, diabetes, occlusal overload, rheumatoid arthritis, increased time of loading and alcohol consumption. At present there is not much literature available, highlighting the relationship between implant surface characteristics and peri-implant diseases. Implant surface characteristics vary with respect to topography, roughness and clinical composition, including turned, blasted, acid etched, porous sintered, oxidized, plasma sprayed and hydroxyapatite coated surfaces and their combinations. So the aim of this review is to explore the relationship between the characteristics of implant surface, the prevalence and incidence of peri-implantitis. This would help to identify plausible influence of surface characteristics, oral hygiene instructions and maintenance of implants for the long-term uneventful success of implant therapy.

  7. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Jin, Haiyun; Nie, Shichao; Zhang, Peng; Gao, Naikui

    2017-05-01

    In this paper, a superhydrophobic surface is used to increase the flashover voltage when water droplets are present on a silicone rubber surface. The dynamic behavior of a water droplet and the associated flashover characteristics are studied on common and superhydrophobic silicone rubber surfaces under a high DC voltage. On common silicone rubber, the droplet elongates and the flashover voltage decreases with increasing droplet volume and conductivity. In contrast, the droplet slides off the superhydrophobic surface, leading to an increased flashover voltage. This droplet sliding is due to the low adhesion of the superhydrophobic surface and a sufficiently high electrostatic force provided by the DC voltage. Experimental results show that a superhydrophobic surface is effective at inhibiting flashover.

  8. Biomechanical and histomorphometric study of dental implants with different surface characteristics.

    PubMed

    Yeo, In-Sung; Han, Jung-Suk; Yang, Jae-Ho

    2008-11-01

    The aim of this study was to investigate the early bone response to the titanium dental implants with different surface characteristics using the rabbit tibia model. Calcium metaphosphate coated, anodic oxidized, hydroxyapatite particle-blasted, and turned (control) surfaces were compared. Surface topography was evaluated by field emission scanning electron microscope and optical interferometer. Eighteen rabbits received 72 implants in the tibia. Resonance frequency was analyzed every week for 6 weeks. Removal torque values were measured 2 and 6 weeks after placement. The implant-bone interfaces were directly observed by light microscope and bone-to-implant contact ratios were measured 2 and 6 weeks after insertion. All the surface-modified implants showed superior initial bone responses to the control. No significant differences were found among the surface-modified groups. Data suggest that various surface modification methods can provide favorable bone responses for early functioning and healing of dental implants.

  9. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  10. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  11. A novel method of surface modification by electrochemical deoxidation: Effect on surface characteristics and initial bioactivity of zirconia.

    PubMed

    Liu, Juan; Hong, Guang; Wu, Yu-Han; Endo, Kosei; Han, Jian-Min; Kumamoto, Hiroyuki; Wada, Takeshi; Kato, Hidemi; Gao, Ping; Sasaki, Keiichi

    2017-11-01

    The aim of this study was to investigate and compare the surface characteristics and initial bioactivity of ceria-stabilized zirconia/alumina nanocomposite (NANOZR) with those of yttria-stabilized zirconia (3Y-TZP) and pure titanium (CpTi) following the use of three surface modification methods; polishing, sandblasting/acid-etching (SB-E) and electrochemical deoxidation (ECD). Physical properties including surface morphology, chemical composition, X-ray diffraction, surface wettability, surface roughness, and hardness were measured. Osteoblast-like MC3T3-E1 cells were used to examine cell morphology and attachment to the surfaces of the materials. ECD treated NANOZR (NANOZR-E) showed a well-arranged, self-organized microporous surface structure with significantly low contact angles when compared with the other specimens (p < 0.05). NANOZR-E also demonstrated a slight decrease in monoclinic phase content (-4.4 wt %). The morphology and attachment of MC3T3-E1 cells on NANOZR-E were similar to those on polished and SBE-treated CpTi surfaces. Higher cell affinity was observed on NANOZR-E when compared with ECD treated 3Y-TZP. The findings of this study indicate the effectiveness of the novel technique, ECD, in the formation of a microporous surface on NANOZR when compared with both CpTi and 3Y-TZP. Moreover, this method also appears to improve the biological activity of NANOZR during the initial stage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2641-2652, 2017. © 2016 Wiley Periodicals, Inc.

  12. Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments.

    PubMed

    Bertinetti, Luca; Drouet, Christophe; Combes, Christele; Rey, Christian; Tampieri, Anna; Coluccia, Salvatore; Martra, Gianmario

    2009-05-19

    The incorporation of foreign ions, such as Mg2+, exhibiting a biological activity for bone regeneration is presently considered as a promising route for increasing the bioactivity of bone-engineering scaffolds. In this work, the morphology, structure, and surface hydration of biomimetic nanocrystalline apatites were investigated before and after surface exchange with such Mg2+ ions, by combining chemical alterations (ion exchange, H2O-D2O exchanges) and physical examinations (Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM)). HRTEM data suggested that the Mg2+/Ca2+ exchange process did not affect the morphology and surface topology of the apatite nanocrystals significantly, while a new phase, likely a hydrated calcium and/or magnesium phosphate, was formed in small amount for high Mg concentrations. Near-infrared (NIR) and medium-infrared (MIR) spectroscopies indicated that the samples enriched with Mg2+ were found to retain more water at their surface than the Mg-free sample, both at the level of H2O coordinated to cations and adsorbed in the form of multilayers. Additionally, the H-bonding network in defective subsurface layers was also noticeably modified, indicating that the Mg2+/Ca2+ exchange involved was not limited to the surface. This work is intended to widen the present knowledge on Mg-enriched calcium phosphate-based bioactive materials intended for bone repair applications.

  13. Investigation on the adsorption characteristics of anserine on the surface of colloidal silver nanoparticles.

    PubMed

    Thomas, S; Maiti, N; Mukherjee, T; Kapoor, S

    2013-08-01

    The surface-enhanced Raman scattering (SERS) studies of anserine (beta-alanyl-N-methylhistidine) was carried out on colloidal silver nanoparticles to understand its adsorption characteristics. The experimentally observed Raman bands were assigned based on the results of DFT calculations. The studies suggest that the interaction of anserine is primarily through the carboxylate group with the imidazole ring in an upright position with respect to the silver surface. Concentration dependent SERS studies suggest a change in orientation at sub-monolayer concentration.

  14. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers

    PubMed Central

    Fickert, Stefan; Fiedler, Jörg; Brenner, Rolf E

    2004-01-01

    We first identified and isolated cellular subpopulations with characteristics of mesenchymal progenitor cells (MPCs) in osteoarthritic cartilage using fluorescence-activated cell sorting (FACS). Cells from osteoarthritic cartilage were enzymatically isolated and analyzed directly or after culture expansion over several passages by FACS using various combinations of surface markers that have been identified on human MPCs (CD9, CD44, CD54, CD90, CD166). Culture expanded cells combined and the subpopulation derived from initially sorted CD9+, CD90+, CD166+ cells were tested for their osteogenic, adipogenic and chondrogenic potential using established differentiation protocols. The differentiation was analyzed by immunohistochemistry and by RT-PCR for the expression of lineage related marker genes. Using FACS analysis we found that various triple combinations of CD9, CD44, CD54, CD90 and CD166 positive cells within osteoarthritic cartilage account for 2–12% of the total population. After adhesion and cultivation their relative amount was markedly higher, with levels between 24% and 48%. Culture expanded cells combined and the initially sorted CD9/CD90/CD166 triple positive subpopulation had multipotency for chondrogenic, osteogenic and adipogenic differentiation. In conclusion, human osteoarthritic cartilage contains cells with characteristics of MPCs. Their relative enrichment during in vitro cultivation and the ability of cell sorting to obtain more homogeneous populations offer interesting perspectives for future studies on the activation of regenerative processes within osteoarthritic joints. PMID:15380042

  15. Experimental Study on Surface Characteristics of Laser Cladding Layer Regulated by High-Frequency Microforging

    NASA Astrophysics Data System (ADS)

    Fan, Xiang Fang; Zhou, Ju; Qiu, Chang Jun; He, Bin; Ye, Jiang; Yuan, Bo; Pi, Zhengqing

    2011-03-01

    High-frequency microforging technology is used to produce micrometer-scale plastic deformation on the surface of material out of the vibration impact of a forging punch, and the cumulative effect of its various frequencies on micrometer-scale plastic deformation can cause changes of surface microstructure and mechanical properties. This study used (1) a self-made machine to treat NiCrBSi alloy, (2) a mechanical comparator and optical microscopy (OM) to study the geometric characteristics of plastic deformation, (3) OM and scanning electric microscopy (SEM) to observe influence on surface microstructure and cracking behavior of the laser cladding layer under microforging, (4) x-ray diffractometer (XRD) to measure the surface residual stress of laser cladding layer before and after forging, and (5) microhardness tester and wearing experimental machine to study changes of microhardness, friction coefficient, and wear characteristics of laser cladding layer after microforging. The results have shown that high-frequency microforging could produce plastic deformation about 150 μm deep on the surface of NiCrBSi alloy clad by laser. Regular dendrite and eutectic crystallization microstructure, which is a peculiar characteristic of the laser cladding layer, was broken into pieces and formed residual compression residual stress on the surface. Resistance to cracking of laser cladding layer improved greatly, microhardness and wearability increased, and the friction coefficient did not under go a noticeable change.

  16. The Study of Cellular and Molecular Physiological Characteristics of Sperm in Men Living in the Aral Sea Region.

    PubMed

    Kultanov, Berikbay Z; Dosmagambetova, Raushan S; Ivasenko, Svetlana A; Tatina, Yelena S; Kelmyalene, Assel A; Assenova, Lyazzat H

    2016-03-15

    Extreme environmental situation in the Aral crisis has caused a massive chemical pollution of the territory for decades with high doses of pesticides, herbicides. Discharge of industrial waste into the rivers that feed the Aral Sea has lead to the development of various pathological processes in the human body, as well as disruption of reproductive function in young men. To evaluate the performance of molecular cellular changes in the sperm of men under the influence of dust and salt aerosols in Aral Sea region. Clinical and laboratory studies were conducted in men 5 settlements (Aralsk-city, v. Aiteke-Bi, v. Zhalagash, v. Zhusaly, v. Shieli). We have studied male ejaculate obtained after 4-5 days of abstinence, and placed it in a warm tube with a glass stopper. On the investigation proceeded ejaculate within 20-30 minutes after its preparation, during which time he was subjected to liquefaction. Isolation and quantification of ASF, RNA, DNA, and determining the fraction of histones in sperm was performed by the method of Markusheva and Savina. It was found that the value of ASF in the semen of men living in the zone of ecological disaster higher compared with the values of parameters in men living in the area of environmental crisis, and this trend is observed in all age groups. The study of circulating extracellular DNA and RNA in the sperm of men registered their decline with a corresponding increase of acid precursors that can be attributed to the degradation of nucleic acids under the influence of negative factors in the complex area of ecological trouble. Also, according to a study in men residing in the areas of environmental catastrophe at the age of 18-29 years, found an increased content of the H1 histone H2A lower total fraction, H3, H4 - and a sharp increase in histone H2B content - histones. Men living in environmentally disadvantaged areas of Kyzylorda region under the influence of dust and salt aerosols and other toxicants leads to disruption of the

  17. The Study of Cellular and Molecular Physiological Characteristics of Sperm in Men Living in the Aral Sea Region

    PubMed Central

    Kultanov, Berikbay Z.; Dosmagambetova, Raushan S.; Ivasenko, Svetlana A.; Tatina, Yelena S.; Kelmyalene, Assel A.; Assenova, Lyazzat H.

    2016-01-01

    BACKGROUND: Extreme environmental situation in the Aral crisis has caused a massive chemical pollution of the territory for decades with high doses of pesticides, herbicides. Discharge of industrial waste into the rivers that feed the Aral Sea has lead to the development of various pathological processes in the human body, as well as disruption of reproductive function in young men. AIM: To evaluate the performance of molecular cellular changes in the sperm of men under the influence of dust and salt aerosols in Aral Sea region. MATERIAL AND METHODS: Clinical and laboratory studies were conducted in men 5 settlements (Aralsk-city, v. Aiteke-Bi, v. Zhalagash, v. Zhusaly, v. Shieli). We have studied male ejaculate obtained after 4-5 days of abstinence, and placed it in a warm tube with a glass stopper. On the investigation proceeded ejaculate within 20-30 minutes after its preparation, during which time he was subjected to liquefaction. Isolation and quantification of ASF, RNA, DNA, and determining the fraction of histones in sperm was performed by the method of Markusheva and Savina. RESULTS: It was found that the value of ASF in the semen of men living in the zone of ecological disaster higher compared with the values of parameters in men living in the area of environmental crisis, and this trend is observed in all age groups. The study of circulating extracellular DNA and RNA in the sperm of men registered their decline with a corresponding increase of acid precursors that can be attributed to the degradation of nucleic acids under the influence of negative factors in the complex area of ecological trouble. Also, according to a study in men residing in the areas of environmental catastrophe at the age of 18-29 years, found an increased content of the H1 histone H2A lower total fraction, H3, H4 - and a sharp increase in histone H2B content - histones. CONCLUSIONS: Men living in environmentally disadvantaged areas of Kyzylorda region under the influence of dust and

  18. Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1985-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

  19. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    NASA Astrophysics Data System (ADS)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  20. Electron reflection and secondary emission characteristics of sputter-textured pyrolytic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Curren, A. N.; Sovey, J. S.

    1981-01-01

    Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.

  1. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion.

    PubMed

    Kanlaya, Rattiyaporn; Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2013-03-27

    Hyperoxaluria is one of etiologic factors of calcium oxalate kidney stone disease. However, response of renal tubular cells to high-oxalate environment remained largely unknown. We applied a gel-based proteomics approach to characterize changes in cellular proteome of MDCK cells induced by 10mM sodium oxalate. A total of 14 proteins were detected as differentially expressed proteins. The oxalate-induced up-regulation of alpha-enolase in whole cell lysate was confirmed by 2-D Western blot analysis. Interaction network analysis revealed that cellular adaptive response under high-oxalate condition involved stress response, energy production, metabolism and transcriptional regulation. Down-regulation of RhoA, which was predicted to be associated with the identified proteins, was confirmed by immunoblotting. In addition, the up-regulation of alpha-enolase on apical surface of renal tubular epithelial cells was also confirmed by immunoblotting of the isolated apical membranes and immunofluorescence study. Interestingly, blockage of alpha-enolase expressed on the cell surface by antibody neutralization significantly reduced the number of calcium oxalate monohydrate (COM) crystals adhered on the cells. These results strongly suggest that surface alpha-enolase plays an important role as the enhancer of COM crystal binding. The increase of alpha-enolase expressed on the cell surface may aggravate kidney stone formation in patients with hyperoxaluria. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Characteristics of ocean-reflected short radar pulses with application to altimetry and surface roughness determination

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Hayne, G. S.

    1972-01-01

    Current work related to geodetic altimetry is summarized. Special emphasis is placed on the effects of pulse length on both altimetry and sea-state estimation. Some discussion is also given of system tradeoff parameters and sea truth requirements to support scattering studies. The problem of analyzing signal characteristics and altimeter waveforms arising from rough surface backscattering is also considered.

  3. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons

    2004-01-01

    Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...

  4. Spatio-temporal variations in surface characteristics over the North American Monsoon region

    USDA-ARS?s Scientific Manuscript database

    In this paper we summarize the surface characteristics for six locations in western Mexico and southwestern USA (from a subhumid climate in Jalisco, Mexico to the Sonoran Desert climate in Arizona, USA),that lie along a meridional transect within the North American Monsoon (NAM) core region using av...

  5. Dynamics of the physicotechnical characteristics of a metal during impact strengthening of its surface

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.

    2015-12-01

    Based on the laws of conservation of energy and momentum, equations of the evolution of metal characteristics during impact strengthening of its surface have been deduced. The conditions of the optimal mode of treatment are determined and its effective time is estimated. The experimental data agree fairly well with the results of the equation solutions.

  6. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics

    Treesearch

    Richard H. Grant; Gordon M. Heisler; Wei Gao; Matthew Jenks

    2003-01-01

    The spectral reflectance and transmittance over the wavelength range of 250-700nm were evaluated for leaves of 20 deciduous tree species and leaf sheaths of five isogenic wax variants of Sorghum bicolor differing in visible reflectance due to cuticular waxes. Using the sorghum sheath reflectance and cuticle surface characteristics as a model, it was concluded that tree...

  7. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Treesearch

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  8. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    PubMed Central

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. Results: New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Conclusion: Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles. PMID:26843874

  9. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  10. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    PubMed

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  11. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    NASA Astrophysics Data System (ADS)

    Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.

    2013-12-01

    We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  12. [CHARACTERISTICS OF FORMATION, INHIBITION AND DESTRUCTION OF YERSINIA PSEUDOTUBERCULOSIS BIOFILMS FORMING ON ABIOTIC SURFACES].

    PubMed

    Terentieval, N A; Timchenko, N F; Balabanova, L A; Rasskazov, V A

    2015-01-01

    Detection of conditions of Yersinia pseudotuberculosis biofilm formation, their quantitative testing. Y. pseudotuberculosis strains, nutrient media, standard 96-well polystyrene plates, crystal violet dye as well as bacteriologic, spectrophotometric, statistical methods were used. All the studied Y pseudotuberculosis strains formed a well expressed biofilm on abiotic surface during cultivation of bacteria in 200 µl of a plate well at a temperature of 20-22°C for 4-7 days. Bacteria CFU number in biofilm reduced by day 10 of incubation. DNAse I was found to inhibit biofilm formation, and also partially destroyed mature Y. pseudotuberculosis biofilm. The presence of DNA in extra-cellular matrix of biofilm was shown. An ability of Y. pseudotuberculosis to form biofilm on abiotic surface was established. The conditions of biofilm formation were determined. Inhibiting effect of DNAse I on Y. pseudotuberculosis was shown.

  13. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage.

    PubMed

    Schwartz, Z; Lohmann, C H; Oefinger, J; Bonewald, L F; Dean, D D; Boyan, B D

    1999-06-01

    This paper reviews the role of surface roughness in the osteogenic response to implant materials. Cells in the osteoblast lineage respond to roughness in cell-maturation-specific ways, exhibiting surface-dependent morphologies and growth characteristics. MG63 cells, a human osteoblast-like osteosarcoma cell line, respond to increasing surface roughness with decreased proliferation and increased osteoblastic differentiation. Alkaline phosphatase activity and osteocalcin production are increased. Local factor production is also affected; production of both TGF-beta 1 and PGE2 is increased. On rougher surfaces, MG63 cells exhibit enhanced responsiveness to 1,25-(OH)2D3. Prostaglandins mediate the effects of surface roughness, since indomethacin prevents the increased expression of differentiation markers in these cells.

  14. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-01

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (Rs ) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field Hc , small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we have estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q0 performance differences for fine grain niobium. We describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.

  15. Effects of nitrogen plasma treatment on the surface characteristics of olive stone-based activated carbon.

    PubMed

    Soudani, Nouha; Najar-Souissi, Souad; Abderkader-Fernandez, Victor K; Ouederni, Abdelmottalab

    2017-04-01

    Nitrogen plasma treatment (NPT) of activated carbon (AC) at different conditions was carried out to introduce nitrogen-containing groups onto olive stone-activated carbon (OSAC) surfaces. Textural characteristics of raw and irradiated samples were analyzed by N2 and CO2 adsorption. Surface chemical functional groups were analyzed by X-ray photoelectron spectrometry (XPS) and Fourier Transformed Infrared spectroscopy. The results showed that after NPT, the surface textural properties of irradiated OSAC were slightly damaged, and a gradual decrease in surface area and pore volume was observed during the irradiation. XPS revealed that NPT could change the distribution of oxygen functional groups on the OSAC surface and there were more nitrogen atoms incorporated into the aromatic ring. A tentative explanation for the modification process is proposed. Phenol adsorption was enhanced from 110 mg/g for untreated AC to 635 mg/g for 30-min plasma-treated OSAC.

  16. Evaluation of the depth of surface deterioration for concrete structure using dispersion characteristics of surface wave

    NASA Astrophysics Data System (ADS)

    Hsu, Keng-Tsang; Cheng, Chia-Chi; Tao, Hung-Yu; Chiang, Chih-Hung

    2017-02-01

    Surface waves generated by an impact are used to assess depth of deterioration for concrete plate. The proposed method uses one receiver positioned away from the impacting source. The spectrogram of the group velocity obtained from the signal recorded from the receiver is calculated by Short-Time Fourier Transform and the reassignment technique. Experiments were conduct on the concrete plate with top mortar layer to simulate concrete with serious aggregate segregation and bleeding. In the experiment, the responses corresponding to different source-receiver distance were explored. The results were shown by both slowness spectrogram and velocity profile. In the slowness spectrogram, substantial increase of velocity at low frequency domain is found. The velocity profile shows the change of wave speed is at the wave length about 1.2 times the mortar thickness. The results also show the lower velocity corresponding to the weak layer may be identified for source-receiver distance as short as 0.5 m but the wave speed may be underestimated.

  17. Surface properties and adsorption characteristics to methylene blue and iodine of adsorbents from sludge.

    PubMed

    Deng, L Y; Xu, G R; Li, G B

    2010-01-01

    Adsorbent materials created from wastewater sludge have unique surface characteristics and could be effective in adsorption applications. In this research, the sludge-adsorbents were generated by pyrolyzing mixtures of sewage sludge and H(2)SO(4). Scanning electron microscope (SEM), thermal analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) were used to analyze the properties of sludge-adsorbent. XPS results show that the adsorbent surface functional groups with high contents of oxygen-containing groups serve as active sites for the adsorption and affect the surface characteristics; the adsorption mechanism of methylene blue (MB) is mainly Brönsted acid-base reaction between the adsorbent surface and MB; and iodine atoms are bonded to the surface of the adsorbent mainly by dispersive interactions rather than by electrostatic interactions. The results also show that H(2)SO(4) level, pyrolysis temperature and sulfuric acid/sludge weight ratio actually affected the adsorption characteristics. Using the conditions (H(2)SO(4) level of 1-18 M, pyrolysis temperature of 650°C, and weight ratio of 0.8), the adsorption capacities for MB and iodine were 74.7-62.3 mg g(-1) and 169.5-209.3 mg g(-1), respectively.

  18. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Obernosterer, I.; Catala, P.; Lami, R.; Caparros, J.; Ras, J.; Bricaud, A.; Dupuy, C.; van Wambeke, F.; Lebaron, P.

    2008-05-01

    The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7-fold), and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m). The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76%) to those in surface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation) was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in surface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers.

  19. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  20. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  1. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  2. A Cellular Biophysics Textbook

    NASA Astrophysics Data System (ADS)

    Wilder, Alan Joseph

    2011-12-01

    In the past two decades, great advances have been made in understanding of the biophysical mechanisms of the protein machines that carry out the fundamental processes of the cell. It is now known that all major eukaryotic cellular processes require a complicated assemblage of proteins acting via a series of concerted motions. In order to grasp current understanding of cellular mechanisms, the new generation of cell biologists needs to be trained in the general characteristics of these cellular properties and the methods with which to study them. This cellular biophysics textbook, to be used in conjunction with the cellular biophysics course (MCB143) at UC-Davis, provides a great tool in the instruction of the new generation of cellular biologists. It provides a hierarchical view of the cell, from atoms to protein machines and explains in depth the mechanisms of cytoskeletal force generators as an example of these principles.

  3. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste.

    PubMed

    Valenzuela Melendres, M; Camou, J P; Torrentera Olivera, N G; Alvarez Almora, E; González Mendoza, D; Avendaño Reyes, L; González Ríos, H

    2014-05-01

    Response surface methodology was used to study the effect of flaxseed flour (FS) and tomato paste (TP) addition, from 0 to 10% and 0 to 20% respectively, on beef patty quality characteristics. The assessed quality characteristics were color (L, a, and b), pH and texture profile analysis (TPA). Also, sensory analysis was performed for the assessment of color, juiciness, firmness, and general acceptance. FS addition reduced L and a values and decreased weight loss of cooked products (P<0.05). An opposite effect was observed when TP was added (P<0.05). All TPA parameters decreased when percentages of FS and TP were increased in the formulation of beef patties. Furthermore, FS and TP addition adversely affected the sensory characteristics of the cooked product (P<0.05); nevertheless, all sensory characteristics evaluated had an acceptable score (>5.6). Thus FS and TP are ingredients that can be used in beef patty preparation.

  4. Influence of skin surface roughness degree on energy characteristics of light scattered by a biological tissue

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2017-05-01

    We present the results of modelling of photometric characteristics of light in soft tissues illuminated by a parallel beam along the normal to the surface, obtained with allowance for the skin roughness parameters and the angular structure of radiation approaching the surface from within the tissue. The depth structure of the fluence rate and the spectra of the diffuse reflection of light by the tissue in the interval of wavelengths 300 - 1000 nm are considered. We discuss the influence of the tilt angle variance of rough surface microelements and light refraction on the studied characteristics. It is shown that these factors lead to the reduction of the radiation flux only in the near-surface tissue layer and practically do not affect the depth of light penetration into the tissue. On the other hand, the degree of the surface roughness and the conditions of its illumination from within the tissue essentially affect the coefficient of diffuse reflection of light and lead to its considerable growth compared to the cases of a smooth interface and completely diffuse illumination, often considered to simplify the theoretical problem solution. The role of the roughness of skin surface is assessed in application to the solution of different direct and inverse problems of biomedical optics.

  5. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    PubMed

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.

  6. Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response

    PubMed Central

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.

    2014-01-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666

  7. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    NASA Astrophysics Data System (ADS)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  8. Surface accuracy and radiation pattern characteristics of mesh deployable refector antennas

    NASA Astrophysics Data System (ADS)

    Ueno, Miyoshi; Ebisui, Takashi; Okamato, Teruki; Orikasa, Teruaki; Sugimoto, Toshio; Iso, Akio

    To facilitate the growth of mobile satellite communications, both an increase in the Equivalent Isotropically Radiated Power (EIRP) of satellites and improved frequency reuse are required to achiveve compact size, low cost terminal usage, and high channel capacity. High gain and low sidelobe antenna technology are very important for high EIRP and frequency reuse, respectively. These requirements are expected to be met by using a large deployable mesh reflector antenna, which is the key technology for future multibeam moble communications systems. In this paper, surface accruracy and related electrical characteristics are studied using a TETRUS-(Tetra Trigonal Prism Truss) type deployable mesh reflector antenna. Surface accuracy and related electrical characteristics of reflector antennas becaue any distortion of the ideal paraboloidal configuration causes antenna patterns to deteriorate, thereby reducing reflector aperture efficiency and increasing sidelobe and grating lobe levels. The sidelobe and grating lobe characteristics are especially important in frequency reuse. First, we show the problem with the radiation pattern characteristics of TETUS antenna. We then propose a new antenna configuration called the 'HYBRID TETRUS' that improves these characteristics. The mechanical performances of two partial deployable models are also described. Mechanical testing results reveal agreement between the calculated and measured values and high rigidities.

  9. Numerical calculation and characteristic analysis of multiple-beam laser reflection on random and rough sea surface

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2015-10-01

    Laser reflection characteristics from the random and rough sea surface are significant for laser detection on the sea surface, and most investigations of which used single-beam laser. However, the single-beam laser spot covers a small area on the sea surface, so that the detection result is influenced seriously by fluctuant sea surface. The application of multiple-beam laser would help to increase the efficiency of laser detection on the sea surface. In this paper, the multiple beams are generated by a single Gaussian beam with the beam splitter. Therefore, all the beams are Gaussian beams and have the same divergence angle with different incident angles and distances. This paper investigates the multiple-beam laser characteristics from the random rough sea surface with geometrical optics method. At first, the fractal method is used to simulate random and rough sea surface. Based on the fractal rough sea surface, the reflection characteristics of each laser beam are calculated with Gaussian beam reflection model on two-dimensional random and rough sea surface, which is derived with geometrical optics method. And then, synthesizing all of the single beam laser reflection characteristics, the multiple-beam laser characteristics from the random rough sea surface can be obtained. With this method, laser reflection characteristics from sea surface of different laser beams are numerical calculated and the comparative analysis of the results is given. Finally, the discussion of some parameters have affections on multiple-beam laser characteristics is also given.

  10. A study of scattering characteristics for micro-scale rough surfaces

    NASA Astrophysics Data System (ADS)

    Won, Yonghee

    Defining the scatter characteristics of surfaces plays an important role in various technology industries such as the semiconductor, automobile, and military industries. Scattering can be used to inspect products for problems created during the manufacturing process and to generate the specifications for engineers. In particular, scattering measurement systems and models have been developed to define the surface properties of a wide variety of materials used in manufacturing. However, most previous research has been focused on very smooth surfaces as a nano-scale roughness. The research in this paper uses the Bidirectional Reflectance Distribution Function (BRDF) and focuses on defining the scattering properties of micro-scale rough and textured surfaces for three different incident angles. Also, the parameters of ABg and Harvey-Shack models are obtained for input into optical design software.

  11. Influence of the cooling liquid on surface quality characteristics in milling

    NASA Astrophysics Data System (ADS)

    Tampu, N. C.; Brabie, G.; Chirita, B. A.; Herghelegiu, E.; Radu, M. C.

    2015-11-01

    Cooling system and cooling liquid characteristics are among the main factors influencing surface quality and tool wear. The aim of this study is to analyse the effect of the cooling liquid, used in different concentrations and at different temperatures, on the quality of the surface layer processed by milling. In order to make this analysis a Minimum Quantity Lubrication (MQL) cooling device is used. Three different volumetric ratios were used to modify the concentration of the cooling fluid (25% water to 75% emulsion, 50% water to 50% emulsion, 75% water to 25% emulsion) and three different temperatures. The studies revealed that surface roughness can be correlated with the variation of the cooling liquid temperature while surface flatness can be correlated to both, cooling liquid temperature and concentration.

  12. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    PubMed Central

    Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek

    2013-01-01

    Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416

  13. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro.

    PubMed

    Hauser-Gerspach, Irmgard; Mauth, Corinna; Waltimo, Tuomas; Meyer, Jürg; Stübinger, Stefan

    2014-07-01

    This in vitro study examined (a) the anti-bacterial efficacy of a pulsed erbium-doped yttrium aluminum garnet (Er:YAG) laser applied to Streptococcus sanguinis or Porphyromonas gingivalis adhered to either polished or microstructured titanium implant surfaces, (b) the response of osteoblast-like cells and (c) adhesion of oral bacteria to titanium surfaces after laser irradiation. Thereto, (a) bacteria adhered to titanium disks were irradiated with a pulsed Er:YAG laser (λ = 2,940 nm) at two different power settings: a lower mode (12.74 J/cm(2) calculated energy density) and a higher mode (63.69 J/cm(2)). (b) After laser irradiation with both settings of sterile titanium, disks were seeded with 10(4) MG-63 cells/cm(2). Adhesion and proliferation were determined after 1, 4, and 24 h by fluorescence microscopy and scanning electron microscopy. (c) Bacterial adhesion was also studied on irradiated (test) and non-irradiated (control) surfaces. Adhered P. gingivalis were effectively killed, even at the lower laser setting, independent of the material's surface. S. sanguinis cells adhered were effectively killed only at the higher setting of 63.69 J/cm(2). Laser irradiation of titanium surfaces had no significant effects on (b) adhesion or proliferation of osteoblast-like MG-63 cells or (c) adhesion of both oral bacterial species in comparison to untreated surfaces. An effective decontamination of polished and rough titanium implant surfaces with a Er:YAG laser could only be achieved with a fluence of 63.69 J/cm(2). Even though this setting may lead to certain surface alterations, no significant adverse effect on subsequent colonization and proliferation of MG-63 cells or increased bacterial adhesion was found in comparison to untreated control surfaces.

  14. Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1949-01-01

    Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.

  15. Characteristics of rainfall associated with land surface conditions in north-central Namibia

    NASA Astrophysics Data System (ADS)

    Kanamori, H.; Hiyama, T.; Kambatuku, J. R.; Mizuochi, H.; Fujinami, H.; Iijima, M.

    2016-12-01

    Large inter-annual variability in rainfall results in crop losses on food staples in semi-arid north central Namibia. The region is located in the southern part of the Cuvelai System Seasonal Wetlands (CSSWs), where seasonal rivers and wetlands appear in the rainy season. The rainy season in the region is from late November to early April, although there is a large intra-seasonal variation. Thus it is important to investigate temporal variations and the characteristics in rainfall from the perspective of water-food security in the region. This study mainly examined the impact of changing land-surface condition (from dry ground surface to the water-covered surface in seasonal transition) on the rainfall characteristics in the central part of the CSSWs. The rainfall data used in this study was 10-day TRMM PR data during 1998-2014. The surface water coverage fraction was also estimated by the use of satellite remote sensing such as MODIS and AMSR-E series during 2002-2014. The rainfall amount increased in the early to middle of the rainy season. On the contrary, the maximum surface water coverage fraction appeared in March. In the early rainy season and in the late rainy season, convective rainfall mainly contributed to the total rainfall. On the other hands, stratiform rainfall was dominated in the middle of the rainy season. The vertical profile of rainfall showed a vertical maximum around 4,000 m above the ground surface level (a.g.l.) throughout the rainy season. The rainfall amount in the higher atmosphere (around 8,000 m a.g.l.) showed another peak in the early rainy season compared to the other periods of the rainy season. Thus the convection system might be different between the early and late rainy seasons, influenced by the surface wetness. Additionally, atmospheric water budget analysis was also applied in order to investigate the contribution of evapotranspiration from the ground surface in the region. The evapotranspiration increased in the middle and the

  16. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability

    PubMed Central

    1979-01-01

    Fibronectin (FN; also called large external transformation-sensitive [LETS] protein or cell-surface protein [CSP]) is a large cell-surface glycoprotein that is frequently observed to be either absent or greatly reduced on the surfaces of malignant cells grown in vitro. Because FN may be a useful molecular marker of cellular malignancy, we have carried out an extensive screening to test the specific association among the degree of expression of FN, anchorage-independent growth, and tumorigenicity in the athymic nude mouse. A variety of diploid cell strains and established cell lines were tested for the expression of surface FN by indirect immunofluorescence using rabbit antisera against human cold insoluble globulin, rodent plasma FN, or chicken cell- surface FN. Concomitantly, the cells were assayed for tumor formation in nude mice and for the ability to form colonies in methylcellulose. Tumorigenic cells often showed very low surface fluorescence, confirming earlier reports. However, many highly tumorigenic fibroblast lines from several species stained strongly with all three antisera. In contrast, the anchorage-independent phenotype was nearly always associated with tumorigenicity in approximately 35 cell lines examined in this study. In another series of experiments, FN-positive but anchorage-independent cells were grown as tumors in nude mice and then reintroduced into culture. In five of the six tumor-derived cell lines, cell-surface FN was not significantly reduced; one such cell line showed very little surface FN. Our data thus indicate that the loss of cell-surface FN is not a necessary step in the process of malignant transformation and that the growth of FN-positive cells as tumors does not require a prior selection in vivo for FN-negative subpopulations. PMID:383723

  17. Investigation of dynamic characteristics of a rotor system with surface coatings

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cao, Dengqing; Wang, Deyou

    2017-02-01

    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  18. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    NASA Astrophysics Data System (ADS)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  19. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  20. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  1. Surface characteristic changes of dental ceramics after cyclic immersion in acidic agents and titratable acidity.

    PubMed

    Junpoom, Peerapong; Kukiattrakoon, Boonlert; Hengtrakool, Chanothai

    2010-12-01

    The potential erosive effect of acidic food, sour fruits and drinks on all-ceramic restorations used in dentistry has not been clearly documented. Surface characteristic changes have been evaluated and compared for disc-shaped specimens (diameter 12.0 mm and thickness 2.0 mm) of fluorapatite-leucite and fluorapatite ceramics using various storage agents (deionized water, citrate buffer solution, pineapple juice, green mango juice, cola soft drink and 4% acetic acid). Immersion in pineapple juice, green mango juice, cola soft drink and 4% acetic acid for 16 hours produce significant increases in surface roughness for both types of ceramics investigated.

  2. Kinetic characteristics of ions in the gas discharge and on the target surface

    NASA Astrophysics Data System (ADS)

    Maiorov, S. A.; Kodanova, S. K.; Golyatina, R. I.; Ramazanov, T. S.

    2017-06-01

    The drift velocities of ions in a constant homogeneous electric field are calculated using Monte Carlo simulations for noble-gas and some metal vapors. The ion mobility is analyzed as a function of the field strength and gas temperature. A general approximate formula for the dependence of the drift velocity on the reduced field and gas temperature is derived. The results of calculations of kinetic characteristics of ions crossing the surface of the target are presented. The authors focus on the angular and energy distributions of ions and differences between the distributions of the average volume and the average flow on the surface.

  3. The characteristic function method and exact solutions of nonlinear sheared flows with free surface under gravity

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Helal, Medhat M.

    2006-05-01

    Method of characteristic function has been applied for solving a system of first order nonlinear sheared flows with a free surface. The application of a one-parameter group of infinitesimal transformations reduces the number of independent variables by one, and consequently, by applying this method twice, the system of partial differential equations, in three independent variables, with the boundary conditions reduces to a system of ordinary differential equations with the appropriate corresponding conditions. The obtained differential equations are solved analytically and the forms of the free surface, the horizontal component and vertical component of the velocity are obtained in closed form for different cases. The results are illustrated graphically for different parameters.

  4. Propagation and attenuation characteristics of azimuthal symmetric surface waves in un-magnetized plasma column

    NASA Astrophysics Data System (ADS)

    Li, Wenqiu; Wang, Gang; Xiang, Dong; Su, Xiaobao

    2016-11-01

    Phase and attenuation properties of azimuthal symmetric surface waves are investigated analytically in an un-magnetized cylindrical plasma column based on the transcendental dispersion relation. A novel method of calculating the wave power deposition in terms of complex electric conductivity is proposed. Electron density distribution is obtained theoretically through charged particle balance theory. It is shown that the effect of the electron temperature on the dispersion curve can be neglected when kzα < 1. Both the phase/attenuation characteristics and wave energy deposition properties of the azimuthal symmetric surface wave have an evident dependence on the electron density and the electron collision frequency.

  5. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    PubMed Central

    2011-01-01

    Polymethylmethacrylate (PMMA) microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC) film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization) through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices. PMID:21711936

  6. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.

    PubMed

    Pawlak, Zenon; Petelska, Aneta D; Urbaniak, Wieslaw; Yusuf, Kehinde Q; Oloyede, Adekunle

    2013-04-01

    The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid-base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.

  7. [Features of Immunophenotypes and Characteristics of Molecular Biology and Cellular Genetics of AML Patients with CD4 and CD7 Expression].

    PubMed

    Liu, Tie-Qiang; Huang, Shan; Yao, Bo; Liu, Zhi-Qing; Yu, Chang-Lin; Qiao, Jian-Hui; Sun, Qi-Yun; Hu, Kai-Xun; Huang, Ya-Jing; Zhang, Rui; Li, Yu-Fang; Bai, Juan; Sun, Yu-Jing; Li, Bing-Xia; Wang, Dong-Mei; Wang, Yi; Guo, Mei

    2016-12-01

    To explore the features of immunophenotypes and the characteristics of molecular biology and cellular genetics of AML patients with CD7 and CD4 expression. The immunophenotypical markers of AML cells were detected by multiple parameter flow cytometry; the expression of WT1, MDK, ETO, PML-RaRa and BCR-ABL were detected by RT-PCR; and cellular features were analyzed by R-band in 304 patients. The patients were divided into three groups according to their immunophenotypes: AML with CD7 expression (CD7 group), AML with CD4 expression(CD4 group) and AML without CD7 and CD4 expression (common AML group). The expression rate and level of HLA-DR in CD7 group were higher than those in the common AML group, and the expression rate of CD33 and CD34 was higher than that in the other two groups. The expression rate and level of CD15, CD64 in the CD4 group were higher than those in the other 2 groups, and the expression rate and level of CD33 were higher than those in the common AML group. WT1 expression in the CD7 group was lower than that in the common AML group. PML-RaRa was not detected in the CD7 group. AML with co-expression of CD4 or CD7 showed more normal karyotype. (15;17) was not found in AML with CD7 expression. AML cells with CD7 expression originate from precursor cells and are blocked in the early phase of hematological development; AML cells with CD4 expression originate from more mature stage of hematological devevelopment and with CD33, CD64 and CD15 high expression; AML cells with CD7 and CD4 expression are characterized by no-specific change of cellular genetics. According to the expression level and intesity of CD4 and CD7, and together with other specific lineage markers, the MRD in AML patients can be quantitatively detected.

  8. Ru(ii)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents

    NASA Astrophysics Data System (ADS)

    Martínez-Calvo, Miguel; Orange, Kim N.; Elmes, Robert B. P.; La Cour Poulsen, Bjørn; Williams, D. Clive; Gunnlaugsson, Thorfinnur

    2015-12-01

    The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05598a

  9. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    PubMed

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  10. Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity

    PubMed Central

    Gedye, Craig A.; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J.; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E.

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers. PMID:25170899

  11. The Porpoising Characteristics of a Planing Surface Representing the Forebody of a Flying-Boat Hull

    NASA Technical Reports Server (NTRS)

    Benson, James M.

    1942-01-01

    Porpoising characteristics were observed on V-body fitted with tail surfaces for different combinations of load, speed, moment of inertia, location of pivot, elevator setting, and tail area. A critical trim was found which was unaltered by elevator setting or tail area. Critical trim was lowered by moving pivot either forward or down or increasing radius or gyration. Increase in mass and moment of inertia increased amplitude of oscillations. Complete results are tabulated and shown graphically.

  12. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  13. Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx).

    PubMed

    Qu, Xiang-Hua; Wu, Qiong; Liang, Juan; Qu, Xue; Wang, Shen-Guo; Chen, Guo-Qiang

    2005-12-01

    Random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate, short as PHBHHx, was surface modified by ammonia plasma treatment and/or fibronectin coating, respectively. The improved results were demonstrated by better growth of human umbilical vein endothelial cells (HUVECs) and rabbit aorta smooth muscle cells (SMCs) on the surface of ammonia plasma-treated PHBHHx coated with fibronectin (PFn-PHBHHx), compared with the fibronectin-coated (Fn-PHBHHx) or uncoated PHBHHx, respectively, although XPS analysis and ELISA demonstrated higher fibronectin adsorption on Fn-PHBHHx than on PFn-PHBHHx. Confocal microscopy observation showed that the specific co-localization of fibronectin with F-actin was impaired on PFn-PHBHHx, while it was almost lost on Fn-PHBHHx compared with pristine PHBHHx or plasma-treated PHBHHx (P-PHBHHx). These were attributed to the generation of new nitrogen- and oxygen-containing groups on the PHBHHx surface by the ammonia plasma treatment, which led to increased polar components that enhanced polymer surface energy and hydrophilic properties on P-PHBHHx. The most prominent effect of PFn-PHBHHx was its stimulation of HUVECs proliferation. HUVECs on PFn-PHBHHx formed a confluent monolayer after 3 days of incubation, while SMCs were unable to form a sub-confluent layer. The above evidences revealed that PFn-PHBHHx would benefit endotheliazation rather than SMCs proliferation. We therefore believed that PFn-PHBHHx would be a promising material as a luminal surface of vascular grafts.

  14. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  15. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles.

    PubMed

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-17

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  16. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    PubMed Central

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-01-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648

  17. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  18. Magnetic silica nanoparticle cellular uptake and cytotoxicity regulated by electrostatic polyelectrolytes-DNA loading at their surface.

    PubMed

    Davila-Ibanez, Ana B; Salgueirino, Veronica; Martinez-Zorzano, Vicenta; Mariño-Fernández, Rosalia; García-Lorenzo, Andres; Maceira-Campos, Melodie; Muñoz-Ubeda, Monica; Junquera, Elena; Aicart, Emilio; Rivas, Jose; Rodriguez-Berrocal, F Javier; Legido, Jose L

    2012-01-24

    Magnetic silica nanoparticles show great promise for drug delivery. The major advantages correspond to their magnetic nature and ease of biofunctionalization, which favors their ability to interact with cells and tissues. We have prepared magnetic silica nanoparticles with DNA fragments attached on their previously polyelectrolyte-primed surface. The remarkable feature of these materials is the compromise between the positive charges of the polyelectrolytes and the negative charges of the DNA. This dual-agent formulation dramatically changes the overall cytotoxicity and chemical degradation of the nanoparticles, revealing the key role that surface functionalization plays in regulating the mechanisms involved. © 2011 American Chemical Society

  19. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Obernosterer, I.; Catala, P.; Lami, R.; Caparros, J.; Ras, J.; Bricaud, A.; Dupuy, C.; van Wambeke, F.; Lebaron, P.

    2007-08-01

    The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7), and POC:PON ratios were consistently higher in the surface microlayer as compared to subsurface waters (5 m). The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76%) to those in subsurface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation) was consistently lower in the surface microlayer than in subsurface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in subsurface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. However, even short time periods in the surface microlayer result in differences in bacterial groups accounting for leucine incorporation, probably as a response to the differences in the physical and chemical nature of the two layers.

  20. [Comparison on surface ultrastructure characteristic and drought resistance of different Trichosanthes kirilowii strains].

    PubMed

    Zhou, Jie; Zou, Lin; Bian, Li-Hua; Fang, Lei; Liu, Wei; Zhang, Yong-Qing; Li, Jia; Zhang, Fang; Wang, Xiao

    2014-05-01

    Trichosanthes kirilowii has been widely cultivated as its medicinal use, health care and food value. Drought resistance of seedlings is an important feature in breeding. Seeds of two T. kirilowii strains were used to research the difference of surface ultrastructure characteristic and drought resistance. Scanning electron microscope was used to identify the surface ultrastructure characteristic of seeds and PEG was used to simulate drought stress. The seeds germination rate, MDA content, chlorophyll content and the antioxidant enzymes activity were measured under the drought stress. The results showed that the seed surface colour of KXY-001 was lighter than that of KXY-005. The testa cobwebbing of KXY-001 was more intensive than that of KXY-005. The germination rate of KXY-001 was higher than that of KXY-005 under drought stress. The MDA content was increased and the chlorophyll content was decreased with the increasing of drought degree. The SOD activity of KXY-001 was higher than that of KXY-005, while the activity of POD and CAT was also increased firstly and decreased later. Surface reticulate of seeds and hilar traits can be used as identification points to identify the investigated strains. SOD and POD are activated to resist drought in T. kirilowii seedlings and the drought resistance of KXY-001 is superior than that of KXY-005.

  1. Influence of lipid coatings on surface wettability characteristics of silicone hydrogels.

    PubMed

    Bhamla, M Saad; Nash, Walter L; Elliott, Stacey; Fuller, Gerald G

    2015-04-07

    Insoluble lipids serve vital functions in our bodies and interact with biomedical devices, e.g., the tear film on a contact lens. Over a period of time, these naturally occurring lipids form interfacial coatings that modify the wettability characteristics of these foreign synthetic surfaces. In this study, we examine the deposition and consequences of tear film lipids on silicone hydrogel (SiHy) contact lenses. We use bovine meibum, which is a complex mixture of waxy esters, cholesterol esters, and lipids that is secreted from the meibomian glands located on the upper and lower eyelids of mammals. For comparison, we study two commercially available model materials: dipalmitoylphosphatidylcholine (DPPC) and cholesterol. Upon deposition, we find that DPPC and meibum remain closer to the SiHy surface than cholesterol, which diffuses further into the porous SiHy matrix. In addition, we also monitor the fate of unstable thin liquid films that consequently rupture and dewet on these lipid-decorated surfaces. This dewetting provides valuable qualitative and quantitative information about the wetting characteristics of these SiHy substrates. We observe that decorating the SiHy surface with simple model lipids such as DPPC and cholesterol increases the hydrophilicity, which consequently inhibits dewetting, whereas meibum behaves conversely.

  2. Effect of radiation light characteristics on surface hardness of paint-on resin for shade modification.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji

    2005-12-01

    The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.

  3. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus.

    PubMed

    Xiang, Du; Han, Cheng; Wu, Jing; Zhong, Shu; Liu, Yiyang; Lin, Jiadan; Zhang, Xue-Ao; Ping Hu, Wen; Özyilmaz, Barbaros; Neto, A H Castro; Wee, Andrew Thye Shen; Chen, Wei

    2015-03-12

    Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm(2) V(-1) s(-1) after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

  4. Characteristics of surface solar radiation in Sino-Singapore Eco-city

    NASA Astrophysics Data System (ADS)

    Hou, M.; Huang, H.; Shen, Y. F.; Yao, W.; Wang, G. S.; Bu, Q. J.; Shan, X. L.; Chang, C. H.

    2017-01-01

    Using solar observation and meteorological data of the Sino-Singapore Tianjin Eco-city from August 14th 2014 to August 12th 2015, characteristics of solar radiation of the eco-city and characteristics of solar radiation on a tilted surface under different weather conditions were analyzed and assessed. And the accuracy and error sources of isotropic and anisotropic calculation model for solar radiation on a tilted surface were studied. The results show that observed radiation on a horizontal and tilted surface is quite different at monthly, seasonal and annual time scales, so the estimated photovoltaic power generation based on the solar radiation on a horizontal surface is not accurate. Diurnal cycle of solar radiation is affected by different weather conditions and the power stations need to adjust generation strategies according to weather conditions. Accuracy of the two kinds of tilted radiation calculation models is similar and the overall calculation effect is reasonable. The uncertainty of the direct portion segment calculation function is the main cause of calculated errors.

  5. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids

    NASA Astrophysics Data System (ADS)

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-01

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as sbnd OH, sbnd COOH and sbnd Cdbnd O on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp2 domains of RGN increases as treated by tartaric acid < malic acid < oxalic acid whereas the steric hindrance (SH) decreases and the ionization constant (IC) differs among these three acids. Furthermore, the specific capacitances (Cs) of GO have been greatly promoted from 2.4 F g-1 to 100.8, 112.4, and 147 F g-1 after treated with tartaric, malic and oxalic acids, respectively. This finding agrees well with the spectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN.

  6. Sensitivity of coastal meteorology and air quality to urban surface characteristics

    SciTech Connect

    Sailor, D.J.

    1994-12-31

    Surface characteristics play an important role in shaping the local meteorological conditions in urban areas, and subsequently affect the generation and transport of pollutants. A basic understanding of this relationship in urban climates has led researchers to explore surface modification strategies for cooling cities, saving energy, and reducing pollution. These strategies include planting of urban vegetation and increasing urban albedo, both of which represent a significant modification to the urban surface. The air temperature reductions resulting from enhanced evapotranspiration (from increasing vegetation), and reduced solar gain (from increasing albedo) have positive energy use and air quality implications. Research has shown that decreasing air temperature by 1{degrees}C in the Los Angeles Basin could save consumers $50,000 per hour in avoided energy use and reduce peak ozone levels by 5 to 10 parts per billion. Driven by these figures, this study is part of a larger research effort focusing on air quality in the Los Angeles Basin. Prior to conducting full three-dimensional meteorological simulations and the corresponding photochemical smog simulations, two-dimensional simulations were designed to isolate each surface characteristic and examine its role in a developing mesoscale coastal flow. The air temperature and mixing height impacts, having the most air quality significance, were then investigated through a preliminary photochemical sensitivity study.

  7. Influence of Shot Peening on Surface Characteristics of High-Speed Steels

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori; Fukaura, Kenzo

    High-speed steels are generally used for the cutting of other hard materials. These are hard materials, and can be used at high temperatures. Therefore, some of them are used for warm metal forming such as forging. However, in the tools used in hot working, an excellent hot hardness and long-life fatigue are strongly required. In the present study, the influence of shot peening on the surface characteristics of high-speed steels was investigated. Shot peening imparts compressive residual stresses on the metal surface, thus improving the fatigue life of the machine parts. In the experiment, the shot peening treatment was performed using an air-type shot peening machine. The shots made of cemented carbide were used. The workpieces were two types, W-type and Mo-type alloys. Surface roughness, compressive residual stress, and hardness of the peened workpieces were measured. It was found that shot peening using the hard shot media was effective in improving the surface characteristics of high-speed steels.

  8. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Xiang, Du; Han, Cheng; Wu, Jing; Zhong, Shu; Liu, Yiyang; Lin, Jiadan; Zhang, Xue-Ao; Ping Hu, Wen; Özyilmaz, Barbaros; Neto, A. H. Castro; Wee, Andrew Thye Shen; Chen, Wei

    2015-03-01

    Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm2 V-1 s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

  9. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids.

    PubMed

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-24

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as OH, COOH and CO on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp(2) domains of RGN increases as treated by tartaric acidsurface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications

    NASA Astrophysics Data System (ADS)

    Chen, Jian-nan; Zhang, Zhen; Ouyang, Xiao-long; Jiang, Pei-xue

    2016-03-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  11. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.

    PubMed

    Chen, Jian-Nan; Zhang, Zhen; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-12-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  12. [Distribution Characteristics of Fluoroquinolones Antibiotics in Surface Water and Groundwater from Typical Areas in A City].

    PubMed

    Cui, Ya-feng; He, Jiang-tao; Su, Si-hui; Yang, Lei; Qiao, Xiao-cui

    2015-11-01

    In order to investigate the characteristics of 5 typical kinds of fluoroquinolones (FQs) pollution in waters from a city, surface water and groundwater samples from main drainage rivers and typical areas were collected, respectively. The conventional test and FQs concentrations analysis of the water samples were conducted. The results showed the concentration and composition of FQs in groundwater differed substantially from those in surface water. The average concentration of FQs in surface water was 789.1 ng x L(-1) with the main components of ofloxacin (OFL) and lomefloxacin (LOM). This value was higher than the average concentration of FQs in groundwater: 342.7 ng x L(-1) with the main components of norfloxacin (NOR) and lomefloxacin (LOM). The enrofloxacin (ENR) exhibited relatively lower levels in both surface water and groundwater as compared to others. The highest FQs concentrations in surface water were found in trenches, followed by tributaries and the main stream. For groundwater, FQs concentrations were relatively higher in the sewage riverside. A decreasing trend of FQs concentration was monitored with the increasing distance of sampling points to the drainage rivers and all components mentioned above showed similar changing trends. The results of this study preliminarily indicated that FQs in groundwater along the riverside probably came from the surface water.

  13. Influence of ground surface characteristics on the mean radiant temperature in urban areas

    NASA Astrophysics Data System (ADS)

    Lindberg, Fredrik; Onomura, Shiho; Grimmond, C. S. B.

    2016-09-01

    The effect of variations in land cover on mean radiant temperature ( T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of ground surface materials on T mrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction in T mrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused T mrt to be underestimated. The implications of using high temporal resolution (e.g. 15 minutes) meteorological forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.

  14. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites.

    PubMed

    Ikeda, Masaomi; Matin, Khairul; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2007-11-01

    The purpose of this study was to evaluate the adherence of biofilms to the surfaces of two indirect resin composites, Estenia C&B and Gradia. Slabs were prepared from the materials, and then either ground with 800-grit silicon carbide paper or polished with diamond pastes up to 1 microm. Artificial biofilms of Streptococcus mutans were grown on the composite slabs in an artificial mouth system for 20 hours. Thereafter, the amounts of retained biofilm on the surfaces were measured after sonication. Surface characteristics of the resins--such as surface roughness, amount of residual monomers, and distribution of filler particles--were examined. Two-way ANOVA revealed that the amount of retained biofilm varied (p<0.05) according to the composition and surface roughness of the material. In particular, biofilm adherence was lowest on Estenia C&B slabs when polished with diamond pastes up to 1 microm. It was thus concluded that the surface roughness and composition of a resin composite influenced biofilm adherence.

  15. [Residue characteristics and distributions of perfluorinated compounds in surface seawater along Shenzhen coastline].

    PubMed

    Chen, Qing-Wu; Zhang, Hong; Chai, Zhi-Fang; Shen, Jin-Can; Yang, Bo

    2012-06-01

    In order to explore the residue characteristics and distributions of 15 perfluorinated compounds (PFCs) in 18 surface seawater samples along Shenzhen coastline, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) combined with solid phase extraction enrichment was applied in this research. The results indicated that residue level of PFCs in coastal surface seawater samples was significantly affected by human activities. Sigma PFCs residue levels in surface seawater from Shenzhen west coast, which locates below the estuary of Pearl River and Donghao River, are much higher than those from the east coast, which has low development and sparse population (P<0.05). Under natural conditions, sigma PFCs residue levels in coastal surface seawater samples from Shenzhen Bays are higher than those out of bays. The major residue species in surface seawater samples along Shenzhen coast were medium- and short-chain PFCs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanoic acid and perfluoropentanoic acid. Their similar environmental behavior (P<0.05, P<0.01) is likely associated with the production process of PFCs-related products. Furthermore, cluster analysis results show that PFOS (R2 = 0.4092) level can be used as a representative parameter for evaluating PFCs contamination status in surface seawater along Shenzhen coast.

  16. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]?

    PubMed

    Kumar, Nitish; Pandey, Subedar; Bhattacharya, Amita; Ahuja, Paramvir Singh

    2004-09-01

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 and Kangra jat showed higher rate (75%) of Agrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves of A. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower q (larger surface area covered by water droplet), higher phenol and wax content were more suitable for Agrobacterium infection. Caffeine fraction of tea promoted Agrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited both Agrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing the Agrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable for Agrobacterium infection the first step in Agrobacterium-mediated genetic transformation.

  17. Virtual Surface Characteristics of a Tactile Display Using Magneto-Rheological Fluids

    PubMed Central

    Lee, Chul-Hee; Jang, Min-Gyu

    2011-01-01

    Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger’s skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger’s touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces. PMID:22163769

  18. [Characteristics and numerical simulation of surface albedo in temperate desert steppe in Inner Mongolia].

    PubMed

    Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan

    2009-12-01

    Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.

  19. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  20. Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.; Clark, C.; Rabin, R.; Brown, J.

    1995-01-01

    The effect of surface characteristics on the daytime change in the potential for development of deep convection resulting from surface flux of heat and moisture is evaluated by conceptual, scaling, and numerical modeling approaches. It is shown that deep convection depends significantly on the Bowen ratio; for smaller Bowen ratio, the thermodynamic potential for deep convection increases. The elevation and the intensity of the capping stable layer have an opposing impact on deep convection: increasing moisture accumulation through evapotranspiration was supportive but was counteracted by the enhancement of dry entrainment. Based on an approximnate treatment of the effect of cloudiness on solar irradiance, it was found that development of fair weather cumulus has a secondary effect on deep convection potential. Observational and operational aspects of the influence of surface conditions on evapotranspiration and development of deep convection are presented.

  1. Experimental study for the influence of surface characteristics on the fringe patterns

    NASA Astrophysics Data System (ADS)

    Wei, Yifan; Xi, Jiangtao; Yu, Yanguang; Guo, Qinghua; Yin, Yongkai

    2014-11-01

    Fringe projection profilometry (FPP) has been widely used for three dimensional (3D) imaging and measurement. The fringe acquisition of FPP mainly depends on the diffuse light from the surface of objects, thus the characteristics of object surface have significant influence on phase calculation. One of the essential factors related to phase precision is modulation index, which has a direct relationship with the surface reflectivity. This paper presents a comparative study which focuses on the modulation index of different materials. The distribution of modulation index for different samples is statistical analyzed, which leads to the conclusion that the modulation index is determined by the diffuse reflectivity rather than the type of materials. This work is helpful to the development of effective de-noising algorithms to improve the measurement accuracy.

  2. Distribution and Pollution Characteristics Analysis of Heavy Metals in Surface Sediment in Bi River

    NASA Astrophysics Data System (ADS)

    Huang, Qianrui; Danek, Tomas; Cheng, Xianfeng; Dong, Tao; Qi, Wufu; Zou, Liling; Zhao, Xueqiong; Zhao, Xinliang; Xiang, Yungang

    2016-10-01

    The author analyzes distribution characteristics of heavy metals’ content in surface sediments of Bi River (Cu, Zn, As and Cd) and evaluates the potential ecological harm of heavy metal pollution in surface sediment by index method of potential ecological harm. Results show that heavy metals, such as Cu, Zn, As, Pb and Cd in surface sediments of Bi River are badly out of limitation. Especially, the heavy metals’ content in Jinding mining area is far higher than the national first class standard. The content of heavy metal is still high in the intersection of Bi River and Lancang River, which have certain influence on the Lancang River sediment and its water system. And, Pb and Cd, as the main pollutants, should be regarded as a key research subject.

  3. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  4. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  5. Surface roughness of sea ice in Fram Strait - A characteristic of the ice-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Yearsley, W. A.; Herzfeld, U. C.; McDonald, B.; Wallin, B. F.; Maslanik, J. A.; Fladeland, M. M.; Long, D. G.; Crocker, R. I.

    2012-12-01

    Surface roughness is an important characteristic of the interface between the lower atmosphere and the sea ice. In this paper, we present observational and mathematical methods that yield surface roughness length at centimeter to kilometer scales along transects of several hundred kilometers in Fram Strait. During the Characterization of Arctic Sea Ice Experiment (CASIE, July-August 2009), centimeter-scale laser profilometer data and microASAR data were collected from unmanned aircraft, the SIERRA of NASA's Ames Research Center. After correction for altitude using GPS data, aerodynamic roughness length is derived using patial classification parameters and geometric surface properties. Statistical distributions of ridges in sea-ice are calculated. The roughness-based parameters have several uses in modeling energy flux between ocean, ice and boundary layer and in modeling ridging processes in sea ice.

  6. Experimental Study of Electron Emission Characteristics of a Surface Flashover Trigger in a Low Pressure Environment

    NASA Astrophysics Data System (ADS)

    Hu, Shangmao; Yao, Xueling; Chen, Jingliang

    2010-12-01

    Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.

  7. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  8. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  9. Evaluation of the In Vitro Effect of Gold Nanorod Aspect Ratio, Surface Charge and Chemistry on Cellular Association and Cytotoxicity

    DTIC Science & Technology

    2016-03-28

    spectrum . GNRs with ARs of approximately 3 and greater have SPRs in the near-infrared range where light has minimal impact on living cells (Huang et al...L., . . . Hai, M. (2008). Effect of Aspect Ratio Distribution on Localized Surface Plasmon Resonance Extinction Spectrum of Gold Nanorods. Chinese

  10. Investigations into the molecular-level adhesion characteristics of hydroxyapatite-coated and anodized titanium surfaces using the molecular orbital approach.

    PubMed

    Saju, K K; Jayadas, N H; Vidyanand, S; James, J

    2011-03-01

    It has been established that the adhesion of cells on to the surfaces of orthopaedic implants depends on the ability of the surfaces to accommodate protein molecules. Hydroxyapatite coating and anodizing are the most common methods to make TiAl6V4 implants (Ti) more biocompatible. In this paper Spartan 02, a molecular dynamics software, is used to analyze and predict the bonding characteristics of Extra cellular matrix protein sequence arginine-glycine-aspartic acid (RGD) on a Hyrdoxyapatite (HA) coated Ti and an anodized Ti surface based on the property of its constituent atoms, their polarity (net electrostatic charge, Qr), the energies of the molecular orbital E_HOMO (energy of the highest occupied molecular orbital), and E_LUMO (energy of the lowest unoccupied molecular orbital). The results show favourable criterion for formation of bonding between the HOMO orbital of the HA coated and anodized surfaces and LUMO orbital of the glycine strand from the RGD unit. The mechanism of bonding of individual atoms to form primary calcium oxide compounds is likely only in the case of HA coated surfaces . The surface texture of the anodized Ti with inherent porosities appear more responsible for the adsorption of proteins on to them by mechanical interlocking than the formation of any intermediate calcium oxide compounds.

  11. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  12. Seasonal transition of precipitation characteristics associated with land surface conditions in and around Bangladesh

    NASA Astrophysics Data System (ADS)

    Ono, M.; Takahashi, H. G.

    2016-10-01

    This study examined the seasonal transition of precipitation characteristics and its association with land surface conditions in and around Bangladesh, where land surface conditions are predominantly wet. Hourly rain rate data from the Global Satellite Mapping of Precipitation Microwave-Infrared Combined Product and 10 day soil moisture data from the Advanced Microwave Scanning Radiometer Earth Observing System were used over the 7 years from 2003 to 2009. Area mean values of soil moisture, and precipitation amount, frequency, and intensity were calculated for each 10 day period. Results showed that higher precipitation amount and frequency were observed over the wet soil conditions, which indicates that soil moisture was influenced by previous precipitation events. However, the soil moisture could also control the precipitation characteristics. The seasonal and interannual variations in all regions suggested that precipitation amount and frequency increased in moist soil conditions, which is associated with an increase of water vapor supplied from the moist land surface. Over a flat plain (87°E-91°E, 23°N-25°N), a higher afternoon precipitation intensity was observed over drier land surfaces. This relationship was observed on seasonal and interannual variations. This suggests that the land surface conditions in this region can affect the afternoon precipitation intensity to some extent, although changes of atmospheric conditions can be a major factor particularly for the seasonal changes. However, this relationship was not observed in mountainous regions. This can be explained by other factors, such as thermally induced local circulations by the surrounding topography, being stronger than the impact of land surface conditions.

  13. Surface Enhanced Raman Scattering of Whole Human Blood, Blood Plasma and Red Blood Cells: Cellular Processes and Bioanalytical Sensing

    PubMed Central

    Premasiri, W. R.; Lee, J. C.; Ziegler, L. D.

    2013-01-01

    SERS spectra of whole human blood, blood plasma and red blood cells on Au nanoparticle SiO2 substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10 – 20 hours of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well known heme group marker bands, as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management and forensics. PMID:22780445

  14. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  15. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    PubMed

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  16. Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design

    PubMed Central

    2014-01-01

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use. PMID:24417322

  17. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction.

    PubMed

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-09-07

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  18. Hortonian surface runoff in flat areas due to microtopography and spatially varying infiltration characteristics

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.

    2010-05-01

    , the larger the amounts of water that can be stored in the surface topography. When studying surface runoff rates in a dimensionless setting the development of surface runoff does not depend on these characteristics. The correlation length of the elevation distribution does change the development when it is relatively large compared to field size. When microchannels are present in the topography these dominate the surface runoff development. Including infiltration in the analysis delays the onset of surface runoff and decreases the quantity of surface runoff. The ponding in the depressions levels most of the differences in infiltration behaviour. Spatial variation of infiltration characteristics affects the dimensionless development of surface runoff in the same order of magnitude as do coincidental variations of microtopography. When the correlation length of the distribution of infiltration characteristics is much larger than that of the distribution of elevation, the changes in development of surface runoff increase.

  19. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Bi, Concon; Fan, Li

    2015-03-01

    Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of "pre-graft polymerizing and post-imprinting". The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO2. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO2. The adsorption of cytisine on SAS-PGMA/SiO2 particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO2 particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO2. The binding and recognition characteristics of MIP-SASP/SiO2 towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO2 has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO2 particles for cytisine relative to matrine and oxymatrine, which were used as two contrast alkaloids, are 9.5 and 6.5, respectively.

  20. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    PubMed

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  1. Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells.

    PubMed

    Gao, Shuai; Tao, Li; Hou, Xinfeng; Xu, Zijian; Liu, Wenqiang; Zhao, Kun; Guo, Mingyue; Wang, Hong; Cai, Tao; Tian, Jianhui; Gao, Shaorong; Chang, Gang

    2016-03-15

    Transcription factor-mediated reprogramming can efficiently convert differentiated cells into induced pluripotent stem cells (iPSCs). Furthermore, many cell types have been shown to be amenable to reprogramming into iPSCs, such as neural stem cells, hematopoietic progenitor and stem cells (HPC/HSCs). However, the mechanisms related to the amenability of these cell types to be reprogrammed are still unknown. Herein, we attempt to elucidate the mechanisms of HPC/HSC reprogramming using the sequential reprogramming system that we have previously established. We found that HPC/HSCs were amenable to transcription factor-mediated reprogramming, which yielded a high frequency of fully reprogrammed HPC/HSC-iPSCs. Genome-wide gene expression analyses revealed select down-regulated tumor suppressor and mesenchymal genes as well as up-regulated oncogenes in HPC/HSCs compared with mouse embryonic fibroblasts (MEFs), indicating that these genes may play important roles during the reprogramming of HPC/HSCs. Additional studies provided insights into the contribution of select tumor suppressor genes (p21, Ink4a and Arf) and an epithelial-to-mesenchymal transition (EMT) factor (Snail1) to the reprogramming process of HPC/HSCs. Our findings demonstrate that HPC/HSCs carry unique cellular characteristics, which determine the amenability of HPC/HSCs to be reprogrammed into high-quality iPSCs.

  2. Surface characteristics and cell adhesion: a comparative study of four commercial dental implants.

    PubMed

    Liu, Ruohong; Lei, Tianhua; Dusevich, Vladimir; Yao, Xiamei; Liu, Ying; Walker, Mary P; Wang, Yong; Ye, Ling

    2013-12-01

    the surface characteristics and different cell adhesion on the osseointegration between implant and bone. © 2013 by the American College of Prosthodontists.

  3. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature.

    PubMed

    Elliott, Hunter; Fischer, Robert S; Myers, Kenneth A; Desai, Ravi A; Gao, Lin; Chen, Christopher S; Adelstein, Robert S; Waterman, Clare M; Danuser, Gaudenz

    2015-02-01

    In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.

  4. Cellular form of prion protein inhibits Reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth.

    PubMed

    Devanathan, Vasudharani; Jakovcevski, Igor; Santuccione, Antonella; Li, Shen; Lee, Hyun Joon; Peles, Elior; Leshchyns'ka, Iryna; Sytnyk, Vladimir; Schachner, Melitta

    2010-07-07

    Extension of axonal and dendritic processes in the CNS is tightly regulated by outgrowth-promoting and -inhibitory cues to assure precision of synaptic connections. We identify a novel role for contactin-associated protein (Caspr) as an inhibitory cue that reduces neurite outgrowth from CNS neurons. We show that proteolysis of Caspr at the cell surface is regulated by the cellular form of prion protein (PrP), which directly binds to Caspr. PrP inhibits Reelin-mediated shedding of Caspr from the cell surface, thereby increasing surface levels of Caspr and potentiating the inhibitory effect of Caspr on neurite outgrowth. PrP deficiency results in reduced levels of Caspr at the cell surface, enhanced neurite outgrowth in vitro, and more efficient regeneration of axons in vivo following spinal cord injury. Thus, we reveal a previously unrecognized role for Caspr and PrP in inhibitory modulation of neurite outgrowth in CNS neurons, which is counterbalanced by the proteolytic activity of Reelin.

  5. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  6. Age-related leaf characteristics of surface features and ultrastructure of Dendropanax morbifera.

    PubMed

    Kim, Ki Woo; Koo, Young Kuk; Yoon, Chul Jong

    2012-02-01

    Age-related morphological and anatomical changes were investigated by light and electron microscopy with juvenile and adult leaves of Dendropanax morbifera. Most juvenile leaves were glossy and palmate with five deep and narrow lobes divided nearly to two-thirds of the leaf base. Adult leaves were thick and possessed three lobes divided nearly to half of the leaf base. Stomata were ovoid and found on the abaxial surface. The epicuticular waxes of the plant included platelets, angular rodlets and threads. Platelets were attached to the surface at various angles. Distinct angular rodlets could be found on either the adaxial or the abaxial surface. Platelets on surface undulations occurred exclusively on the abaxial surface of adult leaves. Juvenile leaves were ca. 150 μm thick and had few intercellular spaces. Adult leaves were nearly two times thicker than juvenile leaves, and showed highly vacuolated cells and large intercellular spaces. The cuticle proper was apparent on the epidermis and showed distinctly alternating lamellate structures in juvenile leaves. The epidermal cell wall of adult leaves was covered with a cuticle layer for which a lamellate structure was not found. These results suggest that the species is heteroblastic in leaf characteristics with increasing leaf age.

  7. Characteristics of surface chlorophyll-a concentrations in the South China Sea

    NASA Astrophysics Data System (ADS)

    Huynh, Hong-Ngu T.; Alvera-Azcárate, Aida; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    In this study, the spatial and temporal variability of surface chlorophyll-a (Chl-a) concentrations in the South China Sea (SCS) is investigated, using the cloud-free MODISA Chl-a data set (2003-2015) reconstructed by the Data Interpolating Empirical Orthogonal Functions technique. EOF analysis on the reconstructed data set presents the characteristics of the surface Chl-a: (1) the first mode presents the high Chl-a concentrations, often with three peaks each year (January-February, June-July, and October-November), in coastal regions, except those of the Palawa and Philippines. (2) the second mode shows the surface Chl-a concentrations in the northern SCS is high in winter, with the highest values in the west of Luzon Strait, the east of Tonkin Gulf and along the northeast of Vietnam coast. (3) the third mode highlights the out-of-phase variability of surface Chl-a between the west and east coasts in winter and summer. The analysis also indicates that the variability of surface Chl-a is influenced by ENSO.

  8. Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells

    SciTech Connect

    Sopori, Bhushan; Devayajanam, Srinivas; Basnyat, Prakash

    2016-01-01

    This paper describes surface characteristics, in terms of its morphology, roughness and near-surface damage of Si wafers cut by diamond wire sawing (DWS) of Si ingots under different cutting conditions. Diamond wire sawn Si wafers exhibit nearly-periodic surface features of different spatial wavelengths, which correspond to kinematics of various movements during wafering, such as ingot feed, wire reciprocation, and wire snap. The surface damage occurs in the form of frozen-in dislocations, phase changes, and microcracks. The in-depth damage was determined by conventional methods such as TEM, SEM and angle-polishing/defect-etching. However, because these methods only provide local information, we have also applied a new technique that determines average damage depth over a large area. This technique uses sequential measurement of the minority carrier lifetime after etching thin layers from the surfaces. The lateral spatial damage variations, which seem to be mainly related to wire reciprocation process, were observed by photoluminescence and minority carrier lifetime mapping. Our results show a strong correlation of damage depth on the diamond grit size and wire usage.

  9. The effects of speed and surface compliance on shock attenuation characteristics for male and female runners.

    PubMed

    Dufek, Janet S; Mercer, John A; Griffin, Janet R

    2009-08-01

    The purpose of the study was to examine the effects of running speed and surface compliance on shock attenuation (SA) characteristics for male and female runners. We were also interested in identifying possible kinematic explanations, specifically, kinematics of the lower extremity at foot-ground contact, for anticipated gender differences in SA. Fourteen volunteer recreational runners (7 male, 7 female) ran at preferred and slow speeds on an adjustable bed treadmill, which simulated soft, medium, and hard surface conditions. Selected kinematic descriptors of lower extremity kinematics as well as leg and head peak impact acceleration values were obtained for 10 left leg contacts per subject-condition. Results identified significant SA values between genders across conditions and more specifically, across surfaces for females, with male runners demonstrating a similar trend. Regression modeling to predict SA by gender for surface conditions elicited unremarkable results, ranging from 30.9 to 59.9% explained variance. It appears that surface compliance does affect SA during running; however, the runner's ability to dissipate the shock wave may not be expressly explained by our definition of lower extremity kinematics at contact.

  10. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    DOE PAGES

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-22

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (Rs) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field Hc, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we have estimated themore » resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less

  11. Simultaneous measurements of shape characteristics and radar backscattering of a water surface in a rain field

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Liu, Xinan; Duncan, James H.

    2015-11-01

    The characteristics of radar backscattering from a water surface that is stimulated by a rain field are studied at laboratory scale. The experiment is carried out in a 1.22-m by 1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge needles that are attached to the bottom of a water reservoir located above the pool. A two-dimensional horizontal translational motion is added to the water reservoir in order to vary the drop impact location for each needle during each experimental run. A cinematic Laser-Induced-Florescence (LIF) technique is used to measure the water surface shape while radar backscattering from the water surface is simultaneously recorded by a dual-polarized, ultra-wide band radar. Both the radar return intensity and the water surface shape are measured for a range of rain rates and a range of radar incidence angles. The relationship between the geometric features of the water surface shape and the radar return are explored. The support of the National Science Foundation, Division of Atmospheric and Oceanic Sciences, under grant ARC0962107 is gratefully acknowledged.

  12. Physical characteristics of a lava flow determined from thermal measurements at the lava's surface

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A. T.; Kovtunov, D. A.; Korotkii, A. I.; Melnik, O. E.; Tsepelev, I. A.

    2016-04-01

    We consider the problem about determination of characteristics of a lava flow from the physical parameters measured on its surface. The problem is formulated as an inverse boundary problem for the model simulating the dynamics of a viscous heat-conducting incompressible inhomogeneous fluid, where, on the basis of additional data at one part of the model boundary, the missing conditions at another part of the boundary have to be determined, and then the characteristics of fluid in the entire model domain have to be reconstructed. The considered problem is ill-posed. We develop a numerical approach to the solution of the problem in the case of a steady-state flow. Assuming that the temperature and the heat flow are known at the upper surface of the lava, we determine the flow characteristics inside the lava. We compute model examples and show that the lava temperature and flow velocity can be determined with a high precision when the initial data are smooth or slightly noisy.

  13. Surface Tension Prediction Using Characteristics of the Density Profile Through the Interfacial Region

    NASA Astrophysics Data System (ADS)

    Wemhoff, A. P.; Carey, V. P.

    2006-03-01

    A simple surface tension estimation technique is described that is based solely upon the characteristics of the density profile in the interfacial region and the physical properties of the molecules in the fluid. This method, denoted free energy integration (FEI), links interfacial tension to known interfacial region density profile characteristics obtained via experiment or simulation. The general FEI methodology is provided here, and specific relations are derived for a methodology that incorporates the Redlich-Kwong fluid model. The Redlich-Kwong based FEI method was used to predict interfacial tension using the density profile characteristics of molecular dynamics (MD) simulations of argon using the Lennard-Jones potential, diatomic nitrogen using the two-center Lennard-Jones potential, and water using the extended simple point-charge (SPC/E) model. These results for argon compare favorably to values calculated by the traditional virial approach, known values from the literature using the finite-size scaling technique, and ASHRAE recommended values. In addition, the FEI predictions agree well with ASHRAE values and predictions using the virial method for nitrogen for the simulated range of temperatures in this study, and for water for reduced temperatures above 0.7. In addition, the FEI method results agree well with other established theoretical techniques for predictions of the surface tension of sulfur hexafluoride close to the critical point.

  14. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  15. Linking extreme surface turbulent heat fluxes to cyclone characteristics over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tilinina, Natalia; Gavrikov, Alexander

    2017-04-01

    Surface turbulent heat fluxes are a key component of the air-sea interaction over the midlatitude oceans. They are highly variable in time ranging from hundreds to thousands W/m2 on synoptic time scales. This variability is linked to atmospheric circulation and extreme high fluxes are very likely associated with atmospheric cyclones. Accurate estimation of extreme turbulent fluxes and understanding of the mechanisms through which they are formed is critically important for both atmospheric and oceanic dynamics. The main questions addressed in this study are (i) what are the large scale atmospheric conditions leading to the formation of extreme ocean fluxes, are they necessarily related to cyclones?, (ii) are extreme fluxes playing important role in the total oceanic heat losses?, (iii) which characteristics of cyclones are most sensitive to the surface flux signals? We derive statistics of the extreme surface fluxes from the empirical probability distribution functions of surface fluxes computed from the reanalysis state variables for the period 1979-onwards. Cyclone tracks are derived for the same period from the same reanalysis using state of the art numerical tracking algorithm. To answer these questions, we analyse surface flux statistics and cyclone characteristics over the midlatitudinal oceans (North Atlantic, North Pacific) and investigate their links with each other focusing on cyclone deepening rates, propagation velocities, life time and clustering. The existence of the high pressure system in the rare part of a cyclone is shown to be the necessary condition for the formation of extreme flux. We also show that the fraction of the oceanic heat loss due to extreme fluxes is highly inhomogeneous over the ocean and linked to the atmospheric circulation and can be as large as 50%. Cyclones tend to produce positive heat flux anomaly at the genesis stage. Over the Gulfstream more than 60% of cyclogenesis is connected to extreme fluxes.

  16. How do changes to plate thickness, length, and face-connectivity affect femoral cancellous bone's density and surface area? An investigation using regular cellular models.

    PubMed

    Anderson, I A; Carman, J B

    2000-03-01

    Models of regular cellular-solids representing femoral head 'medial group' bone were used to (1) compare thickness data for plate-like and beam-like structures at realistic surface areas and densities; (2) test the validity of a standard formula for trabecular thickness (Tb.Th); and (3) study how systematic changes in cancellous bone thicknesses, spacing, and face-connectivity affect relative density and surface area. Models of different face-connectivities, produced by plate removal from the unit cell, were fitted to bone density and surface area data. The medial group bone was anisotropic: the supero-inferior (SI) direction was the principal direction for bone plate alignment and the plane normal to this had the largest number of bone/void intersections per unit line length (P(I)). A comparison of boundary perimeter per unit area data, in planes normal to SI, with surface area data placed the medial group bone between prismatic structures in which walls are parallel to one principal direction and isotropic structures. Selective removal of plates from a closed-cell model produced a similar result. For the same relative density and surface-area, plate-like models had significantly thinner cross-sections than beam-like models. The formula for Tb.Th produced overestimates of model plate thickness by up to 20% at realistic femoral cancellous densities. Trends in data on surface area to volume ratio and density observed on sampled medial group bone could be simulated by plate thickness changes on models of intermediate face-connectivity (approximately 1.5) or by plate removal from models with relatively thick and short (low aspect-ratio) plates. The latter mechanism is unrealistic for it resulted in beam-like structures at low 'medial group' densities, an architecture unlike the predominantly plate-like bone in the sample.

  17. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  18. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Gao, Guoqiang; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-07-01

    High-speed railway today has become an indispensable means of transportation due to its remarkable advantages, including comfortability, convenience and less pollution. The increase in velocity makes the air drag become the main source of energy consumption, leading to receiving more and more concerns. The surface dielectric barrier discharge has shown some unique characteristics in terms of active airflow control. In this paper, the influences of surface dielectric barrier discharge on the aerodynamic characteristics of a scaled train model have been studied. Aspects of the discharge power consumption, the temperature distribution, the velocity of induced flow and the airflow field around the train model were considered. The applied AC voltage was set in the range of 20 kV to 28 kV, with a fixed frequency of 9 kHz. Results indicated that the discharge power consumption, the maximum temperature and the induced flow velocity increased with increasing applied voltage. Mechanisms of applied voltage influencing these key parameters were discussed from the point of the equivalent circuit. The airflow field around the train model with different applied voltages was observed by the smoke visualization experiment. Finally, the effects of surface dielectric barrier discharge on the train drag reduction with different applied voltages were analyzed.

  19. Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics.

    PubMed

    Honour, Sarah L; Bell, J Nigel B; Ashenden, Trevor W; Cape, J Neil; Power, Sally A

    2009-04-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO(x)) representative of urban conditions, in solardome chambers. Annual mean NO(x) concentrations ranged from 77 nl l(-l) to 98 nl l(-1), with NO:NO(2) ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.

  20. Surface chemical structure and doping characteristics of boron-doped Si nanowires fabricated by plasma doping

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Hoon; Ma, Jin-Won; Bae, Jung Min; Kang, Yu-seon; Ahn, Jae-Pyung; Kang, Hang-Kyu; Chae, Jimin; Suh, Dongchan; Song, Woobin; Kim, Sunjung; Cho, Mann-Ho

    2017-10-01

    We investigated the conduction characteristics of plasma-doped Si nanowires (NWs) after various rapid thermal annealing (RTA) times. The plasma doping (PD) process developed a highly-deposited B layer at the NW surface. RTA process controls electrical conductivity by mediating the dopant diffusion from the surface layer. The surface chemical and substitutional states of the B plasma-doped Si NWs were analyzed by x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. To elucidate the detailed structure of the NWs, we analyzed the change in the optical phonon mode caused by the incorporated B atoms. For this purpose, we examined Fano resonance by the investigation of the asymmetry, line-width, and phonon wavenumber in Raman spectra. The changes in symmetry level of the Raman peak, phonon lifetime, and internal strain were closely related to the number of electrically activated borons, which was drastically increased with RTA time. The change in electrical and optical characterizations related to the doping characteristics of the NWs was investigated using a 4-point probe and terahertz time-domain spectroscopy (THz-TDS). The resistivity of the NWs was 3000 times lower after the annealing process compared to that before the annealing process, which is well consistent with the optical conductivity data. The data provide the potential utility of PD in conformal doping for three-dimensional nanodevices.

  1. Determination of control-surface characteristics from NACA plain-flap and tab data

    NASA Technical Reports Server (NTRS)

    Ames, Milton B; Sears, Richard I

    1941-01-01

    The data from previous NACA pressure-distribution investigations of plain flaps and tabs with sealed gaps have been analyzed and are presented in this paper in a form readily applicable to the problems of control-surface design. The experimentally determined variation of aerodynamic parameters with flap chord and tab chord are given in chart form and comparisons are made with the theory. With the aid of these charts and the theoretical relationships for a thin airfoil, the aerodynamic characteristics for control surfaces of any plan form with plain flaps and tabs with sealed gaps may be determined. A discussion of the basic equations of the thin-airfoil theory and the development of a number of additional equations that will be helpful in tail design are presented in the appendixes. The procedure for applying the data is described and a sample problem of horizontal tail design is included. The data presented and the method of application set forth in this report should provide a reasonably accurate and satisfactory means of computing the aerodynamic characteristics of control surfaces.

  2. The effects of droplet characteristics on the surface features in a rain field

    NASA Astrophysics Data System (ADS)

    Liu, R.; Brown, H.; Liu, X.; Duncan, J. H.

    2013-11-01

    The characteristics of the shape of a water surface in response to the impact of simulated raindrops are studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. A rain generator consisting of an open-surface water tank with an array of 22-gauge hypodermic needles (typical needle-to-needle spacing of about L0 = 3 . 5 cm) attached to holes in the tank bottom is mounted 2 m above the water pool. The tank is connected to a 2D translation stage to provide a small-radius (surface features, including the crown, stalk and ring waves, due to the impacts of the drops are measured with a cinematic laser-induced- fluorescence (LIF) technique. The dependence of these features on the rain characteristics are discussed. The support of the National Science Foundation, Division of Ocean Sciences, and the assistance of Mr. Larry Gong are gratefully acknowledged.

  3. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    PubMed Central

    2011-01-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals. PMID:21762496

  4. Soil-geomorphic significance of land surface characteristics in an arid mountain range, Mojave Desert, USA

    USGS Publications Warehouse

    Hirmas, D.R.; Graham, R.C.; Kendrick, K.J.

    2011-01-01

    Mountains comprise an extensive and visually prominent portion of the landscape in the Mojave Desert, California. Landform surface properties influence the role these mountains have in geomorphic processes such as dust flux and surface hydrology across the region. The primary goal of this study was to describe and quantify land surface properties of arid-mountain landforms as a step toward unraveling the role these properties have in soil-geomorphic processes. As part of a larger soil-geomorphic study, four major landform types were identified within the southern Fry Mountains in the southwestern Mojave Desert on the basis of topography and landscape position: mountaintop, mountainflank, mountainflat (intra-range low-relief surface), and mountainbase. A suite of rock, vegetation, and morphometric land surface characteristic variables was measured at each of 65 locations across the study area, which included an associated piedmont and playa. Our findings show that despite the variation within types, landforms have distinct land surface properties that likely control soil-geomorphic processes. We hypothesize that surface expression influences a feedback process at this site where water transports sediment to low lying areas on the landscape and wind carries dust and soluble salts to the mountains where they are washed between rocks, incorporated into the soil, and retained as relatively long-term storage. Recent land-based video and satellite photographs of the dust cloud emanating from the Sierra Cucapá Mountains in response to the 7.2-magnitude earthquake near Mexicali, Mexico, support the hypothesis that these landforms are massive repositories of dust.

  5. Molecular and cellular interactions between intoplicine, DNA, and topoisomerase II studied by surface-enhanced Raman scattering spectroscopy.

    PubMed

    Morjani, H; Riou, J F; Nabiev, I; Lavelle, F; Manfait, M

    1993-10-15

    The surface-enhanced Raman scattering spectra of the new antitumoral agent, intoplicine (RP 60475, NSC 645008), and those of its complexes with DNA and topoisomerase II in vitro and in K562 cancer cells were obtained. Intoplicine was found to unwind DNA and to inhibit purified calf thymus topoisomerase II via a stabilization of the ternary cleavable complex. The intensity of the surface-enhanced Raman scattering spectrum of intoplicine was not modified by the addition of plasmid pBR322 or calf thymus DNA. In the complex of this antitumor agent with topoisomerase II, the signal of intoplicine was completely abolished, indicating that at least some portion of intoplicine binds to an internal part of the enzyme. During the formation of the ternary complex, intoplicine was released from the interior of the protein and formed hydrogen bonds via its hydroxyl and/or amino groups. Similar modifications of the intoplicine spectra were found by microsurface-enhanced Raman scattering spectroscopy of the compound in the nucleus of treated K562 cells. In contrast, intoplicine was found to be in a free form in the cytoplasm.

  6. Nanogrooved surface-patterns induce cellular organization and axonal outgrowth in neuron-like PC12-cells.

    PubMed

    Klymov, Alexey; Rodrigues Neves, Charlotte T; te Riet, Joost; Agterberg, Martijn J H; Mylanus, Emmanuel A M; Snik, Ad F M; Jansen, John A; Walboomers, X Frank

    2015-02-01

    Modulation of a materials surface topography can be used to steer various aspects of adherent cell behaviour, such as cell directional organization. Especially nanometric sized topographies, featuring sizes similar to for instance the axons of the spiral ganglion cells, are interesting for such purpose. Here, we utilized nanosized grooves in the range of 75-500 nm, depth of 30-150 nm, and pitches between 150 nm and 1000 nm for cell culture of neuron-like PC12 cells. The organizational behaviour was evaluated after 7 days of culture by bright field and scanning electron microscopy. Nanotopographies were shown to induce aligned cell-body/axon orientation and an increased axonal outgrowth. Our findings suggest that a threshold for cell body alignment of neuronal cells exists on grooved topographies with a groove width of 130 nm, depth of 70 nm and pitch of 300 nm, while axon alignment can already be induced by grooves with 135 nm width, 52 nm depth and 200 nm pitch. However, no threshold has been found for axonal outgrowth, as all of the used patterns increased outgrowth of PC12-axons. In conclusion, surface nanopatterns have the potential to be utilized as an electrode modification for a stronger separation of cells, and can be used to direct cells towards the electrode contacts of cochlear implants.

  7. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  8. Trailing edge wake flow characteristics of upper surface blown configurations. [noise generators

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1978-01-01

    Mean and fluctuating flow characteristics in the wake of upper surface blown flap configurations are presented. Relative importance of the longitudinal and the transverse components of the wake flow turbulence for noise generation are evaluated using correlation between the near-field noise and the wake turbulence. Effects of the jet velocity, the initial turbulence in the jet, and the flap deflection angle on noise and wake flow characteristics are studied. The far-field noise data is compared with the existing empirical prediction method. The measured wake flow properties are compared with an analytical model used in the existing USB wake flow noise theory. The detailed wake flow profiles, wake flow turbulence space-time correlations, wake flow turbulence cross-power spectra, and near-field noise third octave band spectra are presented in the appendices.

  9. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    NASA Astrophysics Data System (ADS)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  10. Essential Characteristics of Plasma Antennas Driven by One-ended Surface Wave

    NASA Astrophysics Data System (ADS)

    Wang, Shiqing; Sun, Naifeng; Li, Jian; Xiang, Qian; Wei, Chaolei

    2010-04-01

    Based on the principle that one-ended electromagnetic surface wave can drive a plasma antenna, the relation between the effective length of an antenna column and the applied radio frequency (RF) power was studied both theoretically and experimentally. The density distribution along the antenna column as well as the electron temperature in different conditions were investigated. The characteristics of the reception of local frequency modulated (FM) electromagnetic wave by the plasma antenna were compared with that by a copper antenna with same dimensions. The results show that it is feasible to take plasma antennas as receiving ones.

  11. High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris

    DTIC Science & Technology

    1977-07-29

    theoretically and experimentally. Oil drums, logs, and aluminum-covered plastic gallon milk bottles were considered and measured. A comparison of the echoing...covered plastic bottle ,38 N R tEPO R1 8 131 0 DBSM L LJ v ’ da) B 6 GH1 0 DSM -- DBSM ib) 9.2 GHz Ils Fig. 29 - Vertically polarized return from wave...j2 ’ NRL Report 8131 (~High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris B. L. LEWIS. J. P. HANSEN. 1

  12. Effects of upper-surface nacelles on longitudinal aerodynamic characteristics of high-wing transport configuration

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of installing and streamline contouring upper-surface nacelles on the longitudinal aerodynamic characteristics of a high-wing transport configuration. Also investigated were the effects of adding a fairing under the nacelle. The investigation was conducted at free-stream Mach numbers from 0.60 to 0.83 at angles fo attack from -2 deg to 4 deg. Flow-through nacelles were used. Streamline contouring the nacelles substantially reduced the interference drag due to installing the nacelles.

  13. Lunar seismic profiling experiment. [Apollo 17 flight measurements of lunar surface vibrations to determine subsurface characteristics

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1973-01-01

    The Apollo 17 lunar seismic profiling experiment was conducted to record the vibrations of the lunar surface as induced by explosive charges, the thrust of the lunar module ascent engine, and the crash of the lunar module ascent stage. Analysis of the data obtained made it possible to determine the internal characteristics of the lunar crust to a depth of several kilometers. The test equipment used in the experiment is described. Maps showing the location of the geophones and the deployed explosive packages are provided. Samples of the seismic signals recorded by the lunar seismic profiling experiment geophones are included.

  14. Surface electromyographic characteristics of swallowing in dysphagia secondary to brainstem stroke.

    PubMed

    Crary, M A; Baldwin, B O

    1997-01-01

    Surface electromyography (SEMG) provides an noninvasive avenue for evaluating swallowing physiology. This report describes SEMG characteristics associated with swallow attempts in 6 dysphagic patients who had suffered brainstem stroke compared with 6 age and gender-matched controls. Results indicated that patients with dysphagia secondary to brainstem stroke differed in both amplitude and timing aspects of swallowing attempts from asymptomatic controls. Specifically, the results indicated that during swallow attempts, dysphagic patients produced more muscle activity over a shorter duration and with less coordination than controls. Potential physiological mechanisms of these results are discussed.

  15. Determination of the statistical characteristics of the specular points of 3 dimensional Gaussian sea surface

    NASA Astrophysics Data System (ADS)

    Gardashov, G. R.; Gardashova, T. G.

    2009-10-01

    The inverse problem in the form of Fredholm integral equation of the first kind for determining the distribution density of the number of specular points of 3-D Gaussian sea surface is formulated and solved. The kernel of this equation is determined by the characteristic function of the distribution of radii of curvature at the specular points. On the basis of numerical experiments, and also by using images of the Sun glitters it is shown that on the known distribution density of the intensity of reflected light it is possible to define the distribution densities of both the number of specular points and the radii of curvature at the specular points.

  16. Dispersion states and surface characteristics of physically blended polyhedral oligomeric silsesquioxane/polymer hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Misra, Rahul

    nanoscale tribomechanical characteristics in relation to the POSS structures. Chapter 5 probes the molecular miscibility, solution and solid-state chain dynamics in polystyrene solution blended with Oib- and Tsp-POSS based on classical thermodynamic principles. Chapter 6 extends the learnings from chapter 5 to utilize POSS as a dispersion aid to disperse TiO2 nanoparticles in polypropylene. Chapter 7 explores the surface properties of fluorinated and non-fluorinated POSS coated fabrics. Finally, chapter 8 explores a nature-inspired route to modify polymer surfaces utilizing hydrophobin proteins and their impact on surface morphology and nanotribological characteristics.

  17. In vitro antigen-induced antibody responses to hepatitis B surface antigen in man. Kinetic and cellular requirements.

    PubMed Central

    Cupps, T R; Gerin, J L; Purcell, R H; Goldsmith, P K; Fauci, A S

    1984-01-01

    In this report we define the parameters of the human immune response after immunization with hepatitis B vaccine. 2 wk after booster immunization, there is significant spontaneous secretion of antibody to hepatitis B surface antigen (anti-HBs IgG), which is not further augmented by stimulation with antigen or pokeweed mitogen (PWM). By 4 wk there is little spontaneous secretion of specific antibody, and low doses of antigen or PWM produce significant increases in the amount of anti-HBs IgG produced. By 8 wk the peripheral blood mononuclear cells are refractory to stimulation by antigen, but anti-HBs IgG is produced in response to PWM. 0.5 yr or more after the last immunization, some individuals will manifest an antigen-induced specific antibody response. This induction of anti-HBs IgG by hepatitis B surface antigen (HBsAg) is monocyte- and T cell-dependent. Note that there is a dichotomy in the T cell response to HBsAg. The specific antibody response is clearly T cell dependent, but no in vitro T cell proliferative response to HBsAG could be demonstrated in the immunized individuals. Although the precise reason for the absent proliferative response to HBsAg despite well-established humoral immunity has not been determined, there was no evidence to suggest nonspecific suppression by HBsAg or the presence of an adherent suppressor cell population. The ability to evaluate antigen-induced, antigen-specific responses to HBsAg will be useful in defining the unique interaction between the human immune response and this clinically important viral agent. PMID:6332826

  18. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  19. Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons.

    PubMed

    Vala, M; Robelek, R; Bocková, M; Wegener, J; Homola, J

    2013-02-15

    Cell volume and its regulation are key factors for cellular integrity and also serve as indicators of various cell pathologies. SPR sensors represent an efficient tool for real-time and label-free observations of changes in cell volume and shape. Here, we extend this concept by employing the use of long-range surface plasmons (LRSP). Due to the enhanced penetration depth of LRSP (~1μm, compared to ~0.4μm of a conventional surface plasmon), the observation of refractive index changes occurring deeper inside the cells is possible. In this work, the responses of a confluent normal rat kidney (NRK) epithelial cell layer to osmotic stress are studied by both conventional and long-range surface plasmons. Experiments are conducted in parallel using cell layers grown and stimulated under the same conditions to enable direct comparison of the results and discrimination of the osmotic stress-induced effects in different parts of the cell. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    PubMed

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  1. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  2. Influence of membrane surface shape change on the performance characteristics of a fiber optic microphone.

    PubMed

    Li, Rui; Madamopoulos, Nicholas; Xiao, Wen

    2010-12-10

    At a reflective intensity modulated fiber optic microphone (RIM-FOM), the acoustic signal makes a membrane vibrate and modulate the reflected intensity. In the existing models of the RIM-FOM, the offset of all points of the membrane, due to the vibration, is assumed to be equal. However, this assumption does not represent the actual vibration of the membrane, which follows a continuous surface shape change caused by the acoustic signal. We establish a revised theoretical model in which the influence of the actual membrane surface shape change on the reflective intensity modulation is considered. Experiments show that there is a discrepancy between the experimental optimum operating distance and the analytical result from the existing model, while our new model gives a better agreement with the experimental results. In particular, our analysis shows that, in using the existing model, the other microphone performance characteristics are misestimated, while our revised model can provide a closer solution.

  3. Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures.

    PubMed

    Kim, Hyungmo; Lee, Chan; Kim, Moo Hwan; Kim, Joonwon

    2012-07-31

    We report the drop impact characteristics on four hydrophobic surfaces with different well-scale structures (smooth, nano, micro, and hierarchical micro/nano) and the effects of those structures on the behavior of water drops during impact. The specimens were fabricated using silicon wet etching, black silicon formation, or the combination of these methods. On the surfaces, the microstructures form obstacles to drop spreading and retracting, the nanostructures give extreme water-repellency, and the hierarchical micro/nanostructures facilitate drop fragmentation. The maximum spreading factor (D*(max)) differed among the structures. On the basis of published models of D*(max), we interpret the results of our experiment and suggest reasonable explanations for these differences. Especially, the micro/nanostructures caused instability of the interface between liquid and air at Weber number We > ~80 and impacting drops fragmented at We > ~150.

  4. Effects of soil layering on the characteristics of basin-edge induced surface waves

    NASA Astrophysics Data System (ADS)

    Narayan, Jay; Kumar, Sanjay

    2009-06-01

    This paper presents the effects of soil layering on the characteristics of basin-edge induced surface waves and associated strain and aggravation factor. The simulated results revealed surface wave generation near the basin-edge. The first mode of induced Love wave was obtained in models having increasing velocity with depth and a large impedance contrast between the soil layers. Amplitude amplification or de-amplification of body waves was proportional to the impedance contrast between the soil layers. The average aggravation factor was inversely proportional to the impedance contrast between the soil layers in case of increasingvelocity models and proportional in case of decreasing-velocity basinedge models. On the other hand, the maximum strain was inversely proportional to the impedance contrast between the soil layers in both cases. On the average, strain was greater in case of increasing-velocity models but the average aggravation factor was greater in case of decreasingvelocity models.

  5. Hydrodynamic characteristics of the surface-piercing propellers for the planing craft

    NASA Astrophysics Data System (ADS)

    Ghassemi, Hassan

    2009-12-01

    Demand for high-speed marine vehicles (HSMVs) is high among both commercial and naval users. It is the duty of the marine vessel’s designer to provide a hull and propulsion system that diminishes drag, improves propulsive efficiency, increases safety and improves maneuverability. From the propulsor side, surface piercing propellers (SPPs) should improve performance. Unlike immersed propellers, behavior of the SPP is affected by depth of immersion, Weber number and shaft inclination angle. This paper uses a practical numerical method to predict the hydrodynamic characteristics of an SPP. The critical advance velocity ratio is derived using the Weber number and pitch ratio in the transition mode, then the potential based boundary element method (BEM) is used on the engaged surfaces. Two models of three and six-bladed SPPs (SPP-1 and SPP-2) were selected and some results are shown.

  6. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Sun, Bingli; Zhao, Na; Li, Qian; Hou, Jianhua; Feng, Weina

    2014-12-01

    The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd40Cu30Ni10P20 bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens-Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  7. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics.

    PubMed

    Ljungberg, N; Bonini, C; Bortolussi, F; Boisson, C; Heux, L; Cavaillé, J Y

    2005-01-01

    New nanocomposite films were prepared with atactic polypropylene as the matrix and either of three types of cellulose whiskers, with various surface and dispersion characteristics, as the reinforcing phase: aggregated without surface modification, aggregated and grafted with maleated polypropylene or individualized and finely dispersed with a surfactant. Films obtained by solvent casting from toluene were investigated by means of scanning electron microscopy, dynamic mechanical analysis, and tensile testing. In the linear region, the mechanical properties above the glass-rubber transition were found to be drastically enhanced for the nanocomposites as compared to the neat polypropylene matrix. These effects were ascribed to the formation of a rigid network with filler/filler interactions. In addition, interactions between the filler and the matrix as well as the dispersion quality were found to play a major role on the mechanical properties of the composites when investigation of the films was performed in the nonlinear region.

  8. Surface aging effects of long-term energized conductors on spectrum characteristics of audible noise

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Chen, Z. Y.; Wang, L. M.

    2017-09-01

    The impact of surface aging level of long-term energized conductors on spectrum characteristics of audible noise is studied in this paper. It is found that the average roughness and root-mean-square roughness of conductors increase with the operating time, namely the aging degree, through the quantitative measurement. A-weighted equivalent continuous sound pressure level (LAeq) is found to increase with the aging level. As the aging aggravation, the LAeq and its high-frequency components (>1 kHz) increase substantially and high-frequency components are mainly contributing to the increasing of LAeq. The high-frequency components (>1 kHz) of the new and aged stranded conductors have a marked increasing trend as the surface potential gradient increases, while the low-frequency components are mainly environment noise.

  9. Martian Buried Basins and Implications for Characteristics of the Burial Layer and Underlying Surface

    NASA Technical Reports Server (NTRS)

    Sarid, A. R.; Frey, H. V.; Roark, J. H.

    2003-01-01

    Deciphering the cratering record on Mars has been challenging because it may reflect the changes in both the population of impactors and in the resurfacing processes on Mars. However, it is possible to determine the breadth of impactors captured in the cratering record. Extensive areas of resurfacing are of particular interest because they likely contain material from various ages in Martian history. By deducing the impact populations in both surface and underlying layers of terrain, it is possible to determine the age of the layers and constrain theories on the development of the Martian surface. However, to do so requires a method of seeing impact features which are no longer visible. Topographic data of Mars, taken by the Mars Orbiter Laser Altimeter (MOLA), has revealed impact features buried by resurfacing processes. These features are often indistinguishable on Viking images of the Martian surface. In this study, gridded MOLA data was analyzed in order to locate buried impact features, also called buried basins, in Syria, Solis, and Sinai Planum just south of Valles Marineris. The population statistics of buried features can be compared to those of visible features in order to determine the age of the underlying material and characteristics of the surface cover. Specifically, if the buried population in the Hesperian terrain is similar to the population of visible features in the Noachian, it would suggest that the underlying terrain is Noachian in age. The buried craters can then be compared to visible Noachian craters to reveal the amount of deterioration of the buried features. These comparisons allow us to explore the morphology of the terrain in the Hesperian region to determine if topographic variations are due to differences in the thickness of the overlying material or are a characteristic of the underlying terrain.

  10. Large eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    NASA Astrophysics Data System (ADS)

    Maurer, K. D.; Bohrer, G.; Ivanov, V. Y.

    2014-11-01

    Surface roughness parameters are at the core of every model representation of the coupling and interactions between land-surface and atmosphere, and are used in every model of surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and do not vary them in response to spatial or temporal changes to canopy structure. In part, this is due to the difficulty of reducing the complexity of canopy structure and its spatiotemporal dynamic and heterogeneity to less than a handful of parameters describing its effects of atmosphere-surface interactions. In this study we use large-eddy simulations to explore, in silico, the effects of canopy structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than models

  11. Impact of accurate description of land surface characteristics on simulation of the East Asian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, W.; Xue, Y.

    2016-12-01

    Abstract: Land surface characteristics directly determine the energy budget and the surface-atmosphere mass exchange, and subsequently affect the model capability in regional climate simulation. Leaf area index (LAI), one of the important variables in the land surface processes, involves in canopy radiative transfer, momentum transfer, precipitation interception loss, and transpiration, which affect on land surface energy and water partition processes. Therefore, it crucially affects the ability of models to adequately simulate land-surface interaction. In this study, Global Mapping LAI (GLOBMAP LAI) and its corresponding land cover and greenness fraction are introduced into WRF_NMM/SSiB2 during 2002 to 2011. Compared with the control simulation based on the original specified LAI that is based on limited survey, the simulation using GLOBMAP LAI produced better precipitation distribution and rain belt movement. The improvements of the East Asia monsoon precipitation simulation are mainly attributed to the correction of the position of subtropical high. The north edge of subtropical high is related to the position of East Asia Westerly Jet. In the control simulation, weak westerlies lead subtropical high to move northward. Therefore, compared with observations, more precipitation occurs in high latitudes. With imposed remote sensing LAI, the model produces larger meridional temperature gradient in surface and upper air, leading to stronger thermal westerlies. The Southward of Westerly Jet blocks the subtropical high, which amends the position of monsoon rain belt. This study directly takes advantage of recently available remote sensing products, and attributes the improved regional model simulation to proper LAI specification, which leads to adequate land/atmosphere interactions.

  12. A HIGH TEMPERATURE TEST FACILITY FOR STUDYING ASH PARTICLE CHARACTERISTICS OF CANDLE FILTER DURING SURFACE REGENERATION

    SciTech Connect

    Kang, B.S-J.; Johnson, E.K.; Rincon, J.

    2002-09-19

    Hot gas particulate filtration is a basic component in advanced power generation systems