Science.gov

Sample records for cellular synthesis growth

  1. Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria.

    PubMed

    Naresh, Mohit; Hasija, Vivek; Sharma, Megha; Mittal, Aditya

    2010-07-01

    Magnetotactic bacteria are unique prokaryotes possessing the feature of cellular organelles called magnetosomes (membrane bound 40-50 nm vesicles entrapping a magnetic nano-crystal of magnetite or greigite). The obvious energetic impact of sophisticated eukaryotic-like membrane-bound organelle assembly on a presumably simpler prokaryotic system is not addressed in literature. In this work, while presenting evidence of direct coupling of carbon source consumption to synthesis of magnetosomes, we provide the first experimentally derived estimate of energy for organelle synthesis by Magnetospirillum gryphiswaldense as approximately 5 nJoules per magnetosome. Considering our estimate of approximately 0.2 microJoules per bacterial cell as the energy required for growth, we show that the energetic load of organelle synthesis results in stunting of cell growth. We also show that removal of soluble iron or sequestration by exogenous compounds in the bacterial cell cultures reverses the impact of the excess metabolic load exerted during magnetosomal synthesis. Thus, by taking advantage of the magnetotactic bacterial system we present the first experimental evidence for the presumed energy consumption during assembly of naturally occurring sub-100 nm intra-cellular organelles. PMID:21128392

  2. REGULATION OF CELLULAR ANTIBODY SYNTHESIS

    PubMed Central

    Möller, Göran

    1968-01-01

    Transfer of spleen cells from mice immunized against sheep red blood cells (SRBC) into irradiated (600 R) nonimmune, syngeneic mice in the presence of antigen resulted in excessive cellular 7S production 7 days later. The number of 7S plaque-forming cells usually exceeded 106 per spleen and the mean proportion varied between 1 and 70%. In occasional animals all spleen cells were producing antibodies to SRBC. Serum antibody synthesis was also excessively increased, the titers in agglutination after 2-ME treatment and in hemolysis varying between 215 and 225. The generation time of the 7S PFC was found to be 9.6 hr in the secondary hosts. It seemed possible that the excessive production of 7S PFC and antibodies in the irradiated nonimmune recipients was caused by the absence of feedback inhibition of the immune response by antibody, a mechanism which would normally function to restrict antibody synthesis. This conclusion was strengthened by the demonstration that transfer of antigen-stimulated immune cells into actively or passively immunized irradiated recipients resulted in a marked suppression of cellular 7S synthesis. Serial transfers of antigen-stimulated immune cell populations in irradiated hosts resulted in an equally high number of 7S PFC during the first four transfer generations. However, after the fifth to seventh transfer generation the number of 7S PFC rapidly declined and disappeared within one to three passages. Serum antibodies and 7S PFC declined in parallel during the last transfer generations. Further passages of antigen-stimulated spleen cells lacking 7S PFC did not lead to reappearance of PFC. Thus, antigen-sensitive cells have a limited lifespan and/or multiplication capacity. From the hypothesis that the 7S PFC developed by division from antigen-sensitive precursors it was calculated that 38–40 divisions occurred, Thus, one antigen-sensitive precursor has the potential to give rise to 1012 7S PFC. PMID:5635380

  3. Predicting cellular growth from gene expression signatures.

    PubMed

    Airoldi, Edoardo M; Huttenhower, Curtis; Gresham, David; Lu, Charles; Caudy, Amy A; Dunham, Maitreya J; Broach, James R; Botstein, David; Troyanskaya, Olga G

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  4. Inhibition of Cell Growth and Cellular Protein, DNA and RNA Synthesis in Human Hepatoma (HepG2) Cells by Ethanol Extract of Abnormal Savda Munziq of Traditional Uighur Medicine.

    PubMed

    Upur, Halmurat; Yusup, Abdiryim; Baudrimont, Isabelle; Umar, Anwar; Berke, Benedicte; Yimit, Dilxat; Lapham, Jaya Conser; Creppy, Edmon E; Moore, Nicholas

    2011-01-01

    Abnormal Savda Munziq (ASMq) is a traditional Uighur medicinal herbal preparation, commonly used for the treatment and prevention of cancer. We tested the effects of ethanol extract of ASMq on cultured human hepatoma cells (HepG2) to explore the mechanism of its putative anticancer properties, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide, neutral red and lactate dehydrogenase (LDH) leakage assays, testing the incorporation of (3)[H]-leucine and (3)[H]-nucleosides into protein, DNA and RNA, and quantifying the formation of malondialdehyde-thiobarbituric acid (MDA) adducts. ASMq ethanol extract significantly inhibited the growth of HepG2 and cell viability, increased the leakage of LDH after 48 hours or 72 hours treatment, in a concentration- and time-dependent manner (P < .05). Cellular protein, DNA and RNA synthesis were inhibited in a concentration- and time-dependent manner (P < .05). No significant MDA release in culture medium and no lipid peroxidation in cells were observed. The results suggest that the cytotoxic effects of ASMq ethanol extract might be related to inhibition of cancer cell growth, alteration of cell membrane integrity and inhibition of cellular protein, DNA and RNA synthesis.

  5. Inhibition of Cell Growth and Cellular Protein, DNA and RNA Synthesis in Human Hepatoma (HepG2) Cells by Ethanol Extract of Abnormal Savda Munziq of Traditional Uighur Medicine

    PubMed Central

    Upur, Halmurat; Yusup, Abdiryim; Baudrimont, Isabelle; Umar, Anwar; Berke, Benedicte; Yimit, Dilxat; Lapham, Jaya Conser; Creppy, Edmon E.; Moore, Nicholas

    2011-01-01

    Abnormal Savda Munziq (ASMq) is a traditional Uighur medicinal herbal preparation, commonly used for the treatment and prevention of cancer. We tested the effects of ethanol extract of ASMq on cultured human hepatoma cells (HepG2) to explore the mechanism of its putative anticancer properties, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide, neutral red and lactate dehydrogenase (LDH) leakage assays, testing the incorporation of 3[H]-leucine and 3[H]-nucleosides into protein, DNA and RNA, and quantifying the formation of malondialdehyde-thiobarbituric acid (MDA) adducts. ASMq ethanol extract significantly inhibited the growth of HepG2 and cell viability, increased the leakage of LDH after 48 hours or 72 hours treatment, in a concentration- and time-dependent manner (P < .05). Cellular protein, DNA and RNA synthesis were inhibited in a concentration- and time-dependent manner (P < .05). No significant MDA release in culture medium and no lipid peroxidation in cells were observed. The results suggest that the cytotoxic effects of ASMq ethanol extract might be related to inhibition of cancer cell growth, alteration of cell membrane integrity and inhibition of cellular protein, DNA and RNA synthesis. PMID:18955370

  6. Stochasticity in plant cellular growth and patterning

    PubMed Central

    Meyer, Heather M.; Roeder, Adrienne H. K.

    2014-01-01

    Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development. PMID:25250034

  7. Celecoxib transiently inhibits cellular protein synthesis.

    PubMed

    Pyrko, Peter; Kardosh, Adel; Schönthal, Axel H

    2008-01-15

    To uncover the full spectrum of its pharmacological activities, the selective COX-2 inhibitor celecoxib is routinely being used at concentrations of up to 100 microM in cell culture. At these elevated concentrations, several COX-2-independent effects were identified, although many details of these events have remained unclear. Here, we report a COX-2-independent effect of celecoxib that might have profound consequences for the interpretation of previous results obtained at elevated concentrations of this drug in vitro. We found that celecoxib rapidly inhibits general protein translation at concentrations as low as 30 microM. This appears to be a consequence of endoplasmic reticulum (ER) stress and entails the phosphorylation and inactivation of eukaryotic translation initiation factor 2 alpha (eIF2alpha). These effects were not achieved by other coxibs (rofecoxib, valdecoxib) or traditional NSAIDs (indomethacin, flurbiprofen), but were mimicked by the COX-2-inactive celecoxib analog, 2,5-dimethyl-celecoxib (DMC), indicating COX-2 independence. Considering the obvious impact of blocked translation on cellular function, we provide evidence that this severe inhibition of protein synthesis might suffice to explain some of the previously reported COX-2-independent effects of celecoxib, such as the down-regulation of the essential cell cycle regulatory protein cyclin D, which is a short-lived protein that rapidly disappears in response to the inhibition of protein synthesis. Taken together, our findings establish ER stress-induced inhibition of general translation as a critical outcome of celecoxib treatment in vitro, and suggest that this effect needs to be considered when interpreting observations from the use of this drug in cell culture. PMID:17920040

  8. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  9. Cellular mechanisms underlying growth asymmetry during stem gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.

  10. Biological Effects of Electromagnetic Fields on Cellular Growth

    NASA Astrophysics Data System (ADS)

    Eftekhari, Beheshte; Wilson, James; Masood, Samina

    2012-10-01

    The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.

  11. Defective Ca2+ metabolism in Duchenne muscular dystrophy: effects on cellular and viral growth.

    PubMed Central

    Fingerman, E; Campisi, J; Pardee, A B

    1984-01-01

    Normal fibroblasts in medium containing 0.02 mM CaCl2 arrested growth within 24 hr, whereas Duchenne muscular dystrophy fibroblasts continued to grow for 5 days, albeit at 40% of their rate in standard medium (1.8 mM CaCl2). Moreover, Duchenne cells in calcium-deficient medium showed an enhanced rate of protein synthesis (60% over the rate in standard medium), whereas normal cells were unaffected. Previously we described a general assay for detection of mutant cells by using herpes simplex virus I replication as a probe of cellular function. By altering the growth medium, one can elicit changes in viral DNA replication that depend upon cellular differences. Duchenne fibroblasts in calcium-deficient low-serum (0.5%) medium supported viral replication at a rate 7- to 10-fold greater than did normal cells infected under the same conditions. Using this viral assay, we have successfully identified all 10 samples of a blind coded set of Duchenne muscular dystrophy, normal, and heterozygote cells. In addition, differences of a lower magnitude were found between these cell strains as measured by cellular growth or protein synthesis. Therefore, a cell's ability to grow and support viral replication in calcium-deficient medium can be used to readily distinguish Duchenne muscular dystrophy fibroblasts from normal ones. These results suggest that the viral assay could be used as a prenatal diagnostic test. A defect related to calcium metabolism may be fundamental to this disease. PMID:6095311

  12. Cellular Growth Arrest and Persistence from Enzyme Saturation

    PubMed Central

    Ray, J. Christian J.; Wickersheim, Michelle L.; Jalihal, Ameya P.; Adeshina, Yusuf O.; Cooper, Tim F.; Balázsi, Gábor

    2016-01-01

    Metabolic efficiency depends on the balance between supply and demand of metabolites, which is sensitive to environmental and physiological fluctuations, or noise, causing shortages or surpluses in the metabolic pipeline. How cells can reliably optimize biomass production in the presence of metabolic fluctuations is a fundamental question that has not been fully answered. Here we use mathematical models to predict that enzyme saturation creates distinct regimes of cellular growth, including a phase of growth arrest resulting from toxicity of the metabolic process. Noise can drive entry of single cells into growth arrest while a fast-growing majority sustains the population. We confirmed these predictions by measuring the growth dynamics of Escherichia coli utilizing lactose as a sole carbon source. The predicted heterogeneous growth emerged at high lactose concentrations, and was associated with cell death and production of antibiotic-tolerant persister cells. These results suggest how metabolic networks may balance costs and benefits, with important implications for drug tolerance. PMID:27010473

  13. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation.

    PubMed Central

    Vostrejs, M; Moran, P L; Seligman, P A

    1988-01-01

    Since transferrin is required for cellular proliferation, we investigated transferrin synthesis by a small cell lung cancer line (NCI-H510) that survives in serum-free media without added transferrin. Immunoassays for human transferrin demonstrated that these cells contained immunoreactive human transferrin. Immunofluorescence studies showed that the protein is expressed on the surface of cells, presumably bound to transferrin receptor. Media conditioned by NCI-H510 cells support proliferation of human leukemic cells that would not survive in media lacking transferrin. [35S]Methionine incorporation documented transferrin synthesis by NCI-H510 cells as well as three other small cell lines. Transferrin synthesis by NCI-H510 cells increased more than 10-fold when cells entered active phases of the cell cycle, and this increase was seen before large increases in transferrin-receptor expression. Further experiments examining the effects of agents that affect iron metabolism show that the addition of transferrin-iron or hemin to the media is associated with a more rapid initial rate of proliferation and lower rates of transferrin synthesis than control cells. Gallium salts, which inhibit iron uptake, inhibited proliferation of these cells. If the cells recovered from this effect, transferrin synthesis remained greatly increased compared to control. We conclude that transferrin synthesis by these malignant cells is ultimately related to an iron requirement for cellular proliferation. It appears that this synthesized transferrin acts as part of an important autocrine mechanism permitting proliferation of these cells, and perhaps permitting tumor cell growth in vivo in areas not well vascularized. Images PMID:2839550

  14. Synthesis Enables Identification of the Cellular Target of Leucascandrolide A and Neopeltolide

    PubMed Central

    Ulanovskaya, Olesya A.; Janjic, Jelena; Suzuki, Masato; Sabharwal, Simran S.; Schumacker, Paul T.; Kron, Stephen J.; Kozmin, Sergey A.

    2009-01-01

    Leucascandrolide A and neopeltolide are structurally homologous marine natural products that elicit potent antiproliferative profiles in mammalian cells and yeast. The scarcity of naturally available material provided a significant barrier for their biochemical and pharmacological evaluation. We developed practical synthetic access to this class of natural products that enabled the determination of their mechanism of action. We demonstrated effective cellular growth inhibition in yeast, which was significantly enhanced by substituting glucose with galactose or glycerol. These results along with genetic analysis of determinants of drug sensitivity suggested that leucascandrolide A and neopeltolide may inhibit mitochondrial ATP synthesis. Evaluation of the activity of the four mitochondrial electron-transport chain complexes inyeast and mammalian cells revealed cytochrome bc1 complex as the principal cellular target. This result provided the molecular basis for the potent antiproliferative activity of this class of marine macrolides identifying them as new biochemical tools for investigation of eukaryotic energy metabolism. PMID:18516048

  15. Noise-driven growth rate gain in clonal cellular populations

    PubMed Central

    Hashimoto, Mikihiro; Nozoe, Takashi; Nakaoka, Hidenori; Okura, Reiko; Akiyoshi, Sayo; Kaneko, Kunihiko; Kussell, Edo; Wakamoto, Yuichi

    2016-01-01

    Cellular populations in both nature and the laboratory are composed of phenotypically heterogeneous individuals that compete with each other resulting in complex population dynamics. Predicting population growth characteristics based on knowledge of heterogeneous single-cell dynamics remains challenging. By observing groups of cells for hundreds of generations at single-cell resolution, we reveal that growth noise causes clonal populations of Escherichia coli to double faster than the mean doubling time of their constituent single cells across a broad set of balanced-growth conditions. We show that the population-level growth rate gain as well as age structures of populations and of cell lineages in competition are predictable. Furthermore, we theoretically reveal that the growth rate gain can be linked with the relative entropy of lineage generation time distributions. Unexpectedly, we find an empirical linear relation between the means and the variances of generation times across conditions, which provides a general constraint on maximal growth rates. Together, these results demonstrate a fundamental benefit of noise for population growth, and identify a growth law that sets a “speed limit” for proliferation. PMID:26951676

  16. Cellular basis of hypocotyl growth in Arabidopsis thaliana.

    PubMed Central

    Gendreau, E; Traas, J; Desnos, T; Grandjean, O; Caboche, M; Höfte, H

    1997-01-01

    The Arabidopsis thaliana hypocotyl is widely used to study the effects of light and plant growth factors on cell elongation. To provide a framework for the molecular-genetic analysis of cell elongation in this organ, here we describe, at the cellular level, its morphology and growth and identify a number of characteristic, developmental differences between light-grown and dark-grown hypocotyls. First, in the light epidermal cells show a characteristic differentiation that is not observed in the dark. Second, elongation growth of this organ does not involve significant cortical or epidermal cell divisions. However, endoreduplication occurs, as revealed by the presence of 4C and 8C nuclei. In addition, 16C nuclei were found specifically in dark-grown seedlings. Third, in the dark epidermal cells elongate along a steep, acropetal spatial and temporal gradient along the hypocotyl. In contrast, in the light all epidermal cells elongated continuously during the entire growth period. These morphological and physiological differences, in combination with previously reported genetic data (T. Desnos, V. Orbovic, C. Bellini, J. Kronenberger, M. Caboche, J. Traas, H. Höfte [1996] Development 122: 683-693), illustrate that light does not simply inhibit hypocotyl growth in a cell-autonomous fashion, but that the observed growth response to light is a part of an integrated developmental change throughout the elongating organ. PMID:9159952

  17. Synthesis of marmycin A and investigation into its cellular activity

    NASA Astrophysics Data System (ADS)

    Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël

    2015-09-01

    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

  18. Mouse cellular cementum is highly dependent on growth hormone status.

    PubMed

    Smid, J R; Rowland, J E; Young, W G; Daley, T J; Coschigano, K T; Kopchick, J J; Waters, M J

    2004-01-01

    Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p < 0.001). Cellular cementum length was similarly influenced by GH status, but to a lesser extent. Acellular cementum was generally unaffected. This study reveals cellular cementum to be a highly responsive GH target tissue, which may have therapeutic applications in assisting regeneration of the periodontium. PMID:14691110

  19. Local Protein Synthesis in Axonal Growth Cones

    PubMed Central

    Šatkauskas, Saulius

    2007-01-01

    While initially thought to be essentially a developmental characteristic observed in artificial in vitro models, local protein synthesis in growth cones has been described in the adult, and more interestingly, during nerve regeneration. This emerging field is under intense investigation, revealing new functions of localized protein synthesis that include axon guidance, growth cone adaptation and sensitivity modulation at intermediate targets or axon regeneration. Here, we will review these functions and provide a short survey of the current knowledge on mechanisms of mRNA transport and regulation of localized protein synthesis. In addition, we will consider what lessons can be learned from localized protein synthesis in dendrites and what developments can be expected next in the field. This latter question relates to the crucial point of which technical strategy to adopt for an ideal and pertinent analysis of the phenomenon. PMID:19262143

  20. An Evolutionary Hybrid Cellular Automaton Model of Solid Tumour Growth

    PubMed Central

    Gerlee, P.; Anderson, A.R.A.

    2007-01-01

    We propose a cellular automaton model of solid tumour growth, in which each cell is equipped with a micro-environment response network. This network is modelled using a feed-forward artificial neural network, that takes environmental variables as an input and from these determines the cellular behaviour as the output. The response of the network is determined by connection weights and thresholds in the network, which are subject to mutations when the cells divide. As both available space and nutrients are limited resources for the tumour this gives rise to clonal evolution where only the fittest cells survive. Using this approach we have investigated the impact of the tissue oxygen concentration on the growth and evolutionary dynamics of the tumour. The results show that the oxygen concentration affects the selection pressure, cell population diversity and morphology of the tumour. A low oxygen concentration in the tissue gives rise to a tumour with a fingered morphology that contains aggressive phenotypes with a small apoptotic potential, while a high oxygen concentration in the tissue gives rise to a tumour with a round morphology containing less evolved phenotypes. The tissue oxygen concentration thus affects the tumour at both the morphological level and on the phenotype level. PMID:17374383

  1. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  2. Control of growth hormone synthesis.

    PubMed

    Tuggle, C K; Trenkle, A

    1996-01-01

    A large body of research, primarily in the rodent and human species, has elucidated many of the details regarding the control of GH synthesis and release. Cell type-specific transcriptional control has been identified as the main mechanism of the somatotroph-specific expression of GH. The recent detailed analysis in rodents and humans of a highly specific transcriptional activator protein, PIT-1, has opened several new areas of study. This is especially true for research in the farm animal species, where PIT-1 has been cloned and its binding elements on the GH gene are being investigated in a number of economically important species. Genetic and biochemical analyses of PIT-1 and other GH regulators have shown the central role of PIT-1 not only in the cell-autonomous stimulation of GH gene transcription, but also in the participation of PIT-1 in the response at the GH gene to exogenous hormones such as RA and TH. PIT-1 has been implicated in the proliferative development of the pituitary itself, in the maintenance of anterior pituitary cell types once cell types are defined, and in the mechanism by which the hypothalamic signal for GH release is transduced. However, PIT-1 by itself does not activate the GH gene, so that additional unknown factors exist that need to be identified to fully understand the cell type-specific activation of the GH gene. In addition, GH gene regulatory elements acting through well-characterized systems such as TH have seemingly different effects; the specific context of the regulatory elements relative to the promoter elements appear to be crucial. These contextual details of GH gene regulation are not well understood for any species and need to be further studied to be able to make predictions for particular elements and regulatory mechanisms across species. The regulation of the pulsatile secretion of GH by GHRH and SRIH is reasonably well understood after the cloning and analysis of the two releasing factors and their receptors

  3. Measurement of Microbial Activity and Growth in the Ocean by Rates of Stable Ribonucleic Acid Synthesis

    PubMed Central

    Karl, David M.

    1979-01-01

    A relatively simple and extremely sensitive technique for measuring rates of stable ribonucleic acid (RNA) synthesis was devised and applied to bacterial cultures and seawater samples. The procedure is based upon the uptake and incorporation of exogenous radiolabeled adenine into cellular RNA. To calculate absolute rates of synthesis, measurements of the specific radioactivity of the intracellular adenosine 5′-triphosphate pools (precursor to RNA) and of the total amount of radioactivity incorporated into stable cellular RNA per unit time are required. Since the rate of RNA synthesis is positively correlated with growth rate, measurements of RNA synthesis should be extremely useful for estimating and comparing the productivities of microbial assemblages in nature. Adenosine 5′-triphosphate, adenylate energy charge, and rates of stable RNA synthesis have been measured at a station located in the Columbian Basin of the Caribbean Sea. A subsurface peak in RNA synthesis (and therefore growth) was located within the dissolved oxygen minimum zone (450 m), suggesting in situ microbiological utilization of dissolved molecular oxygen. Calculations of the specific rates of RNA synthesis (i.e., RNA synthesis per unit of biomass) revealed that the middepth maximum corresponded to the highest specific rate of growth (420 pmol of adenine incorporated into RNA·day−1) of all depths sampled, including the euphotic zone. The existence of an intermediate depth zone of active microbial growth may be an important site for nutrient regeneration and may serve as a source of reduced carbon for mesopelagic and deep sea environments. PMID:16345461

  4. Synthesis and cellular biocompatibility of two nanophase hydroxyapatite with different Ca/P ratio.

    PubMed

    Zhao, Yantao; Zhang, Yumei; Zhao, Yimin; Hou, Shuxun; Chu, Paul K

    2011-12-01

    The cellular biocompatibility of two types of nanophase hydroxyapatites including nanophase standard hydroxyapatite (n-HA) and nanophase calcium deficient hydroxyapatite (n-CDHA) synthesized by a wet chemical method were assessed using primary cultured osteoblasts. Cytotoxicity of both materials was investigated with L929 cell line. The MTT method was used to evaluate the proliferation of osteoblasts on the third day and ALP activity assay was carried out on the fifth day. SEM was used to observe the morphology of the osteoblasts on the third day. Two types of nanophase hydroxyapatite both showed no cytotoxicity. Higher cell proliferation was observed on n-CDHA than n-HA. At the same time, cells spread more actively on the n-CDHA group. The ALP level of n-CDHA was also significantly higher on the former. Our results show that the n-CDHA is more suitable for osteoblasts growth and is also helpful for ALP synthesis.

  5. Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress

    PubMed Central

    Riley, Alura; Jordan, Lindsay E.; Holcik, Martin

    2010-01-01

    X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5′ untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5′ UTRs. We further show that the dominant, shorter, 5′ UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5′ UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation. PMID:20385593

  6. Growth hormone administration produces a biphasic cellular muscle growth in weaning mice.

    PubMed

    López-Oliva, M E; Agis-Torres, A; Muñoz-Martínez, E

    2001-09-01

    The present study was undertaken to elucidate the effect of the exogenous administration of rhGH on the time course of the cellular muscle growth in male and female BALB/c mice fed 20% dietary protein between weaning and 50 days of age. Also, the efficiency of utilization of protein and energy intake to muscle DNA content and protein per cell (protein to DNA ratio) storage were studied. 120 weaned mice (21 d) were assigned to four groups based on rhGH-treatment (rhGH-treated: 7.4 ng x g(-1) BW and control: saline vehicle; via s.c. every two days) and gender. Feed intake was measured daily. At 25, 30, 35, 40, 45 and 50 days of age twenty mice were killed by cervical dislocation and the samples of gastrocnemius muscles were isolated, weighed and protein and DNA contents were measured. The rhGH administration caused a biphasic response altering the muscle cellular growth as a consequence of age-specific feed intake changes. The GH-induced fall of feed intake between 25 and 30 days of age caused decreases in muscle weight and myonuclei number (DNA), whereas muscle cell size was maintained. Later on, the self-controlled increase of feed intake led to the muscle weight recovery to control level, in spite of the irreversible DNA fall, as a consequence of the increase of cellular protein deposition and an enhancement of utilization of protein and energy intakes to deposit protein per cell. These results demonstrate that in spite of the initial (25-30 d of age) muscle DNA fall, rhGH-administration from weaning ensures the recovery of cellular muscle growth to control level through a compensatory muscle hypertrophy.

  7. Pyridalyl inhibits cellular protein synthesis in insect, but not mammalian, cell lines.

    PubMed

    Moriya, Koko; Hirakura, Setsuko; Kobayashi, Jun; Ozoe, Yoshihisa; Saito, Shigeru; Utsumi, Toshihiko

    2008-09-01

    To gain insight into the mechanism of action and selectivity of the insecticidal activity of pyridalyl, the cytotoxicity of pyridalyl against various insect and mammalian cell lines was characterized by measuring the inhibition of cellular protein synthesis. When the effect of pyridalyl on the cellular protein synthesis in Sf9 cells was evaluated by measuring the incorporation of [(3)H]leucine, rapid and significant inhibition of protein synthesis was observed. However, pyridalyl did not inhibit protein synthesis in a cell-free protein synthesis system, indicating that pyridalyl does not directly inhibit protein synthesis. No obvious cytotoxicity was observed against any of the mammalian cell lines tested. In the case of insect cell lines, remarkable differences in the cytotoxicity of pyridalyl were observed: the highest cytotoxicity (IC50 mM) was found against Sf9 cells derived from Spodoptera frugiperda, whereas no obvious cytotoxicity was observed against BmN4 cells derived from Bombyx mori. Measurements of the insecticidal activity of pyridalyl against Spodoptera litura and B. mori revealed a correlation between the cytotoxicity against cultured cell lines and the insecticidal activity. From these observations, it was concluded that the selective inhibition of cellular protein synthesis by pyridalyl might contribute significantly to the insecticidal activity and the selectivity of this compound. PMID:18454491

  8. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    PubMed Central

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-01-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor. PMID:27539788

  9. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    NASA Astrophysics Data System (ADS)

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-08-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.

  10. Divergent synthesis and identification of the cellular targets of deoxyelephantopins.

    PubMed

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G; Adibekian, Alexander; Winssinger, Nicolas

    2016-01-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor. PMID:27539788

  11. Effect of anisotropy on deep cellular crystal growth in directional solidification

    NASA Astrophysics Data System (ADS)

    Jiang, Han; Chen, Ming-Wen; Shi, Guo-Dong; Wang, Tao; Wang, Zi-Dong

    2016-06-01

    The effect of anisotropic surface tension and anisotropic interface kinetics on deep cellular crystal growth is studied. An asymptotic solution of deep cellular crystal growth in directional solidification is obtained by using the matched asymptotic expansion method and the multiple variable expansion method. The results show that as the anisotropic parameters increase, the total length of deep cellular crystal increases and the root depth increases, whereas the curvature of the interface near the root increases or the curvature radius decreases.

  12. Quantitative investigation of cellular growth in directional solidification by phase-field simulation.

    PubMed

    Wang, Zhijun; Wang, Jincheng; Li, Junjie; Yang, Gencang; Zhou, Yaohe

    2011-10-01

    Using a quantitative phase-field model, a systematic investigation of cellular growth in directional solidification is carried out with emphasis on the selection of cellular tip undercooling, tip radius, and cellular spacing. Previous analytical models of cellular growth are evaluated according to the phase-field simulation results. The results show that cellular tip undercooling and tip radius not only depend on the pulling velocity and thermal gradient, but also depend on the cellular interaction related to the cellular spacing. The cellular interaction results in a finite stable range of cellular spacing. The lower limit is determined by the submerging mechanism while the upper limit comes from the tip splitting instability corresponding to the absence of the cellular growth solution, both of which can be obtained from phase-field simulation. Further discussions on the phase-field results also present an analytical method to predict the lower limit. Phase-field simulations on cell elimination between cells with equal spacing validate the finite range of cellular spacing and give deep insight into the cellular doublon and oscillatory instability between cell elimination and tip splitting.

  13. Catch-up growth: cellular and molecular mechanisms.

    PubMed

    Finkielstain, G P; Lui, J C; Baron, J

    2013-01-01

    In mammals, after a period of growth inhibition, body growth often does not just return to a normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of the physiological mechanisms that normally cause body growth to slow and cease with age. As a result, following the period of growth inhibition, tissues retain a greater proliferative capacity than normal, and therefore grow more rapidly than normal for age. There is evidence that this mechanism contributes both to catch-up growth in terms of body length, which involves proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves proliferation in multiple nonskeletal tissues.

  14. The physics of cellular synthesis, growth and division

    NASA Technical Reports Server (NTRS)

    Pollard, E. C.

    1974-01-01

    Three areas of research in NASA'S University Program are described. Primitive terrestrial living cells were studied as a guide to the kind of cells to look for in extraterrestrial life. Experiments in zero gravity conditions are described with emphasis upon effects on small organisms. The effects of ionizing radiation on cells are studied so that it will be possible to predict dosages which can be tolerated by humans with no permanent damage.

  15. Aphidicolin-resistant polyomavirus and subgenomic cellular DNA synthesis occur early in the differentiation of cultured myoblasts to myotubes.

    PubMed Central

    DePolo, N J; Villarreal, L P

    1993-01-01

    Small DNA viruses have been historically used as probes of cellular control mechanisms of DNA replication, gene expression, and differentiation. Polyomavirus (Py) DNA replication is known to be linked to differentiation of may cells, including myoblasts. In this report, we use this linkage in myoblasts to simultaneously examine (i) cellular differentiation control of Py DNA replication and (ii) an unusual type of cellular and Py DNA synthesis during differentiation. Early proposals that DNA synthesis was involved in the induced differentiation of myoblasts to myotubes were apparently disproved by reliance on inhibitors of DNA synthesis (cytosine arabinoside and aphidicolin), which indicated that mitosis and DNA replication are not necessary for differentiation. Theoretical problems with the accessibility of inactive chromatin to trans-acting factors led us to reexamine possible involvement of DNA replication in myoblast differentiation. We show here that Py undergoes novel aphidicolin-resistant net DNA synthesis under specific conditions early in induced differentiation of myoblasts (following delayed aphidicolin addition). Under similar conditions, we also examined uninfected myoblast DNA synthesis, and we show that soon after differentiation induction, a period of aphidicolin-resistant cellular DNA synthesis can also be observed. This drug-resistant DNA synthesis appears to be subgenomic, not contributing to mitosis, and more representative of polyadenylated than of nonpolyadenylated RNA. These results renew the possibility that DNA synthesis plays a role in myoblast differentiation and suggest that the linkage of Py DNA synthesis to differentiation may involve a qualitative cellular alteration in Py DNA replication. Images PMID:8389922

  16. Extrapituitary growth hormone synthesis in humans.

    PubMed

    Pérez-Ibave, Diana Cristina; Rodríguez-Sánchez, Iram Pablo; Garza-Rodríguez, María de Lourdes; Barrera-Saldaña, Hugo Alberto

    2014-01-01

    The gene for pituitary growth hormone (GH-N) in man belongs to a multigene locus located at chromosome 17q24.2, which also harbors four additional genes: one for a placental variant of GH-N (named GH-V) and three of chorionic somatommamotropin (CSH) type. Their tandem arrangement from 5' to 3' is: GH-N, CSH-L, CSH-1, GH-V and CSH-2. GH-N is mainly expressed in the pituitary from birth throughout life, while the remaining genes are expressed in the placenta of pregnant women. Pituitary somatotrophs secrete GH into the bloodstream to act at receptor sites in most tissues. GH participates in the regulation of several complex physiological processes, including growth and metabolism. Recently, the presence of GH has been described in several extrapituitary sites, such as neural, ocular, reproductive, immune, cardiovascular, muscular, dermal and skeletal tissues. It has been proposed that GH has an autocrine action in these tissues. While the body of evidence for its presence is constantly growing, research of its possible function and implications lag behind. In this review we highlight the evidence of extrapituitary synthesis of GH in humans.

  17. Microinjected pBR322 stimulates cellular DNA synthesis in Swiss 3T3 cells.

    PubMed Central

    Hyland, J K; Hirschhorn, R R; Avignolo, C; Mercer, W E; Ohta, M; Galanti, N; Jonak, G J; Baserga, R

    1984-01-01

    When pBR322 is manually microinjected into the nuclei of quiescent Swiss 3T3 cells it stimulates the incorporation of [3H]thymidine into DNA. The evidence clearly shows that this increased incorporation that is detected by in situ autoradiography in microinjected cells represents cellular DNA synthesis and not DNA repair or plasmid replication. The effect is due to pBR322 and not due to impurities, mechanical perturbances due to the microinjection technique, or aspecific effects. This stimulation is striking in Swiss 3T3 cells. Some NIH 3T3 cells show a slight stimulation, but hamster cells, derived from baby hamster kidney (BHK) cells, are not stimulated when microinjected with pBR322. The preliminary evidence seems to indicate that the integrity of the pBR322 genome is important for the stimulation of cellular DNA synthesis in quiescent Swiss 3T3 cells. These results, although of a preliminary nature, are of interest because they indicate that a prokaryotic genome may alter the cell cycle of mammalian cells. From a practical point of view the stimulatory effect of microinjected pBR322 on cellular DNA synthesis has a more immediate interest, because pBR322 is the vector most commonly used for molecular cloning and 3T3 cells are very frequently used for gene transfer experiments. Images PMID:6582497

  18. Cellular basis of differential limb growth in postnatal gray short-tailed opossums (Monodelphis domestica).

    PubMed

    Beiriger, Anastasia; Sears, Karen E

    2014-06-01

    While growth has been studied extensively in invertebrates, the mechanisms by which it is controlled in vertebrates, particularly in mammals, remain poorly understood. In this study, we investigate the cellular basis of differential limb growth in postnatal Monodelphis domestica, the gray short-tailed opossum, to gain insights into the mechanisms regulating mammalian growth. Opossums are an ideal model for the study of growth because they are born with relatively large, well-developed forelimbs and small hind limbs that must "catch up" to the forelimb before the animal reaches adulthood. Postnatal Days 1-17 were identified as a key period of growth for the hind limbs, during which they undergo accelerated development and nearly quadruple in length. Histology performed on fore- and hind limbs from this period indicates a higher rate of cellular differentiation in the long bones of the hind limbs. Immunohistochemical assays indicate that cellular proliferation is also occurring at a significantly greater rate in the long bones of the hind limb at 6 days after birth. Taken together, these results suggest that a faster rate of cellular proliferation and differentiation in the long bones of the hind limb relative to those of the forelimb generates a period of accelerated growth through which the adult limb phenotype of M. domestica is achieved. Assays for gene expression suggest that the molecular basis of this differential growth differs from that previously identified for differential pre-natal growth in opossum fore- and hind limbs.

  19. Using cellzilla for plant growth simulations at the cellular level

    PubMed Central

    Shapiro, Bruce E.; Meyerowitz, Elliot M.; Mjolsness, Eric

    2013-01-01

    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction. PMID:24137172

  20. Using cellzilla for plant growth simulations at the cellular level.

    PubMed

    Shapiro, Bruce E; Meyerowitz, Elliot M; Mjolsness, Eric

    2013-01-01

    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction.

  1. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  2. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  3. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  4. Structural and cellular changes during bone growth in healthy children.

    PubMed

    Parfitt, A M; Travers, R; Rauch, F; Glorieux, F H

    2000-10-01

    Normal postnatal bone growth is essential for the health of adults as well as children but has never been studied histologically in human subjects. Accordingly, we analyzed iliac bone histomorphometric data from 58 healthy white subjects, aged 1.5-23 years, 33 females and 25 males, of whom 48 had undergone double tetracycline labeling. The results were compared with similar data from 109 healthy white women, aged 20-76 years, including both young adult reference ranges and regressions on age. There was a significant increase with age in core width, with corresponding increases in both cortical width and cancellous width. In cancellous bone there were increases in bone volume and trabecular thickness, but not trabecular number, wall thickness, interstitial thickness, and inferred erosion depth. Mineral apposition rates declined on the periosteal envelope and on all subdivisions of the endosteal envelope. Because of the concomitant increase in wall thickness, active osteoblast lifespan increased substantially. Bone formation rate was almost eight times higher on the outer than on the inner periosteum, and more than four times higher on the inner than on the outer endocortical surface. On the cancellous surface, bone formation rate and activation frequency declined in accordance with a fifth order polynomial that matched previously published biochemical indices of bone turnover. The analysis suggested the following conclusions: (1) Between 2 and 20 years the ilium grows in width by periosteal apposition (3.8 mm) and endocortical resorption (3.2 mm) on the outer cortex, and net periosteal resorption (0.4 mm) and net endocortical formation (1.0 mm) on the inner cortex. (2) Cortical width increases from 0.52 mm at age 2 years to 1.14 mm by age 20 years. To attain adult values there must be further endocortical apposition of 0.25 mm by age 30 years, at a time when cancellous bone mass is declining. (3) Lateral modeling drift of the outer cortex enlarges the marrow cavity

  5. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica.

    PubMed

    Dowling, Anna; Doroba, Carolyn; Maier, Jennifer A; Cohen, Lorna; VandeBerg, John; Sears, Karen E

    2016-06-01

    A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs. PMID:27194412

  6. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    PubMed

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc; Geiselmann, Johannes; de Jong, Hidde

    2016-03-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  7. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  8. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane

    PubMed Central

    Vitriol, Eric A; Zheng, James Q

    2012-01-01

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to their targets. Research in the past two decades has also gained significant insight into the mechanisms by which growth cones translate extracellular signals into directional migration. This review aims to examine new progress towards understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. PMID:22445336

  9. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    PubMed

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  10. Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells.

    PubMed

    Tang, Fu; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2015-11-18

    In this work, we report the facile synthesis of functional core-shell structured nanoparticles with fluorescence enhancement, which show specific targeting of cancer cells. Biopolymer poly-l-lysine was used to coat the silver core with various shell thicknesses. Then, the nanoparticles were functionalized with folic acid as a targeting agent for folic acid receptor. The metal-enhanced fluorescence effect was observed when the fluorophore (5-(and-6)-carboxyfluorescein-succinimidyl ester) was conjugated to the modified nanoparticle surface. Cellular imaging assay of the nanoparticles in folic acid receptor-positive cancer cells showed their excellent biocompatibility and selectivity. The as-prepared functional nanoparticles demonstrate the efficiency of the metal-enhanced fluorescence effect and provide an alternative approach for the cellular imaging and targeting of cancer cells.

  11. Possible cellular regulation schemes of isoprene synthesis and emission under different ambient carbon dioxide levels. (Invited)

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Schnitzler, J.; Arneth, A.; Monson, R. K.; Niinemets, U.

    2010-12-01

    Research on the effects of higher atmospheric carbon dioxide (CO2) levels on isoprene synthesis and emission leaded to several newly proposed regulation schemes. They can be classified as substrate level control on one side and as energetic cofactor control of the plastidic 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway on the other one. Viewed on a whole cell scale, the precursors of isoprene, such as dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), can be found in several cellular compartments such as chloroplasts, cytosol and mitochondria. Furthermore, necessary entry points into the isoprene synthesis pathway like phosphoenolpyruvate (PEP) and pyruvate are provided by two processes, photosynthesis and glycolysis, which are as well located in different cellular compartments. These findings imply, that the effect of modulating the isoprene emission under high levels of atmospheric CO2 have to take transport over membranes, possible concurrent pathways, i.e. Shikimi acid pathway or anaplerotic metabolism reactions and the availability of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) on a cellular scale into account. In this modeling study we applied box models that include several facets of the proposed regulation and transport schemes. The models have been set up such that at least two cellular compartments, chloroplast and cytosol are taken into account. The boxes itself represent metabolites and several possible regulation schemes have been realized by the formulation of rate equations between those metabolite pools. As many intermediates are not readily available as measured values, the models aim to build a set of tools to simulate possible regulatory schemes and provide parameter estimations for key processes. Inverse modeling techniques allow to assess certain parameter ranges within the proposed regulation schemes by fitting the models to data on isoprene emission and photosynthesis under

  12. Growth Hormone Effects in Immune Stress: AKT/eNOS Signaling Module in the Cellular Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activation of the constitutive endothelial nitric-oxide synthase (eNOS) and expression of inducible NOS (iNOS) with subsequent nitric oxide production are among the early cellular responses that follow in a systemic exposure of animals to lipopolysaccharide (LPS). Growth hormone (GH) has been sh...

  13. Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.

    2013-09-01

    In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.

  14. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.

    PubMed

    Jeong, S M; Lee, J; Finley, L W S; Schmidt, P J; Fleming, M D; Haigis, M C

    2015-04-16

    Iron metabolism is essential for many cellular processes, including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor-suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism. PMID:24909164

  15. Effects of nicotine on cellular proliferation, macromolecular synthesis and cell cycle phase distribution in human and murine cells

    SciTech Connect

    Konno, S.; Chiao, J.; Rossi, J.; Wang, C.H.; Wu, J.M.

    1986-05-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in established human and murine cells. In the human promyelocytic HL-60 leukemic cells, 3 mM nicotine results in a 50% inhibition of cellular proliferation after 80 h. Nicotine was also found to affect the cell cycle distribution of HL-60 cells. Treatment with 4 mM nicotine for 20 h causes an increase in proportion of Gl-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes cell arrest in the Gl-phase which may in part account for its effects on cell growth. To determine whether nicotine has a primary effect on the uptake/transport of macromolecular precursors into cells, HL-60 cells were treated with 2-6 mM nicotine for 30 h/sub 3/ at the end of which time cells were labeled with (/sup 3/H)thymidine, (/sup 3/H)uridine, (/sup 14/C)lysine and (/sup 35/S)methionine, the trichloroacetic acid (TCA) soluble and insoluble radioactivities from each of the labeling conditions were determined. These studies show that nicotine primarily affect the synthesis of proteins.

  16. Transparent metal model study of the use of a cellular growth front to form aligned monotectic composite materials

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1988-01-01

    The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R.

  17. Physiological mechanisms in plant growth models: do we need a supra-cellular systems biology approach?

    PubMed

    Poorter, Hendrik; Anten, Niels P R; Marcelis, Leo F M

    2013-09-01

    In the first part of this paper, we review the extent to which various types of plant growth models incorporate ecophysiological mechanisms. Many growth models have a central role for the process of photosynthesis; and often implicitly assume C-gain to be the rate-limiting step for biomass accumulation. We subsequently explore the extent to which this assumption actually holds and under what condition constraints on growth due to a limited sink strength are likely to occur. By using generalized dose-response curves for growth with respect to light and CO₂, models can be tested against a benchmark for their overall performance. In the final part, a call for a systems approach at the supra-cellular level is made. This will enable a better understanding of feedbacks and trade-offs acting on plant growth and its component processes. Mechanistic growth models form an indispensable element of such an approach and will, in the end, provide the link with the (sub-)cellular approaches that are yet developing. Improved insight will be gained if model output for the various physiological processes and morphological variables ('virtual profiling') is compared with measured correlation networks among these processes and variables. Two examples of these correlation networks are presented.

  18. Inhibition of host protein synthesis and degradation of cellular mRNAs during infection by influenza and herpes simplex virus

    SciTech Connect

    Inglis, S.C.

    1982-12-01

    Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpes virus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRN As in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.

  19. Cellular basis of growth suppression by submergence in azuki bean epicotyls

    PubMed Central

    Ooume, Kentaro; Inoue, Yuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Fujii, Shuhei; Yamamoto, Ryoichi; Hoson, Takayuki

    2009-01-01

    Background and Aims Complete submergence severely reduces growth rate and productivity of terrestrial plants, but much remains to be elucidated regarding the mechanisms involved. The aim of this study was to clarify the cellular basis of growth suppression by submergence in stems. Methods The effects of submergence on the viscoelastic extensibility of the cell wall and the cellular osmotic concentration were studied in azuki bean epicotyls. Modifications by submergence to chemical properties of the cell wall; levels of osmotic solutes and their translocation from the seed to epicotyls; and apoplastic pH and levels of ATP and ethanol were also examined. These cellular events underwater were compared in etiolated and in light-grown seedlings. Key Results Under submergence, the osmotic concentration of the cell sap was substantially decreased via decreased concentrations of organic compounds including sugars and amino acids. In contrast, the viscoelastic extensibility of the cell wall was kept high. Submergence also decreased ATP and increased the pH of the apoplastic solution. Alcoholic fermentation was stimulated underwater, but the resulting accumulated ethanol was not directly involved in growth suppression. Light partially relieved the inhibitory effects of submergence on growth, osmoregulation and sugar translocation. Conclusions A decrease in the levels of osmotic solutes is a main cause of underwater growth suppression in azuki bean epicotyls. This may be brought about by suppression of solute uptake via breakdown of the H+ gradient across the plasma membrane due to a decrease in ATP. The involvement of cell wall properties in underwater growth suppression remains to be fully elucidated. PMID:18940853

  20. Global theory of steady deep-cellular growth in directional solidification.

    PubMed

    Chen, Yong-Qiang; Xu, Jian-Jun

    2011-04-01

    The present paper is concerned with the global asymptotic theory of steady deep-cellular growth in directional solidification of binary mixtures. We consider the two-dimensional model with nonzero isotropic surface tension and obtain the global uniformly valid asymptotic solutions for the steady state of the system in the limit of the Péclet number ε→0; ε is defined as the ratio of the radius of the cell's tip and mass diffussion length. The whole physical space is divided into the outer region and root region; the solutions in each subregion are solved, respectively, and matched with each other in the intermediate region. The results show that given growth conditions and material properties, the global solutions for steady state of the system contain two free parameters: the Péclet number and asymptotic width parameter λ(0), which are related to the geometry of cellular structure: the cell tip radius and primary spacing. One of the most important conclusions drawn from this analysis is that the steady-state solutions of cellular growth have a complicated structure with three internal layers in the root region; for given (ε,λ(0)), there exists a discrete set of the global steady-state solutions subject to the quantization condition that are profoundly affected by the surface tension. Each eigenvalue calculated from this quantization condition determines the total length of the finger described by the corresponding global steady-state solution.

  1. Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer

    PubMed Central

    Schwarzenbacher, Daniela; Deutsch, Alexander; Perakis, Samantha; Ling, Hui; Ivan, Cristina; Calin, George Adrian; Rinner, Beate; Gerger, Armin; Pichler, Martin

    2014-01-01

    The putative tumor suppressor gene spinophilin has been involved in cancer progression in several types of cancer. In this study, we explored the prognostic value of spinophilin expression in 162 colon adenocarcinoma patients. In addition, we generated stably expressing spinophilin-directed shRNA CRC cell lines and studied the influence of spinophilin expression on cellular phenotypes and molecular interactions. We independently confirmed that low spinophilin expression levels are associated with poor prognosis in CRC patients (p = 0.038). A reduction of spinophilin levels in p53 wild-type HCT116 and p53-mutated Caco-2 cells led to increased cellular growth rates and anchorage-independent growth (p<0.05). At molecular level, reduced spinophilin levels increased the expression of the transcription factor E2F-1. In addition, we observed an increased formation of tumor spheres, increased number of CD133 positive cells and an increased resistance to 5-flourouracil (p<0.05). Finally, treatment with the de-methylating agent 5-aza-dC increased spinophilin expression in CRC cells (p<0.05), corroborated by a correlation of spinophilin expression and extent of methylated CpG sites in the gene promoter region (p<0.001). In conclusion, gain of aggressive biological properties of CRC cells including cellular growth, cancer stem cell features and 5-flourouracil resistance partly explains the role of spinophilin in CRC. PMID:25261368

  2. Some concepts concerning twinning and cellular growth of bulk barium metaborate (BBO) crystals

    NASA Astrophysics Data System (ADS)

    Tyurikov, V. I.; Tsvetkov, E. G.; Antsygin, V. D.; Khranenko, G. G.; Samoilova, E. G.

    2000-08-01

    Bulk single β-BaB 2O 4 (BBO) crystals have been grown by the TSSG method in Czochralski variant, using Na 2O and NaF as the solvents. It was found that formation of twins (electric type) or cellular substructures of different scales is their specific growth feature. We believe that their formation is governed by changes in the composition and structure of the double-electric layer (DEL) at the interface of crystal growth. In Z-axis crystals only microtwins structures were revealed whose number and localization are determined by the composition of used solvent. The cellular growth of these crystals at a particular stage is a result of the impossibility of frontal formation of an antipolar structure (macrotwin) under the conditions of increasing charge density in the DEL. In the Y( X-)-axis crystals the conditions for formation of one or three (five, etc.) macrotwin boundaries and, hence, noncellular growth are always realized. Model concepts, characterizing seeding and growth of Y( X-)- and Z-axis BBO crystals are discussed.

  3. The Drosophila Cyclin D–Cdk4 complex promotes cellular growth

    PubMed Central

    Datar, Sanjeev A.; Jacobs, Henning W.; de la Cruz, Aida Flor A.; Lehner, Christian F.; Edgar, Bruce A.

    2000-01-01

    Mammalian cyclin D–Cdk4 complexes have been characterized as growth factor-responsive cell cycle regulators. Their levels rise upon growth factor stimulation, and they can phosphorylate and thus neutralize Retinoblastoma (Rb) family proteins to promote an E2F-dependent transcriptional program and S-phase entry. Here we characterize the in vivo function of Drosophila Cyclin D (CycD). We find that Drosophila CycD–Cdk4 does not act as a direct G1/S-phase regulator, but instead promotes cellular growth (accumulation of mass). The cellular response to CycD–Cdk4-driven growth varied according to cell type. In undifferentiated proliferating wing imaginal cells, CycD–Cdk4 caused accelerated cell division (hyperplasia) without affecting cell cycle phasing or cell size. In endoreplicating salivary gland cells, CycD–Cdk4 caused excessive DNA replication and cell enlargement (hypertrophy). In differentiating eyes, CycD–Cdk4 caused cell enlargement (hypertrophy) in post-mitotic cells. Interaction tests with a Drosophila Rb homolog, RBF, indicate that CycD–Cdk4 can counteract the cell cycle suppressive effects of RBF, but that its growth promoting activity is mediated at least in part via other targets. PMID:10970848

  4. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    SciTech Connect

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  5. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    PubMed Central

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  6. Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution

    PubMed Central

    Szabó, András; Merks, Roeland M. H.

    2013-01-01

    Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell “successful” in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development. PMID:23596570

  7. Global stabilities, selection of steady cellular growth, and origin of side branches in directional solidification.

    PubMed

    Xu, Jian-Jun; Chen, Yong-Qiang

    2011-06-01

    The present paper investigates the global instability mechanisms of arrayed-cellular growth with asymptotic approach. We find that the system of directional solidification involves two types of global instability mechanisms: the low-frequency instability and the global oscillatory instability, which are profoundly similar to that found in the system of viscous fingering and free dendritic growth. Based on these global instabilities, the neutral mode selection principle for the limiting state of growth is proposed; the origin and essence of side branching on the interface are elucidated with the so-called global trapped wave mechanism, which involves the interfacial wave reflection and amplification along the interface. It is demonstrated that side branching is self-sustaining and can persist without continuously applying the external noise; the effect of the anisotropy of interfacial energy is not essential for the selection of steady cellular growth and for the origin and formation of side branching at the interface. The comparisons of theoretical results are made with the most recent experimental works and the numerical simulations which show very good quantitative agreement.

  8. Modeling dynamic urban growth using hybrid cellular automata and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Rabbani, Amirhosein; Aghababaee, Hossein; Rajabi, Mohammad A.

    2012-01-01

    Conventional raster-based cellular automata (CA) confront many difficulties because of cell size and neighborhood sensitivity. Alternatively, vector CA-based models are very complex and difficult to implement. We present a hybrid cellular automata (HCA) model as a combination of cellular structure and vector concept. The space is still defined by a set of cells, but rasterized spatial objects are also utilized in the structure of transition rules. Particle swarm optimization (PSO) is also used to calculate the urbanization probability of cells based on their distance from the development parameters. The proposed model is applied to Landsat satellite imagery of the city of Tehran, Iran with 28.5-m spatial resolution to simulate the urban growth from 1988 to 2010. Statistical comparison of the ground truth and the simulated image using a kappa coefficient shows an accuracy of 83.42% in comparison to the 81.13% accuracy for the conventional Geo-CA model. Moreover, decreasing the spatial resolution by a factor of one-fourth has reduced the accuracy of the HCA and Geo-CA models by 1.19% and 3.04%, respectively, which shows the lower scale sensitivity of the proposed model. The HCA model is developed to have the simplicity of cellular structure together with optimum features of vector models.

  9. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.

    PubMed

    Marengo, Barbara; Nitti, Mariapaola; Furfaro, Anna Lisa; Colla, Renata; Ciucis, Chiara De; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola; Domenicotti, Cinzia

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy. PMID:27418953

  10. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  11. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.

    PubMed

    Marengo, Barbara; Nitti, Mariapaola; Furfaro, Anna Lisa; Colla, Renata; Ciucis, Chiara De; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola; Domenicotti, Cinzia

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  12. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    PubMed Central

    Ciucis, Chiara De

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy. PMID:27418953

  13. Modeling of dendrite growth with cellular automaton method in the solidification of alloys

    NASA Astrophysics Data System (ADS)

    Yin, Hebi

    Dendrite growth is the primary form of crystal growth observed in laser deposition process of most commercial metallic alloys. The properties of metallic alloys strongly depend on their microstructure; that is the shape, size, orientation and composition of the dendrite matrix formed during solidification. Understanding and controlling the dendrite growth is vital in order to predict and achieve the desired microstructure and hence properties of the laser deposition metals. A two dimensional (2D) model combining the finite element method (FE) and the cellular automaton technique (CA) was developed to simulate the dendrite growth both for cubic and for hexagonal close-packed (HCP) crystal structure material. The application of this model to dendrite growth occurring in the molten pool during the Laser Engineered Net Shaping (LENSRTM) process was discussed. Based on the simulation results and the previously published experimental data, the expressions describing the relationship between the cooling rate and the dendrite arm spacing (DAS), were proposed. In addition, the influence of LENS process parameters, such as the moving speed of the laser beam and the layer thickness, on the DAS was also discussed. Different dendrite morphologies calculated at different locations were explained based on local solidification conditions. And the influence of convection on dendrite growth was discussed. The simulation results showed a good agreement with previously published experiments. This work contributes to the understanding of microstructure formation and resulting mechanical properties of LENS-built parts as well as provides a fundamental basis for optimization of the LENS process.

  14. Modeling and predicting urban growth pattern of the Tokyo metropolitan area based on cellular automata

    NASA Astrophysics Data System (ADS)

    Zhao, Yaolong; Zhao, Junsan; Murayama, Yuji

    2008-10-01

    The period of high economic growth in Japan which began in the latter half of the 1950s led to a massive migration of population from rural regions to the Tokyo metropolitan area. This phenomenon brought about rapid urban growth and urban structure changes in this area. Purpose of this study is to establish a constrained CA (Cellular Automata) model with GIS (Geographical Information Systems) to simulate urban growth pattern in the Tokyo metropolitan area towards predicting urban form and landscape for the near future. Urban land-use is classified into multi-categories for interpreting the effect of interaction among land-use categories in the spatial process of urban growth. Driving factors of urban growth pattern, such as land condition, railway network, land-use zoning, random perturbation, and neighborhood interaction and so forth, are explored and integrated into this model. These driving factors are calibrated based on exploratory spatial data analysis (ESDA), spatial statistics, logistic regression, and "trial and error" approach. The simulation is assessed at both macro and micro classification levels in three ways: visual approach; fractal dimension; and spatial metrics. Results indicate that this model provides an effective prototype to simulate and predict urban growth pattern of the Tokyo metropolitan area.

  15. Mechanistic links between cellular trade-offs, gene expression, and growth.

    PubMed

    Weiße, Andrea Y; Oyarzún, Diego A; Danos, Vincent; Swain, Peter S

    2015-03-01

    Intracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod's law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host-circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine.

  16. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    PubMed

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment.

  17. Cellular and molecular regulation of muscle growth and development in meat animals.

    PubMed

    Dayton, W R; White, M E

    2008-04-01

    Although in vivo and in vitro studies have established that anabolic steroids, transforming growth factor-beta (TGF-beta), and myostatin affect muscle growth in meat-producing animals, their mechanisms of action are not completely understood. Anabolic steroids have been widely used as growth promoters in feedlot cattle for over 50 yr. A growing body of evidence suggests that increased muscle levels of IGF-I and increased muscle satellite cell numbers play a role in anabolic steroid enhanced muscle growth. In contrast to anabolic steroids, the members of the TGF-beta-myostatin family suppress muscle growth in vivo and suppress both proliferation and differentiation of cultured myogenic cells. Recent evidence suggests that IGFBP-3 and IGFBP-5 play a role in mediating the proliferation-suppressing actions of both TGF-beta and myostatin on cultured myogenic cells. Consequently, this review will focus on the roles of IGF-I and IGFBP in the cellular and molecular mechanisms of action of anabolic steroids and TGF-beta and myostatin, respectively.

  18. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  19. Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    NASA Technical Reports Server (NTRS)

    Song, H.; Tewari, S. N.

    1996-01-01

    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules.

  20. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  1. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales.

    PubMed

    Band, Leah R; Fozard, John A; Godin, Christophe; Jensen, Oliver E; Pridmore, Tony; Bennett, Malcolm J; King, John R

    2012-10-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.

  2. Carboxy-terminal truncations of epidermal growth factor (EGF) receptor affect diverse EGF-induced cellular responses.

    PubMed

    Li, W; Hack, N; Margolis, B; Ullrich, A; Skorecki, K; Schlessinger, J

    1991-08-01

    The binding of epidermal growth factor (EGF) to its receptor induces tyrosine phosphorylation of phospholipase C gamma (PLC gamma), which appears to be necessary for its activation leading to phosphatidyl inositol (PI) hydrolysis. Moreover, EGF-receptor (EGF-R) activation and autophosphorylation results in binding of PLC gamma to the tyrosine phosphorylated carboxy-terminus of the receptor. To gain further insights into the mechanisms and interactions regulating these processes, we have analyzed transfected NIH-3T3 cells expressing two EGF-R carboxy-terminal deletion mutants (CD63 and CD126) with reduced capacity to stimulate PI hydrolysis, Ca2+ rises, and DNA synthesis. In fact, the CD126 mutant lacking 126 carboxy-terminal amino acids, including four tyrosine autophosphorylation sites, was unable to stimulate PI hydrolysis or Ca2+ rise in response to EGF. Surprisingly, EGF binding to the cell lines expressing CD63 or CD126 mutants was followed by similar stimulation of tyrosine phosphorylation of PLC gamma. Our results suggest that although necessary, tyrosine phosphorylation of PLC gamma may not be sufficient for stimulation and PI hydrolysis. It is clear, however, that the carboxy-terminal region of EGF-R is involved in regulation of interactions with cellular targets and therefore plays a crucial role in postreceptor signaling pathways.

  3. Contrasting roles for Myc and Mad proteins in cellular growth and differentiation.

    PubMed Central

    Chin, L; Schreiber-Agus, N; Pellicer, I; Chen, K; Lee, H W; Dudast, M; Cordon-Cardo, C; DePinho, R A

    1995-01-01

    The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667316

  4. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    NASA Astrophysics Data System (ADS)

    Parab, Harshala J.; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S.

    2011-09-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  5. Synthesis of hydroxyeicosatetraenoic acids (HETE's) by adrenal glomerulosa cells and incorporation into cellular lipids

    SciTech Connect

    Campbell, W.B.; Richards, C.F.; Brady, M.T.; Falck, J.R.

    1986-03-05

    The role of lipoxygenase metabolites of arachidonic acid (AA) in the regulation of aldosterone secretion was studied in isolated rat adrenal glomerulosa cells. Cells were incubated with /sup 14/C-AA in the presence of angiotensin (AII). The media was extracted, metabolites isolated by HPLC, and structures of the metabolites determined by UV absorbance and mass spectrometry. The major products were 12- and 15-HETE with lesser amounts of 11- and 5-HETE. When adrenal cells were incubated with 15-, 12- or 5-HPETE or their respective HETE's (0.03-300nM), there was no significant change in basal or AII-stimulated aldosterone release. Cells were incubated with (/sup 3/H)-AA, -5-HETE, -15-HETE, -12-HETE or -LTB. The cellular lipids were extracted and analyzed by TLC. AA was incorporated into phospholipids (22%), cholesterol esters (50%) and triglycerides (21%). Neither the HETE's or LTB/sub 4/ were incorporated into phospholipids. 5-HETE was taken up into di- and mono-glycerides. The rates of incorporation of AA and 5-HETE were similar (+ 1/2 = 10 min). The incorporation of 5-HETE into glycerol esters did not modify the release of aldosterone by the cells. Thus, while adrenal cells synthesize HETE's, these eicosanoids do not appear to alter the synthesis of aldosterone.

  6. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba.

    PubMed

    Oukarroum, Abdallah; Barhoumi, Lotfi; Pirastru, Laura; Dewez, David

    2013-04-01

    The toxicity effect of silver nanoparticles (AgNPs) on growth and cellular viability was investigated on the aquatic plant Lemna gibba exposed over 7 d to 0, 0.01, 0.1, 1, and 10 mg/L of AgNPs. Growth inhibition was demonstrated by a significant decrease of frond numbers dependent on AgNP concentration. Under these conditions, reduction in plant cellular viability was detected for 0.1, 1, and 10 mg/L of AgNPs within 7 d of AgNPs treatment. This effect was highly correlated with the production of intracellular reactive oxygen species (ROS). A significant increase of intracellular ROS formation was triggered by 1 and 10 mg/L of AgNP exposure. The induced oxidative stress was related to Ag accumulation within L. gibba plant cells and with the increasing concentration of AgNP exposure in the medium. The authors' results clearly suggested that AgNP suspension represented a potential source of toxicity for L. gibba plant cells. Due to the low release capacity of free soluble Ag from AgNP dissolution in the medium, it is most likely that the intracellular uptake of Ag was directly from AgNPs, triggering cellular oxidative stress that may be due to the release of free Ag inside plant cells. Therefore, the present study demonstrated that AgNP accumulation in an aquatic environment may represent a potential source of toxicity and a risk for the viability of duckweeds. PMID:23341248

  7. Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins.

    PubMed

    Zhang, Jun; Karmakar, Surajit; Yu, Meihua; Mitter, Neena; Zou, Jin; Yu, Chengzhong

    2014-12-29

    A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules. PMID:25060135

  8. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12

    PubMed Central

    Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  9. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12.

    PubMed

    Gu, Shaobin; Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress.

  10. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12.

    PubMed

    Gu, Shaobin; Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  11. Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion.

    PubMed

    Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W

    2003-09-01

    The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.

  12. Growth model of binary alloy nanopowders for thermal plasma synthesis

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-01

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  13. Growth model of binary alloy nanopowders for thermal plasma synthesis

    SciTech Connect

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-15

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  14. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  15. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions

    SciTech Connect

    Moore, C.W.

    1982-03-01

    Nuclear genotype, growth phase, and the presence of metal ions all proved to be important in controlling the lethal effects of phleomycin in eukaryotic Saccharomyces cerevisiae. Among 120 normal and radiation-sensitive strains compared for their sensitivities to lethal effects of phleomycin, all mutant strains exhibiting enhanced sensitivities to phleomycin killing were also sensitive to killing by ionizing radiation. Mutants exhibiting sensitivities to phleomycin similar to normal strains of the same ploidy were sensitive to ultraviolet radiation. We conclude that cellular recovery from phleomycin-induced damage in yeast depends upon the function of some or all of 13 independent genes and upon at least some of the same steps in cellular pathways for the biological repair of damage by ionizing radiation. In this respect, the action of phleomycin is similar to the action of its structurally similar analog, bleomycin, even though phleomycin was substantially more cytotoxic. Stationary-phase haploid yeast cells were more sensitive than exponentially growing cells to killing by phleomycin. Survival of stationary-phase yeast was reduced to 0.3 +/- 0.07% (S.E.) after 20-min exposures to phleomycin (1 microgram/ml; approximately 6.7 x 10(-7) M), but lethal effects of phleomycin were completely eradicated (98% survival) by the presence of 0.05 M ethylenediaminetetraacetate during the treatment period. The inactivation indicates an important role for one or more metal ion(s) in the in vivo toxicity of the phleomycin-bleomycin group of anticancer antibiotics.

  16. [In vitro study over statins effects on cellular growth curves and its reversibility with mevalonate].

    PubMed

    Millan Núñez-Cortés, Jesús; Alvarez Rodriguez, Ysmael; Alvarez Novés, Granada; Recarte Garcia-Andrade, Carlos; Alvarez-Sala Walther, Luis

    2014-01-01

    HMG-CoA-Reductase inhibitors, also known as statins, are currently the most powerful cholesterol-lowering drugs available on the market. Clinical trials and experimental evidence suggest that statins have heavy anti-atherosclerotic effects. These are in part consequence of lipid lowering but also result from pleiotropic actions of the drugs. These so-called pleiotropic properties affect various aspects of cell function, inflammation, coagulation, and vasomotor activity. These effects are mediated either indirectly through LDL-c reduction or via a direct effect on cellular functions. Although many of the pleiotropic properties of statins may be a class effect, some may be unique to certain agents and account for differences in their pharmacological activity. So, although statins typically have similar effects on LDL-c levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects. In this paper we analize the in vitro effects of different statins over different cell lines from cells implicated in atherosclerotic process: endothelial cells, fibroblasts, and vascular muscular cells. In relation with our results we can proof that the effects of different dosis of different statins provides singular effects over growth curves of different cellular lines, a despite of a class-dependent effects. So, pleiotropic effects and its reversibility with mevalonate are different according with the molecule and the dosis. PMID:24126321

  17. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed

    Kubota, R; Yamada, S; Ishiwata, K; Tada, M; Ido, T; Kubota, K

    1993-04-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content.

  18. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed Central

    Kubota, R.; Yamada, S.; Ishiwata, K.; Tada, M.; Ido, T.; Kubota, K.

    1993-01-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content. Images Figure 1 PMID:8471428

  19. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  20. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  1. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  2. Regulatory role for amino acids in mammary gland growth and milk synthesis.

    PubMed

    Kim, Sung Woo; Wu, Guoyao

    2009-05-01

    The health and growth of mammalian neonates critically depend on the yield and composition of their mothers' milk. However, impaired lactogenesis occurs in both women in response to stress and hormonal imbalance and in primiparous sows which exhibit low voluntary feed intake and underdevelopment of mammary tissues. Because of ethical concerns over lactation research with women and children, swine is often used as an animal model to study mammary gland development and the underlying regulatory mechanisms. Available evidence from work with lactating sows shows that amino acids are not only building blocks for protein but are also key regulators of metabolic pathways critical to milk production. Particularly, arginine is the common substrate for the generation of nitric oxide (NO; a major vasodilator and angiogenic factor) and polyamines (key regulators of protein synthesis). Thus, modulation of the arginine-NO pathway may provide a new strategy to enhance the growth (including vascular growth) of mammary tissue and its uptake of nutrients, therefore improving lactation performance in mammals. In support of this proposition, supplementing 0.83% L: -arginine (as 1% L: -arginine-HCl) or 50 mg/day diethylenetriamine-NO adduct (NO donor) to diets of lactating primiparous sows increased milk production and the growth of suckling piglets. Future studies with animal models (e.g., pigs, sheep, cows, and rats) are necessary to elucidate the underlying mechanisms at molecular, cellular, tissue, and whole-body levels. PMID:18683019

  3. Evolutionary Growth of Genome Representations on Artificial Cellular Organisms with Indirect Encodings.

    PubMed

    Nichele, Stefano; Giskeødegård, Andreas; Tufte, Gunnar

    2016-01-01

    Evolutionary design targets systems of continuously increasing complexity. Thus, indirect developmental mappings are often a necessity. Varying the amount of genotype information changes the cardinality of the mapping, which in turn affects the developmental process. An open question is how to find the genotype size and representation in which a developmental solution would fit. A restricted pool of genes may not be large enough to encode a solution or may need complex heuristics to find a realistic size. On the other hand, using the whole set of possible regulatory combinations may be intractable. In nature, the genomes of biological organisms are not fixed in size; they slowly evolve and acquire new genes by random gene duplications. Such incremental growth of genome information can be beneficial also in the artificial domain. For an evolutionary and developmental (evo-devo) system based on cellular automata, we investigate an incremental evolutionary growth of genomes without any a priori knowledge on the necessary genotype size. Evolution starts with simple solutions in a low-dimensional space and incrementally increases the genotype complexity by means of gene duplication, allowing the evolution of scalable genomes that are able to adapt genetic information content while compactness and efficiency are retained. The results are consistent when the target phenotypic complexity, the geometry size, and the number of cell states are scaled up. PMID:26606469

  4. Cellular and dendritic growth in a binary melt - A marginal stability approach

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.

  5. Sustained swimming improves muscle growth and cellularity in gilthead sea bream.

    PubMed

    Ibarz, Antoni; Felip, Olga; Fernández-Borràs, Jaume; Martín-Pérez, Miguel; Blasco, Josefina; Torrella, Joan R

    2011-02-01

    Two groups of juvenile gilthead sea bream were kept on two different swimming regimes (Exercise, E: 1.5 body length s(-1) or Control, C: voluntary activity) for 1 month. All fish were first adapted to an experimental diet low in protein and rich in digestible carbohydrates (37.2% protein, 40.4% carbohydrates, 12.5% lipid). The cellularity and capillarisation of white muscle from two selected areas (cranial (Cr), below the dorsal fin, and caudal (Ca), behind the anal fin) were compared. The body weight and specific growth rate (SGR) of group E rose significantly without an increment in feed intake, pointing to higher nutrient-use efficiency. The white muscle fibre cross-sectional area and the perimeter of cranial samples increased after sustained activity, evidencing that sustained exercise enhances hypertrophic muscle development. However, we cannot conclude or rule out the possibility of fibre recruitment because the experimental period was too short. In the control group, capillarisation, which is extremely low in gilthead sea bream white muscle, showed a significantly higher number of fibres with no surrounding capillaries (F0) in the cranial area than in the caudal area, unlike the exercise group. Sustained swimming improved muscle machinery even in tissue normally associated with short bouts of very rapid anaerobic activity. So, through its effect on the use of tissue reserves and nutrients, exercise contributes to improvements in fish growth what can contribute to reducing nitrogen losses.

  6. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.

  7. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  8. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  9. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions.

    PubMed

    Brandao, Katherine; Deason-Towne, Francina; Zhao, Xiaoyun; Perraud, Anne-Laure; Schmitz, Carsten

    2014-12-01

    The channel kinases TRPM6 and TRPM7 are both members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels and the only known fusions of an ion channel pore with a kinase domain. TRPM6 and TRPM7 form functional, tetrameric channel complexes at the plasma membrane by heteromerization. TRPM6 was previously shown to cross-phosphorylate TRPM7 on threonine residues, but not vice versa. Genetic studies demonstrated that TRPM6 and TRPM7 fulfill non-redundant functions and that each channel contributes uniquely to the regulation of Mg(2+) homeostasis. Although there are indications that TRPM6 and TRPM7 can influence each other's cellular distribution and activity, little is known about the functional relationship between these two channel-kinases. In the present study, we examined how TRPM6 kinase activity influences TRPM7 serine phosphorylation, intracellular trafficking, and cell surface expression of TRPM7, as well as Mg(2+)-dependent cellular growth. We found TRPM7 serine phosphorylation via the TRPM6 kinase, but no TRPM6 serine phosphorylation via the TRPM7 kinase. Intracellular trafficking of TRPM7 was altered in HEK-293 epithelial kidney cells and DT40 B cells in the presence of TRPM6 with intact kinase activity, independently of the availability of extracellular Mg(2+), but TRPM6/7 surface labeling experiments indicate comparable levels of the TRPM6/7 channels at the plasma membrane. Furthermore, using a complementation approach in TRPM7-deficient DT40 B-cells, we demonstrated that wild-type TRPM6 inhibited cell growth under hypomagnesic cell culture conditions in cells co-expressing TRPM6 and TRPM7; however, co-expression of a TRPM6 kinase dead mutant had no effect-a similar phenotype was also observed in TRPM6/7 co-expressing HEK-293 cells. Our results provide first clues about how heteromer formation between TRPM6 and TRPM7 influences the biological activity of these ion channels. We show that TRPM6 regulates TRPM7 intracellular

  10. Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the S1 and M2 genes.

    PubMed Central

    Tyler, K L; Squier, M K; Brown, A L; Pike, B; Willis, D; Oberhaus, S M; Dermody, T S; Cohen, J J

    1996-01-01

    The mammalian reoviruses are capable of inhibiting cellular DNA synthesis and inducing apoptosis. Reovirus strains type 3 Abney (T3A) and type 3 Dearing (T3D) inhibit cellular DNA synthesis and induce apoptosis to a substantially greater extent than strain type 1 Lang (T1L). We used T1L x T3A and T1L x T3D reassortant viruses to identify viral genes associated with differences in the capacities of reovirus strains to elicit these cellular responses to viral infection. We found that the S1 and M2 genome segments determine differences in the capacities of both T1L x T3A and T1L x T3D reassortant viruses to inhibit cellular DNA synthesis and to induce apoptosis. These genes encode viral outer-capsid proteins that play important roles in viral attachment and disassembly. To extend these findings, we used field isolate strains of reovirus to determine whether the strain-specific differences in inhibition of cellular DNA synthesis and induction of apoptosis are also associated with viral serotype, a property determined by the S1 gene. In these experiments, type 3 field isolate strains were found to inhibit cellular DNA synthesis and to induce apoptosis to a greater extent than type 1 field isolate strains. Statistical analysis of these data indicate a significant correlation between the capacity of T1L x T3A and T1L x T3D reassortant viruses and field isolate strains to inhibit cellular DNA synthesis and to induce apoptosis. These findings suggest that reovirus-induced inhibition of cellular DNA synthesis and induction of apoptosis are linked and that both phenomena are induced by early steps in the viral replication cycle. PMID:8892922

  11. Reovirus inhibition of cellular DNA synthesis: role of the S1 gene.

    PubMed

    Sharpe, A H; Fields, B N

    1981-04-01

    Type 3 reovirus inhibits L cell DNA synthesis, whereas type 1 reovirus exerts little or no effect on L cell DNA synthesis. By using recombinant viruses containing both type 1 and type 3 double-standard RNA segments, we determined that one double-stranded RNA segment, the reovirus type 3 S1 double-stranded RNA segment which encodes the viral hemagglutinin, segregates with and is responsible for the capacity of reovirus type 3 to inhibit L cell DNA synthesis.

  12. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth

    NASA Astrophysics Data System (ADS)

    Jelinek, Bohumir; Eshraghi, Mohsen; Felicelli, Sergio; Peters, John F.

    2014-03-01

    An extremely scalable lattice Boltzmann (LB)-cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. Catalogue identifier: AEQZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29,767 No. of bytes in distributed program, including test data, etc.: 3131,367 Distribution format: tar.gz Programming language: Fortran 90. Computer: Linux PC and clusters. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Program is parallelized using MPI

  13. Weakly faceted cellular patterns versus growth-induced plastic deformation in thin-sample directional solidification of monoclinic biphenyl.

    PubMed

    Börzsönyi, Tamás; Akamatsu, Silvère; Faivre, Gabriel

    2009-11-01

    We present an experimental study of thin-sample directional solidification (T-DS) in impure biphenyl. The platelike growth shape of the monoclinic biphenyl crystals includes two low-mobility (001) facets and four high-mobility {110} facets. Upon T-DS, biphenyl plates oriented with (001) facets parallel to the sample plane can exhibit either a strong growth-induced plastic deformation (GID), or deformation-free weakly faceted (WF) growth patterns. We determine the respective conditions of appearance of these phenomena. GID is shown to be a long-range thermal-stress effect, which disappears when the growth front has a cellular structure. An early triggering of the cellular instability allowed us to avoid GID and study the dynamics of WF patterns as a function of the orientation of the crystal.

  14. Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo.

    PubMed

    Bassel, George W; Stamm, Petra; Mosca, Gabriella; Barbier de Reuille, Pierre; Gibbs, Daniel J; Winter, Robin; Janka, Ales; Holdsworth, Michael J; Smith, Richard S

    2014-06-10

    Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.

  15. Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth

    PubMed Central

    2013-01-01

    Background Poly(4-hydroxybutyrate) (P4HB), belonging to the family of bacterial polyhydroxyalkanoates (PHAs), is a strong, flexible and absorbable material which has a large variety of medical applications like tissue engineering and drug delivery. For efficient production of P4HB recombinant Escherichia coli has been employed. It was previously found that the P4HB synthesis is co-related with the cell growth. In this study, we aimed to investigate the physiology of P4HB synthesis, and to reduce the total production cost by using cheap and widely available xylose as the growth substrate and sodium 4-hydroxybutyrate (Na-4HB) as the precursor for P4HB synthesis. Results Six different E. coli strains which are able to utilize xylose as carbon source were compared for their ability to accumulate P4HB. E. coli JM109 was found to be the best strain regarding the specific growth rate and the P4HB content. The effect of growth conditions such as temperature and physiological stage of Na-4HB addition on P4HB synthesis was also studied in E. coli JM109 recombinant in batch culture. Under the tested conditions, a cellular P4HB content in the range of 58 to 70% (w w-1) and P4HB concentrations in the range of 2.76 to 4.33 g L-1 were obtained with a conversion yield (YP4HB/Na-4HB) of 92% w w-1 in single stage batch cultures. Interestingly, three phases were identified during P4HB production: the “growth phase”, in which the cells grew exponentially, the “accumulation phase”, in which the exponential cell growth stopped while P4HB was accumulated exponentially, and the “stagnation phase”, in which the P4HB accumulation stopped and the total biomass remained constant. Conclusions P4HB synthesis was found to be separated from the cell growth, i.e. P4HB synthesis mainly took place after the end of the exponential cell growth. High conversion rate and P4HB contents from xylose and precursor were achieved here by simple batch culture, which was only possible previously

  16. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  17. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms

    NASA Astrophysics Data System (ADS)

    Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza

    2009-10-01

    In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.

  18. Cellular kinetics in growth anomalies of the scleractinian corals Porites australiensis and Montipora informis .

    PubMed

    Yasuda, Naoko; Hidaka, Michio

    2012-12-01

    Growth anomalies (GAs) in corals are characterized by morphological abnormalities of the skeleton as well as polyps and coenosarcs. GAs commonly appear as protuberances with fewer polyps and are paler in color due to decreased zooxanthellae density. To test the hypothesis that morphological anomalies in GAs may be caused by unregulated cellular kinetics, the relative abundances of apoptotic cells and proliferating cells were compared between GAs and apparently healthy regions in 2 corals, Porites australiensis and Montipora informis. Apoptotic cells and proliferating cells were detected using TUNEL assays and BrdU incorporation assays, respectively. The labeling indices for apoptotic nuclei and BrdU-labeled nuclei were measured in the epidermis, oral gastrodermis, aboral gastrodermis, and calicodermis. The labeling index for apoptotic nuclei in the oral gastrodermis and the calicodermis was significantly lower in GAs than in healthy regions in both coral species. The index for BrdU-labeled cells in the calicodermis was significantly higher in GAs than in healthy regions in both coral species. When GA regions partially died, the GA tissues directly adjacent to the dead areas exhibited signs of necrosis, although some apoptotic cells were also present. Healthy oral gastrodermis adjacent to the border between the healthy and GA regions exhibited higher frequencies of apoptotic cells. These results suggest that apoptotic pathways were suppressed and cell proliferation was promoted in GA regions, although cells in GAs may die through both necrosis and apoptosis. PMID:23209073

  19. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments. PMID:26881213

  20. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  1. Assessing uncertainty in a stand growth model by Bayesian synthesis

    SciTech Connect

    Green, E.J.; MacFarlane, D.W.; Valentine, H.T.; Strawderman, W.E.

    1999-11-01

    The Bayesian synthesis method (BSYN) was used to bound the uncertainty in projections calculated with PIPESTEM, a mechanistic model of forest growth. The application furnished posterior distributions of (a) the values of the model's parameters, and (b) the values of three of the model's output variables--basal area per unit land area, average tree height, and tree density--at different points in time. Confidence or credible intervals for the output variables were obtained directly from the posterior distributions. The application also provides estimates of correlation among the parameters and output variables. BSYN, which originally was applied to a population dynamics model for bowhead whales, is generally applicable to deterministic models. Extension to two or more linked models is discussed. A simple worked example is included in an appendix.

  2. Molecular cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Kvetnoy, I M; Kvetnaia, T V; Polyakova, V O; Korf, H-W

    2012-06-01

    The effects of epithalone and vilone peptides on the synthesis of melatonin and factors involved in this process, arylalkylamine-N-acetyltransferase (AANAT) enzyme and pCREB transcription protein, were studied in rat pinealocyte culture. Epithalone stimulated AANAT and pCREB synthesis and increased melatonin level in culture medium. Simultaneous addition of norepinephrine and peptides into the culture potentiated the expression of AANAT and pCREB.

  3. Induction of Cellular Senescence by Insulin-like Growth Factor Binding Protein-5 through a p53-dependent Mechanism

    PubMed Central

    Kim, Kwang Seok; Seu, Young Bae; Baek, Suk-Hwan; Kim, Mi Jin; Kim, Keuk Jun; Kim, Jung Hye

    2007-01-01

    The insulin-like growth factor (IGF) signaling pathway plays a crucial role in the regulation of cell growth, differentiation, apoptosis, and aging. IGF-binding proteins (IGFBPs) are important members of the IGF axis. IGFBP-5 is up-regulated during cellular senescence in human dermal fibroblasts and endothelial cells, but the function of IGFBP-5 in cellular senescence is unknown. Here we show that IGFBP-5 plays important roles in the regulation of cellular senescence. Knockdown of IGFBP-5 in old human umbilical endothelial cells (HUVECs) with IGFBP-5 micro-RNA lentivirus caused partial reduction of a variety of senescent phenotypes, such as changes in cell morphology, increases in cell proliferation, and decreases in senescence-associated β-galactosidase (SA-β-gal) staining. In addition, treatment with IGFBP-5 protein or up-regulation of IGFBP-5 in young cells accelerates cellular senescence, as confirmed by cell proliferation and SA-β-gal staining. Premature senescence induced by IGFBP-5 up-regulation in young cells was rescued by knockdown of p53, but not by knockdown of p16. Furthermore, atherosclerotic arteries exhibited strong IGFBP-5–positive staining along intimal plaques. These results suggest that IGFBP-5 plays a role in the regulation of cellular senescence via a p53-dependent pathway and in aging-associated vascular diseases. PMID:17804819

  4. A cellular automaton model of the steady-state free'' growth of a non-isothermal dendrite

    SciTech Connect

    Brown, S.G.R.; Williams, T.; Spittle, J.A. . Dept. of Materials Engineering)

    1994-08-01

    A 2D cellular automaton model has been developed to study the steady-state free'' growth of a non-isothermal dendrite. The model incorporates rules to account for heat diffusion, the influence of curvature on the equilibrium freezing temperature and latent heat evolution. The model predicts a V [proportional to] [Delta]T[sup b] growth rate-undercooling relationship for the various dendrite tip growth temperatures selected. The prediction of the values of b accords reasonably with analytical models and reported experimental observations.

  5. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes

    PubMed Central

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-01-01

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems. PMID:26036864

  6. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    PubMed

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  7. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  8. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice.

    PubMed

    Arulselvan, Palanisamy; Wen, Chih-Chun; Lan, Chun-Wen; Chen, Yung-Hsiang; Wei, Wen-Chi; Yang, Ning-Sun

    2012-01-01

    Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice). Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight)/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index), proliferation (cyclin D1 and c-Myc), angiogenesis (VEGF and HIF-1α), and tumor invasion (MMP-9 and ICAM-1) when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer. PMID:23024755

  9. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  10. Cellular thiol status-dependent inhibition of tumor cell growth via modulation of p27(kip1) translocation and retinoblastoma protein phosphorylation by 1'-acetoxychavicol acetate.

    PubMed

    Unahara, Y; Kojima-Yuasa, A; Higashida, M; Kennedy, D O; Murakami, A; Ohigashi, H; Matsui-Yuasa, I

    2007-09-01

    1'-Acetoxychavicol acetate (ACA) has been shown to inhibit tumor cell growth, but there is limited information on its effects on cell signaling and the cell cycle control pathway. In this study, we sought to determine how ACA alters cell cycle and its related control factors in its growth inhibitory effect in Ehrlich ascites tumor cells (EATC). ACA caused an accumulation of cells in the G1 phase and an inhibition of DNA synthesis, which were reversed by supplementation with N-acetylcysteine (NAC) or glutathione ethyl ester (GEE). Furthermore, ACA decreased hyperphosphorylated Rb levels and increased hypophosphorylated Rb levels. NAC and GEE also abolished the decease in Rb phosphorylation by ACA. As Rb phosphorylation is regulated by G1 cyclin dependent kinase and CDK inhibitor p27(kip1), which is an important regulator of the mammalian cell cycle, we estimated the amount of p27(kip1) levels by western blotting. Treatment with ACA had virtually no effect on the amount of p27(kip1) levels, but caused a decrease in phosphorylated p27(kip1) and an increase in unphosphorylated p27(kip1) as well as an increase in the nuclear localization of p27(kip1). These events were abolished in the presence of NAC or GEE. These results suggest that in EATC, cell growth inhibition elicited by ACA involves decreases in Rb and p27(kip1) phosphorylation and an increase in nuclear localization of p27(kip1), and these events are dependent on the cellular thiol status.

  11. One-step Melt Synthesis of Water Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications

    PubMed Central

    Manhat, Beth A.; Brown, Anna L.; Black, Labe A.; Ross, J.B. Alexander; Fichter, Katye; Vu, Tania; Richman, Erik

    2012-01-01

    We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells. PMID:23139440

  12. Cellular distribution of transforming growth factor-beta 1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis.

    PubMed Central

    Nakatsukasa, H; Nagy, P; Evarts, R P; Hsia, C C; Marsden, E; Thorgeirsson, S S

    1990-01-01

    The cellular distribution and temporal expression of transcripts from transforming growth factor-beta 1 (TGF-beta 1) and procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) genes were studied in carbon tetrachloride (CCl4)-induced rat liver fibrosis by using in situ hybridization technique. During the fibrotic process, TGF-beta 1 and procollagen genes were similarly and predominantly expressed in Desmin-positive perisinusoidal cells (e.g., fat-storing cells and myofibroblasts) and fibroblasts and their expression continued to be higher than those observed in control rats. These transcripts were also observed in inflammatory cells mainly granulocytes and macrophage-like cells at the early stages of liver fibrosis. The production of extracellular matrix along small blood vessels and fibrous septa coincided with the expression of these genes. Expression of TGF-beta 1 and procollagen genes were not detected in hepatocytes throughout the experiment. No significant differences in cellular distribution or time course of gene expression among procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) were observed. Desmin-positive perisinusoidal cells and fibroblasts appeared to play the principal role in synthesis of collagens in CCl4-induced hepatic fibrosis. The simultaneous expression of TGF-beta 1 and procollagen genes in mesenchymal cells, including Desmin-positive perisinusoidal cells, during hepatic fibrosis suggests the possibility that TGF-beta 1 may have an important role in the production of fibrosis. Images PMID:1693377

  13. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    SciTech Connect

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  14. H2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration.

    PubMed

    Gutiérrez-Sanz, Óscar; Natale, Paolo; Márquez, Ileana; Marques, Marta C; Zacarias, Sonia; Pita, Marcos; Pereira, Inês A C; López-Montero, Iván; De Lacey, Antonio L; Vélez, Marisela

    2016-05-17

    ATP, the molecule used by living organisms to supply energy to many different metabolic processes, is synthesized mostly by the ATPase synthase using a proton or sodium gradient generated across a lipid membrane. We present evidence that a modified electrode surface integrating a NiFeSe hydrogenase and a F1 F0 -ATPase in a lipid membrane can couple the electrochemical oxidation of H2 to the synthesis of ATP. This electrode-assisted conversion of H2 gas into ATP could serve to generate this biochemical fuel locally when required in biomedical devices or enzymatic synthesis of valuable products.

  15. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  16. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants.

    PubMed

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-11-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements.

  17. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells.

  18. Simultaneous synthesis of human-, mouse- and chimeric epidermal growth factor genes via 'hybrid gene synthesis' approach.

    PubMed Central

    Sung, W L; Zahab, D M; Yao, F L; Wu, R; Narang, S A

    1986-01-01

    Simultaneous synthesis of two DNA duplexes encoding human and mouse epidermal growth factors (EGF) was accomplished in a single step. A 174 b.p. DNA heteroduplex, with 16 single and double base pair mismatches, was designed. One strand encoded the human EGF, and the opposite strand indirectly encoded the mouse EGF. The heteroduplex DNA was synthesized by ligation of seven overlapping oligodeoxyribonucleotides with a linearized plasmid. After transformation in E. coli HB101 (recA 13), the resulting heteroduplex plasmid served as the template in plasmid replication. Two different plasmid progenies bearing either the human or mouse EGF-coding sequence were identified by colony hybridization using the appropriate probes. However, in E. coli JM103, the same process yielded plasmid progenies encoding different chimeric EGF molecules, presumably due to crossover of human and mouse EGF gene sequences. Images PMID:3529034

  19. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  20. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    PubMed Central

    Rallis, Charalampos; López-Maury, Luis; Georgescu, Teodora; Pancaldi, Vera; Bähler, Jürg

    2014-01-01

    Summary Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not. PMID:24463365

  1. The assembly and properties of protobiological structures - The beginnings of cellular peptide synthesis

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1980-01-01

    New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.

  2. De novo synthesis and cellular uptake of organic nanocapsules with tunable surface chemistry.

    PubMed

    Huang, Kun; Jacobs, Amy; Rzayev, Javid

    2011-06-13

    Water-soluble organic nanocapsules were prepared from bottlebrush copolymers with triblock terpolymer side chains composed of a degradable inner block (polylactide), a cross-linkable middle block (poly(4-butenylstyrene)), and a functional outer block (poly(styrene-co-maleic anhydride)). Bottlebrush copolymers are macromolecules with a long linear backbone and shorter polymeric side chains densely grafted onto the backbone. Hollow cylindrical nanoparticles were prepared by peripheral cross-linking of the bottlebrush copolymers and subsequent selective removal of the core. Reactive anhydride groups of the outer functional layer allowed for the preparation of nanocapsules with tunable surface characteristics. Cellular uptake of negatively charged organic nanocapsules showed strong surface chemistry dependence. The presence of hydrophobic groups on the nanocapsule surface was necessary for their nonspecific association with the cell membrane and subsequent internalization by endocytosis. The length of surface grafted oligoethylene glycol chains also had a dramatic influence on the intracellular accumulation of nanocapsules. Macropinocytosis was shown to be the predominant pathway for the cellular uptake of organic nanocapsules.

  3. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca2+-dependent cellular PLA2 (sPLA2), and Ca2+-indepen...

  4. Cellular growth defects triggered by an overload of protein localization processes

    PubMed Central

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  5. A cellular automata model of land cover change to integrate urban growth with open space conservation

    EPA Science Inventory

    The preservation of riparian zones and other environmentally sensitive areas has long been recognized as one of the most cost-effective methods of managing stormwater and providing a broad range of ecosystem services. In this research, a cellular automata (CA)—Markov chain model ...

  6. Cellular growth defects triggered by an overload of protein localization processes.

    PubMed

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  7. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes

    SciTech Connect

    Essien, H.; Lai, J.Y.; Hwang, K.J.

    1988-05-01

    The synthesis, binding of radioactive cations, liposomal encapsulation, and biodistribution of the oxidized-inulin reaction product with ethylenediamine and diethylenetriaminepentaacetic acid (4) are described. The four-step synthesis of the inulin derivative proceeded in a good overall yield of 72%. The complex of the inulin derivative with either /sup 67/Ga3+ or /sup 111/In3+ was stable in vivo and did not readily distribute into tissues, being excreted primarily in urine after intravenous administration to mice. The liposome-entrapped inulin derivative can be loaded with radioactive heavy metal cations by mobile ionophores in high radiochemical yields of 80-91%. Following the intravenous administration of the liposomal encapsulation of the indium-111-labeled inulin derivative, the entrapped compound had a biodistribution characteristic of liposomes and allowed an estimation of the extent of the intracellular uptake of liposomes. The ability of the inulin derivative to chelate many different types of metals will allow the use of this probe for studying subtle differences in tissue distribution resulting from different drug targeting or delivery protocols in the same animal by multiple labeling techniques. Moreover, the chelate-conjugated inulin permits studies of the applications of drug delivery systems in primates or human subjects by noninvasive techniques such as gamma-scintigraphic or nuclear magnetic resonance imaging methods.

  8. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    PubMed

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:26478352

  9. Microwave-assisted synthesis of surface-enhanced Raman scattering nanoprobes for cellular sensing.

    PubMed

    Bowey, Kristen; Tanguay, Jean-François; Sandros, Marinella G; Tabrizian, Maryam

    2014-10-01

    The fabrication of 4-mercaptobenzoic acid (4-MBA) antibody-functionalized gold nanoparticles via microwave technology for surface-enhanced Raman scattering (SERS)-based cellular nanosensing is reported. Nanoprobes were characterized by UV-vis absorbance, Raman scattering properties, and observed by TEM imaging. Results showed that microwave irradiation rapidly yielded nanoprobes with significant Raman scattering intensity and suitable stability to support antibody conjugation in under 10min. Functionalized nanoprobes demonstrated the ability to map the expression of vascular adhesion molecule-1 (VCAM-1) in human coronary artery endothelial (HCAE) cells, indicating that microwave fabrication presents a viable and rapid approach to SERS nanoprobe construction. The successful application of SERS nanoprobes to localize biomarker expression in vitro may ultimately be used for early diagnostic and preventative functions in medicine.

  10. Facile synthesis of fluorescent Au@SiO2 nanocomposites for application in cellular imaging.

    PubMed

    Zhang, Zhengyong; Zhang, Peng; Guo, Kai; Liang, Guohai; Chen, Hui; Liu, Baohong; Kong, Jilie

    2011-10-15

    A novel fluorescent Au@SiO(2) nanocomposite, with average size of ca. 30 nm in the diameter, was prepared via a simple microemulsion method. Additionally, transmission electron microscopy (TEM), UV-Vis absorption spectra, Fourier transform infrared (FT-IR) spectra and fluorescence spectra were used to characterize this nanocomposite. This newly synthesized, silica-wrapped, gold nanocluster has the following advantages: good water solubility, exceptional biocompatibility, favorable surface properties and excellent fluorescence properties. Because of these advantages, a Au@SiO(2) nanocomposite is exceptionally suitable for biological applications. In this study, cellular imaging, as a form of biological application, has been fully investigated, and it was discovered, after covalent conjugation of folic acid (FA), that the nanocomposite effectively recognized over expressed folic acid receptors (FARs) on the HeLa cell's surface. Therefore, this fluorescent Au@SiO(2) nanocomposite could be used as a new fluorescent probe for selective biological imaging.

  11. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease.

    PubMed

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.

  12. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents.

  13. An Assessment of New Materials Synthesis and Crystal Growth in United States

    SciTech Connect

    Shapero, Don C.; Lancaster, James C.

    2009-08-15

    The committee of 16 members was drawn from the broad community of condensed-matter physicists and materials researchers, and included experts in bulk materials synthesis and crystal growth (oxide, intermetallic, semiconductor, and organic synthesis) and both experimentalists and theorists. It prepared a report to address the following tasks: (1) Define the research area of new materials synthesis and crystal growth, framing the activities in the broader context of the condensed-matter and materials sciences; (2) Assess the health of the collective U.S. research activities in new materials synthesis and crystal growth; (3) Articulate the relationship between synthesis of bulk and thin-film materials and measurementbased research activities; identify appropriate trends; (4) Identify future opportunities for new materials synthesis and crystal growth research and discuss the potential impact on other sciences and society in general; and (5) Recommend strategies to address these opportunities, including discussion of the following issues: (a) Establishing new organizations to improve accessibility to and distribution of samples, (b) Technology transfer from basic research to commercial processes, and (c) Essential elements of national materials synthesis capabilities and considerations for nationally organized efforts.

  14. Efficiency of cellular growth when creating small pockets of electric current along the walls of cells.

    PubMed

    Kletetschka, Gunther; Zila, Vojtech; Klimova, Lucie

    2014-04-01

    Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.

  15. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. PMID:26121084

  16. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells.

  17. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sulalit; Singh, Gurvinder; Sandvig, Ioanna; Sandvig, Axel; Mathieu, Roland; Anil Kumar, P.; Glomm, Wilhelm Robert

    2014-10-01

    Fe@Au core-shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV-vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  18. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review

    NASA Astrophysics Data System (ADS)

    Aburas, Maher Milad; Ho, Yuek Ming; Ramli, Mohammad Firuz; Ash'aari, Zulfa Hanan

    2016-10-01

    In recent years, several types of simulation and prediction models have been used within a GIS environment to determine a realistic future for urban growth patterns. These models include quantitative and spatio-temporal techniques that are implemented to monitor urban growth. The results derived through these techniques are used to create future policies that take into account sustainable development and the demands of future generations. The aim of this paper is to provide a basis for a literature review of urban Cellular Automata (CA) models to find the most suitable approach for a realistic simulation of land use changes. The general characteristics of simulation models of urban growth and urban CA models are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various models are identified based on the analysis and discussion of the characteristics of these models. The results of the review confirm that the CA model is one of the strongest models for simulating urban growth patterns owing to its structure, simplicity, and possibility of evolution. Limitations of the CA model, namely weaknesses in the quantitative aspect, and the inability to include the driving forces of urban growth in the simulation process, may be minimized by integrating it with other quantitative models, such as via the Analytic Hierarchy Process (AHP), Markov Chain and frequency ratio models. Realistic simulation can be achieved when socioeconomic factors and spatial and temporal dimensions are integrated in the simulation process.

  19. Variation in the binding of /sup 125/I-labeled interferon-beta ser to cellular receptors during growth of human renal and bladder carcinoma cells in vitro

    SciTech Connect

    Ruzicka, F.J.; Schmid, S.M.; Groveman, D.S.; Cummings, K.B.; Borden, E.C.

    1987-09-01

    Studies of various established human bladder and renal carcinoma cell lines cultured in vitro demonstrated the presence of specific, saturable, high affinity binding sites for /sup 125/I-labeled human interferon Beta ser IFN-beta ser). This recombinant produced interferon labeled with approximately one atom of /sup 125/I/molecule of IFN expressed minimal or no loss of antiviral activity. A single class of binding sites (1000-2000/cell) with an affinity constant of 10(10)-10(11) L/M was measured at 4 degrees C for cells exhibiting widely different sensitivity to the antiproliferative effect of IFN-beta ser. Major fluctuations in the binding of /sup 125/I-labeled IFN-beta ser to cellular receptors were observed during in vitro proliferation of four of five cell lines examined. A significant decrease (P less than 0.001) in specific binding was observed 48 h after cultures were established. Cell cycle analysis suggested that within the first 24 h and in the very late log and stationary phase of growth of ACHN (human renal carcinoma) cells, variations in the binding of /sup 125/I-labeled IFN-beta ser were partially attributable to binding fluctuations during the mitotic cycle. The 2- to 3-fold decline 24 h following plating of ACHN cells corresponded to a 70% decrease in the number of cells in G0-G1. T24 (human transitional cell carcinoma) and ACHN cells, synchronized by serum starvation, demonstrated increased binding of /sup 125/I-labeled IFN-beta ser 4-16 h following serum replenishment. This increase in receptor binding occurred prior to the onset of DNA and protein synthesis and was followed by a decline immediately prior to cell division. Binding site analysis indicated that the increased binding prior to DNA synthesis was due to a 5- to 6-fold increase in receptor affinity for the radiolabeled ligand.

  20. Spatiotemporal chaos near the onset of cellular growth during thin-film solidification of a binary alloy

    NASA Technical Reports Server (NTRS)

    Lee, J. T. C.; Tsiveriotis, K.; Brown, R. A.

    1992-01-01

    Thin-film solidification experiments with a succinonitrile-acetone alloy are used to observe the long time-scale dynamics of cellular crystal growth at growth rates only slightly above the critical value VC = Vc(lambda sub c) for the onset of morphological instability. Under these conditions only very small amplitude cells are observed with wavelengths near the value predicted by linear stability theory lambda = lambda sub c. At long times, microstructures with wavelengths significantly finer than lambda suc c form by nucleation at defects across the interface. These interfaces do not have a unique microstructure, but seem to exhibit spatiotemporal chaos on a long time scale caused by the continual birth and death of cells by tip splitting and cell annihilation in grooves.

  1. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F2MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F2MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F2MC cellular structure can be characterized as a two degree of freedom damped mass-spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F2MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F2MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F2MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F2MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells.

  2. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake.

    PubMed

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100-150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100-600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%-65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%-60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy.

  3. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    PubMed Central

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  4. Overexpression of Wnt-1 in thyrocytes enhances cellular growth but suppresses transcription of the thyroperoxidase gene via different signaling mechanisms.

    PubMed

    Kim, Won Bae; Lewis, Christopher J; McCall, Kelly D; Malgor, Ramiro; Kohn, Aimee D; Moon, Randall T; Kohn, Leonard D

    2007-04-01

    Wnt binding to cell surface receptors can activate a 'canonical' pathway that increases cellular beta-catenin or a 'noncanonical' Ca(++) pathway which can increase protein kinase C (PKC) activity. Although components of both Wnt/beta-catenin-signaling pathways exist in thyrocytes, their biological role is largely unknown. In evaluating the biological role of Wnt signaling in differentiated FRTL-5 thyroid cells, we showed that TSH increased canonical Wnt-1 but, surprisingly, decreased the active form of beta-catenin. Transient overexpression of Wnt-1 or beta-catenin in FRTL-5 cells increased active beta-catenin (ABC), decreased thyroperoxidase (TPO) mRNA, and suppressed TPO-promoter activity. The target of beta-catenin suppressive action was a consensus T cell factor/lymphoid enhancing factor (TCF/LEF)-binding site 5'-A/T A/T CAAAG-3', -137 to -129 bp on the rat TPO promoter. beta-Catenin overexpression significantly increased complex formation between beta-catenin/TCF-1 and an oligonucleotide containing the TCF/LEF sequence, suggesting that the beta-catenin/TCF-1 complex acts as a transcriptional repressor of the TPO gene. Stable over-expression of Wnt-1 in FRTL-5 cells significantly increased the growth rate without increasing beta-catenin levels. Increased growth was blunted by a PKC inhibitor, staurosporin. Wnt-1 overexpression increased serine phosphorylation, without affecting tyrosine phosphorylation, of signal transducers and activators of transcription 3 (STAT3) protein. In addition, these final results suggest that TSH-induced increase in Wnt-1 levels in thyrocytes contributes to enhanced cellular growth via a PKC pathway that increases STAT3 serine phosphorylation and activation, whereas TSH-induced decrease in activation of beta-catenin simultaneously relieves transcriptional suppression of TPO. We hypothesize that Wnt signaling contributes to the ability of TSH to simultaneously increase cell growth and functional, thyroid-specific, gene expression

  5. E2F1 Regulates Cellular Growth by mTORC1 Signaling

    PubMed Central

    Real, Sebastian; Meo-Evoli, Nathalie; Espada, Lilia; Tauler, Albert

    2011-01-01

    During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation. PMID:21283628

  6. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species.

  7. Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization

    SciTech Connect

    Lin, C.Y.; Roberts, J.K.; Key, J.L.

    1984-01-01

    When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28/sup 0/C up to 40/sup 0/C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. However, a pretreatmemt at 40/sup 0/C or a brief (10 minute) pulse treatment at 45/sup 0/C followed by a 28/sup 0/C incubation provide protection (thermal tolerance) to a subsequent exposure at 45/sup 0/C. During 40/sup 0/C HS, some HSPs become localized and stably associated with purified organelle fractions while others do not. A chase at 28/sup 0/C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40/sup 0/C chase period. The relative amount of HSPs which relocalize during a second HS increases with higher temperatures from 40/sup 0/C to 45/sup 0/C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28/sup 0/C but become organelle-associated during a subsequent HS at 40/sup 0/C.

  8. Synthesis, cellular uptake and structure-activity relationships for potent cytotoxic trichloridoiridium(III) polypyridyl complexes.

    PubMed

    Scharwitz, Michael A; Ott, Ingo; Gust, Ronald; Kromm, Anna; Sheldrick, William S

    2008-08-01

    The complexes fac-[IrCl(3)(DMSO)(pp)] 1a-5a may be prepared by stepwise reaction of IrCl(3) x 3H(2)O with the appropriate polypyridyl ligand (pp=bpy, phen, dpq, dppz, dppn) and DMSO in CH(3)OH solution in the dark. The fac isomers of 1a-5a are stable in light-protected CD(2)Cl(2) solution but, with the exception of 5a, isomerize rapidly to a mixture of the fac and mer isomers in the presence of light. In contrast, solutions of the fac isomers in the polar solvents D(2)O and CD(3)OD are stable under such conditions. The isomer mer-[IrCl(3)(DMSO-kappa S)(phen)] 2b was, however, isolated by slow evaporation of an H(2)O/CH(3)OH solution of 2a and characterized by X-ray structural analysis. UV/Vis and CD studies of the interaction of 1a-5a with calf thymus DNA are in accordance with an effective absence of intercalation. (1)H NMR studies indicate that the complexes react slowly with compounds containing soft S donor atoms (e. g. N-acetylmethionine) but do not react with the guanine base of 5'-GMP(2-). The complexes 2a-5a are potent in vitro cytotoxic agents toward the human cell lines MCF-7 and HT-29 and their IC(50) values are dependent on the size of the polypyridyl ligand in the order phen, dpq>dppz>dppn. For instance IC(50) values of 5.5 (0.9), 0.8 (0.3) and 0.21 (0.11)microM were established for 3a-5a against MCF-7 cells and 6.1 (0.7), 1.5 (0.2) and 1.3 (0.4)microM against HT-29 cells. These values correlate with the cellular uptake efficiency which, on exposure to 10 microM solutions, reaches its highest levels (19.3(0.8) and 37.4(8.9) ng Ir/mg protein for MCF-7 and HT-29, respectively) for the dppn compound 5a. PMID:18472166

  9. Skeletal muscle ATP synthesis and cellular H(+) handling measured by localized (31)P-MRS during exercise and recovery.

    PubMed

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    (31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  10. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    PubMed Central

    Fiedler, Georg B.; Schmid, Albrecht I.; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J.; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  11. Synthesis of influenza virus polypeptides in cells resistant to alpha-amanitin: evidence for the involvement of cellular RNA polymerase II in virus replication.

    PubMed Central

    Lamb, R A; Choppin, P W

    1977-01-01

    Influenza virus polypeptides were not synthesized in wild-type CHO-S-infected cells in the presence of alpha-amanitin, but were synthesized in CHO-Amal cells, a mutant cell line whose DNA-dependent RNA polymerase II is specifically resistant to this drug, indicating that this cellular enzyme is involved in influenza virus replication. The results of experiments designed to detect viral polypeptides synthesized from primary transcripts suggest that the synthesis of a cellular RNA species by RNA polymerase II is required for primary transcription of the influenza virus genome. Images PMID:561196

  12. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth

    PubMed Central

    Hardy, Michael D.; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M.; Tsimring, Lev S.; Devaraj, Neal K.

    2015-01-01

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks. PMID:26100914

  13. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    NASA Astrophysics Data System (ADS)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  14. Synthesis and characterization of xanthan-hydroxyapatite nanocomposites for cellular uptake.

    PubMed

    Bueno, Vania Blasques; Bentini, Ricardo; Catalani, Luiz Henrique; Barbosa, Leandro R S; Petri, Denise Freitas Siqueira

    2014-04-01

    In this work xanthan-nanohydroxyapatite (XnHAp) and its equivalent strontium substituted (XnHApSr) were synthesized by the precipitation of nanohydroxyapatite in xanthan aqueous solution, characterized and compared to conventional hydroxyapatite particles (HAp). XnHAp and XnHApSr were less crystalline than HAp, as revealed by X-ray diffraction. Xanthan chains enriched the surface of XnHAp and XnHApSr particles, increasing the zeta potential values from -(7±1)mV, determined for HAp, to -(17±3)mV and -(25±3)mV, respectively. This effect led to high colloidal stability of XnHAp and XnHApSr dispersions and acicular particles (140±10)nm long and (8±2)nm wide, as determined by scanning electron microscopy and atomic force microscopy. XnHAp and XnHApSr particles were added to xanthan hydrogels to produce compatible nanocomposites (XCA/XnHAp and XCA/XnHApSr). Dried nanocomposites presented surface energy, Young's modulus and stress at break values comparable to those determined for bare xanthan matrix. Moreover, adding XnHAp or XnHApSr nanoparticles to xanthan hydrogel did not influence its porous morphology, gel content and swelling ratio. XCA/XnHAp and XCA/XnHApSr composites proved to be suitable for osteoblast growth and particularly XCA/XnHapSr composites induced higher alkaline phosphatase activity. PMID:24582240

  15. Biocompatibility and potential of decellularized porcine small intestine to support cellular attachment and growth.

    PubMed

    Nowocin, Anna K; Southgate, Aaron; Gabe, Simon M; Ansari, Tahera

    2016-01-01

    The aim of this study was to decellularize a 30 cm long segment of porcine small intestine, determine its in vivo behaviour and assess the type of immunological reaction it induces in a quantitative manner. A segment of porcine ileum up to 30 cm long, together with its attached vasculature, was decellularized via its mesenteric arcade as a single entity. The quality of the acellular scaffold was assessed histologically and using molecular tools. The host response to the scaffold was evaluated in a rodent model. Stereological techniques were incorporated into quantitative analysis of the phenotype of the macrophages infiltrating the scaffold in vivo. Lengths of ileal scaffold, together with its attached vasculature, were successfully decellularized, with no evidence of intact cells and DNA or collagen and GAGs overdegradation. Analysis of explants harvested over 2 months postimplantation revealed full-thickness recellularization and no signs of foreign body or immune reactions. Macrophage profiling proved that between weeks 4 and 8 in vivo there was a switch from an M1 (pro-inflammatory) to an M2 (pro-remodelling) type of response. We show here that the decellularization process results in a biocompatible and non-toxic matrix that upon implantation triggers cellular infiltration and angiogenesis, primarily characterized by a pro-remodelling type of mononuclear response, without inducing foreign body reaction or fibrosis.

  16. Emergence of robust growth laws from optimal regulation of ribosome synthesis

    PubMed Central

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-01-01

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. PMID:25149558

  17. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    PubMed

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms.

  18. A continum analysis of cellular growth for a model of immune response relevant to HIV infection

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.

    1992-07-01

    A continuum approach is proposed to study the population dynamics of an immune response model relevant to HIV infections. Effects of dysfunction of the helper/inducer T cells are taken into account by a failure probability p of interleukins. Using the numerical analysis of the inhomogeneous coupled differential equations, it is shown that the incubation time for the viral growth can be increased by reducing the failure probability p. Despite the differences, both the continuum and discrete methods lead to a common result.

  19. Direct cellular effects of some mediators, hormones and growth factor-like agents on denervated (isolated) rat gastric mucosal cells.

    PubMed

    Bódis, B; Karádi, O; Nagy, L; Dohoczky, C; Kolega, M; Mózsik, G

    1997-01-01

    The brain-gut axis has an important role in the mechanism of gastric cytoprotection in vivo. The aim of this study was to evaluate the in vitro effect of protective agents without any central and peripheral innervation. A mixed population of rat gastric mucosal cells was isolated by the method of Nagy et al (Gastroenterology (1994) 77, 433-443). Cells were incubated for 60 min with cytoprotective drugs such as prostacyclin, histamine, pentagastrin and PL-10 substances (synthesized parts of BPC). At the end of this incubation cells were treated by 15% ethanol for 5 min. Cell viability was tested by trypan blue exclusion test and succinic dehydrogenase activity. The following results were obtained: 1) prostacyclin, histamine and pentagastrin had no direct cytoprotective effect on isolated cells; and 2) PL-10 substances significantly protected the cells against ethanol-induced cellular damage. This led to the following conclusions: 1) in the phenomenon of gastric cytoprotection only the growth factor-like agents have a direct cellular effect; and 2) the intact peripheral innervation is basically necessary for the development of mediators and hormone-induced gastric cytoprotection. PMID:9403792

  20. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development.

    PubMed

    Bassil, Elias; Coku, Ardian; Blumwald, Eduardo

    2012-10-01

    Recent evidence highlights novel roles for intracellular Na(+)/H(+) antiporters (NHXs) in plants. The availability of knockouts and overexpressors of specific NHX isoforms has provided compelling genetic evidence to support earlier physiological and biochemical data which suggested the involvement of NHX antiporters in ion and pH regulation. Most plants sequenced to date contain multiple NHX members and, based on their sequence identity and localization, can be grouped into three distinct functional classes: plasma membrane, vacuolar, and endosomal associated. Orthologues of each functional class are represented in all sequenced plant genomes, suggesting conserved and fundamental roles across taxa. In this review we seek to highlight recent findings which demonstrate that intracellular NHX antiporters (i.e. vacuolar and endosomal isoforms) play roles in growth and development, including cell expansion, cell volume regulation, ion homeostasis, osmotic adjustment, pH regulation, vesicular trafficking, protein processing, cellular stress responses, as well as flowering. A significant new discovery demonstrated that in addition to the better known vacuolar NHX isoforms, plants also contain endosomal NHX isoforms that regulate protein processing and trafficking of cellular cargo. We draw parallels from close orthologues in yeast and mammals and discuss distinctive NHX functions in plants.

  1. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells.

    PubMed

    Price, D J; Miralem, T; Jiang, S; Steinberg, R; Avraham, H

    2001-03-01

    The expression of vascular endothelial growth factor (VEGF) by breast tumors has been previously correlated with a poor prognosis in the pathogenesis of breast cancer. Furthermore, VEGF secretion is a prerequisite for tumor development. Although most of the effects of VEGF have been shown to be attributable to the stimulation of endothelial cells, we present evidence here that breast tumor cells are capable of responding to VEGF. We show that VEGF stimulation of T-47D breast cancer cells leads to changes in cellular signaling and invasion. VEGF increases the cellular invasion of T-47D breast cancer cells on Matrigel/ fibronectin-coated transwell membranes by a factor of two. Northern analysis for the expression of the known VEGF receptors shows the presence of moderate levels of Flt-1 and low levels of Flk-1/KDR mRNAs in a variety of breast cancer cell lines. T-47D breast cancer cells bind 125I-labeled VEGF with a Kd of 13 x 10(-9) M. VEGF induces the activation of the extracellular regulated kinases 1,2 as well as activation of phosphatidylinositol 3'-kinase, Akt, and Forkhead receptor L1. These findings in T-47D breast cancer cells strongly suggest an autocrine role for VEGF contributing to the tumorigenic phenotype.

  2. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  3. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing.

    PubMed

    Deller, Robert C; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2014-01-01

    The cryopreservation of cells, tissue and organs is fundamental to modern biotechnology, transplantation medicine and chemical biology. The current state-of-the-art method of cryopreservation is the addition of large amounts of organic solvents such as glycerol or dimethyl sulfoxide, to promote vitrification and prevent ice formation. Here we employ a synthetic, biomimetic, polymer, which is capable of slowing the growth of ice crystals in a manner similar to antifreeze (glyco)proteins to enhance the cryopreservation of sheep and human red blood cells. We find that only 0.1 wt% of the polymer is required to attain significant cell recovery post freezing, compared with over 20 wt% required for solvent-based strategies. These results demonstrate that synthetic antifreeze (glyco)protein mimics could have a crucial role in modern regenerative medicine to improve the storage and distribution of biological material for transplantation.

  4. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract.

    PubMed

    Hassan, Hanaa A; Isa, Ahmed M; El-Kholy, Wafaa M; Nour, Samar E

    2013-10-01

    The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties.

  5. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract.

    PubMed

    Hassan, Hanaa A; Isa, Ahmed M; El-Kholy, Wafaa M; Nour, Samar E

    2013-10-01

    The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties. PMID:23292365

  6. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data

    PubMed Central

    Müller, Margareta; Vignon-Clementel, Irene E.; Drasdo, Dirk

    2016-01-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  7. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type. beta

    SciTech Connect

    Brown, K.D.; Holley, R.W.

    1987-06-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type ..beta.. (TGF-..beta..), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. /sup 125/I-EGF binding was measured and the efflux of /sup 45/Ca/sup 2 +/ was measured in response to mitogen stimulation. A similar synergistic response has been demonstrated for TGF-..beta.. purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-..beta.. in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and the authors have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-..beta.. and insulin converge at a post-receptor stage.

  8. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research. PMID:27557541

  9. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  10. Modification of the cellular heat sensitivity of cucumber by growth under supplemental ultraviolet-B radiation

    SciTech Connect

    Caldwell, C.R.

    1994-02-01

    The effect of ultraviolet B (UV-B) radiation on the thermal sensitivity of cucumber (Cucumis sativus L.) was studied using UV-B-sensitive cv Poinsett 76 and UV-B-resistant cv Ashley grown under control and elevated (300 mW m{sup -2}) UV-B radiation levels. Using both cotyledon and leaf discs, the ability of the tissue to reduce triphenyl tetrazolium chloride (TTC) was determined after treatment at 50{degrees}C for various times. Semilogarithmic plots of TTC reduction as a function of time at 50{degrees}were curvilinear. They were monophasic for the control cucumber and biphasic for cucumber grown in the presence of elevated UV-B. Treatment of cucumber plants at 37{degrees}C for 24 h or of tissue discs at acute UV-B levels for 1 h further modified their response to elevated temperature. These results suggest that growth of cucumber under enhanced UV-B radiation levels increased its ability to withstand elevated temperatures. 19 refs., 2 figs., 2 tabs.

  11. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    SciTech Connect

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro . E-mail: takaike@bio.titech.ac.jp

    2006-06-23

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg{sup 2+} although integrin-mediated cell adhesion to natural ECMs is dependent on Mg{sup 2+}. Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.

  12. Modification of the Cellular Heat Sensitivity of Cucumber by Growth under Supplemental Ultraviolet-B Radiation.

    PubMed Central

    Caldwell, C. R.

    1994-01-01

    The effect of ultraviolet B (UV-B) radiation on the thermal sensitivity of cucumber (Cucumis sativus L.) was studied using UV-B-sensitive cv Poinsett 76 and UV-B-resistant cv Ashley grown under control and elevated (300 mW m-2) UV-B radiation levels. Using both cotyledon and leaf discs, the ability of the tissue to reduce triphenyl tetrazolium chloride (TTC) was determined after treatment at 50[deg]C for various times. Semilogarithmic plots of TTC reduction as a function of time at 50[deg]C were curvilinear. They were monophasic for the control cucumber and biphasic for cucumber grown in the presence of elevated UV-B. Treatment of cucumber plants at 37[deg]C for 24 h or of tissue discs at acute UV-B levels for 1 h further modified their response to elevated temperature. These results suggest that growth of cucumber under enhanced UV-B radiation levels increased its ability to withstand elevated temperatures. PMID:12232090

  13. Changes in regulation of ribosomal protein synthesis during vegetative growth and sporulation of Saccharomyces cerevisiae.

    PubMed Central

    Pearson, N J; Haber, J E

    1980-01-01

    When diploid Saccharomyces cerevisiae cells logarithmically growing in acetate medium were placed in sporulation medium, the relative rates of synthesis of 40 or more individual ribosomal proteins (r-proteins) were coordinately depressed to approximately 20% of those of growing cells. These new depressed rates remained constant for at least 10 h into sporulation. If yeast nitrogen base was added 4 yh after the beginning of sporulation to shift the cells back to vegetative growth, the original relative rates of r-protein synthesis were rapidly reestablished. this upshift in the rates occurred even in diploids homozygous for the regulatory mutation rna2 at the restrictive temperature for this mutation (34 degrees C). However, once these mutant cells began to bud and grow at 34 degrees C, the phenotype of rna2 was expressed and the syntheses of r-proteins were again coordinately depressed. At least one protein whose rate of synthesis was not depressed by rna2 in vegetative cells did have a decreased rate of synthesis during sporulation. Another r-protein whose synthesis was depressed by rna2 maintained a high rate of synthesis at the beginning of sporulation. These data suggest that the mechanism responsible for coordinate control of r-protein synthesis during sporulation does not require the gene product of RNA2 and thus defines a separate mechanism by which r-proteins are coordinately controlled in S. cerevisiae. Images PMID:6997272

  14. Comparison of ability of protein kinase C inhibitors to arrest cell growth and to alter cellular protein kinase C localisation.

    PubMed Central

    Courage, C.; Budworth, J.; Gescher, A.

    1995-01-01

    Inhibitors of protein kinase C (PKC) such as the staurosporine analogues UCN-01 and CGP 41251 possess antineoplastic properties, but the mechanism of their cytostatic action is not understood. We tested the hypothesis that the ability of these compounds to arrest growth is intrinsically linked with their propensity to inhibit PKC. Compounds with varying degrees of potency and specificity for PKC were investigated in A549 and MCF-7 carcinoma cells. When the log values of drug concentration which arrested cell growth by 50% (IC50) were plotted against the logs of the IC50 values for inhibition of cytosolic PKC activity, two groups of compound could be distinguished. The group which comprised the more potent inhibitors of enzyme activity (calphostin C, staurosporine and its analogues UCN-01, RO 31-8220, CGP 41251) were the stronger growth inhibitors, whereas the weaker enzyme inhibitors (trimethylsphingosine, miltefosine, NPC-15437, H-7, H-7I) affected proliferation less potently. GF 109203X was exceptional in that it inhibited PKC with an IC50 in the 10(-8) M range, yet was only weakly cytostatic. To substantiate the role of PKC in the growth inhibition caused by these agents, cells were depleted of PKC by incubation with bryostatin 1 (1 microM). The susceptibility of these enzyme-depleted cells towards growth arrest induced by staurosporine, RO 31-8220, UCN-01 or H-7 was studied. The drug concentrations which inhibited incorporation of [3H]thymidine into PKC-depleted A549 cells by 50% were slightly, but not significantly, lower than significantly, lower than those observed in control cells. These results suggest that PKC is unlikely to play a direct role in the arrest of the growth of A549 and MCF-7 cells mediated by these agents. Staurosporine is not only a strong inhibitor of PKC but also mimics activators of this enzyme in that it elicits the cellular redistribution of certain PKC isoenzymes. The ability of kinase inhibitors other than staurosporine to exert a

  15. NONEQUILIBRIUM LASER SYNTHESIS AND REAL-TIME DIAGNOSTICS OF CARBON NANOMATERIAL GROWTH

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M; Regmi, Murari; Jackson, Jeremy Joseph; Readle, Jason D; More, Karren Leslie; Eres, Gyula; Duscher, Gerd J M

    2013-01-01

    Lasers provide unique growth conditions for the synthesis of novel nanomaterials. In addition, they can serve as remote spectroscopic probes of the growth environment. Ultimately, through the process understanding they provide, real-time laser diagnostics that can be used to control the nanomanufacturing of nanomaterials. Here, progress in the laser-based synthesis and investigations of carbon nanomaterial growth kinetics will be reviewed with an emphasis on single-wall carbon nanotubes (SWNTs), single-wall carbon nanohorns (SWNHs), and graphene. Two synthesis methods will be compared. First, the unique high-temperature growth environment of a laser plasma will be examined using time-resolved imaging and laser spectroscopy to understand how pure carbon can self-assemble rapidly into a variety of forms including SWNHs and graphene flakes, and with catalyst-assistance, SWNTs. Atomic resolution images of SWNTs, SWNHs, and graphene reveals that graphene flakes are likely building blocks for the growth of these materials. Second, lower-temperature, chemical vapor deposition (CVD) methods suitable for mass production of nanomaterials will be examined. Pulsed-CVD and pulsed laser deposition (PLD) are described to investigate the catalyst-assisted growth kinetics of graphene and SWNTs. Time-resolved laser reflectivity and Raman spectroscopy studies show that autocatalytic kinetics imply the existence of intermediates crucial to the efficient nanomanufacturing of these materials for energy applications.

  16. A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth.

    PubMed

    Al-Husari, Maymona; Murdoch, Craig; Webb, Steven D

    2014-10-01

    Some tumours are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a "fingering" tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogeneous within the tumour, with a normal pH gradient observed within an intermediate growth layer within the spheroid. We also include a fractal dimension analysis of the simulated tumour contours, in which we compare the fractal dimensions of the simulated tumour surfaces with those found experimentally via photomicrographs.

  17. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  18. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization

    PubMed Central

    Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel

    2015-01-01

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388

  19. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-01-01

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases. PMID:27550930

  20. Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues.

    PubMed

    Vanderwinden, J M; Mailleux, P; Schiffmann, S N; Vanderhaeghen, J J

    1992-09-01

    Pleiotrophin (PTN), also known as HB-GAM, belongs to an emerging cytokine family unrelated to other growth factors. We report here the first comprehensive study using in situ hybridization on the cellular distribution of this new heparin-binding growth factor mRNA in rat tissues. PTN mRNA was developmentally expressed in many--but not all--neuroectodermal and mesodermal lineages, whilst no PTN mRNA was detected in endoderm, ectoderm and trophoblast. PTN mRNA was found in the nervous system throughout development, with a post-natal peak of expression. In the adult nervous system, significant expression persisted in hippocampal CA1 pyramidal neurons and in cortical neurons, but also in different non-neuronal cells types in various locations (olfactory nerve, cerebellar astrocytes, pituicytes, Schwann cells surrounding the neurons in sensory ganglia). PTN mRNA was also found during development in the mesenchyme of lung, gut, kidney and reproductive tract, in bone and cartilage progenitors, in dental pulp, in myoblasts, and in several other sites. Expression was differently regulated in each location, but usually faded around birth. In the adult, PTN mRNA was still present in the meninges, the iris, the Leydig cells of the testis and in the uterus. PTN mRNA was also strongly expressed in the basal layers of the tongue epithelium, which is the only epithelium and ectodermal derivative to express PTN mRNA, and this only after birth. PTN is known to be a growth factor for perinatal brain neurons and a mitogen for fibroblasts in vitro. Recently, trophic effects on epithelial cells and a role as a tumour growth factor have been reported. The mechanisms of regulation and the functions of PTN are however still uncertain. Its expression pattern during development suggests important roles in growth and differentiation. Moreover, the presence of PTN mRNA in several adult tissues and the up-regulation of PTN mRNA expression in the gravid uterus indicate that PTN also has

  1. In Vivo Cardiac Cellular Reprogramming Efficacy Is Enhanced by Angiogenic Preconditioning of the Infarcted Myocardium With Vascular Endothelial Growth Factor

    PubMed Central

    Mathison, Megumi; P. Gersch, Robert; Nasser, Ahmed; Lilo, Sarit; Korman, Mallory; Fourman, Mitchell; Hackett, Neil; Shroyer, Kenneth; Yang, Jianchang; Ma, Yupo; Crystal, Ronald G.; Rosengart, Todd K.

    2012-01-01

    Background In situ cellular reprogramming offers the possibility of regenerating functional cardiomyocytes directly from scar fibroblasts, obviating the challenges of cell implantation. We hypothesized that pretreating scar with gene transfer of the angiogenic vascular endothelial growth factor (VEGF) would enhance the efficacy of this strategy. Methods and Results Gata4, Mef2c, and Tbx5 (GMT) administration via lentiviral transduction was demonstrated to transdifferentiate rat fibroblasts into (induced) cardiomyocytes in vitro by cardiomyocyte marker studies. Fisher 344 rats underwent coronary ligation and intramyocardial administration of an adenovirus encoding all 3 major isoforms of VEGF (AdVEGF‐All6A+) or an AdNull control vector (n=12/group). Lentivirus encoding GMT or a GFP control was administered to each animal 3 weeks later, followed by histologic and echocardiographic analyses. GMT administration reduced the extent of fibrosis by half compared with GFP controls (12±2% vs 24±3%, P<0.01) and reduced the number of myofibroblasts detected in the infarct zone by 4‐fold. GMT‐treated animals also demonstrated greater density of cardiomyocyte‐specific marker beta myosin heavy chain 7+ cells compared with animals receiving GFP with or without VEGF (P<0.01). Ejection fraction was significantly improved after GMT vs GFP administration (12±3% vs −7±3%, P<0.01). Eight (73%) GFP animals but no GMT animals demonstrated decreased ejection fraction during this interval (P<0.01). Also, improvement in ejection fraction was 4‐fold greater in GMT/VEGF vs GMT/null animals (17±2% vs 4±1%, P<0.05). Conclusions VEGF administration to infarcted myocardium enhances the efficacy of GMT‐mediated cellular reprogramming in improving myocardial function and reducing the extent of myocardial fibrosis compared with the use of GMT or VEGF alone. PMID:23316332

  2. RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C

    PubMed Central

    Koizumi, Kazuhisa; Takano, Kazunori; Kaneyasu, Akiko; Watanabe-Takano, Haruko; Tokuda, Emi; Abe, Tomoyuki; Watanabe, Naoki; Takenawa, Tadaomi; Endo, Takeshi

    2012-01-01

    The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation. PMID:23034183

  3. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites.

    PubMed

    Patel, Anup Kumar; Balani, Kantesh

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ~88°±2° to ~118°±4°) and surface energy (from ~23.20 to ~17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT-Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT-Al2O3 reinforced UHMWPE biopolymer composites.

  4. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  5. Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes

    PubMed Central

    Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.

    2014-01-01

    ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman

  6. Streptococcus pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal meningitis.

    PubMed

    Piet, Jurgen R; Geldhoff, Madelijn; van Schaik, Barbera D C; Brouwer, Matthijs C; Valls Seron, Mercedes; Jakobs, Marja E; Schipper, Kim; Pannekoek, Yvonne; Zwinderman, Aeilko H; van der Poll, Tom; van Kampen, Antoine H C; Baas, Frank; van der Ende, Arie; van de Beek, Diederik

    2014-06-01

    Streptococcus pneumoniae (pneumococcus) is a major human pathogen causing pneumonia, sepsis and bacterial meningitis. Using a clinical phenotype based approach with bacterial whole-genome sequencing we identified pneumococcal arginine biosynthesis genes to be associated with outcome in patients with pneumococcal meningitis. Pneumococci harboring these genes show increased growth in human blood and cerebrospinal fluid (CSF). Mouse models of meningitis and pneumonia showed that pneumococcal strains without arginine biosynthesis genes were attenuated in growth or cleared, from lung, blood and CSF. Thus, S. pneumoniae arginine synthesis genes promote growth and virulence in invasive pneumococcal disease.

  7. Synthesis and growth mechanism of long ultrafine gold nanowires with uniform diameter

    NASA Astrophysics Data System (ADS)

    Kura, Hiroaki; Ogawa, Tomoyuki

    2010-04-01

    Homogeneous Au nanowires with 1.5 nm diameters and lengths of over 100 μm were synthesized in an oleylamine matrix via the simple reduction of aurichloride in a limited reaction temperature range around 85 °C. Oleylamine has multifunctional roles as solvent, surfactant, and reductant, and the surfactant induce anisotropic growth by adsorbing on the specific Au crystalline surface. As a result, Au nanowires were grown along the ⟨111⟩ direction of fcc-Au having many hcp atomic stacks. In this synthesis method, various shapes of Au nanostructures were produced simultaneously and this was strongly dependent on the reaction temperature. Au nanowires were provided by reconstruction from nanoparticles or their agglomeration. The growth mechanism of the Au nanowire in this synthesis was found to be quite unique and different from that for a conventional one-dimensional nanostructure which is obtained by anisotropical growth with supplying atoms from external resources.

  8. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    PubMed

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action.

  9. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    PubMed

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action. PMID:1661619

  10. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  11. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    PubMed Central

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  12. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    SciTech Connect

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A. )

    1991-06-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats.

  13. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    PubMed

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  14. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification.

    PubMed

    Hati, Santanu; Tripathy, Sayantan; Dutta, Pratip Kumar; Agarwal, Rahul; Srinivasan, Ramprasad; Singh, Ashutosh; Singh, Shailja; Sen, Subhabrata

    2016-01-01

    The spiro[pyrrolidine-3, 3´-oxindole] moiety is present as a core in number of alkaloids with substantial biological activities. Here in we report design and synthesis of a library of compounds bearing spiro[pyrrolidine-3, 3´-oxindole] motifs that demonstrated exceptional inhibitory activity against the proliferation of MCF-7 breast cancer cells. The synthesis involved a one pot Pictet Spengler-Oxidative ring contraction of tryptamine to the desired scaffolds and occurred in 1:1 THF and water with catalytic trifluoroacetic acid and stoichiometric N-bromosuccinimide as an oxidant. Phenotypic profiling indicated that these molecules induce apoptotic cell death in MCF-7 cells. Target deconvolution with most potent compound 5l from the library, using chemical proteomics indicated histone deacetylase 2 (HDAC2) and prohibitin 2 as the potential cellular binding partners. Molecular docking of 5l with HDAC2 provided insights pertinent to putative binding interactions. PMID:27573798

  15. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification

    PubMed Central

    Hati, Santanu; Tripathy, Sayantan; Dutta, Pratip Kumar; Agarwal, Rahul; Srinivasan, Ramprasad; Singh, Ashutosh; Singh, Shailja; Sen, Subhabrata

    2016-01-01

    The spiro[pyrrolidine-3, 3´-oxindole] moiety is present as a core in number of alkaloids with substantial biological activities. Here in we report design and synthesis of a library of compounds bearing spiro[pyrrolidine-3, 3´-oxindole] motifs that demonstrated exceptional inhibitory activity against the proliferation of MCF-7 breast cancer cells. The synthesis involved a one pot Pictet Spengler-Oxidative ring contraction of tryptamine to the desired scaffolds and occurred in 1:1 THF and water with catalytic trifluoroacetic acid and stoichiometric N-bromosuccinimide as an oxidant. Phenotypic profiling indicated that these molecules induce apoptotic cell death in MCF-7 cells. Target deconvolution with most potent compound 5l from the library, using chemical proteomics indicated histone deacetylase 2 (HDAC2) and prohibitin 2 as the potential cellular binding partners. Molecular docking of 5l with HDAC2 provided insights pertinent to putative binding interactions. PMID:27573798

  16. A recessive cellular mutation in v-fes-transformed mink cells restores contact inhibition and anchorage-dependent growth.

    PubMed Central

    Haynes, J R; Downing, J R

    1988-01-01

    A contact-inhibited revertant of mink cells transformed by the Gardner-Arnstein strain of feline sarcoma virus was isolated by fluorescence-activated sorting of cells stained with the mitochondria-specific dye rhodamine 123. The revertant cell line exhibited a decrease in its proliferative rate and saturation density and a complete loss of its capacity for anchorage-independent growth, but it remained tumorigenic when inoculated into nude mice. The revertant cells retained a rescuable Gardner-Arnstein feline sarcoma provirus, expressed high levels of the v-fes oncogene product and its associated tyrosine kinase activity, manifested elevated levels of phosphotyrosine-containing cellular proteins similar to those observed in v-fes-transformed cells, and were refractory to retransformation by retroviruses containing the v-fes, v-fms, and v-ras oncogenes. Fusion of the revertant and parental cells generated somatic cell hybrids which formed colonies in semisolid medium, indicating that the block in transformation was recessive. These data together with the observation that the revertant phenotype is unstable in continuous culture suggest that the loss of transformation is due to the presence of limiting quantities of a gene product which functions downstream of the v-fes-coded kinase in the mitogenic pathway. Images PMID:3261387

  17. EuroTracker® dyes: design, synthesis, structure and photophysical properties of very bright europium complexes and their use in bioassays and cellular optical imaging.

    PubMed

    Butler, Stephen J; Delbianco, Martina; Lamarque, Laurent; McMahon, Brian K; Neil, Emily R; Pal, Robert; Parker, David; Walton, James W; Zwier, Jurriaan M

    2015-03-21

    The development of the brightest luminescent europium(iii) complexes is traced, including analysis of the C3-symmetric core complex based on a functionalized triazacyclononane and identification of the most suitable strongly absorbing chromophore. Strategies for the synthesis of the complexes, including enantiopure analogues, are outlined and opportunities for applications in time-resolved microscopy and spectral imaging emphasised. Practicable examples are introduced, including selective organelle staining for cellular optical imaging at 65 nm resolution and the development of new bioassays using time-resolved FRET methods.

  18. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    NASA Astrophysics Data System (ADS)

    Zhai, Yueming; Duchene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; Diciaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  19. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis.

    PubMed

    Zhai, Yueming; DuChene, Joseph S; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms. PMID:27376686

  20. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis.

    PubMed

    Zhai, Yueming; DuChene, Joseph S; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  1. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    SciTech Connect

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    capacity to form colonies. Thus under our culture conditions breast acinar formation is at least a two-step process involving {beta}1-integrin-dependent cellular growth followed by polarization of the cells into organized structures. The regulation of this pathway appears to be impaired or lost in the tumor cells, suggesting that tumor colony formation occurs by independent mechanisms and that loss of proper integrinmediated cell-ECM interaction may be critical to breast tumor formation.

  2. Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean

    SciTech Connect

    Cuhel, R.L.; Jannasch, H.W.; Taylor, C.D.

    1983-01-01

    Simultaneous time-course measurements of /sup 35/SO/sub 4//sup 2 -/, /sup 32/PO/sup 43 -/, /sup 15/NH/sub 4//sup +/, and (/sup 14/C)acetate, glucose, and glutamate uptake were made at three stations in the northwestern Atlantic Ocean, using water samples taken from well below the euphotic zone. Marked deviations from linearity were observed in 14 of the 15 cases. At the two most inshore stations uptake of /sup 15/NH/sub 4//sup +/ or incorporation of /sup 35/SO/sub 4//sup 2 -/ into protein was undetectable for 16-30 h, followed by very rapid increases in the rates of activity. The sudden burst of SO/sub 4//sup 2 -/and NH/sub 4//sup +/ uptake was accompanied by a major increase in the incorporation of /sup 32/P into RNA and lipid fractions of the microbial population at a continental slope station. At a station in Sargasso Sea, all substrates were taken up without lag. Extended incubations led to a growth plateau which may be a measure of the total biologically labile organic nutrient supply. In all cases tested, chloramphenicol severely restricted uptake. One of the inshore stations was revisited a year later with similar results. The combined data demonstrate the utility of using inorganic nutrient uptake and subcellular incorporation patterns to measure microbial growth and metabolism and stress the necessity of time-course rather than end-point incubations.

  3. Cellular Internalization of Fibroblast Growth Factor-12 Exerts Radioprotective Effects on Intestinal Radiation Damage Independently of FGFR Signaling

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Fujita, Mayumi; Asada, Masahiro; Meineke, Viktor; Imamura, Toru; Imai, Takashi

    2014-02-01

    Purpose: Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. Methods and Materials: Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. Results: Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. Conclusions: These findings indicate that FGF12 can protect the

  4. Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons.

    PubMed

    Kar, Amar N; MacGibeny, Margaret A; Gervasi, Noreen M; Gioio, Anthony E; Kaplan, Barry B

    2013-04-24

    Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.

  5. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  6. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation.

    PubMed

    Piper, Michael; Salih, Saif; Weinl, Christine; Holt, Christine E; Harris, William A

    2005-02-01

    It has been proposed that growth cones navigating through gradients adapt to baseline concentrations of guidance cues. This adaptation process is poorly understood. Using the collapse assay, we show that adaptation in Xenopus laevis retinal growth cones to the guidance cues Sema3A or netrin-1 involves two processes: a fast, ligand-specific desensitization that occurs within 2 min of exposure and is dependent on endocytosis, and a slower, ligand-specific resensitization, which occurs within 5 min and is dependent upon protein synthesis. These two phases of adaptation allow retinal axons to adjust their range of sensitivity to specific guidance cues.

  7. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    SciTech Connect

    Zhou, Liyan; Yan, Shancheng; Lu, Tao; Shi, Yi; Wang, Jianyu; Yang, Fan

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  8. Growth and Synthesis of Nucleic Acid and Protein by Excised Radish Cotyledons 1

    PubMed Central

    Nieman, R. H.; Poulsen, L. L.

    1967-01-01

    Nutritional and light requirements for growth and synthesis of RNA, DNA, and protein by cotyledons excised from 5-day-old seedlings of Raphanus sativus L. were investigated, and the course of synthesis was followed through the cell cycle. The minimum requirements for a net increase in nucleic acid and protein were sugar, nitrate, and light. The cotyledons used nitrite at low concentration, but not ammonium ion. Light was required for preliminary steps in synthesis of RNA, DNA, and protein, but the actual polymerization reactions occurred in the dark. The cotyledons contained sufficient endogenous growth factors for about half of the cells to complete 1 cycle on a medium of 1% sucrose, 80 mm KNO3. The increase in DNA was limited to about 50% and was accompanied by a comparable increase in cell number. Fresh weight, RNA, and protein tended to increase in proportion to DNA. Growth of the isolated cotyledons commenced with cell enlargement. RNA began to increase after about 4 hours, DNA after about 12. The major increase in protein also began at about 12 hours. The maximum rate of increase for all 3 occurred between 12 and 16 hours. Cell counts indicated that by 28 hours most of the cells which had replicated DNA had also completed cell division. PMID:16656601

  9. Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Jung Min; No, You-Shin; Kim, Sungwoong; Park, Hong-Gyu; Park, Won Il

    2015-02-01

    Wet-chemical synthesis is a promising alternative to the conventional vapour-phase method owing to its advantages in commercial-scale production at low cost. Studies on nanocrystallization in solution have suggested that growth rate is commonly affected by the size and density of surrounding crystals. However, systematic investigation on the mutual interaction among neighbouring crystals is still lacking. Here we report on strong interactive growth behaviours observed during anisotropic growth of zinc oxide hexagonal nanorods arrays. In particular, we found multiple growth regimes demonstrating that the diameter of the rod is dependent on its height. Local interactions among the growing rods result in cases where height is irrelevant to the diameter, increased with increasing diameter or inversely proportional to the diameter. These phenomena originate from material diffusion and the size-dependent Gibbs-Thomson effect that are universally applicable to a variety of material systems, thereby providing bottom-up strategies for diverse three-dimensional nanofabrication.

  10. The effect of platelet-derived growth factor on cell division and glycosaminoglycan synthesis by human skin and scar fibroblasts.

    PubMed

    Savage, K; Siebert, E; Swann, D

    1987-07-01

    The effect of platelet-derived growth factor (PDGF) on cell division and glycosaminoglycan (GAG) synthesis by fibroblasts isolated from skin and scar was measured. We found that PDGF stimulates cell division more efficiently in normal skin fibroblasts than in scar fibroblasts and decreases GAG synthesis in skin and scar fibroblasts. Using a 4-h pulse label with [3H]thymidine ([3H]Thd) following a 20-h incubation of confluent monolayer cultures with 0-5 units PDGF/ml Dulbecco's modified Eagle's medium, we found a concentration-dependent increase in [3H]Thd incorporation. After incubation of fibroblasts with [3H]glucosamine and 35SO4 in the presence or absence of PDGF, labeled constituents were isolated from the extracellular, pericellular, and cellular fractions by pronase digestion and column chromatography on Sepharose CL4B or DEAE-cellulose and analyzed by cellulose acetate electrophoresis. The presence of PDGF decreased the total amount of 35S incorporated into macromolecules by skin and scar fibroblasts and resulted in an altered distribution of labeled GAGs. Dermal fibroblasts exposed to PDGF for 24 h incorporated a greater percentage of radiolabeled 35S into dermatan sulfate prime (DS') and less into dermatan sulfate (DS) in the extracellular fractions and a greater percentage of 35S into heparan sulfate (HS) in the pericellular fractions than did parallel cultures grown in the absence of PDGF. It is thought than PDGF may have an effect on scar formation by increasing the fibroblast population in the wound tissue and by affecting the total amount and types of matrix components synthesized.

  11. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae).

    PubMed

    Douétts-Peres, Jackellinne C; Cruz, Marco Antônio L; Reis, Ricardo S; Heringer, Angelo S; de Oliveira, Eduardo A G; Elbl, Paula M; Floh, Eny I S; Silveira, Vanildo; Santa-Catarina, Claudete

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  12. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae)

    PubMed Central

    Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  13. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae).

    PubMed

    Douétts-Peres, Jackellinne C; Cruz, Marco Antônio L; Reis, Ricardo S; Heringer, Angelo S; de Oliveira, Eduardo A G; Elbl, Paula M; Floh, Eny I S; Silveira, Vanildo; Santa-Catarina, Claudete

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.

  14. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  15. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    SciTech Connect

    Hollingsworth, Jennifer A.; Palaniappan, Kumaranand; Laocharoensuk, Rawiwan; Smith, Nickolaus A.; Dickerson, Robert M.; Casson, Joanna L.; Baldwin, Jon K.

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth rates as a

  16. Synthesis of fluorescent D-amino acids (FDAAs) and their use for probing peptidoglycan synthesis and bacterial growth in situ

    PubMed Central

    Kuru, Erkin; Tekkam, Srinivas; Hall, Edward

    2015-01-01

    Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycan of diverse bacterial species at the sites of active peptidoglycan biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here, we provide a protocol for the synthesis of four FDAAs emitting light in blue, green or red and for their use in peptidoglycan labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores. FDAAs can be synthesized in a typical chemistry laboratory in 2–3 days. The simple labeling procedure involves addition of the FDAAs to the bacterial sample for the desired labeling duration and stopping further label incorporation by fixation or by washing away excess dye. We discuss several scenarios for the use of these labels including short or long labeling durations, and the combination of different labels in pure culture or complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli. PMID:25474031

  17. Selective synthesis and chain growth of linear hydrocarbons in the Fischer-Tropsch synthesis over zeolite-entrapped cobalt catalysts

    SciTech Connect

    Koh, D.J.; Chung, J.S.; Kim, Y.G.

    1995-06-01

    The impregnation of NaOH solution into the pores of cobalt-exchanged zeolite promoted the conventional reduction of cobalt ions with hydrogen gas. The method yielded catalysts that had high degrees of reduction and small cobalt clusters located inside zeolite pores. In the Fischer-Tropsch synthesis these catalysts showed a chain-extension effect, producing hydrocarbons higher than C{sub 10} in appreciable amounts, and an enhanced production of linear hydrocarbons such as 1-olefins and n-paraffins. The formation of long-chain hydrocarbons is attributed to an increased chance of the chain growth owing to a hold-up effect of reaction intermediates, especially 1-olefins, which are accumulated inside zeolite pores during the reaction. Hydrocarbon isomers are produced over acidic sites of zeolite by secondary reactions (isomerization and cracking), which result in a chain shortening of the long-chain hydrocarbons.

  18. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    PubMed

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  19. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-04-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry.

  20. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  1. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities

    NASA Astrophysics Data System (ADS)

    Wender, Paul A.; Buschmann, Nicole; Cardin, Nathan B.; Jones, Lisa R.; Kan, Cindy; Kee, Jung-Min; Kowalski, John A.; Longcore, Kate E.

    2011-08-01

    The daphnane diterpene orthoesters constitute a structurally fascinating family of natural products that exhibit a remarkable range of potent biological activities. Although partial activity information is available for some natural daphnanes, little information exists for non-natural congeners or on how changes in structure affect mode of action, function, potency or selectivity. A gateway strategy designed to provide general synthetic access to natural and non-natural daphnanes is described and utilized in the synthesis of two novel members of this class. In this study, a commercially available tartrate derivative was elaborated through a key late-stage diversification intermediate into B-ring yuanhuapin analogues to initiate exploration of the structure-function relationships of this class. Protein kinase C was identified as a cellular target for these agents, and their activity against human lung and leukaemia cell lines was evaluated. The natural product and a novel non-natural analogue exhibited significant potency, but the epimeric epoxide was essentially inactive.

  2. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits.

    PubMed

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  3. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data

    PubMed Central

    Wachter, Astrid; Beißbarth, Tim

    2016-01-01

    Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease

  4. Sirtuin 6 promotes transforming growth factor-β1/H2O2/HOCl-mediated enhancement of hepatocellular carcinoma cell tumorigenicity by suppressing cellular senescence.

    PubMed

    Feng, Xin-Xia; Luo, Jing; Liu, Mei; Yan, Wei; Zhou, Zhen-Zhen; Xia, Yu-Jia; Tu, Wei; Li, Pei-Yuan; Feng, Zuo-Hua; Tian, De-An

    2015-05-01

    Sirtuin 6 (SIRT6) can function as a tumor suppressor by suppressing aerobic glycolysis and apoptosis resistance. However, the negative effect of SIRT6 on cellular senescence implies that it may also have the potential to promote tumor development. Here we report that the upregulation of SIRT6 expression was required for transforming growth factor (TGF)-β1 and H2O2/HOCl reactive oxygen species (ROS) to promote the tumorigenicity of hepatocellular carcinoma (HCC) cells. Transforming growth factor-β1/H2O2/HOCl could upregulate SIRT6 expression in HCC cells by inducing the sustained activation of ERK and Smad pathways. Sirtuin 6 in turn abrogated the inducing effect of TGF-β1/H2O2/HOCl on cellular senescence of HCC cells, and was required for the ERK pathway to efficiently suppress the expression of p16 and p21. Sirtuin 6 altered the effect of Smad and p38 MAPK pathways on cellular senescence, and contributed to the inhibitory effect of the ERK pathway on cellular senescence. However, SIRT6 was inefficient in antagonizing the promoting effect of TGF-β1/H2O2 HOCl on aerobic glycolysis and anoikis resistance. Intriguingly, if SIRT6 expression was inhibited, the promoting effect of TGF-β1/H2O2/HOCl on aerobic glycolysis and anoikis resistance was not sufficient to enhance the tumorigenicity of HCC cells. Suppressing the upregulation of SIRT6 enabled TGF-β1/H2O2/HOCl to induce cellular senescence, thereby abrogating the enhancement of HCC cell tumorigenicity by TGF-β1/H2O2/HOCl. These results suggest that SIRT6 is required for TGF-β1/H2O2/HOCl to enhance the tumorigenicity of HCC cells, and that targeting the ERK pathway to suppress the upregulation of SIRT6 might be a potential approach in comprehensive strategies for the therapy of HCC.

  5. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates.

    PubMed

    GROMET-ELHANAN, Z; HESTRIN, S

    1963-02-01

    Gromet-Elhanan, Zippora (The Hebrew University, Jerusalem, Israel) and Shlomo Hestrin. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J. Bacteriol. 85:284-292. 1963.-Acetobacter xylinum could be made to grow on ethanol, acetate, succinate, or l-malate. The growth was accompanied by formation of opaque leathery pellicles on the surface of the growth medium. These pellicles were identified as cellulose on the basis of their chemical properties, solubility behavior, and infrared absorption spectra. Washed-cell suspensions prepared from cultures grown on ethanol or the organic acids, in contrast to washed sugar-grown cells, were able to transform citric-cycle intermediates into cellulose. The variations in the substrate spectrum of cellulose synthesis between sugar-grown cells and organic acids-grown cells were found to be correlated with differences in the oxidative capacity of the cells. The significance of the findings that A. xylinum could be made to grow on ethanol on complex as well as synthetic media is discussed from the viewpoint of the whole pattern of Acetobacter classification.

  6. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis

    PubMed Central

    1988-01-01

    We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti- bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells. PMID:3417781

  7. Protein accounting in the cellular economy.

    PubMed

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs.

  8. EFFECT OF FLUID SHEAR AND IRRADIANCE ON POPULATION GROWTH AND CELLULAR TOXIN CONTENT OF THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE.

    EPA Science Inventory

    The potential for in situ turbulence to inhibit dinoflagellate population growth has been demonstrated by experimentally exposing dinoflagellate cultures to quantified shear flow. However, despite interest in understanding environmental factors that affect the growth of toxic din...

  9. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels.

  10. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer’s Disease

    PubMed Central

    McGinley, Lisa M.; Sims, Erika; Lunn, J. Simon; Kashlan, Osama N.; Chen, Kevin S.; Bruno, Elizabeth S.; Pacut, Crystal M.; Hazel, Tom; Johe, Karl; Sakowski, Stacey A.

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar “best in class” cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. Significance There is no cure for Alzheimer’s disease (AD) and

  11. Synthesis of functionalized Pluronic-b-poly(ε-caprolactone) and the comparative study of their pendant groups on the cellular internalization behavior.

    PubMed

    Du, Zhengzhen; Zhang, Yan; Lang, Meidong

    2015-04-01

    This study focuses on the synthesis of Pluronic-b-poly(ε-caprolactone) bearing benzyl-oxycarbonylmethyl and carboxylic groups and the comparative study to investigate the influence of the different pendant groups on the cellular behavior. The functionalized Pluronic-b-poly(ε-caprolactone) bearing two kinds of pendant groups are synthesized via ring-opening polymerization of ε-caprolactone and 6-(benzyl-oxycarbonyl methyl)-ε-caprolactone and followed by deprotection respectively. The structure of the copolymers is confirmed and the polymeric micelles are formed by an emulsion/solvent evaporation technique. The critical micelle concentrations are improved compared with Pluronic F127, the morphologies of the micelles are spherical with the diameter on nano scale and good colloidal stability. The copolymers have good cytocompatibility and the comparative study reveals that cellular internalization, digesting by lysosome and intracellular distribution are affected by the pendant groups, moreover, the endocytosis pathway is determined by the pendant groups. Therefore, the definite internalization mechanism is beneficial for the design of polymeric micellar carriers to achieve intra- or extracellular modes of drug delivery and provide better access to either cell membrane or intracellular organelles.

  12. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    PubMed Central

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  13. Viral DNA synthesis-dependent titration of a cellular repressor activates transcription of the human adenovirus type 2 IVa2 gene.

    PubMed

    Iftode, C; Flint, S J

    2004-12-21

    Synthesis of progeny DNA genomes in cells infected by human subgroup C adenoviruses leads to several changes in viral gene expression. These changes include transcription from previously silent, late promoters, such as the IV(a2) promoter, and a large increase in the efficiency of major-late (ML) transcription. Some of these changes appear to take place sequentially, because the product of the IV(a2) gene has been implicated in stimulation of ML transcription. Our previous biochemical studies suggested that IV(a2) transcription is regulated by viral DNA synthesis-dependent relief of transcriptional repression by a cellular protein that we termed IV(a2)-RF. To test the relevance of such a repressor-titration mechanism during the viral infectious cycle, we introduced into the endogenous IV(a2) promoter two mutations that impair in vitro-binding of IV(a2)-RF, but introduce no change (Rep7) or one conservative amino acid substitution (Rep6) into the overlapping coding sequence for the viral DNA polymerase. The results of run-on transcription assays indicated that both mutations induced earlier-than-normal and more efficient IV(a2) transcription. Both mutations were also observed to result in modest increases in the efficiency of viral DNA synthesis. However, measurement of the concentration of IV(a2) transcripts as a function of IV(a2) template concentration demonstrated that the Rep mutations increased by up to 60-fold the efficiency with which IV(a2) templates were used during the initial period of the late phase of infection, as predicted by the repressor titration hypothesis. These mutations also increased the efficiency of ML transcription in infected cells.

  14. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhou, Zhijun; Li, Zhiming; Zhang, Chunlei; Wang, Xiansong; Wang, Kan; Gao, Guo; Huang, Peng; Cui, Daxiang

    2013-04-01

    Biomimetic synthesis has become a promising green pathway to prepare nanomaterials. In this study, bovine serum albumin (BSA)-conjugated gold nanoclusters/nanoparticles were successfully synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The synthesized BSA-Au nanocomplexes have fluorescence emission (588 nm) of gold nanoclusters and surface plasmon resonance of gold nanoparticles. The BSA-Au nanocomplexes display non-cytotoxicity and excellent biocompatibility on MGC803 gastric cancer cells. After conjugation of folic acid molecules, the obtained BSA-Au nanocomplexes showed highly selective targeting for MGC803 cells and dual-modality dark-field and fluorescence imaging.

  15. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    SciTech Connect

    Karthi, S. Girija, E. K.

    2014-04-24

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  16. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Karthi, S.; Girija, E. K.

    2014-04-01

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  17. Targeting (cellular) lysosomal acid ceramidase by B13: Design, synthesis and evaluation of novel DMG-B13 ester prodrugs

    PubMed Central

    Bai, Aiping; Szulc, Zdzislaw, M.; Bielawski, Jacek; Pierce, Jason S.; Rembisa, Barbara; Terzieva, Silva; Mao, Cungui; Xu, Ruijuan; Wu, Bill; Clarke, Christopher J.; Newcomb, Benjamin; Liu, Xiang; Norris, James; Hannun, Yusuf A.; Bielawska, Alicja

    2015-01-01

    Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N, N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13•HCl) and LCL596 (1-O-DMG-B13•HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13•2HCl) conjugates, were designed and synthesized through N, N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase. PMID:25456083

  18. The Drosophila EKC/KEOPS complex: roles in protein synthesis homeostasis and animal growth.

    PubMed

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t (6)A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t (6)A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth.

  19. Differential chlorate inhibition of Chaetomium globosum germination, hyphal growth, and perithecia synthesis.

    PubMed

    Biles, Charles L; Wright, Desiree; Fuego, Marianni; Guinn, Angela; Cluck, Terry; Young, Jennifer; Martin, Markie; Biles, Josiah; Poudyal, Shubhra

    2012-12-01

    Chaetomium globosum Kunze:Fr is a dermatophytic, dematiaceous fungus that is ubiquitous in soils, grows readily on cellulolytic materials, and is commonly found on water-damaged building materials. Chlorate affects nitrogen metabolism in fungi and is used to study compatibility among anamorphic fungi by inducing nit mutants. The effect of chlorate toxicity on C. globosum was investigated by amending a modified malt extract agar (MEA), oat agar, and carboxymethyl cellulose agar (CMC) with various levels of potassium chlorate (KClO(3)). C. globosum perithecia production was almost completely inhibited (90-100 %) at low levels of KClO(3) (0.1 mM) in amended MEA. Inhibition of perithecia production was also observed on oat agar and CMC at 1 and 10 mM, respectively. However, hyphal growth in MEA was only inhibited 20 % by 0.1-100 mM KClO(3) concentrations. Hyphal growth was never completely inhibited at the highest levels tested (200 mM). Higher levels of KClO(3) were needed on gypsum board to inhibit perithecia synthesis. In additional experiments, KClO(3) did not inhibit C. globosum, Fusarium oxysporum, Aspergillus niger, Penicillum expansum, and airborne fungal spore germination. The various fungal spores were not inhibited by KClO(3) at 1-100 mM levels. These results suggest that C. globosum perithecia synthesis is more sensitive to chlorate toxicity than are hyphal growth and spore germination. This research provides basic information that furthers our understanding about perithecia formation and may help in developing control methods for fungal growth on building materials.

  20. Sites of epidermal growth factor synthesis and action in the pituitary: paracrine and autocrine interactions.

    PubMed

    Childs, G V; Armstrong, J

    2001-03-01

    1. Epidermal growth factor (EGF) is produced by growth hormone (GH) cells and gonadotropes in normal pituitary cell populations. The studies were initiated to determine whether EGF is a paracrine or autocrine regulator of gonadotrope function. 2. The first group of studies tested for the presence of EGF receptors in gonadotropes from cycling female rats by immunolabelling. Expression varied with the stage of the cycle. At the highest point (metoestrus), only a few EGF target cells are gonadotropes, identified by their content of luteinizing hormone (LH)-beta mRNA. Expression by gonadotropes then increased to reach a peak of 50% of cells during pro-oestrus. 3. Studies investigating the regulation of expression of EGF receptor (R) showed that all culture conditions (in media with or without serum) and EGF itself both stimulated expression of the receptor by gonadotropes in populations from oestrus or metoestrus rats. Gonadotropin-releasing hormone (GnRH) also stimulated EGFR expression in follicle-stimulating hormone (FSH) gonadotropes from oestrus animals. Additional tests of expression of immediate early genes (c-fos) showed that, after 15 min, EGF stimulated expression in cells with FSH antigens. 4. Epidermal growth factor also stimulated gonadotrope proliferation, as detected by the MTT cell growth/cell death assays and bromodeoxyuridine uptake by gonadotropes during the S phase (DNA synthesis) of the cell cycle. 5. Epidermal growth factor and GnRH both stimulated a significant increase in the percentage of mitotic gonadotropes. Epidermal growth factor may be an autocrine or a paracrine growth factor to maintain and develop the gonadotrope population and EGF may also be involved in early differentiation events that prepare cells to support the LH surge.

  1. Cell density modulates growth, extracellular matrix, and protein synthesis of cultured rat mesangial cells.

    PubMed

    Wolthuis, A; Boes, A; Grond, J

    1993-10-01

    Mesangial cell (MC) hyperplasia and accumulation of extracellular matrix are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of cell density on growth, extracellular matrix formation, and protein synthesis of cultured rat MCs. A negative linear relationship was found between initial plating density and DNA synthesis per cell after 24 hours incubation in medium with 10% fetal calf serum (range: 1 x 10(3) to 7 x 10(5) MCs/2cm2, r = 0.996, P < 0.001). Enzyme-linked immunosorbent assay of the amount of fibronectin in the conditioned medium after 72 hours showed a negative relationship with increasing cell density. In contrast, the amount of cell-associated fibronectin increased to maximal values in confluent cultures, and no further increase was seen at supraconfluency. The relative collagen synthesis in the conditioned medium and cell layer--assessed by collagenase digestion after 5 hours [3H]proline pulse labeling--showed a similar pattern. Secreted collagen decreased with increasing cell density from 3.4% to 0.2% of total protein synthesis. In contrast, cell-associated collagen increased from 1.1% to 11.8% of newly synthesized protein until confluency followed by a decrease to 4.2% at supraconfluency. Specific immunoprecipitation of collagen types I, III, and IV revealed a significant (twofold) increase in collagen I synthesis per cell at confluency. Collagen III and IV synthesis was not affected by cell density. Specific protein expression in both the medium and cell layer were analyzed by two-dimensional polyacrylamide gel electrophoresis (150 to 20 kd, pI 5.0 to 7.0) after 20 hours steady-state metabolic labeling with [35S]methionine. Supraconfluent MCs displayed overexpression of 10, underexpression of four, new expression of five, and changed mobility of three different intracellular proteins. Of interest was the overexpression of two proteins (89 kd, pI 5.31 and 72 kd, pI 5.32) that were identified by immunoblotting as

  2. Scalable flame synthesis of SiO2 nanowires: dynamics of growth.

    PubMed

    Tricoli, Antonio; Righettoni, Marco; Krumeich, Frank; Stark, Wendelin J; Pratsinis, Sotiris E

    2010-11-19

    Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10-20 s) at high growth rates (ca 11-30 nm s(-1)) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO(2) films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO(2) nanowires facilitating their utilization in several applications. PMID:20972311

  3. Submergence-Induced Ethylene Synthesis, Entrapment, and Growth in Two Plant Species with Contrasting Flooding Resistances.

    PubMed Central

    Voesenek, LACJ.; Banga, M.; Thier, R. H.; Mudde, C. M.; Harren, FJM.; Barendse, GWM.; Blom, CWPM.

    1993-01-01

    Submergence-induced ethylene synthesis and entrapment were studied in two contrasting Rumex species, one flood-resistant (Rumex palustris) and the other flood-sensitive (Rumex acetosa). The application of a photoacoustic method to determine internal ethylene concentrations in submerged plants is discussed. A comparison with an older technique (vacuum extraction) is described. For the first time ethylene production before, during, and after submergence and the endogenous concentration during submergence were continuously measured on a single intact plant without physical perturbation. Both Rumex species were characterized by enhanced ethylene concentrations in the shoot after 24 h of submergence. This was not related to enhanced synthesis but to continued production and physical entrapment. In R. palustris, high endogenous ethylene levels correlated with enhanced petiole and lamina elongation. No dramatic change in leaf growth rate was observed in submerged R. acetosa shoots. After desubmergence both species showed an increase in ethylene production, the response being more pronounced in R. palustris. This increase was linked to the enhanced postsubmergence growth rate of leaves of R. palustris. Due to the very rapid escape of ethylene out of desubmerged plants to the atmosphere (90% disappeared within 1 min), substantial underestimation of internal ethylene concentrations can be expected using more conventional vacuum extraction techniques. PMID:12231979

  4. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties.

    PubMed

    Morber, Jenny Ruth; Ding, Yong; Haluska, Michael Stephan; Li, Yang; Liu, J Ping; Wang, Zhong Lin; Snyder, Robert L

    2006-11-01

    We report here a systematic synthesis and characterization of aligned alpha-Fe2O3 (hematite), epsilon-Fe2O3, and Fe3O4 (magnetite) nanorods, nanobelts, and nanowires on alumina substrates using a pulsed laser deposition (PLD) method. The presence of spherical gold catalyst particles at the tips of the nanostructures indicates selective growth via the vapor-liquid-solid (VLS) mechanism. Through a series of experiments, we have produced a primitive "phase diagram" for growing these structures based on several designed pressure and temperature parameters. Transmission electron microscopy (TEM) analysis has shown that the rods, wires, and belts are single-crystalline and grow along <111>m or <110>h directions. X-ray diffraction (XRD) measurements confirm phase and structural analysis. Superconducting quantum interference device (SQUID) measurements show that the iron oxide structures exhibit interesting magnetic behavior, particularly at room temperature. This work is the first known report of magnetite 1D nanostructure growth via the vapor-liquid-solid (VLS) mechanism without using a template, as well as the first known synthesis of long epsilon-Fe2O3 nanobelts and nanowires. PMID:17064124

  5. Genistein decreases cellular redox potential, partially suppresses cell growth in HL-60 leukemia cells and sensitizes cells to γ-radiation-induced cell death

    PubMed Central

    KIM, IN GYU; KIM, JIN SIK; LEE, JAE HA; CHO, EUN WIE

    2014-01-01

    Various mechanisms have been proposed to underlie the cellular activity of genistein, based on biological experiments and epidemiological studies. The present study demonstrated that genistein inhibited the expression of cytoplasmic nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate dehydrogenase (cICDH), thus increasing levels of intracellular reactive oxygen species (ROS) in human promyeloid leukemia HL-60 cells. In genistein-treated cells, the cellular redox potential (GSH/GSSG) was significantly decreased. This decrease in redox potential was caused by significant downregulation of the cICDH gene, generating the reducing equivalents (NADPH) for maintenance of cellular redox potential and cellular ROS level, which may regulate cell growth and cell death. Genistein-induced ROS partially induced rapid transition into the G2/M phase by upregulation of p21wap1/cip1 and apoptotic cell death. Treatment of cells with N-acetylcysteine, a well-known antioxidant (ROS scavenger), not only partially restored cell growth and inhibited cell cycle arrest in G2/M, but also prevented apoptotic cell death. By contrast, normal lymphocytes did not significantly progress into the G2/M phase and radiation-induced cell death was inhibited by genistein treatment. Therefore, genistein and γ-irradiation together synergistically cause cell death in leukemia cells, however, genistein has a radioprotective effect in normal human lymphocytes. In conclusion, it was suggested that genistein selectively functions, not as an antioxidant, but as a pro-oxidant in HL-60 cells. This property can increase ionizing radiation-induced cell cycle arrest and sensitivity to apoptotic cell death in human promyeloid leukemia HL-60 cells, but does not cause significant damage to normal cells. PMID:25310747

  6. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  7. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  8. Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity.

    PubMed Central

    Tapanadechopone, P; Tumova, S; Jiang, X; Couchman, J R

    2001-01-01

    Perlecan, a proteoglycan of basement membrane and extracellular matrices, has important roles in both normal biological and pathological processes. As a result of its ability to store and protect growth factors, perlecan may have crucial roles in tumour-cell growth and invasion. Since the biological functions of different types of glycosaminoglycan vary with cellular origin and structural modifications, we analysed the expression and biological functions of perlecan produced by a normal epidermal cell line (JB6) and its transformed counterpart (RT101). Expression of perlecan in tumorigenic cells was significantly increased in both mRNA and protein levels. JB6 perlecan was exclusively substituted with heparan sulphate, whereas that of RT101 contained some additional chondroitin sulphate. Detailed structural analysis of the heparan sulphate (HS) chains from perlecan of both cell types revealed that their overall sulphation and chain length were similar (approximately 60 kDa), but the HS chains of tumour-cell-derived perlecan were less sulphated. This resulted from reduced 2-O- and 6-O-sulphation, but not N-sulphation, and an increase in the proportion of unsulphated disaccharides. Despite this, the heparan sulphate of RT101- and JB6-derived perlecan bound fibroblast growth factor-1, -2, -4 and -7 and heparin-binding epidermal growth factor with similar affinity. Therefore abundant tumour-derived perlecan may support the angiogenic responses seen in vivo and be a key player in tumorigenesis. PMID:11284741

  9. Synthesis, characterization and cellular location of cytotoxic constitutional organometallic isomers of rhenium delivered on a cyanocobalmin scaffold.

    PubMed

    Santoro, Giuseppe; Zlateva, Theodora; Ruggi, Albert; Quaroni, Luca; Zobi, Fabio

    2015-04-21

    Constitutional isomers of cyanocobalamin adducts based on a fluorescent rhenium tris-carbonyl diimine complex were prepared, characterized and tested against PC-3 cancer cells. The adducts differ only in the relative binding position of the organometallic species which is either bound at the cyano or the 5'-hydroxo group of vitamin B12. When tested for their cytotoxic potency, the species showed IC50 values in the low μM rage. Upon conjugation to the vitamin an energy transfer process causes an extremely low quantum yield of fluorescence emission, making the conjugates unsuitable for fluorescence imaging. However, by exploiting the vibrational signature of the fac-[Re(CO)3](+) core, their cellular distribution was evaluated via FTIR spectromicroscopy.

  10. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging

    PubMed Central

    2013-01-01

    Biomimetic synthesis has become a promising green pathway to prepare nanomaterials. In this study, bovine serum albumin (BSA)-conjugated gold nanoclusters/nanoparticles were successfully synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The synthesized BSA-Au nanocomplexes have fluorescence emission (588 nm) of gold nanoclusters and surface plasmon resonance of gold nanoparticles. The BSA-Au nanocomplexes display non-cytotoxicity and excellent biocompatibility on MGC803 gastric cancer cells. After conjugation of folic acid molecules, the obtained BSA-Au nanocomplexes showed highly selective targeting for MGC803 cells and dual-modality dark-field and fluorescence imaging. PMID:23587362

  11. Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhao, Wen-yu; Mu, Xin; Liu, Xing; He, Dan-qi; Zhu, Wan-ting; Zhang, Qing-jie

    2016-03-01

    Nanowires have attracted intense attention in recent years due to their novel physical properties. In this work, we prepare high-purity tellurium nanowires through the self-seed-assisted growth method previously developed by us. The tellurium seeds were firstly synthesized by reducing Na2TeO3 in the ice water with NaBH4. The high-purity tellurium nanowires with a diameter of 40-50 nm and a length of several tens of micrometers were then grown on tellurium seeds by reducing Na2TeO3 with hydrazine hydrate. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of tellurium seeds and nanowires. The effects of temperature, time, surfactant and tellurium seeds on microstructures of tellurium nanowires has also been investigated. The synthesis conditions of tellurium seeds and nanowires was optimized. The selected area electron diffraction pattern confirms that the growth direction of tellurium nanowires is parallel to [0001] direction. It was discovered that high-purity tellurium nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the tellurium nuclei, selecting the appropriate surfactant to induce the coordination along the macromolecular chain, and using tellurium seeds as the templates of the epitaxial growth of tellurium nuclei.

  12. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc*

    PubMed Central

    Yang, Jun-guo; Yu, Hai-ning; Sun, Shi-li; Zhang, Lan-cui; He, Guo-qing; Das, Undurti N.; Ruan, Hui; Shen, Sheng-rong

    2009-01-01

    Objective: To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells. Methods: We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+. Results: We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:1 was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer. Conclusion: These results show that EGCG interacted with cell membrane, decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG. PMID:19489106

  13. Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish.

    PubMed

    Steinbacher, Peter; Marschallinger, Julia; Obermayer, Astrid; Neuhofer, Alois; Sänger, Alexandra M; Stoiber, Walter

    2011-06-01

    Temperature is an important factor influencing teleost muscle growth, including a lasting ('imprinted') influence of embryonic thermal experience throughout all further life. However, little is known about the cellular processes behind this phenomenon. The study reported here used digital morphometry and immunolabelling for Pax7, myogenin and H3P to quantitatively examine the effects of thermal history on muscle precursor cell (MPC) behaviour and muscle growth in pearlfish (Rutilus meidingeri) until the adult stage. Fish were reared at three different temperatures (8.5, 13 and 16°C) until hatching and subsequently kept under the same (ambient) thermal conditions. Cellularity data were combined with a quantitative analysis of Pax7+ MPCs including those that were mitotically active (Pax7+/H3P+) or had entered differentiation (Pax7+/myogenin+). The results demonstrate that at hatching, body lengths, fast and slow muscle cross-sectional areas and fast fibre numbers are lower in fish reared at 8.5 and 13°C than at 16°C. During the larval period, this situation changes in the 13°C-fish, so that these fish are finally the largest. The observed effects can be related to divergent cellular mechanisms at the MPC level that are initiated in the embryo during the imprinting period. Embryos of 16°C-fish have reduced MPC proliferation but increased differentiation, and thus give rise to larger hatchlings. However, their limited MPC reserves finally lead to smaller adults. By contrast, embryos of 13°C-fish and, to a lesser extent, 8.5°-fish, show enhanced MPC proliferation but reduced differentiation, thus leading to smaller hatchlings but allowing for a larger MPC pool that can be used for enhanced post-hatching growth, finally resulting in larger adults.

  14. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species.

    PubMed

    Lu, Jing; Carter, Dee A; Turnbull, Lynne; Rosendale, Douglas; Hedderley, Duncan; Stephens, Jonathan; Gannabathula, Swapna; Steinhorn, Gregor; Schlothauer, Ralf C; Whitchurch, Cynthia B; Harry, Elizabeth J

    2013-01-01

    Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.

  15. Synthesis of Ag nanoplates on GaAs wafers : evidence for growth mechanism.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-01-21

    Direct synthesis of Ag nanoplates on GaAs wafers has been developed in our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous solutions of pure AgNO{sub 3} react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still not clear yet regarding the roles of different possible pathways for reducing Ag{sup +} ions in the growth of Ag nanoplates. In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is conclusive that growth of high-quality Ag nanoplates on GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag{sup +} ions with a high concentration of surface electrons is crucial for the formation of Ag nuclei with multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration of surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag{sup +} ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (111) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates.

  16. Cellular compartmentalization of secondary metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  17. Tributyrin inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest

    PubMed Central

    Yan, Jun; Xu, Yong-Hua

    2003-01-01

    AIM: To evaluate the effects of tributyrin, a pro-drug of natural butyrate and a neutral short-chain fatty acid triglyceride, on the growth inhibition of human gastric cancer SGC-7901 cell. METHODS: Human gastric cancer SGC-7901 cells were exposed to tributyrin at 0.5, 1, 2, 5, 10 and 50 mmol·L-1 for 24-72 h. MTT assay was applied to detect the cell proliferation. [3H]-TdR uptake was measured to determine DNA synthesis. Apoptotic morphology was observed by electron microscopy and Hoechst-33258 staining. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were performed to detect tributyrin-triggered apoptosis. The expressions of PARP, Bcl-2 and Bax were examined by Western blot assay. RESULTS: Tributyrin could initiate growth inhibition of SGC-7901 cell in a dose- and time-dependent manner. [3H]-TdR uptake by SGC-7901 cells was reduced to 33.6% after 48 h treatment with 2 mmol·L-1 tributyrin, compared with the control (P < 0.05). Apoptotic morphology was detected by TUNEL assay. Flow cytometry revealed that tributyrin could induce apoptosis of SGC-7901 cells in dose-dependent manner. After 48 hours incubation with tributyrin at 2 mmol·L-1, the level of Bcl-2 protein was lowered, and the level of Bax protein was increased in SGC-7901, accompanied by PARP cleavage. CONCLUSION: Tributyrin could inhibit the growth of gastric cancer cells effectively in vitro by inhibiting DNA synthesis and inducing apoptosis, which was associated with the down-regulated Bcl-2 expression and the up-regulated Bax expression. Therefore, tributyrin might be a promising chemopreventive and chemotherapeutic agent against human gastric carcinogenesis. PMID:12679905

  18. Blockage by gibberellic Acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes.

    PubMed

    Russell, D W; Galston, A W

    1969-09-01

    Red light inhibits the growth of etiolated pea internodes, causes a shift toward higher indoleacetic acid (IAA) concentrations in the IAA dose-response curve of excised sections, and promotes the synthesis in intact internodes of kaempferol-3-triglucoside. Gibberellic acid (GA(3)) prevents all 3 effects, the first effect substantially and the last 2 completely. This suggests GA(3) blockage of an early or basic event initiated by the active form of phytochrome. The red light-induced shift in the IAA dose-response curve of excised sections is consistent with a light-induced increase in the activity of an IAA destruction system, since the magnitude of the red light inhibition varied with IAA concentration. The red light and GA(3) effects on growth and on flavonoid synthesis are consistent with the view that phytochrome may control growth by regulating the synthesis of phenolic compounds which act as cofactors in an IAA-oxidase system. GA(3) reversal of the red light-induced shift in the IAA dose-response curve involves both growth promotion and inhibition by GA(3) at different IAA concentrations and this, together with the GA(3) reversal of light-induced flavonoid synthesis, supports the suggested regulatory role of phenolic compounds in growth. PMID:16657193

  19. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    PubMed Central

    Burnap, Robert L.

    2014-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  20. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    PubMed

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.

  1. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    PubMed Central

    Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.

    2014-01-01

    Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550

  2. Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxylapatite crystal growth.

    PubMed

    Tew, W P; Mahle, C; Benavides, J; Howard, J E; Lehninger, A L

    1980-04-29

    Human urine and extracts of rat liver mitochondria contain apparently identical agents capable of inhibiting the precipitation or crystallization of calcium phosphate. Its general properties, as well as 1H NMR and mass spectra, have suggested that the agent is phosphocitric acid. This paper reports the synthesis of phosphocitric acid via the phosphorylation of triethyl citrate with o-phenylene phosphochloridate, hydrogenolysis of the product to yield triethyl phosphocitrate, hydrolytic removal of the blocking ethyl groups and also chromatographic purification. An enzymatic assay of phosphocitrate is described. Synthetic phosphocitrate was found to be an exceedingly potent inhibitor of the growth of hydroxylapatite seed crystals in a medium supersaturated with respect to Ca2+ and phosphate. Comparative assays showed phosphocitrate to be much more potent than the most active precipitation-crystallization inhibitors previously reported, which include pyrophosphate and ATP. 14C-Labeled phosphocitrate was bound very tightly to hydroxylapatite crystals. Such binding appeared to be essential for its inhibitory activity on crystal growth. Citrate added before but not after, phosphocitrate greatly enhanced the inhibitory potency of the latter. This enhancement effect was not given by other tricarboxylic acids. The monoethyl ester of phosphocitrate had no inhibitory effect on hydroxylapatite crystal growth.

  3. Synthesis, characterization, and growth mechanism of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sanjoy

    This work is focused on obtaining a qualitative and quantitative understanding of the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. Understanding of the self-assembly, nucleation and growth of such a model system would enable precise predictive control of synthesis parameters for a wider range of nanoscale materials. This work is also focused on precise control of nanotube dimensions (length and diameter). In order to achieve this overall objective, this thesis consists of the following aspects: I. A systematic phenomenological study of the growth and structural properties of aluminosilicate and aluminogermanate nanotubes. The evolution of the aqueous-phase nanotube synthesis process over a period of 5 days, was carefully analyzed by a number of qualitative and quantitative characterization tools. In particular, the time-dependence of the nanotube size, structure, and solid-state packing was followed using electron microscopy, electron diffraction, X-ray diffraction, and dynamic light scattering. The essentially constant size and structure of the nanotubes over their entire synthesis time, the increasing nanotube concentration over the synthesis time, and the absence of significant polydispersity, strongly suggest that these nanotubular inorganic macromolecules are assembled through a thermodynamically controlled self-assembly process, rather than a kinetically controlled growth/polymerization process. II. Investigation of the mechanism of formation of single-walled aluminogermanate nanotubes and development of key insights into the process of hydrolysis and self-assembly of metal oxides in mildly acidic aqueous solutions. Here we employ solution-phase and solid-state characterization tools to elucidate such a mechanism, particularly that governing the formation of short (20 nm), ordered, monodisperse (3.3 nm diameter), aluminum-germanium-hydroxide ('aluminogermanate') nanotubes in aqueous solution. The central phenomena underlying this

  4. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts

    PubMed Central

    2012-01-01

    Background Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts. Results Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed between proliferating and quiescent fibroblasts. Fibroblasts induced into quiescence by contact inhibition or serum starvation had similar microRNA profiles, indicating common changes induced by distinct quiescence signals. By analyzing the gene expression patterns of microRNA target genes with quiescence, we discovered a strong regulatory function for miR-29, which is downregulated with quiescence. Using microarrays and immunoblotting, we confirmed that miR-29 targets genes encoding collagen and other extracellular matrix proteins and that those target genes are induced in quiescence. In addition, overexpression of miR-29 resulted in more rapid cell cycle re-entry from quiescence. We also found that let-7 and miR-125 were upregulated in quiescent cells. Overexpression of either one alone resulted in slower cell cycle re-entry from quiescence, while the combination of both together slowed cell cycle re-entry even further. Conclusions microRNAs regulate key aspects of fibroblast quiescence including the proliferative state of the cells as well as their gene expression profiles, in particular, the induction of extracellular matrix proteins in quiescent fibroblasts. PMID:23259597

  5. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  6. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  7. The extracellular matrix of plants: Molecular, cellular and developmental biology

    SciTech Connect

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  8. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    PubMed

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects.

  9. Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method

    NASA Astrophysics Data System (ADS)

    Nakagawa, Reo; Katsumata, Hiroshi; Hashimoto, Satoshi; Sakuragi, Shiro

    2015-08-01

    The synthesis of Mg2Si bulk crystals was performed by the vertical gradient freezing method using a KCl-MgCl2 eutectic liquid encapsulant. Stoichiometric polycrystalline Mg2Si bulk crystals were successfully grown by changing the composition ratio of starting Mg and Si powders (Mg/Si) from 2.0 to 3.5. A chemical reaction between Mg2Si and the crucible materials was inhibited using encapsulant materials, and the contamination by K or Cl originating from the encapsulant materials was not detected in almost all the samples. However, Mg evaporation could not be prevented completely during the synthesis and crystal growth. The optical band-gap energy of Mg2Si bulk crystals became minimal (0.79 eV) at a Mg/Si ratio of 2.5, at which the maximum electron mobility of 202 cm2·V-1·s-1 was obtained. These results indicate that the composition ratio of Mg/Si = 2.5 for starting Mg and Si powders was optimal for synthesizing Mg2Si bulk crystals with high crystalline quality.

  10. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    PubMed

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects. PMID:1295750

  11. Further developments in the controlled growth approach for optimal structural synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, P.

    1982-01-01

    It is pointed out that the use of nonlinear programming methods in conjunction with finite element and other discrete analysis techniques have provided a powerful tool in the domain of optimal structural synthesis. The present investigation is concerned with new strategies which comprise an extension to the controlled growth method considered by Hajela and Sobieski-Sobieszczanski (1981). This method proposed an approach wherein the standard nonlinear programming (NLP) methodology of working with a very large number of design variables was replaced by a sequence of smaller optimization cycles, each involving a single 'dominant' variable. The current investigation outlines some new features. Attention is given to a modified cumulative constraint representation which is defined in both the feasible and infeasible domain of the design space. Other new features are related to the evaluation of the 'effectiveness measure' on which the choice of the dominant variable and the linking strategy is based.

  12. Synthesis, growth and characterization of L-Phenylalanine-4-nitrophenol (LPNP) single crystal

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Indirajith, R.; Gopalakrishnan, R.

    2012-06-01

    Single crystals of L-Phenylalanine-4-nitrophenol (LPNP) were synthesis and grown by slow cooling solution growth technique. The grown crystals have been subjected to various characterization techniques such as single crystal X-ray diffraction and Powder X-ray diffraction studies to confirm the lattice parameters. Transmittance of the grown crystals was analysed and optical band gap calculated to be 1.54 eV. Thermogravimetric analysis and differential thermal analysis showed that the compound decomposes beyond 170°C. Mechanical behavior of the grown LPNP crystal was analyzed by Vicker's microhardness test. The relative second harmonic efficiency of the compound is found to be 0.3 greater than that of KDP.

  13. Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

    PubMed Central

    Khanal, Subarna; Spitale, Ana; Bhattarai, Nabraj; Bahena, Daniel; Velazquez-Salazar, J Jesus; Mejía-Rosales, Sergio

    2014-01-01

    Summary Highly monodispersed Cu–Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM) and spherical aberration (C s)-corrected scanning transmission electron microscopy (STEM) images shows that the average diameter of the Cu–Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM) images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX) line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu–Pt bimetallic catalysts. PMID:25247120

  14. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma

    PubMed Central

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement. PMID:23330064

  15. Synthesis, crystal growth and studies on non-linear optical property of new chalcones

    NASA Astrophysics Data System (ADS)

    Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.

    2006-09-01

    The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.

  16. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers.

    PubMed

    Wang, Zidong; Zhang, Jieqian; Ekman, Jonathan M; Kenis, Paul J A; Lu, Yi

    2010-05-12

    The effects of different DNA molecules of the same length on the morphology of gold nanoparticles during synthesis are investigated. While spherical nanoparticles (AuNS) are observed in the presence of 30-mer poly T, like that in the absence of DNA, 30-mer poly A or poly C induces formation of the flower-shaped gold nanoparticle (AuNF). Detailed mechanistic studies indicate that the difference in DNA affinity to the AuNP plays a major role in the different morphology control processes. The DNA adsorbed on the AuNS surface could act as template to mediate the formation of flower-like gold nanoparticles. The formation of the AuNF can result from either selective deposition of the reduced gold metal on AuNS templated by surface bound DNA or uneven growth of the AuNS due to the binding of DNA to the surface. Furthermore, DNA functionalization with high stability was realized in situ during the one-step synthesis while retaining their biorecognition ability, allowing programmable assembly of new nanostructures. We have also shown that the DNA-functionalized nanoflowers can be readily uptaken by cells and visualized under dark-field microscopy.

  17. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs

    PubMed Central

    Columbus, Daniel A.; Steinhoff-Wagner, Julia; Suryawan, Agus; Nguyen, Hanh V.; Hernandez-Garcia, Adriana; Fiorotto, Marta L.

    2015-01-01

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14–16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt−1·meal−1 every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited. PMID:26374843

  18. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs.

    PubMed

    Columbus, Daniel A; Steinhoff-Wagner, Julia; Suryawan, Agus; Nguyen, Hanh V; Hernandez-Garcia, Adriana; Fiorotto, Marta L; Davis, Teresa A

    2015-09-15

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14-16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt(-1)·meal(-1) every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited.

  19. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines.

    PubMed Central

    Bronzert, D A; Pantazis, P; Antoniades, H N; Kasid, A; Davidson, N; Dickson, R B; Lippman, M E

    1987-01-01

    We report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or "competence" activity that is capable of inducing incorporation of [3H]thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. In addition, the conditioned medium contains an activity that competes with 125I-labeled PDGF for binding to PDGF receptors on normal human fibroblasts. The secretion of PDGF-like activity by the hormone-responsive cell line MCF-7 is stimulated by 17 beta-estradiol. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 degrees C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of approximately equal to 30 kDa on NaDodSO4/polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO4/polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain of PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth. Images PMID:3039506

  20. Gelatin-siloxane nanoparticles to deliver nitric oxide for vascular cell regulation: synthesis, cytocompatibility, and cellular responses.

    PubMed

    Zhang, Qin-Yuan; Wang, Zu-Yong; Wen, Feng; Ren, Lei; Li, Jun; Teoh, Swee Hin; Thian, Eng San

    2015-03-01

    Nitric oxide (NO) is an important mediator in cardiovascular system to regulate vascular tone and maintain tissue homeostasis. Its role in vascular cell regulation makes it promising to address the post-surgery restenosis problem. However, the application of NO is constrained by its high reactivity. Here, we developed a novel NO-releasing gelatin-siloxane nanoparticle (GS-NO NP) to deliver NO effectively for vascular cell regulation. Results showed that gelatin-siloxane nanoparticles (GS NPs) could be synthesized via sol-gel chemistry with a diameter of ∼200 nm. It could be modified into GS-NO NPs via S-nitrosothiol (RSNO) modification. The synthesized GS-NO NPs could release a total of ∼0.12 µmol/mg NO sustainably for 7 days following a first-order exponential profile. They showed not only excellent cytocompatibility, but also rapid intracellularization within 2 h. GS-NO NPs showed inhibition of human aortic smooth muscle cell (AoSMC) proliferation and promotion of human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner, which is an important approach to prevent restenosis. With GS-NO NP dose at 100 µg/mL, the proliferation of AoSMCs could be slowed down whereas the growth of HUVECs was significantly promoted. We concluded that GS-NO NPs could have potential to be used as a promising nano-system to deliver NO for vascular cell regulation.

  1. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    SciTech Connect

    Dybiec, L.D. ); Rumpho, M.E.; Kennedy, R.A. )

    1989-04-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N{sub 2}, plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N{sub 2} increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N{sub 2}. Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by ({sup 35}S)-Met labeling of 3 day old seedlings grown in air or N{sub 2}. Significant protein synthesis was measured in tolerant seedlings under N{sub 2} and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance.

  2. Improved synthesis and growth of graphene oxide for field effect transistor biosensors.

    PubMed

    Huang, Jingfeng; Chen, Hu; Jing, Lin; Fam, Derrick; Tok, Alfred Iing Yoong

    2016-08-01

    Reduced graphene oxide (RGO) has many advantages over graphene such as low-cost, aqueous processable and industrial-scalable. However, two main limitations that prevent the use of RGO in electronics are the high electrical resistance and large electrical resistance deviation between fabricated devices. This limits RGO's use in biosensors, capacitors and other electronic devices. Herein, we present (1) a modified Hummer's method to obtain large RGO flakes via in-situ size fractionation and (2) the novel growth of RGO which can bridge the gaps in-between existing RGO flakes. Together, these two processes reduced the electrical resistance drastically from 1.99E + 06 to 4.68E + 03 Ω/square and the standard deviation decreased from 80.5 % to 16.5 %. The RGO was then fabricated into a field-effect transistor biosensor. A 1 pmol to 100 nmol change in Cytochrome C protein corresponded to a 3 % change in electrical resistance. The reported improved RGO synthesis method and subsequent growth enable large-scale application of RGO in practical electronic devices such as biosensors.

  3. Improved synthesis and growth of graphene oxide for field effect transistor biosensors.

    PubMed

    Huang, Jingfeng; Chen, Hu; Jing, Lin; Fam, Derrick; Tok, Alfred Iing Yoong

    2016-08-01

    Reduced graphene oxide (RGO) has many advantages over graphene such as low-cost, aqueous processable and industrial-scalable. However, two main limitations that prevent the use of RGO in electronics are the high electrical resistance and large electrical resistance deviation between fabricated devices. This limits RGO's use in biosensors, capacitors and other electronic devices. Herein, we present (1) a modified Hummer's method to obtain large RGO flakes via in-situ size fractionation and (2) the novel growth of RGO which can bridge the gaps in-between existing RGO flakes. Together, these two processes reduced the electrical resistance drastically from 1.99E + 06 to 4.68E + 03 Ω/square and the standard deviation decreased from 80.5 % to 16.5 %. The RGO was then fabricated into a field-effect transistor biosensor. A 1 pmol to 100 nmol change in Cytochrome C protein corresponded to a 3 % change in electrical resistance. The reported improved RGO synthesis method and subsequent growth enable large-scale application of RGO in practical electronic devices such as biosensors. PMID:27379845

  4. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis

    PubMed Central

    Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.

    2016-01-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654

  5. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy.

    PubMed

    García-López, Ángel; Sánchez-Amaya, María Isabel; Halm, Silke; Astola, Antonio; Prat, Francisco

    2011-12-01

    Vertebrate oocytes actively contribute to follicle development by secreting a variety of growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the present study, we describe the cellular localization, the developmental profiles, and the response to unilateral ovariectomy (a procedure implying the surgical removal of one of the ovaries) of protein and mRNA steady-state levels of Bmp15 and Gdf9 in the ovary of European sea bass, an important fish species for marine aquaculture industry. In situ hybridization and immunohistochemistry demonstrated that the oocyte is the main production site of Bmp15 and Gdf9 in European sea bass ovary. During oocyte development, Bmp15 protein expression started to be detected only from the lipid vesicle stage onwards but not in primary pre-vitellogenic (i.e. perinucleolar) oocytes as the bmp15 mRNA already did. Gdf9 protein and gdf9 mRNA expression were both detected in primary perinucleolar oocytes and followed similar decreasing patterns thereafter. Unilateral ovariectomy induced a full compensatory growth of the remaining ovary in the 2-month period following surgery (Á. García-López, M.I. Sánchez-Amaya, C.R. Tyler, F. Prat 2011). The compensatory growth elicited different changes in the expression levels of mRNA and protein of both factors, although the involvement of Bmp15 and Gdf9 in the regulatory network orchestrating such process remains unclear at present. Altogether, our results establish a solid base for further studies focused on elucidating the specific functions of Bmp15 and Gdf9 during primary and secondary oocyte growth in European sea bass.

  6. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. PMID:26764214

  7. A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth.

    PubMed

    Quintero, MariaRosa; Cabañas, Miquel E; Arús, Carles

    2007-01-01

    The NMR-visible mobile lipid (ML) signals of C6 glioma cells have been monitored at 9.4 and 11.7 T (single pulse and 136 ms echo time) from cell pellets by (1)H NMR spectroscopy. A reproducible behavior with growth has been found. ML signals increase from log phase (4 days of culture) to postconfluence (7 days of culture). This ML behavior is paralleled by the percentage of cells containing epifluorescence detectable Nile Red stained cytosolic droplets (range 23%-60% of cells). The number of positive cells increases after seeding (days 0-1), decreases at log phase (days 2-4), increases again at confluence (day 5) and even further at post-confluence (day 7). C6 cells proliferation arrest induced by growth factors deprivation induces an even higher accumulation of cytosolic droplets (up to 100% of cells) and a large ML increase (up to 21-fold with respect to 4-day log phase cells). When neutral lipid content is quantified by thin-layer chromatography (TLC) on total lipid extracts of C6 cells, no statistically significant change can be detected (in microg/10(8) cells) with growth or growth arrest in major neutral lipid containing species (triacylglycerol, TAG, diacylglycerol, DAG, cholesteryl esters, ChoEst) except for DAG, which decreased in post-confluent, 7-day cells. The apparent discrepancy between NMR, optical microscopy and TLC results can be reconciled if possible biophysical changes in the neutral lipid pool with growth are taken into account. A cellular explanation for the observed results is proposed: the TAG-droplet-size-change hypothesis. PMID:17150408

  8. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions.

  9. [Effects of germanium on cell growth, polysaccharide production and cellular redox status in suspension cultures of protocorm-like bodies of Dendrobium huoshanense].

    PubMed

    Wei, Ming; Yang, Chaoying; Jiang, Shaotong

    2010-03-01

    To solve the problem of low growth rate and metabolism level in suspension cultures of protocorm-like bodies (PLBs) of Dendrobium huoshanense. The effects of germanium on PLB proliferation and accumulation of polysaccharides together with nutrient utilization were investigated and the contents of reducing sugars, soluble proteins, the activities of antioxidant enzymes and redox status of the cells of PLB were analyzed. The results indicated that the optimum concentration of germanium dioxide (4.0 mg/L) significantly enhanced the cell growth and accumulation of polysaccharides, greatly improved contents of reducing sugars and soluble proteins, increased the activities of superoxide dismutase (SOD) and catalase (CAT) but decreased the activity of peroxidase(POD). The cell dry weight and production of polysaccharides were 32.6 g/L and 3.78 g/L, respectively. The analysis of cellular redox status showed that the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in cells and the activity of glutathione reductase were significantly increased by the addition of germanium dioxide. The suitable concentration of germanium dioxide was beneficial to the cell growth and the accumulation of polysaccharides.

  10. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed Central

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-01-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma. Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K+ channel proteins. This mutation alleviated TK VI-induced suppression of K+ efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol–plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma–plant interactions. PMID:26850879

  11. Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells.

    PubMed

    Hanaoka, Koichi; Tanaka, Eiji; Takata, Takashi; Miyauchi, Mutsumi; Aoyama, Junko; Kawai, Nobuhiko; Dalla-Bona, Diego A; Yamano, Eizo; Tanne, Kazuo

    2006-05-01

    Platelet-derived growth factor (PDGF) is an essential signaling molecule for wound healing and tissue repair. This study was aimed at evaluating the effect of PDGF on the proliferation of temporomandibular joint (TMJ) disc-derived cells and extracellular matrix synthesis. The number of cultured cells were counted by COULTER Z1. The assay for collagen synthesis was performed using a sircol soluble collagen assay. Hyaluronic acid (HA) synthesis was analyzed by a high performance liquid chromatography. The expression of collagens, matrix metalloproteinases (MMPs), and the tissue inhibitors of metalloproteinases (TIMPs) were examined using SYBR Green in terms of the RNA levels. PDGF treatment significantly (P < .01) increased the proliferation rate of the disc-derived cells as compared with the controls when the dose was 5 ng/ mL or greater. Treatment with more than 5 ng/mL PDGF resulted in an amount of collagen synthesis significantly (P < .01) higher than the controls. HA synthesis was maximal with 5 ng/mL PDGF treatment. Quantitative real-time polymerase chain reaction analyses showed that treatment with 5 ng/mL of PDGF-BB upregulated the mitochondrial RNA levels of type I and II collagens, MMPs, and TIMPs within 6 hours. It is concluded that PDGF, if its concentration is optimal, enhanced proliferation and matrix synthesis of TMJ disc-derived cells, indicating that PDGF may be effective for use in tissue engineering of the TMJ disc. PMID:16637732

  12. Synthesis, growth kinetics and optical properties of zinc oxide nanoparticle suspensions and thin films

    NASA Astrophysics Data System (ADS)

    Wong, Eva May

    2000-10-01

    Colloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. The growth kinetics of the ZnO particles were found to follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films of ZnO quantum particles were fabricated by electrophoretic deposition from suspensions prepared via a colloidal chemistry synthesis route. Films were prepared at constant current thus eliminating the limited deposition rate associated with constant voltage deposition. The kinetics for the deposition of thin films were determined using optical absorbance techniques in conjunction with atomic absorption spectrometry. The particle velocity during deposition and the charge on the particles were determined from the deposition kinetics. The thin films prepared by electrophoretic deposition exhibited optical properties characteristic of the quantum size particles. The average particle size, and hence the optical properties, were tailored by controlling the aging time and temperature of the suspensions. Both the band-to-band and visible photoluminescence were progressively blue shifted, relative to the bulk value, with decreasing particle size in the film. A linear dependence was found between the band-to-band and visible emission. Finally, particle growth was manipulated by the specific adsorption of a series of capping ligands at the particle surface. The adsorption of the capping ligands was found to produce a diffusion barrier such that particle growth was stunted following incorporation with the extent of this effect being dependent

  13. Synthesis of size-controlled monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth

    PubMed Central

    2012-01-01

    We demonstrated that stepwise seed-mediated growth could be extended in non-aqueous solution (solvothermal synthesis) and improved as an effective method for controlling the uniform size of palladium nanoparticles (Pd NPs) in a wide range. The monodisperse Pd NPs with the size of about 5 nm were synthesized by simply reducing Pd(acac)2 with formaldehyde in different organic amine solvents. By an improved stepwise seed-mediated synthesis, the size of the monodisperse Pd NPs can be precisely controlled from approximately 5 to 10 nm. The as-prepared Pd NPs could self assemble to well-shaped superlattice crystal without size selection process. PMID:22713177

  14. In vitro activation of T lymphocytes from human immunodeficiency virus (HIV)-seropositive blood donors. I. Soluble interleukin 2 receptor (IL2R) production parallels cellular IL2R expression and DNA synthesis.

    PubMed

    Prince, H E; Kleinman, S H; Maino, V C; Jackson, A L

    1988-03-01

    We investigated the relationship of soluble interleukin 2 receptor (sIL2R) production to cellular IL2R expression and DNA synthesis by mitogen-stimulated mononuclear cells from blood donors seropositive for human immunodeficiency virus (HIV). SIL2R was measured using an enzyme-linked immunosorbent assay which employed 2 anti-IL2R monoclonal antibodies recognizing distinct IL2R epitopes. Decreased phytohemagglutinin-induced DNA synthesis and cellular IL2R expression were accompanied by decreased levels of sIL2R in cell culture supernatants. Similar findings were observed for pokeweed mitogen-induced responses. There was no detectable spontaneous secretion of sIL2R into culture supernatants by unstimulated mononuclear cells from either HIV-seropositive or control seronegative donors. These findings indicate that the in vitro T-cell activation defects which characterize HIV infection include decreased sIL2R production, as well as decreased cellular IL2R expression and DNA synthesis. Further, they show that assessment of supernatant sIL2R levels can be used as a valid, reliable assay for T-cell activation.

  15. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi

    PubMed Central

    Bandyopadhyay, Debdutta; Curry, Jonathan L; Lin, Qiushi; Richards, Hunter W; Chen, Dahu; Hornsby, Peter J; Timchenko, Nikolai A; Medrano, Estela E

    2007-01-01

    The retinoblastoma (RB)/p16INK4a pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16INK4a-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1β (HP1β)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated β-galactosidase marker. Notably, formation of RB/HP1β foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1β/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events. PMID:17578512

  16. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    SciTech Connect

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.

  17. Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.

    1995-01-01

    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.

  18. Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton.

    PubMed

    Baluska, F; Hauskrecht, M; Barlow, P W; Sievers, A

    1996-02-01

    The spatio-temporal sequence of cellular growth within the post-mitotic inner and outer cortical tissue of the apex of the primary root of maize (Zea mays L.) was investigated during its orthogravitropic response. In the early phase (0-30 min) of the graviresponse there was a strong inhibition of cell lengthening in the outer cortex at the lower side of the root, whereas lengthening was only slightly impaired in the outer cortex at the upper side. Initially, inhibition of differential cell lengthening was less pronounced in the inner cortex indicating that tissue tensions which, in these circumstances, inevitably develop at the outer-inner cortex interface, might help to drive the onset of the root bending. At later stages of the graviresponse (60 min), when a root curvature had already developed, cells of the inner cortex then exhibited a prominent cell length differential between upper and lower sides, whereas the outer cortex cells had re-established similar lengths. Again, tissue tensions associated with the different patterns of cellular behaviour in the inner and outer cortex tissues, could be of relevance in terminating the root bending. The perception of gravity and the complex tissue-specific growth responses both proceeded normally in roots which were rendered devoid of microtubules by colchicine and oryzalin treatments. The lack of involvement of microtubules in the graviresponse was supported by several other lines of evidence. For instance, although taxol stabilized the cortical microtubules and prevented their re-orientation in post-mitotic cortical cells located at the lower side of gravistimulated roots, root bending developed normally. In contrast, when gravistimulated roots were physically prevented from bending, re-oriented arrays of cortical microtubules were seen in all post-mitotic cortical cells, irrespective of their position within the root. PMID:11540727

  19. Effects of ethylene and gibberellic Acid on cellular growth and development in apical and subapical regions of etiolated pea seedling.

    PubMed

    Stewart, R N; Lieberman, M; Kunishi, A T

    1974-07-01

    Subhook swelling of 4-day-old etiolated pea seedlings (var. Alaska), caused by 0.5 microliter per liter ethylene, was prevented by preincubation and continued growth in 0.1 mm gibberellic acid (GA). The subhook region exhibited normal elongation and cell size and volume. However, inhibition of elongation and cessation of cell division caused by 0.5 microliter per liter ethylene in the apical hook region of the etiolated pea stem were not overcome by GA. Most of the arrested cells were in G(2). These data suggest a possible interaction of GA and ethylene in cell enlargement in the subhook region of the etiolated pea seedlings. They also suggest a different mode of action by ethylene in the apical hook region where the ethylene effect was not counteracted by GA. PMID:16658821

  20. Contrasting roles for c-Myc and L-Myc in the regulation of cellular growth and differentiation in vivo.

    PubMed Central

    Morgenbesser, S D; Schreiber-Agus, N; Bidder, M; Mahon, K A; Overbeek, P A; Horner, J; DePinho, R A

    1995-01-01

    Although myc family genes are differentially expressed during development, their expression frequently overlaps, suggesting that they may serve both distinct and common biological functions. In addition, alterations in their expression occur at major developmental transitions in many cell lineages. For example, during mouse lens maturation, the growth arrest and differentiation of epithelial cells into lens fiber cells is associated with a decrease in L- and c-myc expression and a reciprocal rise in N-myc levels. To determine whether the down-regulation of L- and c-myc are required for mitotic arrest and/or completion of differentiation and whether these genes have distinct or similar activities in the same cell type, we have studied the consequences of forced L- and c-myc expression in the lens fiber cell compartment using the alpha A-crystallin promoter in transgenic mice (alpha A/L-myc and alpha A/c-myc mice). With respect to morphological and molecular differentiation, alpha A/L-myc lenses were characterized by a severely disorganized lens fiber cell compartment and a significant decrease in the expression of a late-stage differentiation marker (MIP26); in contrast, differentiation appeared to be unaffected in alpha A/c-myc mice. Furthermore, an analysis of proliferation indicated that while alpha A/L-myc fiber cells withdrew properly from the cell cycle, inappropriate cell cycle progression occurred in the lens fiber cell compartment of alpha A/c-myc mice. These observations indicate that continued late-stage expression of L-myc affected differentiation processes directly, rather than indirectly through deregulated growth control, whereas constitutive c-myc expression inhibited proliferative arrest, but did not appear to disturb differentiation. As a direct corollary, our data indicate that L-Myc and c-Myc are involved in distinct physiological processes in the same cell type. Images PMID:7882978

  1. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death.

    PubMed

    Tatsukawa, H; Furutani, Y; Hitomi, K; Kojima, S

    2016-01-01

    Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca(2+)-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies. PMID:27253408

  2. Effects of the breed, sex and age on cellular content and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel

    PubMed Central

    2013-01-01

    Background There is no information on the effects of the breed, gender and age on the cellular content and growth factor (GF) release from equine pure-platelet rich plasma (P-PRP) and pure-platelet rich gel (P-PRG). The objectives of this study were: 1) to compare the cellular composition of P-PRP with whole blood and platelet poor plasma (PPP); 2) to compare the concentration of transforming GF beta 1 (TGF-β1) and platelet derived GF isoform BB (PDGF-BB) between P-PRP treated with non-ionic detergent (P-PRP+NID), P-PRG (activated with calcium gluconate -CG-), PPP+NID, PPP gel (PPG), and plasma and; 3) to evaluate and to correlate the effect of the breed, gender and age on the cellular and GF concentration for each blood component. Forty adult horses, 20 Argentinean Creole Horses (ACH) and, 20 Colombian Creole Horses (CCH) were included. Data were analyzed by parametric (i.e.: t-test, one way ANOVA) and non parametric (Kruskal-Wallis test, Wilcoxon test) tests. Correlation analysis was also performed by using the Spearman and Pearson tests. A p ≤ 0.05 was set as significant for all tests. All the blood components were compared for platelet (PLT), leukocyte (WBC), TGF-β1 and PDGF-BB concentrations. The effect of the breed, gender and age on these variables was analyzed. A P ≤ 0.05 was accepted as significant for all the tests. Results PLT counts were 1.8 and 0.6 times higher in P-PRP than in whole blood and PPP, respectively; WBC counts were 0.5 and 0.1 times lower in P-PRP, in comparison with whole blood and PPP, respectively. TGF-β1 and PDGF-BB concentrations were 2.3 and 262 times higher, respectively, in P-PRG than in plasma, and 0.59 and 0.48 times higher, respectively, in P-PRG than in PPG. P-PRG derived from CCH females or young horses presented significantly (P < 0.001) higher PDGF-BB concentrations than P-PRG derived from ACH males or older horses. Conclusions Our results indicated that P-PRP obtained by a manual method was affected by

  3. Crystal formation and growth during the hydrothermal synthesis of beta-Ni(OH)2 in one-dimensional nano space.

    PubMed

    Orikasa, Hironori; Karoji, Jyunpei; Matsui, Keitaro; Kyotani, Takashi

    2007-09-14

    Hydrothermal synthesis of beta-Ni(OH)(2) was performed inside uniform carbon-coated nanochannels of an anodic aluminium oxide film. The time course of crystal formation and growth of Ni(OH)(2) in such one-dimensional nano space was observed using transmission electron microscopy (TEM), and the changes in the number and size of crystals with the hydrothermal reaction period were quantitatively analyzed using the TEM images. Moreover, the effect of the channel size (25, 100 and 300 nm in diameter) on the crystal growth was examined. In the early stage of the reaction, the crystal formation and growth of beta-Ni(OH)(2) in the one-dimensional channels took place in the same manner as in conventional hydrothermal synthesis. However, except for the 300 nm-channels, further crystal growth was hampered by the spatial restriction, and it allowed only the growth toward the channel axis. In the case of the 25 nm-channels, many Ni(OH)(2) crystals of less than 40 nm formed initially, but slowly disappeared except for a few that grew larger at the expense of the small crystals. This finding clearly indicates that the crystal growth of Ni(OH)(2) during the whole hydrothermal process was governed by the Ostwald ripening. With this mechanism and the spatial restriction, single crystals of beta-Ni(OH)(2) nanorods with a length of over 150 nm were finally formed.

  4. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation

    PubMed Central

    Murakawa, Masato; Shimojima, Mie; Shimomura, Yuichi; Kobayashi, Koichi; Awai, Koichiro; Ohta, Hiroyuki

    2014-01-01

    Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi) depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG) is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess. PMID:25002864

  5. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis.

  6. Synthesis and structure-activity study of myxoma virus growth factor

    SciTech Connect

    Lin, Yao-Zhong; Ke, Xiao-Hong; Tam, J.P. )

    1991-04-02

    Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of human EGF receptor in A431 cells and the stimulation of ({sup 3}H)thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in {beta}-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH{sub 2}-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.

  7. Oxymetazoline enhances epidermal- and platelet-derived growth factor-induced DNA synthesis.

    PubMed

    Nickenig, G; Ko, Y; Nettekoven, W; Appenheimer, M; Schiermeyer, B; Vetter, H; Sachinidis, A

    1994-01-01

    In the present study, the effect of 10(-9) to 10(-6) M epinephrine (alpha- and beta-agonist), norepinephrine (alpha- and beta 1-antagonist) isoproterenol (beta-agonist) salbutamol (beta 2-agonist), phenylephrine (alpha 1-agonist) and oxymetazoline (mainly alpha 2-agonist) on DNA synthesis in vascular smooth muscle cells (VSMCs) from rat aorta has been investigated. Our results show that only oxymetazoline induced a moderate dose-dependent elevation of [3H]thymidine incorporation into cell DNA (10(-6) M, 100-300%). Epidermal growth factor (EGF) (50 ng/ml) and platelet-derived growth factor (PDGF)-BB induced an elevation of the [3H]thymidine incorporation into cell DNA from 154 +/- 7 (basal value) to 1270 +/- 95 and 1552 +/- 178 cpm/microgram protein (mean +/- S.D., n = 3). Oxymetazoline (10(-6) M) and phenylephrine induced an increase of [3H]thymidine incorporation to 368 +/- 53 and 205 +/- 27 cpm/microgram protein, respectively. In contrast to phenylephrine, oxymetazoline caused an elevation of the PDGF-BB- and EGF-induced [3H]thymidine incorporation to 1561 +/- 143 and 2086 +/- 235 (means S.D., n = 3), respectively. In addition, EGF (1 to 50 ng/ml) induced a dose-dependent increase of [3H]thymidine incorporation from 154 +/- 7 (basal value) to 486 +/- 35 (1 ng/ml), 912 +/- 74 (5 ng/ml), 1019 +/- 40 (25 ng/ml) and 1270 +/- 95 (50 ng/ml) cpm/microgram protein (mean +/- S.D.). In the presence of 10(-6) M oxymetazoline, 1, 5, 25 and 50 ng/ml EGF caused an increase of [3H]thymidine incorporation to 633 +/- 101, 1124 +/- 87, 1231 +/- 101, and 1561 +/- 89 cpm/microgram protein (mean +/- S.D.).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis.

    PubMed

    Borges, Leandro da Silva; Dermargos, Alexandre; da Silva Junior, Edenilson Pinto; Weimann, Eleine; Lambertucci, Rafael Herling; Hatanaka, Elaine

    2015-03-01

    Strenuous exercise is detrimental to athletes because of the overproduction of reactive oxygen species. Melatonin, a classic antioxidant, has been shown to exhibit beneficial effects regarding intense exercise and tissue repair. In this study, we evaluated the onset and resolution of inflammation in melatonin-treated and nontreated rats subjected to a strenuous exercise session. We also analyzed the formation of thiobarbituric acid reactive substances (TBARS) and the activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Control and treated rats were subjected to exhaustive exercise after a period of 10 days of melatonin treatment (20 mg/dL). Plasma and muscle levels of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant-2-alpha/beta (CINC-2α/β), l-selectin, macrophage inflammatory protein-3-alpha (MIP-3α), and vascular endothelial growth factor (VEGF) were measured prior to, immediately after, and 2 hr after exercise. Our data revealed decreases in the muscle concentrations of IL-1β (35%), TNF-α (13%), IL-6 (48%), and TBARS (40%) in the melatonin-treated group compared with the control group. We also observed decreases in the plasma concentrations of IL-1β (17%) in the melatonin-treated group. VEGF-α concentrations and SOD activity increased by 179% and 22%, respectively, in the melatonin-treated group compared with the control group. We concluded that muscle inflammation and oxidative stress resulting from exhaustive exercise were less severe in the muscles of melatonin-treated animals than in the muscles of control animals. Thus, melatonin treatment may reverse exercise-induced skeletal muscle inflammation and stimulate growth factor synthesis.

  9. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  10. Plasmin-dependent elimination of the growth-factor-like domain in urokinase causes its rapid cellular uptake and degradation.

    PubMed Central

    Poliakov, A; Tkachuk, V; Ovchinnikova, T; Potapenko, N; Bagryantsev, S; Stepanova, V

    2001-01-01

    Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) act in concert to mediate pericellular proteolysis and to stimulate intracellular signalling responsible for cell migration and proliferation. uPA is composed of three domains, a proteolytic domain (PD), a kringle domain (KD) and a growth-factor-like domain (GFD), the last of which mediates the interaction with uPAR. We demonstrate that uPA, associated with the surface of U937 cells, undergoes plasmin-mediated cleavage of the Lys(46)-Ser(47) bond with elimination of the GFD. Using recombinant forms of uPA, we show that a uPA variant lacking the GFD (r-uPADeltaGFD) and unable to associate with uPAR is rapidly cleared from the cell surface. Binding and internalization of r-uPADeltaGFD are markedly decreased in the presence of 39 kDa receptor-associated protein (RAP), the antagonist of several endocytic receptors of the low-density lipoprotein receptor family, suggesting that this protein clearance pathway is used for r-uPADeltaGFD. In contrast with rapidly internalized r-uPADeltaGFD, the intact recombinant single-chain urokinase with wild-type structure (r-uPAwt) bound to uPAR is retained on the cell surface. Soluble uPAR protects uPA from cleavage by plasmin that results in the elimination of GFD, suggesting that uPAR might protect cell-bound urokinase from plasmin-mediated cleavage between the GFD and KD and subsequent degradation. PMID:11311125

  11. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  12. Loss of α1,6-fucosyltransferase suppressed liver regeneration: implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling.

    PubMed

    Wang, Yuqin; Fukuda, Tomohiko; Isaji, Tomoya; Lu, Jishun; Gu, Wei; Lee, Ho-Hsun; Ohkubo, Yasuhito; Kamada, Yoshihiro; Taniguchi, Naoyuki; Miyoshi, Eiji; Gu, Jianguo

    2015-02-05

    Core fucosylation is an important post-translational modification, which is catalyzed by α1,6-fucosyltransferase (Fut8). Increased expression of Fut8 has been shown in diverse carcinomas including hepatocarcinoma. In this study, we investigated the role of Fut8 expression in liver regeneration by using the 70% partial hepatectomy (PH) model, and found that Fut8 is also critical for the regeneration of liver. Interestingly, we show that the Fut8 activities were significantly increased in the beginning of PH (~4d), but returned to the basal level in the late stage of PH. Lacking Fut8 led to delayed liver recovery in mice. This retardation mainly resulted from suppressed hepatocyte proliferation, as supported not only by a decreased phosphorylation level of epidermal growth factor (EGF) receptor and hepatocyte growth factor (HGF) receptor in the liver of Fut8(-/-) mice in vivo, but by the reduced response to exogenous EGF and HGF of the primary hepatocytes isolated from the Fut8(-/-) mice. Furthermore, an administration of L-fucose, which can increase GDP-fucose synthesis through a salvage pathway, significantly rescued the delayed liver regeneration of Fut8(+/-) mice. Overall, our study provides the first direct evidence for the involvement of Fut8 in liver regeneration.

  13. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis.

    PubMed Central

    Englert, C; Hou, X; Maheswaran, S; Bennett, P; Ngwu, C; Re, G G; Garvin, A J; Rosner, M R; Haber, D A

    1995-01-01

    The Wilms tumor suppressor gene WT1 encodes a developmentally regulated transcription factor that is mutated in a subset of embryonal tumors. To test its functional properties, we developed osteosarcoma cell lines expressing WT1 under an inducible tetracycline-regulated promoter. Induction of WT1 resulted in programmed cell death. This effect, which was differentially mediated by the alternative splicing variants of WT1, was independent of p53. WT1-mediated apoptosis was associated with reduced synthesis of the epidermal growth factor receptor (EGFR), but not of other postulated WT1-target genes, and it was abrogated by constitutive expression of EGFR. WT1 repressed transcription from the EGFR promoter, binding to two TC-rich repeat sequences. In the developing kidney, EGFR expression in renal precursor cells declined with the onset of WT1 expression. Repression of EGFR and induction of apoptosis by mechanism that may contribute to its critical role in normal kidney development and to the immortalization of tumor cells with inactivated WT1 alleles. Images PMID:7588596

  14. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis.

    PubMed

    Mohamed, Mona B; AbouZeid, Khaled M; Abdelsayed, Victor; Aljarash, Ahlam A; El-Shall, M Samy

    2010-05-25

    A facile and fast one-pot microwave irradiation method has been developed to prepare different shapes of gold nanoparticles capped with a mixture of oleylamine and oleic acid. The size, shape, and morphology of the nanocrystals could be tailored by varying the ratio of oleylamine to oleic acid, the microwave time, and the concentration of the gold ions. These effects are directly reflected in the surface plasmon resonance properties of the resulting nanocrystals in the visible and near-infrared regions. Pure amine leads to the formation of only spherical particles. Introducing oleic acid increases the growth rate and enhances the formation of anisotropic shapes. Experimental evidence and new insights on the reaction mechanism confirm the formation of dioleamide from the reaction of oleic acid and oleylamine catalyzed by the gold nanocrystals. In the absence of gold nanoparticles, the conventional synthesis of dioleamide requires 12 h of reaction time at 120 degrees C. New insights on the reaction mechanism indicate that excess oleic acid enhances the formation of hexagons and more anisotropic shapes of the gold nanocrystals.

  15. Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor.

    PubMed Central

    Yamagata, H; Nakahama, K; Suzuki, Y; Kakinuma, A; Tsukagoshi, N; Udaka, S

    1989-01-01

    Using previously isolated Bacillus brevis strains that secrete large amounts of proteins but little protease into the medium, we have developed a host-vector system for very efficient synthesis and secretion of heterologous proteins. The multiple promoters and the signal-peptide-coding region of the MWP gene, a structural gene for one of the major cell wall proteins of B. brevis strain 47, were used to construct expression-secretion vectors. With this system, a synthetic gene for human epidermal growth factor (hEGF) was expressed efficiently and a large amount (0.24 g per liter of culture) of mature hEGF was secreted into the medium. hEGF purified from the culture supernatant had the same NH2-terminal amino acid sequence, COOH-terminal amino acid, and amino acid composition as natural hEGF, and it was fully active in biological assays. These results, in combination with previous results, showed that mammalian proteins can be produced in active form 10-100 times more efficiently in B. brevis than has been reported in other systems. Images PMID:2786200

  16. Phosphatidylcholine-associated nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit DNA synthesis and the growth of colon cancer cells in vitro.

    PubMed

    Dial, Elizabeth J; Doyen, J Rand; Lichtenberger, Lenard M

    2006-02-01

    The use of NSAIDs or COX-2 inhibitors for chemoprevention of colorectal cancer has been suggested for patients at high risk for this disease. However, the gastrointestinal side effects of traditional NSAIDs which consist of bleeding and ulceration, and the cardiovascular effects of COX-2 inhibitors may limit their usefulness. In preclinical studies, our laboratory has shown that the addition of phosphatidylcholine (PC) to the NSAIDs aspirin (ASA) or ibuprofen (IBU) results in a NSAID-PC with fewer GI side effects and also maintained or enhanced analgesic, anti-pyretic and anti-inflammatory efficacy over the unmodified NSAID. Because NSAID-PCs have not been tested for anti-cancer activity, in the present study, ASA-PC and IBU-PC were tested on the SW-480 human colon cancer cell line. SW-480 cells were incubated in media containing 1-5 mM NSAID or NSAID-PC for 2 days. Measurements were made of cell number, cell proliferation (DNA synthesis), and manner of cell death (necrosis and apoptosis). ASA and IBU reduced cell number in a dose-dependent manner with IBU showing a greater potency than ASA. The association of PC to the NSAID resulted in greater reductions of cell number for both NSAIDs. Furthermore, the NSAID-PC formulation had significantly greater efficacy and potency to inhibit cellular DNA synthesis than the unmodified NSAID. PC alone at the doses and times used had no effect on cell number in this cell line, but did have a small effect to reduce DNA synthesis. None of the drugs had a clear effect on cell death by necrosis. Only IBU and IBU-PC caused cell death by apoptosis in SW-480 cells. We conclude that NSAID-PCs have activity to impede the growth of colon cancer cells in vitro, which is due, in major part, to a marked reduction in DNA synthetic activity of these cells. This growth inhibitory effect appears to be independent of COX-2 activity, since it is known that SW-480 cells do not have this inducible COX isoform. Due to its greater efficacy in this

  17. Determination of specific growth rate by measurement of specific rate of ribosome synthesis in growing and nongrowing cultures of Acinetobacter calcoaceticus.

    PubMed

    Cutter, Matthew R; Stroot, Peter G

    2008-02-01

    RT-RiboSyn measures the specific rate of ribosome synthesis in distinct microbial populations by measuring the generation rate of precursor 16S rRNA relative to that of mature 16S rRNA when precursor 16S rRNA processing is inhibited. Good agreement was demonstrated between specific rate of ribosome synthesis and specific growth rate of Acinetobacter calcoaceticus.

  18. Cellular and Molecular Basis of Liver Development

    PubMed Central

    Shin, Donghun; Singh Monga, Satdarshan Pal

    2015-01-01

    Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications. PMID:23720330

  19. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    PubMed

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (p<0.05). Growth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (p<0.05) by osteocalcin-induced MA-10 cells. Osteocalcin injection also promoted hepatic expression of growth hormone receptor and insulin-like growth factor-1 (p<0.05), as demonstrated by real-time polymerase chain reaction and Western blotting. Similarly, osteocalcin-induced MA-10 cells promoted growth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities.

  20. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  1. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    PubMed

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  2. Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines.

    PubMed

    Goñi-de-Cerio, Felipe; Thevenot, Julie; Oliveira, Hugo; Pérez-Andrés, Encarnación; Berra, Edurne; Masa, Marc; Suárez-Merino, Blanca; Lecommandoux, Sébastien; Heredia, Pedro

    2015-11-01

    Encapsulating chemotherapy drugs in targeted nanodelivery systems is one of the most promising approaches to tackle cancer disease, avoiding side effects of common treatment. In the last decade, several nanocarriers with different nature have been tested, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as their low toxicity. In this work, we synthesized, characterized and evaluated poly(trimethylene carbonate)-bock-poly(L-glutamic acid) derived polymersomes, targeted to epidermal growth factor receptor (EGFR), loaded with plitidepsin and ultimately tested in HT29 and LS174T colorectal cancer cell lines for specificity and efficacy. Furthermore, morphology, physico-chemical properties and plitidepsin loading were carefully investigated. A thorough in vitro cytotoxicity analysis of the unloaded polymersomes was carried out for biocompatibility check, studying viability, cell membrane asymmetry and reactive oxygen species levels. Those cytotoxicity assays showed good biocompatibility for plitidepsin-unloaded polymersomes. Cellular uptake and cytotoxic effect of EGFR targeted and plitidepsin loaded polymersome indicated that colorectal cancer cell lines were.more sensitive to anti-EGFR-drug-loaded than untargeted drug-loaded polymersomes. Also, in both cell lines, the use of untargeted polymersomes greatly reduced plitidepsin cytotoxicity as well as the cellular uptake, indicating that the use of this targeted nanocarrier is a promising approach to tackle colorectal cancer disease and avoid the undesired effects of the usual treatment. Furthermore, in vivo assays support the in vitro conclusions that EGFR targeted polymersomes could be a good drug delivery system. This work provides a proof of concept for the use of encapsulated targeted drugs as future therapeutic treatments for cancer.

  3. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  4. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.

    PubMed

    Shah, Naman B; Duncan, Thomas M

    2015-08-21

    F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.

  5. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  6. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.

    PubMed

    Furdui, C; Ragsdale, S W

    2000-09-15

    Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO(2). The catalytic proficiency of this enzyme for the reverse reaction, pyruvate synthase, is poorly understood. Conversion of acetyl-CoA to pyruvate links the Wood-Ljungdahl pathway of autotrophic CO(2) fixation to the reductive tricarboxylic acid cycle, which in these autotrophic anaerobes is the stage for biosynthesis of all cellular macromolecules. The results described here demonstrate that the Clostridium thermoaceticum PFOR is a highly efficient pyruvate synthase. The Michaelis-Menten parameters for pyruvate synthesis by PFOR are: V(max) = 1.6 unit/mg (k(cat) = 3.2 s(-1)), K(m)(Acetyl-CoA) = 9 micrometer, and K(m)(CO(2)) = 2 mm. The intracellular concentrations of acetyl-CoA, CoASH, and pyruvate have been measured. The predicted rate of pyruvate synthesis at physiological concentrations of substrates clearly is sufficient to support the role of PFOR as a pyruvate synthase in vivo. Measurements of its k(cat)/K(m) values demonstrate that ferredoxin is a highly efficient electron carrier in both the oxidative and reductive reactions. On the other hand, rubredoxin is a poor substitute in the oxidative direction and is inept in donating electrons for pyruvate synthesis. PMID:10878009

  7. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential.

    PubMed

    Sharma, Sandeep; Villamor, Joji Grace; Verslues, Paul E

    2011-09-01

    To better define the still unclear role of proline (Pro) metabolism in drought resistance, we analyzed Arabidopsis (Arabidopsis thaliana) Δ(1)-pyrroline-5-carboxylate synthetase1 (p5cs1) mutants deficient in stress-induced Pro synthesis as well as proline dehydrogenase (pdh1) mutants blocked in Pro catabolism and found that both Pro synthesis and catabolism were required for optimal growth at low water potential (ψ(w)). The abscisic acid (ABA)-deficient mutant aba2-1 had similar reduction in root elongation as p5cs1 and p5cs1/aba2-1 double mutants. However, the reduced growth of aba2-1 but not p5cs1/aba2-1 could be complemented by exogenous ABA, indicating that Pro metabolism was required for ABA-mediated growth protection at low ψ(w). PDH1 maintained high expression in the root apex and shoot meristem at low ψ(w) rather than being repressed, as in the bulk of the shoot tissue. This, plus a reduced oxygen consumption and buildup of Pro in the root apex of pdh1-2, indicated that active Pro catabolism was needed to sustain growth at low ψ(w). Conversely, P5CS1 expression was most highly induced in shoot tissue. Both p5cs1-4 and pdh1-2 had a more reduced NADP/NADPH ratio than the wild type at low ψ(w). These results indicate a new model of Pro metabolism at low ψ(w) whereby Pro synthesis in the photosynthetic tissue regenerates NADP while Pro catabolism in meristematic and expanding cells is needed to sustain growth. Tissue-specific differences in Pro metabolism and function in maintaining a favorable NADP/NADPH ratio are relevant to understanding metabolic adaptations to drought and efforts to enhance drought resistance.

  8. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  9. Inhibition of RNA synthesis in vitro and cell growth by anthracycline antibiotics.

    PubMed

    Studzian, K; Wasowska, M; Piestrzeniewicz, M K; Wilmańska, D; Szmigiero, L; Oszczapowicz, I; Gniazdowski, M

    2001-01-01

    New derivatives of doxorubicin and daunorubicin with amidine group bonded to daunosamine at C-3' atom and bearing the morpholine ring attached to the amidine group have been recently synthesized. Their cytotoxic activities and effects on RNA synthesis in vitro were assayed. The drug concentrations inhibiting mouse leukaemia L1210 cell growth to 50% were about two- and three fold higher for the derivatives compared to doxorubicin and daunorubicin respectively. Inhibition of phage T7 RNA polymerase by the non-covalently interacting derivatives was also slightly lower than that by the parent compounds. As doxorubicin and daunorubicin, their amidine derivatives in the presence of dithiothreitol and Fe(III) ions are activated and covalently bind to DNA. The adducts formed affect RNA polymerase activity. Several bands corresponding to prematurely terminated RNA chains are observed by means of polyacrylamide gel electrophoresis. The patterns of bands are virtually identical for all the anthracyclines studied here and are similar to the terminations induced by actinomycin D. This observation is consistent with a notion that the adducts are formed at guanine in GpC sequences which are also binding sites of actinomycin D. A substantial difference between daunorubicin and its amidine derivative is shown by means of high performance liquid chromatography. The derivative undergoes rapid rearrangements in the presence of dithiothreitol and Fe(III) ions, while daunorubicin is stable for several hours under these conditions. The results presented here indicate that the amidine derivatives despite bulky morpholine substitution exhibit biological activity in the systems used here. PMID:11845988

  10. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents

    PubMed Central

    2014-01-01

    In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322

  11. Alterations of nuclear DNA synthesis after irradiation of the cellular slime mold Dictyostelium discoideum: studies performed in a mutant strain displaying enhanced thymidine uptake

    SciTech Connect

    Hurley, D.L.

    1986-01-01

    The auxotrophic Dictyostelium discoideum strain HPS 401 was studied. Thymidine at 8 ..mu..g/ml or thymidylate at 50 ..mu..g/ml supported growth to maximal cell densities. Thin layer chromatography of cell extracts showed rapid intracellular accumulation of thymidine in HPS 401 vs slightly detectable accumulation in wild-type cells. Measurements showed that methionine and thymidylate were taken into all strains at a low rate, but HPS 401 had enhanced uptake of thymidine and uridine compared to wild-type. The HPS 401 phenotype is due to the efficient utilization of thymidine as a result of increased nucleoside uptake. Rapid nuclear purification removed mitochondrial DNA without decreasing the single-strand molecular weight of the nuclear DNA. The nuclear DNA peaks on alkaline sucrose gradients were identified using filter hybridization to cloned probes. As measured by pulse-chase labelling, production of full-sized main band DNA required 45-50 minutes. Pulse labelling of the cells immediately after ultraviolet irradiation caused the single-strand molecular weight of the DNA synthesized to decrease from 8 x 10/sup 6/ daltons at O J/m/sup 2/ to 3.9 x 10/sup 6/ daltons at 50 J/m/sup 2/ to 2.6 x 10/sup 6/ daltons at 200 J/m/sup 2/. The time required for maturation into full-sized DNA increased from 1 hour at O J/m/sup 2/ to 4 hours at 20 J/m/sup 2/ and to 21 hours at 200 J/m/sup 2/. Measured amounts of DNA synthesis at times after ultraviolet irradiation showed a period of reduced incorporation, followed by the resumption of control levels. The lag period ended at the same time as the production of full-sized DNA resumed.

  12. Tumor Cellular Proteasome Inhibition and Growth Suppression by 8-Hydroxyquinoline and Clioquinol Requires Their Capabilities to Bind Copper and Transport Copper into Cells

    PubMed Central

    Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing

    2009-01-01

    We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836

  13. Synthesis and nanorod growth of n-type phthalocyanine on ultrathin metal films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Koshiba, Yasuko; Nishimoto, Mihoko; Misawa, Asuka; Misaki, Masahiro; Ishida, Kenji

    2016-03-01

    The thermal behavior of 1,2,4,5-tetracyanobenzene (TCNB), the synthesis of metal-2,3,9,10,16,17,23,24-octacyanophthalocyanine-metal [MPc(CN)8-M] (M = Cu, Fe, Ni) complexes by the tetramerization of TCNB, and the growth of MPc(CN)8-M nanorods were investigated. By chemical vapor deposition (CVD) in vacuum, MPc(CN)8 molecules were synthesized and MPc(CN)8-M nanorods were formed on all substrates. Among them, CuPc(CN)8 molecules were synthesized in high yield, and CuPc(CN)8-Cu nanorods were deposited uniformly and in high density, with diameters and lengths of 70-110 and 200-700 nm, respectively. The differences in the growth of MPc(CN)8-M nanorods were mainly attributed to the stability of the MPc(CN)8-M complex, the oxidation of ultrathin metal films, and the diffusion of metal atoms. Additionally, the tetramerization of TCNB by CVD at atmospheric pressure was performed on ultrathin Cu films, and the synthesis of CuPc(CN)8 molecules was observed by in situ UV-vis spectroscopy. CVD under atmospheric pressure is also useful for the synthesis of CuPc(CN)8 molecules.

  14. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  15. Antibiotic efficacy is linked to bacterial cellular respiration.

    PubMed

    Lobritz, Michael A; Belenky, Peter; Porter, Caroline B M; Gutierrez, Arnaud; Yang, Jason H; Schwarz, Eric G; Dwyer, Daniel J; Khalil, Ahmad S; Collins, James J

    2015-07-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.

  16. Effects of methylmercury on primary cultured rat hepatocytes: Cell injury and inhibition of growth factor stimulated DNA synthesis

    SciTech Connect

    Tanno, Keiichi; Fukazawa, Toshiyuki; Tajima, Shizuko; Fujiki, Motoo )

    1992-08-01

    Many more studies deal with the toxicity of methylmercury on nervous tissue than on its toxicity to the liver. Methylmercury accumulates in the liver in higher concentrations than brain and the liver has the primary function of detoxifying methylmercury. According to recent studies, hepatocyte mitochondrial membranes are destroyed by methylmercury and DNA synthesis is inhibited by methylmercury during hepatocyte regeneration. Methylmercury alters the membrane ion permeability of isolate skate hepatocytes, and inhibits the metal-sensitive alcohol dehydrogenase and glutathione reductase of primary cultured rat hepatocytes. However, little is known about the effect of methylmercury on hepatocyte proliferation in primary cultured rat hepatocytes. We therefore used the primary cultured rat hepatocytes to investigate the effects of methylmercury on cell injury and growth factor stimulate DNA synthesis. The primary effect of methylmercury is to inhibit hepatocyte proliferation rather than to cause direct cell injury. 16 refs., 4 figs.

  17. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    SciTech Connect

    Wilson, S.P. )

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  18. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) -- and vascular endothelial growth factor-mediated cellular invasion and tumor growth.

    PubMed

    Rivat, Christine; Christine, Rivat; Rodrigues, Sylvie; Sylvie, Rodrigues; Bruyneel, Erik; Erik, Bruyneel; Piétu, Geneviève; Geneviève, Piétu; Robert, Amélie; Amélie, Robert; Redeuilh, Gérard; Gérard, Redeuilh; Bracke, Marc; Marc, Bracke; Gespach, Christian; Christian, Gespach; Attoub, Samir; Samir, Attoub

    2005-01-01

    Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr(705) phosphorylation of both STAT3alpha and STAT3beta isoforms. Blockade of STAT3 signaling by STAT3beta, depletion of the STAT3alpha/beta isoforms by RNA interference, and pharmacologic inhibition of STAT3alpha/beta phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3beta down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF(165) exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.

  19. Cellular aging and cancer

    PubMed Central

    Hornsby, Peter J.

    2010-01-01

    Aging is manifest in a variety of changes over time, including changes at the cellular level. Cellular aging acts primarily as a tumor suppressor mechanism, but also may enhance cancer development under certain circumstances. One important process of cellular aging is oncogene-induced senescence, which acts as an important anti-cancer mechanism. Cellular senescence resulting from damage caused by activated oncogenes prevents the growth or potentially neoplastic cells. Moreover, cells that have entered senescence appear to be targets for elimination by the innnate immune system. In another aspect of cellular aging, the absence of telomerase activity in normal tissues results in such cells lacking a telomere maintenance mechanism. One consequence is that in aging there is an increase in cells with shortened telomeres. In the presence of active oncogenes that cause expansion of a neoplastic clone, shortening of telomeres leading to telomere dysfunction prevents the indefinite expansion of the clone because the cells enter crisis. Crisis results from fusions and other defects caused by dysfunctional telomeres and is a terminal state of the neoplastic clone. In this way the absence of telomerase in human cells, while one cause of cellular aging, also acts as an anti-cancer mechanism. PMID:20705476

  20. The nucleolus—guardian of cellular homeostasis and genome integrity.

    PubMed

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  1. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase.

    PubMed Central

    Marti, H. P.; Lee, L.; Kashgarian, M.; Lovett, D. H.

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is generally considered to exert positive effects on the accumulation of extracellular matrices. These occur as the net result of enhanced matrix protein synthesis, diminished matrix metalloproteinase (MMP) synthesis, and augmented production of specific inhibitors, including the tissue inhibitor of metalloproteinases (TIMP-1). Given that glomerular TGF-beta 1 synthesis is induced by inflammation, the effects of this cytokine on synthesis of the 72-kd type IV collagenase and TIMP-1 by cultured human mesangial cells were evaluated. Concentrations of TGF-beta 1 of 5 ng/ml and above specifically stimulated the synthesis of the 72-kd type IV collagenase. This effect was independent of the stimulatory effect of TGF-beta 1 on TIMP-1 synthesis, which was maximal in a lower concentration range (0.1 to 1 ng/ml). Most significantly, the net effect at the higher concentrations of TGF-beta 1 was an excess of enzyme over the TIMP-1 inhibitor. Northern blot analysis of TGF-beta 1-stimulated human mesangial cells demonstrated a specific increase in the abundance of the 3.1 kb mRNA transcript encoding the 72-kd type IV collagenase, presumably mediated by a direct stimulation of 72-kd type IV collagenase mRNA transcription observed as early as 3 hours after exposure to TGF-beta 1. These studies were extended to an analysis of the expression of TGF-beta 1 and 72-kd type IV collagenase mRNAs in normal and nephritic rats. In normal animals, basal TGF-beta 1 and 72-kd type IV collagenase mRNA expression was observed in a strictly mesangial distribution. After induction of acute immune complex-mediated glomerulonephritis, there was a major increase in TGF-beta 1 and 72-kd type IV collagenase mRNA expression, which was strictly limited to the expanded, hypercellular mesangial compartment. Enhanced synthesis of the mesangial type IV collagenase in response to TGF-beta 1 released during glomerular inflammatory processes could have an important

  2. De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways.

    PubMed

    Huang, M; Graves, L M

    2003-02-01

    The de novo biosynthesis of pyrimidine nucleotides provides essential precursors for multiple growth-related events in higher eukaryotes. Assembled from ATP, bicarbonate and glutamine, the uracil and cytosine nucleotides are fuel for the synthesis of RNA, DNA, phospholipids, UDP sugars and glycogen. Over the past 2 decades considerable progress has been made in elucidating the mechanisms by which cellular pyrimidines are modulated to meet the needs of the cell. Recent studies demonstrate that CAD, a rate-limiting enzyme in the de novo synthesis of pyrimidines, is regulated through reversible phosphorylation, Myc-dependent transcriptional changes and caspase-mediated degradation. These studies point to increasing evidence for cooperation between key cell signaling pathways and basic elements of cellular metabolism, and suggest that these events have the potential to determine distinct cellular fates, including growth, differentiation and death. This review highlights some of the recent advances in the regulation of pyrimidine synthesis by growth-factor-stimulated signaling pathways. PMID:12678497

  3. The matri-cellular proteins 'cysteine-rich, angiogenic-inducer, 61' and 'connective tissue growth factor' are regulated in experimentally-induced sepsis with multiple organ dysfunction.

    PubMed

    Hviid, Claus V B; Erdem, Johanna Samulin; Kunke, David; Ahmed, Shakil M; Kjeldsen, Signe F; Wang, Yun Yong; Attramadal, Håvard; Aasen, Ansgar O

    2012-10-01

    Organ failure is a severe complication in sepsis for which the pathophysiology remains incompletely understood. Recently, the matri-cellular cysteine-rich, angiogenic induced, 61 (Cyr61/CCN1); connective tissue growth factor (Ctgf/CCN2); and nephroblastoma overexpressed gene (Nov/CCN3) (CCN)-protein family have been attributed organ-protective properties. Their expression is sensitive to mediators of sepsis pathophysiology but a potential role in sepsis remains elusive. To provide an initial assessment, 50 rats were subjected to 18 h of cecal-ligation and puncture or sham operation. Hepatic and pulmonary CCN1 mRNA displayed an average 7.4- and 3.3-fold induction, while its cardiac expression was unchanged. The changes coincided with excessive hepatic and pulmonary inflammatory gene activation and a restricted cardiac inflammation. Furthermore, hepatocytes displayed a dosage-dependent CCN1 mRNA response in vitro, supporting a cytokine-mediated CCN1 regulation in sepsis. CCN2 mRNA was 2.2-fold induced in the liver, while 2.0-fold and 1.4-fold repressed in the heart and lung. Meanwhile, it did not respond to TNF-α exposure in vitro, which indicates different means of regulation than for CCN1. Taken together, this study provides the first evidence for multi-organ regulation of CCN1 and CCN2 in early stages of sepsis, and implies the eruption of inflammatory mediators as a potential mechanism behind the observed CCN1 regulation.

  4. Cellular apoptosis susceptibility (CAS) is overexpressed in thyroid carcinoma and maintains tumor cell growth: A potential link to the BRAFV600E mutation.

    PubMed

    Holzer, Kerstin; Drucker, Elisabeth; Oliver, Scott; Winkler, Juliane; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Singer, Stephan

    2016-04-01

    Thyroid carcinoma is among the most common malignant endocrine neoplasms with a rising incidence. Genetic alterations occurring in thyroid cancer frequently affect the RAS/RAF/MEK/ERK-pathway such as the oncogenic, kinase-activating BRAF(V600E) mutation. Nuclear transport receptors including importins and exportins represent an important part of the nuclear transport machinery providing nucleo-cytoplasmic exchange of macromolecules. The role of nuclear transport receptors in the development and progression of thyroid carcinomas is largely unknown. Here, we studied the expression and function of the exportin cellular apoptosis susceptibility (CAS) in thyroid carcinogenesis and its link to the BRAF(V600E) mutation. By using immunohistochemistry (IHC) we found significantly increased IHC scores of CAS in primary papillary (PTC) and medullary (MTC), but not in follicular (FTC) thyroid carcinoma compared to non-tumorous (NT) thyroid tissue. Interestingly, metastases of the aforementioned subtypes including FTC showed a strong CAS positivity. Among PTCs we observed that CAS immunoreactivity was significantly higher in the tumors harboring the BRAF(V600E) mutation. Furthermore, depletion of CAS by RNAi in the BRAF(V600E)-positive PTC cell line B-CPAP led to reduced tumor cell growth measured by crystal violet assays. This phenotype could be attributed to reduced proliferation and increased cell death as assayed by BrdU ELISAs and immunoblotting for PARP-cleavage, respectively. Finally, we found additive effects of CAS siRNA and vemurafenib treatment in B-CPAP cells. Collectively, these data suggest that CAS overexpression in thyroid carcinoma depends on the subtype and the disease stage. Our findings also indicate that CAS maintains PTC cell proliferation and survival. Targeting CAS could represent a potential therapeutic approach particularly in combination with BRAF inhibitors such as vemurafenib in BRAF(V600E)-positive tumors. PMID:26892809

  5. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.

    PubMed Central

    Rohr, S; Salzberg, B M

    1994-01-01

    We have applied multiple site optical recording of transmembrane voltage (MSORTV) to patterned growth cultures of heart cells to analyze the effect of geometry per se on impulse propagation in excitable tissue, with cellular and subcellular resolution. Extensive dye screening led to the choice of di-8-ANEPPS as the most suitable voltage-sensitive dye for this application; it is internalized slowly and permits optical recording with signal-to-noise ratios as high as 40:1 (measured peak-to-peak) and average fractional fluorescence changes of 15% per 100 mV. Using a x 100 objective and a fast data acquisition system, we could resolve impulse propagation on a microscopic scale (15 microns) with high temporal resolution (uncertainty of +/- 5 microseconds). We could observe the decrease in conduction velocity of an impulse propagating along a narrow cell strand as it enters a region of abrupt expansion, and we could explain this phenomenon in terms of the micro-architecture of the tissue. In contrast with the elongated and aligned cells forming the narrow strands, the cells forming the expansions were aligned at random and presented 2.5 times as many cell-to-cell appositions per unit length. If the decrease in conduction velocity results entirely from this increased number of cell-to-cell boundaries per unit length, the mean activation delay introduced by each boundary can be estimated to be 70 microseconds. Using this novel experimental system, we could also demonstrate the electrical coupling of fibroblasts and endotheloid cells to myocytes in culture. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 PMID:7811945

  6. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB

    PubMed Central

    Boer, Karin; Troost, Dirk; Spliet, Wim G. M.; van Rijen, Peter C.; Gorter, Jan A.

    2008-01-01

    Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions. PMID:18317782

  7. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  8. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.

    PubMed

    Liu, Juncheng; He, Feng; Gunn, Tyler M; Zhao, Dongye; Roberts, Christopher B

    2009-06-16

    In this paper, we present a "green" and size-controlled seed-mediated growth method by which differently sized palladium (Pd) nanoparticles, spanning from 3.4 to 7.6 nm, with an increment of 1.4 nm, were synthesized. Monodisperse Pd nanoparticles (ca. 3.4 nm, standard deviation = 0.7 nm) were first synthesized and stabilized in an aqueous solution at 95 degrees C using nontoxic ascorbic acid and sodium carboxymethyl cellulose (CMC) as reducing agent and capping agent, respectively. These Pd nanoparticles were subsequently employed as seeds on the surface of which fresh Pd (2+) ions were reduced by the weak reducing agent ascorbic acid. Optimal conditions were determined that favored the homogeneous and sequential accumulation of Pd atoms on the surface of the Pd seeds, rather than the formation of new nucleation sites in the bulk growth solution, thereby achieving atomic-level control over particle sizes. The adsorbed CMC molecules did not inhibit the addition of Pd atoms onto the seeds during the growth but provided stabilization of the Pd nanoparticles in aqueous solution after the growth. Potential mechanisms that underpin this seed-mediated growth process are provided and discussed. One advantage of this seed growth process is that it provides stoichiometric control over the size of the Pd nanoparticles by simply varying Pd(2+) added during the growth stage. Furthermore, the use of ecologically friendly reagents, such as water (solvent), CMC (capping agent), and ascorbic acid (reducing agent), in both the seed synthesis and subsequent seed-mediated growth provides both "green" and economic attributes to this process. PMID:19309120

  9. Targeting the testis-specific heat-shock protein 70-2 (HSP70-2) reduces cellular growth, migration, and invasion in renal cell carcinoma cells.

    PubMed

    Singh, Swarnendra; Suri, Anil

    2014-12-01

    Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiotherapy and chemotherapy. Current therapies for the RCC patients are limited owing to lack of diagnosis and therapeutic treatments. Testis-specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, has been shown to be associated with various cancers. In the present study, we investigated the putative role of HSP70-2 in various malignant properties of the RCC cells. HSP70-2 messenger RNA (mRNA) and protein expression was investigated in A704, ACHN, and Caki-1 cells derived from the RCC patients. We assessed the expression of HSP70-2 gene and protein by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The expression of HSP70-2 protein was further validated by performing indirect immunofluorescence (IIF) and flow cytometry. The malignant properties of high-grade invasive A704 and Caki-1 cells, such as cellular proliferation, colony formation, migration, invasion, and wound healing, were evaluated by silencing the expression of HSP70-2 gene in these cells. Statistical significance was defined using Student's t test. Our RT-PCR and Western blotting data showed the expression of HSP70-2 in all RCC cells. Our results showed that HSP70-2 was predominantly expressed in cytoplasm and found to be colocalized with endoplasmic reticulum, mitochondria, Golgi body, and plasma membrane but not the nuclear envelope. Knockdown of HSP70-2 expression with specific short hairpin RNA (shRNA) demonstrated significant reduction in cell growth and colony formation. Further, a marked reduction in cell migration and invasion was also observed, indicating the potential role of HSP70-2 in metastasis. Collectively, our data suggest that HSP70-2 plays a key role in cancerous growth and invasive potential of RCC cells. Thus, HSP70-2 could serve as a novel potential therapeutic target for the RCC.

  10. Impact of growth-synthesis conditions on Cu2Zn1-xCdxSnS4 monograin material properties

    NASA Astrophysics Data System (ADS)

    Nkwusi, G.; Leinemann, I.; Raudoja, J.; Mikli, V.; Karba, E.; Altosaar, M.

    2016-10-01

    This paper presents the impact of growth conditions on the properties of copper zinc cadmium tin sulfide (Cu2Zn1-xCdxSnS4) monograin powder synthesized in molten CdI2. We studied the effects of synthesis time and flux amount on the properties of the monograin powder. Our results showed that we could control the phase composition, grain size and the morphology of the as grown Cu2Zn1-xCdxSnS4 powder by changing the synthesis conditions. We found that in comparison with other used fluxes (KI, NaI), monograin powders synthesized in molten CdI2 were less faceted and more round shaped. The average grain size increased as the flux amount decreased. The optimum synthesis time to obtain usable grain size with 50-100μ was found to be 160 h with CdI2 flux amount, providing the ratio of the volumes of CdI2/CZTS is 0.5.

  11. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  12. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  13. Synthesis of testosterone and 5alpha-androstanediols during nutritionally stimulated gonadal growth in Lytechinus variegatus lamarck (Echinodermata:Echinoidea).

    PubMed

    Wasson, K M; Hines, G A; Watts, S A

    1998-08-01

    Although sex steroids and steroid converting enzymes have been found in echinoids, the relationship between steroids and reproduction has not been demonstrated. On days 0, 4, 8, 16, 32, and 48 of feeding, the gonads of previously starved Lytechinus variegatus were excised and incubated with [3H]androstenedione for 0.5 h to determine if changes in steroidogenic capacity are correlated with gonadal growth. Total rates of androstenedione conversion in the testes and ovaries increased significantly during feeding. In addition, the types and relative quantities of metabolites synthesized varied, suggesting that androstenedione metabolism is influenced by nutritional status. Both testes and ovaries synthesized testosterone, 5alpha-androstane-3alpha,17beta-diol, and 5alpha-androstane-3beta, 17beta-diol (5alpha-adiols), 5alpha-androstanedione, epiandrosterone, and androsterone on all days of feeding. In the testes, the relative quantities of testosterone and 5alpha-adiols increased greatly on day 4 of feeding. In contrast, in the ovaries testosterone synthesis was not detectable on day 4, although the relative quantities of 5alpha-adiols increased threefold. The sex-specific changes in the synthesis of these metabolites reflect a shift in the metabolic pathway indicated by changes in the relative enzyme activity indices for 5alpha-reductase (5alpha-R) (necessary for the synthesis of 5alpha-reduced androgens) and 3alpha/beta-hydroxysteroid dehydrogenase (3alpha/beta-HSDs, necessary for the synthesis of 3alpha- or 3beta-hydroxylated androgens). In both testes and ovaries the relative activities of 5alpha-R and 3alpha/beta-HSD increased on day 4 of feeding. The physiological significance of changes in androstenedione metabolism may be associated with the initiation of biosynthetic processes associated with gametogenesis. PMID:9679091

  14. 2, 6-dichlorobenzonitrile Causes Multiple Effects on Pollen Tube Growth beyond Altering Cellulose Synthesis in Pinus bungeana Zucc

    PubMed Central

    Hao, Huaiqing; Chen, Tong; Fan, Lusheng; Li, Ruili; Wang, Xiaohua

    2013-01-01

    Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity. PMID:24146903

  15. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin.

    PubMed

    Bhatia, N; Zhao, J; Wolf, D M; Agarwal, R

    1999-12-01

    Several studies from our laboratory have shown the cancer chemopreventive and anti-carcinogenic effects of silymarin, a flavonoid antioxidant isolated from milk thistle, in long-term tumorigenesis models and in human prostate, breast and cervical carcinoma cells. Since silymarin is composed mainly of silibinin with small amounts of other stereoisomers of silibinin, in the present communication, studies were performed to assess whether the cancer preventive and anti-carcinogenic effects of silymarin are due to its major component silibinin. Treatment of different prostate, breast, and cervical human carcinoma cells with silibinin resulted in a highly significant inhibition of both cell growth and DNA synthesis in a time-dependent manner with large loss of cell viability only in case of cervical carcinoma cells. When compared with silymarin, these effects of silibinin were consistent and comparable in terms of cell growth and DNA synthesis inhibition, and loss of cell viability. Based on the comparable results of silibinin and silymarin, we suggest that the cancer chemopreventive and anti-carcinogenic effects of silymarin reported earlier are due to the main constituent silibinin.

  16. Penta-Twinned Copper Nanorods: Facile Synthesis via Seed-Mediated Growth and Their Tunable Plasmonic Properties

    DOE PAGES

    Luo, Ming; Ruditskiy, Aleksey; Peng, Hsin-Chieh; Tao, Jing; Figueroa-Cosme, Legna; He, Zhike; Xia, Younan

    2016-01-07

    When seed-mediated growth is used as a versatile approach to the synthesis of penta-twinned Cu nanorods with uniform diameters and controllable aspect ratios is reported. The success of this approach relies on our recent synthesis of uniform Pd decahedra, with sizes in the range of 6–20 nm. The Pd decahedral seeds can direct the heterogeneous nucleation and growth of Cu along the fivefold axis to produce nanorods with uniform diameters defined by the lateral dimension of the original seeds. Due to a large mismatch in the lattice constants between Cu and Pd (7.1%), the deposited Cu is forced to growmore » along one side of the Pd decahedral seed, generating a nanorod with an asymmetric distribution of Cu, with the Pd seed situated at one of the two ends. According to extinction spectra, the as-obtained Cu nanorods can be stored in water under the ambient conditions for at least six months without noticeable degradation. The resulting stability allows us to systematically investigate the size-dependent surface plasmon resonance properties of the penta-twinned Cu nanorods. With the nanorod transverse modes positioned at 560 nm, the longitudinal modes can be readily tuned from the visible to the near-infrared region by controlling the aspect ratio.« less

  17. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria.

    PubMed

    Korduláková, Jana; Gilleron, Martine; Mikusova, Katarína; Puzo, Germain; Brennan, Patrick J; Gicquel, Brigitte; Jackson, Mary

    2002-08-30

    We examined the function of the pimA (Rv2610c) gene, located in the vicinity of the phosphatidylinositol synthase gene in the genomes of Mycobacterium tuberculosis and Mycobacterium smegmatis, which encodes a putative mannosyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A cell-free assay was developed in which membranes from M. smegmatis overexpressing the pimA gene incorporate mannose from GDP-[(14)C]Man into di- and tri-acylated phosphatidylinositol mono-mannosides. Moreover, crude extracts from Escherichia coli producing a recombinant PimA protein synthesized diacylated phosphatidylinositol mono-mannoside from GDP-[(14)C]Man and bovine phosphatidylinositol. To determine whether PimA is an essential enzyme of mycobacteria, we constructed a pimA conditional mutant of M. smegmatis. The ability of this mutant to synthesize the PimA mannosyltransferase was dependent on the presence of a functional copy of the pimA gene carried on a temperature-sensitive rescue plasmid. We demonstrate here that the pimA mutant is unable to grow at the higher temperature at which the rescue plasmid is lost. Thus, the synthesis of phosphatidylinositol mono-mannosides and derived higher phosphatidylinositol mannosides in M. smegmatis appears to be dependent on PimA and essential for growth. This work provides the first direct evidence of the essentiality of phosphatidylinositol mannosides for the growth of mycobacteria.

  18. Endothelial Cell-Derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Vlodavsky, Israel; Folkman, Judah; Sullivan, Robert; Fridman, Rafael; Ishai-Michaeli, Rivka; Sasse, Joachim; Klagsbrun, Michael

    1987-04-01

    Bovine aortic and corneal endothelial cells synthesize a growth factor that remains mostly cell-associated but can also be extracted from the subendothelial extracellular matrix (ECM) deposited by these cells. The endothelial cell-derived growth factors extracted from cell lysates and from the extracellular matrix appear to be structurally related to basic fibroblast growth factor by the criteria that they (i) bind to heparin-Sepharose and are eluted at 1.4-1.6 M NaCl, (ii) have a molecular weight of about 18,400, (iii) cross-react with anti-basic fibroblast growth factor antibodies when analyzed by electrophoretic blotting and immunoprecipitation, and (iv) are potent mitogens for bovine aortic and capillary endothelial cells. It is suggested that endothelium can store growth factors capable of autocrine growth promotion in two ways: by sequestering growth factor within the cell and by incorporating it into the underlying extracellular matrix.

  19. Effects of transforming growth factor β2 and connective tissue growth factor on induction of epithelial mesenchymal transition and extracellular matrix synthesis in human lens epithelial cells

    PubMed Central

    Pei, Cheng; Ma, Bo; Kang, Qian-Yan; Qin, Li; Cui, Li-Jun

    2013-01-01

    AIM To investigate the effects of transforming growth factor β2 (TGF-β2) and connective tissue growth factor (CTGF) on transdifferentiation of human lens epithelial cells (HLECs) cultured in vitro and synthesis of extracellular matrix (ECM). METHODS HLECs were treated with TGF-β2 (0, 0.5, 1.0, 5, 10µg/L) and CTGF (0, 15, 30, 60, 100µg/L) for different times (0, 24, 48, 72h) in vitro and the expression of α-smooth muscle actin (α-SMA), the main component of the extracellular matrix type I collagen (Col-1) and fibronectin (Fn) were measured by using real-time polymerase chain reaction (PCR) and western-blot. RESULTS TGF-β2 and CTGF significantly increased expression of α-SMA mRNA and protein (P<0.05, P<0.001), Fn mRNA and protein (P<0.001), Col-1 mRNA and protein (P<0.001). TGF-β2 could induce HLECs expression of CTGF mRNA and protein in dose-dependent manner (P<0.05, P<0.001). TGF-β2 and CTGF could induce HLECs to express α-SMA, Fn and Col-1 in time-dependent manner. Each time of TGF-β2 and CTGF induced HELCs expression of α-SMA, Fn, Col-1 mRNA and protein was significant increase compared with control (P<0.05, P<0.001). CONCLUSION TGF-β2 and CTGF could induce HLECs epithelial mesenchymal transition and ECM synthesis. PMID:24392320

  20. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    SciTech Connect

    Piepkorn, M.; Carney, H.; Linker, A.

    1985-08-01

    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, /sup 3/H-glucosamine and /sup 35/SO/sub 4/, sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA).

  1. Triennial growth symposium: Leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The postprandial increases in AA and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to AA. We have shown that the postprandial increase in leucine, but not isoleucine or valine, acutely stimulates muscle protein synth...

  2. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 1; Growth Hormone Regulation Synthesis and Secretion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.

    1994-01-01

    Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.

  3. The relationship between the growth rate and the lifetime in carbon nanotube synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Guohai; Davis, Robert C.; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Futaba, Don N.; Hata, Kenji

    2015-05-01

    We report an inverse relationship between the carbon nanotube (CNT) growth rate and the catalyst lifetime by investigating the dependence of growth kinetics for ~330 CNT forests on the carbon feedstock, carbon concentration, and growth temperature. We found that the increased growth temperature led to increased CNT growth rate and shortened catalyst lifetime for all carbon feedstocks, following an inverse relationship of a fairly constant maximum height. For the increased carbon concentration, the carbon feedstocks fell into two groups where ethylene/butane showed an increased/decreased growth rate and a decreased/increased lifetime indicating different rate-limiting growth processes. In addition, this inverse relationship held true for different types of CNTs synthesized by various chemical vapor deposition techniques and continuously spanned a 1000-times range in both the growth rate and catalyst lifetime, indicating the generality and fundamental nature of this behavior originating from the growth mechanism of CNTs itself. These results suggest that it would be fundamentally difficult to achieve a fast growth with a long lifetime.

  4. Controlled vapour-phase deposition synthesis and growth mechanism of Bi2Te3 nanostructures

    NASA Astrophysics Data System (ADS)

    Lei, W.; Madni, I.; Ren, Y. L.; Yuan, C. L.; Luo, G. Q.; Faraone, L.

    2016-08-01

    This work presents a study on the controlled growth and the growth mechanism of vapour-phase deposited two-dimensional Bi2Te3 nanostructures by investigating the influence of growth conditions on the morphology of Bi2Te3 nanostructures. The formation of a hexagonal plate geometry for Bi2Te3 nanostructures is a consequence of the large difference in growth rate between crystal facets along <0001> and <11 2 ¯ 0> directions. Under low Ar carrier gas flow rates (60-100 sccm), the growth of Bi2Te3 nanoplates occurs in the mass-transport limited regime, whereas under high carrier gas flow rates (130 sccm), the growth of Bi2Te3 nanoplates is in the surface-reaction limited regime. This leads to an increase in the lateral size of Bi2Te3 nanoplates with increasing the Ar carrier gas flow rate from 60 to 100 sccm, and a decrease in size for a flow rate of 130 sccm. In addition, the lateral size of Bi2Te3 nanoplates was found to increase with increasing growth time due to the kinetic characteristics of material growth. The proposed growth model provides an effective guide for achieving controlled growth of Bi2Te3 nanoplates, as well as other two dimensional nanomaterials.

  5. The relationship between the growth rate and the lifetime in carbon nanotube synthesis.

    PubMed

    Chen, Guohai; Davis, Robert C; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Futaba, Don N; Hata, Kenji

    2015-05-21

    We report an inverse relationship between the carbon nanotube (CNT) growth rate and the catalyst lifetime by investigating the dependence of growth kinetics for ∼330 CNT forests on the carbon feedstock, carbon concentration, and growth temperature. We found that the increased growth temperature led to increased CNT growth rate and shortened catalyst lifetime for all carbon feedstocks, following an inverse relationship of a fairly constant maximum height. For the increased carbon concentration, the carbon feedstocks fell into two groups where ethylene/butane showed an increased/decreased growth rate and a decreased/increased lifetime indicating different rate-limiting growth processes. In addition, this inverse relationship held true for different types of CNTs synthesized by various chemical vapor deposition techniques and continuously spanned a 1000-times range in both the growth rate and catalyst lifetime, indicating the generality and fundamental nature of this behavior originating from the growth mechanism of CNTs itself. These results suggest that it would be fundamentally difficult to achieve a fast growth with a long lifetime. PMID:25913386

  6. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  7. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-01-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  8. A pool of peptides extracted from wheat bud chromatin inhibits tumor cell growth by causing defective DNA synthesis

    PubMed Central

    2013-01-01

    Background We previously reported that a pool of low molecular weight peptides can be extracted by alkali treatment of DNA preparations obtained from prokaryotic and eukaryotic cells after intensive deproteinization. This class of peptides, isolated from wheat bud chromatin, induces growth inhibition, DNA damage, G2 checkpoint activation and apoptosis in HeLa cells. In this work we studied their mechanism of action by investigating their ability to interfere with DNA synthesis. Methods BrdUrd comet assays were used to detect DNA replication defects during S phase. DNA synthesis, cell proliferation, cell cycle progression and DNA damage response pathway activation were assessed using 3H-thymidine incorporation, DNA flow cytometry and Western blotting, respectively. Results BrdUrd labelling close to DNA strand discontinuities (comet tails) detects the number of active replicons. This number was significantly higher in treated cells (compared to controls) from entry until mid S phase, but markedly lower in late S phase, indicating the occurrence of defective DNA synthesis. In mid S phase the treated cells showed less 3H-thymidine incorporation with respect to the controls, which supports an early arrest of DNA synthesis. DNA damage response activation was also shown in both p53-defective HeLa cells and p53-proficient U2OS cells by the detection of the phosphorylated form of H2AX after peptide treatment. These events were accompanied in both cell lines by an increase in p21 levels and, in U2OS cells, of phospho-p53 (Ser15) levels. At 24 h of recovery after peptide treatment the cell cycle phase distribution was similar to that seen in controls and CDK1 kinase accumulation was not detected. Conclusion The data reported here show that the antiproliferative effect exhibited by these chromatin peptides results from their ability to induce genomic stress during DNA synthesis. This effect seems to be S-phase specific since surviving cells are able to progress through their

  9. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. ...

  10. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  11. 1,25-dihydroxyvitamin D3 stimulates transforming growth factor-beta1 synthesis by mouse renal proximal tubular cells.

    PubMed

    Weinreich, T; Landolt, M; Booy, C; Wüthrich, R; Binswanger, U

    1999-01-01

    1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] is a secosteroid hormone with effects on cell growth, differentiation and immunoregulatory functions in a number of tissues not primarily involved in mineral metabolism. We recently demonstrated growth-regulating effects of 1, 25-(OH)2 D3 on human mesangial cells and proximal tubular cells. To investigate whether 1,25-(OH)2 D3 might also affect the synthesis of cytokines and growth factors in proximal tubular cells, we assessed in the present study the expression and secretion of transforming growth factor-beta1 (TGF-beta1) in a mouse proximal tubular cell line (MCT) in vitro. TGF-beta1 synthesis was measured by a monospecific ELISA in culture supernatant. The secreted TGF-beta1 was proven to be biologically active by means of a bioassay system (CCL-64 mink lung epithelial cell proliferation assay). TGF-beta1 gene expression was assessed by RT-PCR. To analyze whether TGF-beta1 expression mediates the 1,25-(OH)2 D3-induced antiproliferative actions in MCT, proliferation studies in the absence or presence of a blocking monoclonal anti TGF-beta1-3 antibody were performed. 1, 25-(OH)2 D3 (10(-11) to 10(-7) M) specifically increased the TGF-beta1 protein secretion in MCT with a maximum at 10(-8) M. No detectable effect was found with 25 D3 at 10 times higher concentrations. A synthetic 20-epi analogue, MC 1288, increased TGF-beta1 secretion up to similar amounts at equimolar concentrations as the natural hormone 1,25-(OH)2 D3. Steady-state TGF-beta1 mRNA concentration in MCT was transiently increased by 1, 25-(OH)2 D3 between 12 and 24 h, returning to control values at 48 h. Blocking TGF-beta1 did not reduce or abrogate the antiproliferative effect of 1,25-(OH)2 D3. In conclusion, 1,25-(OH)2 D3 stimulates TGF-beta1 expression in renal proximal tubular cells, a growth factor with anti-inflammatory and profibrotic actions which plays an important role in the development and progression of nephrosclerosis. PMID:10394107

  12. Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor

    PubMed Central

    Wei, Libin; Zhou, Yuxin; Yao, Jing; Qiao, Chen; Ni, Ting; Guo, Ruichen; Guo, Qinglong; Lu, Na

    2015-01-01

    Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1α under normoxia. Mechanistically, activated hypoxia-inducible factor 1-α in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to ‘feed’ the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth. PMID:25938544

  13. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  14. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S.; Rai, R.N.

    2012-06-15

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: Black-Right-Pointing-Pointer Novel organic complex was synthesized using Green or solvent free synthesis. Black-Right-Pointing-Pointer Phase diagram study provided the information to identify the worthy composition of novel complex. Black-Right-Pointing-Pointer The single crystal of the sufficient size was grown from the ethanol solution. Black-Right-Pointing-Pointer Crystal analysis suggested that the covalent bond is formed between the two parent compounds. Black-Right-Pointing-Pointer The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  15. Down-regulation by resveratrol of basic fibroblast growth factor-stimulated osteoprotegerin synthesis through suppression of Akt in osteoblasts.

    PubMed

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-10-06

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.

  16. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).

    PubMed

    Shen, Xinchun; Xi, Gang; Wai, Christine; Clemmons, David R

    2015-05-01

    Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it

  17. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells.

    PubMed

    Kosaka, Kunio; Yokoi, Toshio

    2003-11-01

    Nerve growth factor (NGF) is a factor vital for the growth and functional maintenance of nerve tissue. The authors found that a rosemary (Rosmarinus officinalis L.) extract enhanced the production of NGF in T98G human glioblastoma cells. Furthermore, the results indicated that carnosic acid and carnosol, which are major components of the rosemary extract, were able to promote markedly enhanced synthesis of NGF. PMID:14600414

  18. Effects of oxygen on growth and size: synthesis of molecular, organismal, and evolutionary studies with Drosophila melanogaster.

    PubMed

    Harrison, Jon F; Haddad, Gabriel G

    2011-01-01

    Drosophila melanogaster is a model genetic organism with an exceptional hypoxia tolerance relative to mammals. Forward genetic, microarray, and P-element manipulations and selection experiments have revealed multiple mechanisms of severe hypoxia tolerance, including RNA editing, downregulation of metabolism, and prevention of protein unfolding. Drosophila live in microbe-rich, semiliquid food in which hypoxia likely indicates deteriorating environments. Hypoxia reduces growth and size by multiple mechanisms, influencing larval feeding rates, protein synthesis, imaginal cell size, and control of molting. In moderate hypoxia, these effects appear to occur without ATP limitation and are instead mediated by signaling systems, including hypoxia-inducible factor and atypical guanyl cyclase sensing of oxygen, with downstream actions on behavior, anabolism, and the cell cycle. In hypoxia, flies develop smaller sizes, but size does not evolve, whereas in hyperoxia, flies evolve larger sizes without exhibiting developmental size plasticity, suggesting differential evolutionary responses to natural versus novel directions of oxygen change.

  19. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.

    PubMed

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui

    2015-02-01

    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods.

  20. Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods.

    PubMed

    Lepistö, Anna; Pakula, Eveliina; Toivola, Jouni; Krieger-Liszkay, Anja; Vignols, Florence; Rintamäki, Eevi

    2013-09-01

    Plastid-localized NADPH-dependent thioredoxin reductase C (NTRC) is a unique NTR enzyme containing both reductase and thioredoxin domains in a single polypeptide. Arabidopsis thaliana NTRC knockout lines (ntrc) show retarded growth, especially under short-day (SD) photoperiods. This study identified chloroplast processes that accounted for growth reduction in SD-acclimated ntrc. The strongest reduction in ntrc growth occurred under photoperiods with nights longer than 14 h, whereas knockout of the NTRC gene did not alter the circadian-clock-controlled growth of Arabidopsis. Lack of NTRC modulated chloroplast reactive oxygen species (ROS) metabolism, but oxidative stress was not the primary cause of retarded growth of SD-acclimated ntrc. Scarcity of starch accumulation made ntrc leaves particularly vulnerable to photoperiods with long nights. Direct interaction of NTRC and ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was confirmed by yeast two-hybrid analysis. The ntrc line was not able to maximize starch synthesis during the light period, which was particularly detrimental under SD conditions. Acclimation of Arabidopsis to SD conditions also involved an inductive rise of ROS production in illuminated chloroplasts that was not counterbalanced by the activation of plastidial anti-oxidative systems. It is proposed that knockout of NTRC challenges redox regulation of starch synthesis, resulting in stunted growth of the mutant lines acclimated to the SD photoperiod.

  1. Synthesis and Characterization of AICAR and DOX Conjugated Multifunctional Nanoparticles as a Platform for Synergistic Inhibition of Cancer Cell Growth.

    PubMed

    Daglioglu, Cenk; Okutucu, Burcu

    2016-04-20

    The success of cancer treatment depends on the response to chemotherapeutic agents. However, malignancies often acquire resistance to drugs if they are used frequently. Combination therapy involving both a chemotherapeutic agent and molecularly targeted therapy may have the ability to retain and enhance therapeutic efficacy. Here, we addressed this issue by examining the efficacy of a novel therapeutic strategy that combines AICAR and DOX within a multifunctional platform. In this context, we reported the bottom-up synthesis of Fe3O4@SiO2(FITC)-FA/AICAR/DOX multifunctional nanoparticles aiming to neutralize survivin (BIRC5) to potentiate the efficacy of DOX against chemoresistance. The structure of nanoparticles was characterized by dynamic light scattering (DLS), zeta-potential measurement, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and electron microscopy (SEM and STEM with EDX) techniques. Cellular uptake and cytotoxicity experiments demonstrated preferentially targeted delivery of nanoparticles and an efficient reduction of cancer cell viability in five different tumor-derived cell lines (A549, HCT-116, HeLa, Jurkat, and MIA PaCa-2). These results indicate that the multifunctional nanoparticle system possesses high inhibitory drug association and sustained cytotoxic effect with good biocompatibility. This novel approach which combines AICAR and DOX within a single platform might be promising as an antitumor treatment for cancer. PMID:26996194

  2. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The

  3. Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia.

    PubMed

    Maerker, Claudia; Rohde, Manfred; Brakhage, Axel A; Brock, Matthias

    2005-07-01

    Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed.

  4. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth

    PubMed Central

    2013-01-01

    Background Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. Results We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2α. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction. Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1

  5. Scap is required for sterol synthesis and crypt growth in intestinal mucosa[S

    PubMed Central

    McFarlane, Matthew R.; Cantoria, Mary Jo; Linden, Albert G.; January, Brandon A.; Liang, Guosheng; Engelking, Luke J.

    2015-01-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap−) in which tamoxifen-inducible Cre-ERT2, a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap− mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap− mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. PMID:25896350

  6. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity.

    PubMed

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-01-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg(2+): Fe(3+) ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability. PMID:27581184

  7. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    PubMed Central

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-01-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability. PMID:27581184

  8. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    NASA Astrophysics Data System (ADS)

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-09-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability.

  9. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10‑5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  10. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe(3+) detection and cellular bioimaging.

    PubMed

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-30

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe(3+) with the limit of detection of 10(-5) M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging. PMID:27573680

  11. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  12. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  13. Synthesis of the Growth Hormone Secretion Mechanism Using Nonlinear Analysis and CAD Tools.

    PubMed

    Shell, J R

    2005-01-01

    The goal of this paper is to present a hardware realization of the feed-forward and feedback hypothalamic-pituitary growth hormone (GH) secretion mechanism based on a bio-mathematical nonlinear delay differential equation model developed by Farhy et al. (2003) and Veldhuis et al. (2001). Behavioral modeling is implemented through Verilog hardware descriptive language (HDL) to simulate the antagonistic and stimulatory interaction of growth hormone, growth hormone releasing hormone (GHRH) and somatotropin release inhibiting factor (SRIF). The model is synthesized using computer aided design (CAD) tools and is promulgated through a combinational complex programmable logic device (CPLD)/field programmable grid array (FPGA) Xilinx XSA-50 microchip. The microchip sequentially displays the decimal equivalents of the time changing hormonal concentration levels of the biomathematical model.

  14. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    SciTech Connect

    Stiene-Martin, A.; Hauser, K.F. )

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  15. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    SciTech Connect

    Condeles, J. F. E-mail: ricssilva@yahoo.com.br; Silva, R. S. E-mail: ricssilva@yahoo.com.br; Silva, A. C. A.; Dantas, N. O.

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the β crystalline phase of the HgI{sub 2} nanocrystals.

  16. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles.

    PubMed

    Polavarapu, Lakshminarayana; Zanaga, Daniele; Altantzis, Thomas; Rodal-Cedeira, Sergio; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Bals, Sara; Liz-Marzán, Luis M

    2016-09-14

    Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations. PMID:27556588

  17. Facile synthesis of core-shell and Janus particles via 2-D dendritic growth of gold film.

    PubMed

    Jang, Se Gyu; Kim, Se-Heon; Lee, Su Yeon; Jeong, Woong Chan; Yang, Seung-Man

    2010-10-15

    We report a facile method for the electroless deposition (ELD) of gold film via two-dimensional (2-D) dendritic growth. Our scheme employs protonated amine groups, which electrostatically attract both the negatively charged reducing agent and gold-precursor. This electrostatic interaction increases the local concentrations of gold-precursor and reducing agent near the silica surface to levels high enough for gold films with a 2-D fractal morphology to form directly on the surfaces of the amine-functionalized silica nanospheres by diffusion-limited aggregation. Our one-pot reaction avoids the need for seed attachment, which is typically employed for the growth of metallic shells on nanospheres. Therefore, the proposed method significantly reduces the number of processing steps required for the production of core-shell nanospheres. The gold morphologies were systematically investigated in terms of various synthesis variables, including solution pH, reducing agent concentration, and gold precursor injection speed. In addition, we synthesized gold-capped silica nanospheres via ELD of gold on a patterned array of silica nanospheres embedded in polystyrene (PS) film followed by dissolution of the PS matrix, thus demonstrating the potential utility of the proposed method in emerging fields of materials science such as patterning of noble metals and studies of nanometer-scale optics. PMID:20678776

  18. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  19. Effects of Grape Xylem Sap and Cell-Wall Constituents on In Vitro Growth, Biofilm Formation and Cellular Aggregation of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purified cell-wall constituents or grape xylem sap added to media affected in vitro growth, biofilm formation, cell aggregation and gene expression of Xylella fastidiosa. Media containing xylem sap from Pierce’s disease (PD)-susceptible plants provided better support for bacterial growth and biofil...

  20. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth habit through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibit...

  1. Morphology control of anglesite microcrystals with polyhedron: Synthesis, growth mechanism, and optical properties

    NASA Astrophysics Data System (ADS)

    Ma, Yongmei; Yang, Liangbao; Shen, Yuhua; Xie, Anjian

    2011-08-01

    The formation of novel structure polyhedron-shaped PbSO4 single crystal by reaction of UV irradiation and hydrothermal treated method is described. The kinetics of crystallization of PbSO4 assembly is studied as a function of aging time and reaction time. The possible mechanism is also discussed. The effect on the crystallization of PbSO4 micro-polyhedron under different conditions is investigated. The optical properties are also studied. The results show that tungstocilicate acid (TSA) acting as catalysts and a new class of inorganic scaffolds for the synthesis of materials in crystal engineering and composites design for different applications is versatile reactor and may be extended to the creation of other highly novel inorganic structures with applications in catalysis, novel optical materials and other fields.

  2. Conformationally constrained goniofufurone mimics as inhibitors of tumour cells growth: Design, synthesis and SAR study.

    PubMed

    Benedeković, Goran; Francuz, Jovana; Kovačević, Ivana; Popsavin, Mirjana; Zelenović, Bojana Srećo; Kojić, Vesna; Bogdanović, Gordana; Divjaković, Vladimir; Popsavin, Velimir

    2014-07-23

    Synthesis of conformationally restricted (+)-goniofufurone (1) and 7-epi-(+)-goniofufurone (2) analogues, with embedded O-isopropylidene, O-methylidene or cyclic carbonate functions is disclosed starting from d-glucose. A number of potential bioisosteres of 1 and 2 bearing both 5,7-O-methylidene and 4-substituted cinnamoyloxy functions at the C-7 position have also been synthesized. In vitro cytotoxicity of target molecules against a number of human tumour cell lines were recorded and compared with those observed for the parent molecules 1 and 2. Some of the analogues displayed powerful antiproliferative effects on selected human tumour cell lines, but all of them were devoid of any cytotoxicity towards the normal foetal lung fibroblasts (MRC-5). A SAR study reveals the structural features of these lactones that may increase their antiproliferative activity. PMID:24929342

  3. School Choice and Economic Growth: A Research Synthesis on How Market Forces Can Fuel Educational Attainment

    ERIC Educational Resources Information Center

    Keating, Raymond J.

    2015-01-01

    Economic growth typically results when businesses, workers, investors, and entrepreneurs are free to compete, innovate, and work to better serve consumers by supplying new or improved goods and services. These incentives govern the marketplace, and when built upon a sound foundation of property rights, the rule of law, open trade, minimal…

  4. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    SciTech Connect

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J. )

    1989-04-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of (U-14C)-glucose, (1-14C)-butyrate, (1-14C)-octanoate, and (1-14C)-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1).

  5. Synthesis and Mechanistic Studies of a Novel Homoisoflavanone Inhibitor of Endothelial Cell Growth

    PubMed Central

    Fei, Xiang; Lim, Daesung; Callaghan, Breedge; Mund, Julie A.; Case, Jamie; Rajashekhar, Gangaraju; Seo, Seung-Yong; Corson, Timothy W.

    2014-01-01

    Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs. PMID:24752613

  6. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  7. α-Aryl-N-aryl nitrones: Synthesis and screening of a new scaffold for cellular protection against an oxidative toxic stimulus.

    PubMed

    Matias, A C; Biazolla, G; Cerchiaro, G; Keppler, A F

    2016-01-15

    Nitrone-containing compounds are commonly employed as spin traps of free radical species in chemical and biological studies. Some molecules as α-phenyl-N-t-butyl nitrone (PBN) and its derivatives have been tested as potential drugs to treat oxidative stress related diseases, as Alzheimer and stroke for example. In this work we report the design and the synthesis of α-aryl-N-aryl nitrones and their cytoprotection profile on human neuroblastoma cells (SH-SY5Y) under induced oxidative stress. All the nine synthesized nitrones showed a significant response at low micromolar concentration. The selected compound 8 (α-phenyl-N-phenyl nitrone) increased the reduced glutathione (GSH) levels by 65% and lowered the necrotic cell death from 25.8% to 3.8%. Based on our data, the designed highly conjugated nitrone double-bond skeleton can be considered as a good scaffold for further studies regarding oxidative stress-related diseases. PMID:26707843

  8. Epidermal growth factor inhibits radioiodine uptake but stimulates deoxyribonucleic acid synthesis in newborn rat thyroids grown in nude mice

    SciTech Connect

    Ozawa, S.; Spaulding, S.W. )

    1990-08-01

    We have studied the effect of altering the level of circulating epidermal growth factor (EGF) on the function and growth of newborn rat thyroids transplanted into nude mice. Preliminary studies confirmed that sialoadenectomy reduced circulating EGF levels in nude mice (from 0.17 +/- 0.02 to 0.09 +/- 0.02 ng/ml), and that ip injection of 5 micrograms EGF raised EGF levels (the peak level of 91.7 +/- 3.3 ng/ml was achieved at 30 min, with a subsequent half-life of about 1 h). The radioiodine uptake by newborn rat thyroid transplants in the sialoadenectomized and sham-operated animals correlated inversely with the circulating EGF levels determined when the mice were killed (r = -0.99). Low-dose TSH treatment (0.1 microU/day) generally stimulated the radioiodine uptake, but high-dose TSH groups (100 microU/day) were not significantly different from the control group. The 5-day nuclear (3H)thymidine labeling index was 6.8 +/- 0.5% IN newborn rat thyroid transplants grown in sialoadenectomized animals, 13.1 +/- 0.3% in sham-operated animals, and 16.8 +/- 0.5% in nude mice receiving 5 micrograms EGF ip daily. In general, both low-dose and high-dose TSH promoted DNA synthesis under low EGF conditions but were ineffective in the presence of higher levels of EGF. Adult rat thyroid transplants showed no significant responses. Although sialoadenectomy may alter other factors besides EGF, it appears that changes in the levels of circulating EGF within the physiological range affect the function and growth of newborn rat thyroid transplants. Circulating EGF may play a role in thyroid maturation and may also be involved in the regulation of thyroid function throughout life.

  9. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Wang, Yongqian; Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu

    2015-08-01

    ZnO nanosheets were prepared by electrochemical deposition method at 80 °C on seeded Indium Tin Oxide conducting glass substrates. The seed layer was coated on ITO by spin coating and annealed at 350 °C for 30 min prior to electrochemical deposition growth. X-ray diffraction patterns (XRD) and field emission scanning electron microscope (FESEM) images confirmed that the ZnO nanosheets consist of polycrystalline structures. Room temperature photoluminescence spectra (PL) of the ZnO nanosheets exhibited band-edge ultraviolet (UV) and visible emission (blue) indicating the ZnO nanosheets had excellent optical properties. The UV-Vis absorption spectrum of ZnO nanosheets was shown a strong absorption at 300 nm. The ZnO nanosheets structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. Moreover, the growth mechanism of the ZnO nanosheets had been discussed.

  10. Molecular crowding limits translation and cell growth.

    PubMed

    Klumpp, Stefan; Scott, Matthew; Pedersen, Steen; Hwa, Terence

    2013-10-15

    Bacterial growth is crucially dependent on protein synthesis and thus on the cellular abundance of ribosomes and related proteins. Here, we show that the slow diffusion of the bulky tRNA complexes in the crowded cytoplasm imposes a physical limit on the speed of translation, which ultimately limits the rate of cell growth. To study the required allocation of ancillary translational proteins to alleviate the effect of molecular crowding, we develop a model for cell growth based on a coarse-grained partitioning of the proteome. We find that coregulation of ribosome- and tRNA-affiliated proteins is consistent with measured growth-rate dependencies and results in near-optimal allocation over a broad range of growth rates. The analysis further resolves a long-standing controversy in bacterial growth physiology concerning the growth-rate dependence of translation speed and serves as a caution against premature identification of phenomenological parameters with mechanistic processes.

  11. Pseudomonas aeruginosa DesB Promotes Staphylococcus aureus Growth Inhibition in Coculture by Controlling the Synthesis of HAQs

    PubMed Central

    Kim, Sejeong; Yoon, Yohan; Choi, Kyoung-Hee

    2015-01-01

    Pseudomonas aeruginosa is a pathogen that can cause serious infections and usually coexists with other pathogens, such as Staphylococcus aureus. Virulence factors are important for maintaining a presence of the organisms in these multispecies environments, and DesB plays an important role in P. aeruginosa virulence. Therefore, we investigated the effect of DesB on S. aureus reduction under competitive situation. Liquid cultures of P. aeruginosa wild type (WT) and its desB mutant were spotted on agar plates containing S. aureus, and the size of the clear zones was compared. In addition, interbacterial competition between P. aeruginosa and S. aureus was observed over time during planktonic coculture. The transcriptional profiles of the WT and desB mutant were compared by qRT-PCR and microarray to determine the role of DesB in S. aureus reduction at the molecular level. As a result, the clear zone was smaller for the desB mutant than for P. aeruginosa PAO1 (WT), and in planktonic coculture, the number of S. aureus cells was reduced in the desB mutant. qRT-PCR and microarray revealed that the expression of MvfR-controlled pqsA-E and phnAB operons was significantly decreased, but the mexEF-oprN operon was highly expressed. The results indicate that intracellular levels of 4-hydroxy-2-heptylquinoline (HHQ), a ligand of MvfR, are reduced due to MexEF-OprN-mediated efflux in desB mutant, resulting in the decrease of MvfR binding to pqsA-E promoter and the reduction of 4-hydroxy-2-alkylquinolines (HAQs) synthesis. Overexpression of mexEF-oprN operon in desB mutant was phenotypically confirmed by observing significantly increased resistance to chloramphenicol. In conclusion, these results suggest that DesB plays a role in the inhibition of S. aureus growth by controlling HAQ synthesis. PMID:26230088

  12. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae.

    PubMed

    Chen, Shangchao; Chen, Mindong; Wang, Zhuang; Qiu, Weijian; Wang, Junfeng; Shen, Yafei; Wang, Yajun; Ge, Shun

    2016-07-01

    This paper aims to acquire the experimental data on the eco-toxicological effects of agricultural pollutants on the aquatic plants and the data can support the assessment of toxicity on the phytoplankton. The pesticide of Chlorpyrifos used as a good model to investigate its eco-toxicological effect on the different microalgae in freshwater. In order to address the pollutants derived from forestry and agricultural applications, freshwater microalgae were considered as a good sample to investigate the impact of pesticides such as Chlorpyrifos on aquatic life species. Two microalgae of Chlorella pyrenoidosa and Merismopedia sp. were employed to evaluate toxicity of Chlorpyrifos in short time and long time by means of measuring the growth inhibition rate, the redox system and the content of chlorophyll a, respectively. In this study, the results showed that EC50 values ranging from 7.63 to 19.64mg/L, indicating the Chlorpyrifos had a relatively limited to the growth of algae during the period of the acute toxicity experiment. Moreover, when two kinds of algae were exposed to a medium level of Chlorpyrifos, SOD and CAT activities were importantly advanced. Therefore, the growth rate and SOD and CAT activities can be highly recommended for the eco-toxicological assessment. In addition, chlorophyll a also could be used as a targeted parameter for assessing the eco-toxicity of Chlorpyrifos on both Chlorella pyrenoidosa and Merismopedia sp. PMID:27314761

  13. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    SciTech Connect

    Tian Chungui; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-11-15

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO{sub 3}/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted.

  14. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.

    PubMed

    Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L

    2015-05-01

    X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.

  15. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    PubMed

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron

  16. Synthesis and release of sulfolipid by Mycobacterium avium during growth andcell division.

    PubMed Central

    McCarthy, C

    1976-01-01

    Mycobacterium avium exhibits a life cycle wherein small cells elongate to form filaments. The life cycle is unique in that elongated cells will undergo rapid division by fragmentation only if fatty acid is present. The utilization of [14C]palmitic acid and [3H]oleic acid by M. avium during the life cycle was assessed. Four glycolipids, identifiable by elution patterns from hydroxylapatite columns, were associated with postfission cells and contained isotope from the precursor fatty acid. The incorporation of 3H from oleic acid into the cellular glycolipids was maximal during cell division, but as much as 73% of the radioactivity was lost to the lipids from cells in the postfission status. Three of the glycolipids were sulfatides into which 36S was incorporated by M. avium. The [35]sulfatides were synthesized by cells undergoing fragmentation and were recovered from the medium at the termination of cell fission. These results demonstrated that the isotope was not lost to the cells because of turnover, but rather that the labeled compounds were released, intact, from the cells after fission. Because of the facile release of the sulfolipids, it was suggested that they were part of the cell envelope of M. avium cells during the division process. Images PMID:977128

  17. The effects of extracellular citric acid acidosis on the viability, cellular adhesion capacity and protein synthesis of cultured human gingival fibroblasts.

    PubMed

    Lan, W C; Lan, W H; Chan, C P; Hsieh, C C; Chang, M C; Jeng, J H

    1999-06-01

    Root surface demineralization is widely used as an adjunct to periodontal treatment. To clarify the influence of citric acid root conditioning on periodontal wound healing, the effects of citric acid and associated extracellular acidosis on the viability (MTT assay), attachment and protein synthesis ([3H]-proline incorporation into trichloroacetic acid-precipitated proteins) of human gingival fibroblasts (GF) were investigated. A concentration of 47.6 mmol/L of citric acid (pH 2.3) in water led to total cell death within three minutes of incubation. Media containing 23.8 mmol/L and 47.6 mmol/L of citric acid exerted strong cytotoxicity (47 to 90 per cent of cell death) and inhibited protein synthesis (IC50 = 0.28 per cent) of GF within three hours of incubation. Incubation of cells in a medium containing 11.9 mmol/L of citric acid also suppressed the attachment and spreading of fibroblasts on culture plates and Type I collagen, with 58 per cent and 22 per cent of inhibition, respectively. Culture medium supplemented with 11.9, 23.8 and 47.6 mmol/L of citric acid also led to extracellular acidosis by decreasing the pH value from 7.5 to 6.3, 5.2 and 3.8, respectively. In addition, it was confirmed that the toxic effect of media containing citric acid was due to their acidity rather than the citrate content. Most of the citric acid-induced cell death could be prevented by adjusting the pH value of the culture medium to pH 7.5. Sodium citrate, at a concentration of 47.6 mmol/L, also exerted little cytotoxicity. The results suggested that toxicity of citric acid in specific stages of the healing process must be considered prior to its clinical application. Careful management of citric acid in order to avoid contact with tissue or the development of other demineralizing agents is important in enhancing periodontal wound healing.

  18. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis.

    PubMed

    Zhao, Xiaoyan; Ren, Lujing; Guo, Dongsheng; Wu, Wenjia; Ji, Xiaojun; Huang, He

    2016-08-01

    Effects of impeller configurations on docosahexaenoic acid production and flow characteristics were investigated by Schizochytrium sp. in a 15 L bioreactor. 6-straight blade disc turbine (6-SBDT), 6-arrowy-blade disc turbine (6-ABDT) and down-pumping propeller (DPP) were combined to form different impeller configurations. Simulated results showed that configuration SSA consisting of upper two 6-SBDT and one bottom 6-ABDT possessed the worst oxygen supply capacity. But it obtained the highest DHA percentage of 48.17 % and DHA yield of 21.42 g/L, indicating that it was beneficial for DHA synthesis and converting glucose to biomass and lipids. Configuration SAS consisting of one middle 6-ABDT and two 6-SBDT provided better mixing capacity, which resulted in the maximum glucose consumption rate of 2.86 g/L h and the highest biomass of 108.09 g/L. This study would improve insight into understanding the relationship between flow field and the physiology of Schizochytrium sp. for the scale-up of industrial DHA production.

  19. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis.

    PubMed

    Zhao, Xiaoyan; Ren, Lujing; Guo, Dongsheng; Wu, Wenjia; Ji, Xiaojun; Huang, He

    2016-08-01

    Effects of impeller configurations on docosahexaenoic acid production and flow characteristics were investigated by Schizochytrium sp. in a 15 L bioreactor. 6-straight blade disc turbine (6-SBDT), 6-arrowy-blade disc turbine (6-ABDT) and down-pumping propeller (DPP) were combined to form different impeller configurations. Simulated results showed that configuration SSA consisting of upper two 6-SBDT and one bottom 6-ABDT possessed the worst oxygen supply capacity. But it obtained the highest DHA percentage of 48.17 % and DHA yield of 21.42 g/L, indicating that it was beneficial for DHA synthesis and converting glucose to biomass and lipids. Configuration SAS consisting of one middle 6-ABDT and two 6-SBDT provided better mixing capacity, which resulted in the maximum glucose consumption rate of 2.86 g/L h and the highest biomass of 108.09 g/L. This study would improve insight into understanding the relationship between flow field and the physiology of Schizochytrium sp. for the scale-up of industrial DHA production. PMID:27102911

  20. [Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241].

    PubMed

    Pirog, T P; Shevchuk, T A; Mashchenko, O Iu; Parfeniuk, S A; Iutinskaia, G A

    2013-01-01

    The effect of yeast autolysate and microelements on synthesis of surface-active substances (SAS, biosurfactants) was investigated under cultivation of Acinetobacter calcoaceticus IMV B-7241 on various carbon substrates (n-hexadecane, ethanol, glycerol). The authors have shown a possibility to substitute the yeast autolysate and microelement mixture in the composition of ethanol- and n-hexadecane-containing media by copper sulfate (0.16 micromol/l) and iron sulfate (3.6 micromol/l), and in the medium with glycerol by 0.21 mmol/l of KCl, 38 micromol/l of zinc sulfate and 0.16 micromol/l of copper sulfate. Under such conditions of cultivation of the strain IMV B-7241 the SAS concentration exceeded that on the initial media, which contained the yeast autolysate and microelements, 1.2-1.6 times. The authors have also established the activating effect of low (0.01 mM) concentrations of Fe2+ on activity of the enzymes of biosynthesis of surface-active amino- (NADP-dependent glutamate dehydrogenase) and glycolipids (phosphoenolpyruvate(PhEP)-synthetase, PhEP-carboxykinase), as well as of anaplerotic reaction(PhEP-carboxylase). A necessity to introduce zinc cations into glycerol-containing medium is determined by their stimulating effect on activity of 4-dinitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase--one of the enzymes of this substrate catabolism in A. calcoaceticus IMV B-7241.

  1. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.

    PubMed

    Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2013-11-01

    Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1μM did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. PMID:23792556

  2. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  3. Synthesis and optical properties of small Au nanorods using a seedless growth technique.

    PubMed

    Ali, Moustafa R K; Snyder, Brian; El-Sayed, Mostafa A

    2012-06-26

    Gold nanoparticles have shown potential in photothermal cancer therapy and optoelectronic technology. In both applications, a call for small size nanorods is warranted. In the present work, a one-pot seedless synthetic technique has been developed to prepare relatively small monodisperse gold nanorods with average dimensions (length × width) of 18 × 4.5 nm, 25 × 5 nm, 15 × 4.5 nm, and 10 × 2.5 nm. In this method, the pH was found to play a crucial role in the monodispersity of the nanorods when the NaBH(4) concentration of the growth solution was adjusted to control the reduction rate of the gold ions. At the optimized pH and NaBH(4) concentrations, smaller gold nanorods were produced by adjusting the CTAB concentration in the growth solution. In addition, the concentration of silver ions in the growth solution was found to be pivotal in controlling the aspect ratio of the nanorods. The extinction coefficient values for the small gold nanorods synthesized with three different aspect ratios were estimated using the absorption spectra, size distributions, and the atomic spectroscopic analysis data. The previously accepted relationships between the extinction coefficient or the longitudinal band wavelength values and the nanorods' aspect ratios found for the large nanorods do not extend to the small size domain reported in the present work. The failure of extending these relationships over larger sizes is a result of the interaction of light with the large rods giving an extinction band which results mostly from scattering processes while the extinction of the small nanorods results from absorption processes.

  4. Acetoin Synthesis Acquisition Favors Escherichia coli Growth at Low pH

    PubMed Central

    Vivijs, Bram; Moons, Pieter; Aertsen, Abram

    2014-01-01

    Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods. PMID:25063653

  5. Acetoin synthesis acquisition favors Escherichia coli growth at low pH.

    PubMed

    Vivijs, Bram; Moons, Pieter; Aertsen, Abram; Michiels, Chris W

    2014-10-01

    Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods.

  6. Nucleation and growth synthesis of siloxane gels to form functional, monodisperse, and acoustically programmable particles.

    PubMed

    Shields, C Wyatt; Sun, Danping; Johnson, Kennita A; Duval, Korine A; Rodriguez, Aura V; Gao, Lu; Dayton, Paul A; López, Gabriel P

    2014-07-28

    Nucleation and growth methods offer scalable means of synthesizing colloidal particles with precisely specified size for applications in chemical research, industry, and medicine. These methods have been used to prepare a class of silicone gel particles that display a range of programmable properties and narrow size distributions. The acoustic contrast factor of these particles in water is estimated and can be tuned such that the particles undergo acoustophoresis to either the pressure nodes or antinodes of acoustic standing waves. These particles can be synthesized to display surface functional groups that can be covalently modified for a range of bioanalytical and acoustophoretic sorting applications.

  7. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    NASA Astrophysics Data System (ADS)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  8. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth.

    PubMed

    Paulose, Maggie; Varghese, Oomman K; Grimes, Craig A

    2003-08-01

    Nanoscale wires of silicon oxide, and silicon oxide with embedded gold-silicide nanospheres, are synthesized by heating of a gold-coated silicon wafer at temperatures of 1000 degrees C or above, with the resulting wires having diameters ranging from 30 to 150 nm and lengths of approximately 1 mm. This simple fabrication process should make possible economical bulk production of nanowires. Studies indicate that the growth of these gold-silica composite nanowires occurs directly on the silicon wafer by a solid-liquid-solid mechanism. PMID:14598450

  9. Synthesis of octadecyl esters of histidine-containing tripeptides as potential regulators of plant growth

    SciTech Connect

    Ogrel, A.A.; Zvonkova, E.N.; Gafurov, R.G.

    1995-08-01

    Octadecyl esters of dipeptides and tripeptides of the type Phe-His, Val-His, Phe-Val-His and Val-Phe-His were synthesized using different methods. The minimum energy conformations of these peptides were calculated with computer minimization programs and compared with those of paclobutrazol, a well-known regulator of plant growth. It was demonstrated that the elongation of the peptide chain leads to a higher topochemical correspondence between paclobutrazol and the peptide derivatives than between paclobutrazol and amino acid derivatives. 9 refs., 2 figs., 3 tabs.

  10. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  11. Characterization of burden on growth due to the nutritional state of media and pre-induced gene expression.

    PubMed

    Malakar, Pushkar; Venkatesh, K V

    2013-04-01

    Studies have shown that the production of unnecessary proteins burdens the cellular growth mainly due to allocation of cellular resources to unnecessary protein synthesis, thereby limiting the resources available for growth. In the current study, we focus on the effect of pre-induction and nutritional status of the medium on the burden imposed on growth due to the synthesis of unnecessary protein. Escherichia coli cells with different history were grown in a glycerol media with and without IPTG to characterize the burden imposed due to the synthesis of β-galactosidase. Effect of pre-induced lac operon on growth and β-galactosidase expression on lactose milieu was also investigated. The study demonstrates that pre-induction has a strong influence on the extent of burden and is sustained in several generations. Further, the burden was much lower in a rich media relative to that observed in a minimal media. PMID:23354326

  12. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  13. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    NASA Astrophysics Data System (ADS)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  14. Synthesis of nanostructured methotrexate/hydroxyapatite: Morphology control, growth mechanism, and bioassay explore.

    PubMed

    Dai, Chao-Fan; Li, Shu-Ping; Li, Xiao-Dong

    2015-12-01

    In this study, a new structure of methotrexate/hydroxyapatite (MTX/HAp) nanorods via a facile hydrothermal route was reported. The as-synthesized samples were then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. In order to explore the formation mechanism, the effects of reaction time, MTX concentrations and addition of ethylene glycol (PEG) were emphatically examined. The results indicated that, with the increase in reaction time, the fibrous nanoparticles turned to needle-like and then to rod-like. Our study also proved that reaction time of 12h was enough for the full-growth of the nanostructure. Drug-loading capacities (AIn) rose dramatically in the first 12h and reached a plateau afterwards. Importantly, MTX played a critical role in the longitudinal growth of MTX/HAp nanostructure and polyethylene glyco (PEG) was a good dispersing agent to improve the monodispersity. As expected, the functional agent of MTX was served as both the target anticancer drug loaded in HAp and effective complex agents to modify and control the morphologies of MTX/HAp. Lastly, in vitro bioassay tests gave us evidence that obvious tumor inhibition can be achieved when MTX was hybridized with HAp.

  15. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    SciTech Connect

    Uchiyama, Hiroaki Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-15

    Crystalline SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin. - Graphical abstract: Nanostructured SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in gelatin solutions. - Highlights: • SnO particles were prepared from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment. • The adsorption of gelatin suppressed the growth of SnO crystals. • The shape of SnO particles depends on the amount of gelatin. • Blocks, disks, stacked plates and unshaped aggregates were obtained.

  16. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth.

    PubMed

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-13

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about 'high temperature methods' because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of 'medium or low temperature methods' is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. PMID:22433510

  17. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    NASA Astrophysics Data System (ADS)

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-01

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process.

  18. Growth and enzyme synthesis during continuous culture of Trichosporon cutaneum on phenol

    SciTech Connect

    Spanning, A.; Neujahr, H.

    1987-03-01

    The soil yeast Trichosporon cutaneum was grown in continuous culture with phenol as the sole carbon source. The cultures were operated as carbon-limited chemostats or as steady-state continuous cultures without carbon limitation. Selected comparative runs were also conducted on glucose or acetate as carbon source. In addition to growth parameters, the activities of several intracellular enzymes were determined, comprising those directly involved in the degradation of phenol as well as auxiliary enzymes required for the generation of reducing power. All enzymes were assayed in detergent-permeabilized cells. Phenol was found to serve as an excellent carbon source, comparable to glucose or acetate. The utilization of phenol in T. cutaneum is very efficient as indicated by a low maintenance requirement (0.01 g phenol/g cells.h). The cell yields obtained were of the order of 0.8 g cells/g phenol. Although the phenol-limited chemostats were run with fully phenol-induced cells, a further increase in the activities of isocitrate DH(NADP+), maleate DH and the phenol-degrading enzyme occurred after transition to nonlimiting conditions. Enzyme activities increased in parallel with increasing phenol levels in the effluent, as well as with increasing toxicity. The significance of this phenomenon is discussed. This elevation in enzyme activities is not related to an increase in specific growth rate. 30 references.

  19. Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro.

    PubMed

    Perrone-Bizzozero, N I; Finklestein, S P; Benowitz, L I

    1986-12-01

    Proteins synthesized by embryonic rat cortical cultures were studied under conditions that were either permissive or nonpermissive to neurite outgrowth. Freshly dissected cortex from embryonic day 17 rat pups was mechanically dissociated and plated on poly(L-lysine) substrate in the presence of (1) serum-free media, which allowed neuronal survival but no outgrowth; (2) serum, which allowed survival of both neurons and glia as well as neurite outgrowth; or (3) a hormone-supplemented defined media, which allowed preferential survival and outgrowth of neurons. In addition, postnatal tissue was cultured as a source of glia. Cultures were pulse-labeled with 35S-methionine 48 hr after plating and the protein synthesis patterns examined by 2-dimensional gel electrophoresis followed by fluorography. The expression of an acidic 50 kDa protein, associated with the particulate fraction of cells, was found to be a prominent correlate of neurite outgrowth. This protein was synthesized in serum- or hormone-treated embryonic cultures showing neurite outgrowth but was undetectable in embryonic cultures without outgrowth or in postnatal glial cultures. By virtue of its migration position on 2-dimensional gels, its presence in a light membrane fraction, and its cleavage products after Staphylococcus aureus protease treatment, the 50 kDa protein appears to be identical to an acidic 43-49 kDa protein that has been identified in several developing and regenerating neural pathways, as well as to the B-50 phosphoprotein. These findings lend support for a critical role of this protein in neural development and demonstrate the feasibility of using primary CNS cell cultures to study its biosynthesis and function. PMID:2947982

  20. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts.

    PubMed

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.

  1. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts

    PubMed Central

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis. PMID:26751072

  2. Cortisol augments synthesis of growth hormone, but does not alter synthesis of prolactin and proopiomelanocortin, in the 120- to 125-day fetal ovine pituitary.

    PubMed

    Miller, W L; Leisti, S

    1984-07-01

    In adult animal pituitaries or in cultured pituitary tumor cells, glucocorticoids are regulators of GH, PRL, and proopiomelancortin (POMC) synthesis. However, ovine fetal plasma cortisol concentrations are low until shortly before parturition, suggesting that cortisol may not normally regulate hormone synthesis in the fetal pituitary. To investigate whether cortisol could affect fetal synthesis of GH, PRL, and POMC, we obtained fetal pituitary tissue from normal fetuses and from fetuses which had received cortisol infusion for 48 h. Tissues were labeled in short term organ culture and the newly synthesized proteins were displayed by two-dimensional gel electrophoresis and autoradiography. Results were quantified by computerized integration of the area and density of the autoradiographic spots after high resolution television scanning. Cortisol infusion augmented synthesis of GH in comparison to controls (P = 0.01), but did not alter PRL synthesis. Cortisol also did not inhibit POMC synthesis in either the anterior pituitary or the neurointermediate lobe. These data suggest that the pituitary-adrenocortical slow feedback inhibition of POMC synthesis is not functional in the ovine fetus at 120 to 125-days gestation, but that pituitary somatotropes are responsive to glucocorticoids at this stage of fetal development. PMID:6734516

  3. Small-Molecule Inhibition of the uPAR·uPA Interaction: Synthesis, Biochemical, Cellular, in vivo Pharmacokinetics and Efficacy Studies in Breast Cancer Metastasis

    PubMed Central

    Mani, Timmy; Wang, Fang; Knabe, William Eric; Sinn, Anthony L.; Khanna, May; Jo, Inha; Sandusky, George E.; Sledge, George W.; Jones, David R.; Khanna, Rajesh; Pollok, Karen E.; Meroueh, Samy O.

    2013-01-01

    The uPAR·uPA protein-protein interaction (PPI) is involved in signaling and proteolytic events that promote tumor invasion and metastasis. A previous study had identified 4 (IPR-803) from computational screening of a commercial chemical library and shown that the compound inhibited uPAR·uPA PPI in competition biochemical assays and invasion cellular studies. Here, we synthesize 4 to evaluate in vivo pharmacokinetic (PK) and efficacy studies in a murine breast cancer metastasis model. First, we show, using fluorescence polarization and saturation transfer difference (STD) NMR, that 4 binds directly to uPAR with sub-micromolar affinity of 0.2 μM. We show that 4 blocks invasion of breast MDA-MB-231, and inhibits matrix metalloproteinase (MMP) breakdown of the extracellular matrix (ECM). Derivatives of 4 also inhibited MMP activity and blocked invasion in a concentration-dependent manner. 4 also impaired MDA-MB-231 cell adhesion and migration. Extensive in vivo PK studies in NOD-SCID mice revealed a half-life of nearly 5 hours and peak concentration of 5 μM. Similar levels of the inhibitor were detected in tumor tissue up to 10 hours. Female NSG mice inoculated with highly malignant TMD-MDA-MB-231 in their mammary fat pads showed that 4 impaired metastasis to the lungs with only four of the treated mice showing severe or marked metastasis compared to ten for the untreated mice. Compound 4 is a promising template for the development of compounds with enhanced PK parameters and greater efficacy. PMID:23411397

  4. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    PubMed

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  5. Understanding the Sub-Cellular Dynamics of Silicon Transportation and Synthesis in Diatoms Using Population-Level Data and Computational Optimization

    PubMed Central

    Javaheri, Narjes; Dries, Roland; Kaandorp, Jaap

    2014-01-01

    Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model

  6. Novel diphenylamine 2,4'-dicarboxamide based azoles as potential epidermal growth factor receptor inhibitors: synthesis and biological activity.

    PubMed

    Abou-Seri, Sahar Mahmoud; Farag, Nahla Ahmed; Hassan, Ghaneya Sayed

    2011-01-01

    Several hybrid molecules of diphenylamine-2,4'-dicarboxamide with various azolidinones and related heterocyclic rings have been synthesized and explored as epidermal growth factor receptor (EGFR) kinase inhibitors. Most of them displayed promising in vitro tyrosine kinase inhibition as well as potent cellular antiproliferative activity in the EGFR over-expressing breast cancer cell line (MCF-7). Compounds 12b and 13b that exhibited the highest inhibition in the kinase assay (89, 81% inhibition at 10 μM, respectively), showed potent antiproliferative effect against MCF-7 tumor cell line (IC(50) 1.04, 0.91 μM respectively). Molecular docking studies revealed that these compounds can bind to ATP binding site of the EGFR kinase domain and were involved in H-bonding with Met 793, in analogy to the known EGFR tyrosine kinase inhibitors. Moreover, compounds 15a-c possessed profound antitumor activity (IC(50) 0.59-0.73 μM) and significant EGFR-TK inhibition, making them of particular interest. In summary, the newly synthesized compounds provide promising new lead for the future design and development of anticancer agents of potential EGFR-TK inhibitory activity.

  7. ZnO hierarchical nanostructures: simple solvothermal synthesis and growth mechanism.

    PubMed

    Dev, Apurba; Kar, Soumitra; Chaudhuri, Subhadra

    2008-09-01

    Hierarchical nano/micro structures of ZnO have been fabricated by solvothermal approach on sol-gel derived ZnO thin films. Paintbrush like nano/micro rod assembly, double-sided brush and windmill type architectures of ZnO are obtained when the ZnO thin film coated substrates were treated solvothermally in water at pH 10. Aligned nanorods are obtained at pH approximately 13.5 in water. In ethylenediamine-water solvent divergent micro/nanorod assemblies such as hemispherical dandelion, rice plant type bush of ZnO are obtained. Increase in the percentage of ethyelendiamine resulted in the formation of smaller assemblies of relatively thin nanorods. Initial slow reaction caused by the slow increase of the temperature inside the reaction medium and the different growth kinetics of the ZnO crystals are supposed to be the reason behind the architectural assemblies of the ZnO crystals.

  8. Synthesis, growth and characterization of organic nonlinear optical bis-glycine maleate (BGM) single crystals

    NASA Astrophysics Data System (ADS)

    Balasubramanian, D.; Murugakoothan, P.; Jayavel, R.

    2010-05-01

    A new organic compound of bis-glycine maleate was synthesized in the alkaline medium of 10% ammonium hydroxide solution. The bulk single crystals of Bis-Glycine Maleate (BGM) have been grown by slow cooling method. The grown crystals were characterized by employing single crystal and powder X-ray diffraction, Fourier transform infrared, optical absorption spectral studies and thermo gravimetric analysis. The microhardness studies confirmed that the BGM has a fairly high Vicker's hardness number value (41 kg mm -2) in comparison to other organic NLO crystals. Second harmonic generation efficiency of the crystal measured by Kurtz-Perry powder method using Nd:YAG laser is found to be comparable to that of potassium dihydrogen phosphate (KDP). Frequency dependent dielectric studies were carried out along the major growth axis.

  9. Synthesis of brassinosteroids analogues from laxogenin and their plant growth promotion.

    PubMed

    Wang, Qi; Xu, Jing; Liu, XiaoLi; Gong, WenXiu; Zhang, CunLi

    2015-01-01

    Four steroid saponins (2-5) and three derivatives (6-8) were synthesised from laxogenin. Four of them were new compounds: (25R)-3β-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyloxy)-5α-spirostan-6-one (3), (25R)-3β-(β-D-galactopyranosyloxy)-5α-spirostan-6-one (5), 3β,16-diacetyl-26-hydroxy-5α-cholestan-6,22-dione (6) and 16-acetyl-3β,26-dihydroxy-5α-cholestan-6,22-dione (7). All the compounds showed plant growth-promoting activity in the radish hypocotyl elongation and cotyledon expansion bioassay. Above all, 2 and 6 were found to be more active. PMID:25311045

  10. Chemical synthesis and growth-promoting activity of all-trans-retinyl beta-D-glucuronide.

    PubMed Central

    Barua, A B; Olson, J A

    1987-01-01

    All-trans-retinol reacts with methyl (2,3,4-tri-O-acetyl-1-bromo-1-deoxy-beta-D-glucopyran)uronate in the presence of Ag2CO3 to give the triacetate methyl ester of retinyl beta-glucuronide. Hydrolysis of this ester with sodium methylate in methanol gives retinyl beta-D-glucuronide in about 15% yield. The water-soluble retinyl beta-D-glucuronide was characterized by u.v.-visible, n.m.r. and mass spectra, by elemental analysis and by its susceptibility to hydrolysis by bacterial beta-glucuronidase. Retinyl beta-glucuronide, when administered intraperitoneally in saline (0.9% NaCl), supports well the growth of vitamin A-deficient rats. PMID:3663114

  11. Synthesis, growth and characterization of a new organic three dimensional framework: Piperazin-1-ium 4-aminobenzenesulfonate

    NASA Astrophysics Data System (ADS)

    Rekha, P.; Peramaiyan, G.; NizamMohideen, M.; Mohan Kumar, R.; Kanagadurai, R.

    2016-05-01

    Piperazinium p-aminobenzenesulfonate (PPABS), a new nonlinear optical material was synthesized and crystals were grown from the methanol solvent by slow evaporation solution growth method. Single crystal X-ray diffraction study elucidated the crystal structure of PPABS. It crystallizes in orthorhombic crystal system with space group of Pbca. UV-vis-NIR spectral study was performed to analyze optical transparency of PPABS crystal and found that the grown crystal has sufficient transparency in the entire visible region with lower cutoff wavelength of 321 nm. The thermal stability and decomposition stages of the sample were studied by TG/DTA analyses. The different environmental carbon and hydrogen atoms of the proposed structure were identified by NMR spectral studies. The electric field response of crystal was determined from the dielectric studies. From the Z-scan measurements, the third order nonlinear optical properties of grown crystal were studied.

  12. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light.

    PubMed Central

    Fontes, M; Ruiz-Vázquez, R; Murillo, F J

    1993-01-01

    Myxococcus xanthus responds to blue light by producing carotenoid pigments. A mutation at a gene named carC is known to block the metabolism of phytoene, a carotenoid precursor, and this gene has now been cloned and sequenced. We show here that gene carC, which is homologous to phytoene dehydrogenase genes from other organisms, is tightly regulated by light through a mechanism that operates only when the cells have reached the stationary phase or are starved of a carbon source. A genetic element that mediates the effect of the growth phase has been identified. Gene carC is integrated with another unlinked carotenogenic gene in a single 'light regulon' controlled by common trans-acting genetic elements. A potential -35 site for the binding of sigma factors has been found upstream of the carC transcriptional start. However, the -10 region shows no similarity with analogous sites at promoters of other Gram-negative bacteria. Images PMID:8467787

  13. Synthesis of brassinosteroids analogues from laxogenin and their plant growth promotion.

    PubMed

    Wang, Qi; Xu, Jing; Liu, XiaoLi; Gong, WenXiu; Zhang, CunLi

    2015-01-01

    Four steroid saponins (2-5) and three derivatives (6-8) were synthesised from laxogenin. Four of them were new compounds: (25R)-3β-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyloxy)-5α-spirostan-6-one (3), (25R)-3β-(β-D-galactopyranosyloxy)-5α-spirostan-6-one (5), 3β,16-diacetyl-26-hydroxy-5α-cholestan-6,22-dione (6) and 16-acetyl-3β,26-dihydroxy-5α-cholestan-6,22-dione (7). All the compounds showed plant growth-promoting activity in the radish hypocotyl elongation and cotyledon expansion bioassay. Above all, 2 and 6 were found to be more active.

  14. Synthesis, characterization, growth mechanism, photoluminescence and field emission properties of novel dandelion-like gallium nitride

    NASA Astrophysics Data System (ADS)

    Nabi, Ghulam; Cao, Chuanbao; Khan, Waheed S.; Hussain, Sajad; Usman, Zahid; Safdar, Muhammad; Shah, Sajjad Hussain; Khattak, Noor Abass Din

    2011-09-01

    Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm-1 (0.01 mA cm-2) and threshold field of 11.35 V μm-1 (1 mA cm-2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.

  15. Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos

    PubMed Central

    Leung, Kin-Mei; Holt, Christine E

    2013-01-01

    Photoconvertible fluorescent proteins, such as Kaede, can be switched irreversibly from their native color to a new one. This property can be exploited to visualize de novo mRNA translation, because newly synthesized proteins can be distinguished from preexisting ones by their color. In this protocol, Kaede cDNA linked to the 3′ untranslated region (UTR) of β-actin is delivered into cells fated to become the retina by injection into Xenopus blastomeres. Brief exposure (6–10 s) to UV light (350–410 nm) of Kaede-positive retinal axons/growth cones efficiently converts Kaede from its native green fluorescence to red. The reappearance of the green signal reports the synthesis of new Kaede protein. This approach can be used to investigate the spatiotemporal control of translation of specific mRNAs in response to external stimuli and to test the efficiency of full-length versus mutant UTRs. The 3-d protocol can be adapted for broad use with other photoactivatable fluorescent proteins. PMID:18714300

  16. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides.

    PubMed

    de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M

    2001-09-01

    An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity. PMID:11828504

  17. Synthesis, growth and characterization of ZnO microtubes using a traveling-wave mode microwave system

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian; Wang, Han; Liu, Guizhen; Wang, Lin

    2015-06-15

    Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μm in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.

  18. Synergistic effect of targeting the epidermal growth factor receptor and hyaluronan synthesis in oesophageal squamous cell carcinoma cells

    PubMed Central

    Kretschmer, I; Freudenberger, T; Twarock, S; Fischer, J W

    2015-01-01

    Background and Purpose Worldwide, oesophageal cancer is the eighth most common cancer and has a very poor survival rate. In order to identify new tolerable treatment options for oesophageal squamous cell carcinoma (ESCC), erlotinib was tested with moderate efficacy in phase I and II studies. As 4-methylumbelliferone (4-MU), an hyaluronan (HA) synthesis inhibitor showed anti-cancer effects in vitro, and in ESCC xenograft tumours, we investigated whether the anti-cancer effects of erlotinib could be augmented by combining it with 4-MU. Experimental Approach ESCC cell lines were treated with erlotinib or gefitinib (1 μmol·L−1) and 4-MU (300 μmol·L−1), and the cell count, cell cycle progression and migration were determined as compared to the single agents and the solvent-control. Key Results The combination of erlotinib and 4-MU synergistically inhibited the proliferation of ESCC cell lines. Furthermore, the migration speed of ESCC cell line KYSE-410 in gap closure assays was significantly reduced by the combination of erlotinib and 4-MU. Decreased ERK phosphorylation could explain the anti-proliferative and anti-migratory effects in the combined treatment group. Finally, the combination was additionally able to decrease the growth of multicellular tumour spheroids, a three-dimensional cell culture model that was associated with sustained inhibition of ERK1/2 phosphorylation. Conclusions and Implications The combination of 4-MU and erlotinib showed promising anti-cancer efficacies in the ESCC cell lines. PMID:26140525

  19. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth.

    PubMed

    Sun, Ramon C; Denko, Nicholas C

    2014-02-01

    Recent reports have identified a phenomenon by which hypoxia shifts glutamine metabolism from oxidation to reductive carboxylation. We now identify the mechanism by which HIF-1 activation results in a dramatic reduction in the activity of the key mitochondrial enzyme complex α ketoglutarate dehydrogenase (αKGDH). HIF-1 activation promotes SIAH2 targeted ubiquitination and proteolysis of the 48 kDa splice variant of the E1 subunit of the αKGDH complex (OGDH2). Knockdown of SIAH2 or mutation of the ubiquitinated lysine residue on OGDH2 (336KA) reverses the hypoxic drop in αKGDH activity, stimulates glutamine oxidation, and reduces glutamine-dependent lipid synthesis. 336KA OGDH2-expressing cells require exogenous lipids or citrate for growth in hypoxia in vitro and fail to grow as model tumors in immunodeficient mice. Reversal of hypoxic mitochondrial function may provide a target for the development of next-generation anticancer agents targeting tumor metabolism. PMID:24506869

  20. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257