Sample records for cellulose beet pulp

  1. Physico-chemical characterization of a cellulosic fraction from sugar beet pulp

    USDA-ARS?s Scientific Manuscript database

    The residue of sugar beet pulp from which pectin and alkaline soluble polysaccharides have been removed by microwave assisted extraction (MAE) or conventional heat was treated with sodium monochloroacetate under alkaline pH to convert the residual cellulose present to carboxy methyl cellulose (CMC)....

  2. Influence of dietary fiber type and amount on energy and nutrient digestibility, fecal characteristics, and fecal fermentative end-product concentrations in captive exotic felids fed a raw beef-based diet.

    PubMed

    Kerr, K R; Morris, C L; Burke, S L; Swanson, K S

    2013-05-01

    Little nutritional or metabolic information has been collected from captive exotic cats fed raw diets. In particular, fiber types and concentrations for use in raw meat-based diets for captive exotic felids have not been well studied. Our objective was to evaluate the effects of fiber type and concentration on apparent total tract energy and macronutrient digestibility, fecal characteristics, and fecal fermentative end-products in captive exotic felids. Four animals of each captive exotic species (jaguar (Panthera onca), cheetah (Acinonyz jubatus), Malayan tiger (Panthera tigris corbetti), and Siberian tiger (Panthera tigris altaica) were randomized in four 4 × 4 Latin square designs (1 Latin square per species) to 1 of the 4 raw beef-based dietary treatments (94.7 to 96.7% beef trimmings): 2 or 4% cellulose or 2 or 4% beet pulp. Felid species, fiber type, and fiber concentration all impacted digestibility and fecal fermentative end-products. Inclusion of beet pulp increased (P ≤ 0.05) fecal short-chain fatty acids and fecal output in all cats. Inclusion of 2 and 4% cellulose, and 4% beet pulp increased (P ≤ 0.05) fecal bulk and diluted fecal branched-chain fatty acid concentrations compared with 2% beet pulp. Apparent total tract DM, OM, fat, and GE digestibility coefficients decreased (P ≤ 0.05) linearly with BW of cats. Additionally, fecal moisture, fecal score, and concentrations of fermentative end-products increased (P ≤ 0.05) with BW. Although the response of many outcomes was dependent on cat size, in general, beet pulp increased wet fecal weight, fecal scores, and fecal metabolites, and reduced fecal pH. Cellulose generally reduced DM and OM digestibility, but increased dry fecal weight and fecal percent DM. Although beet pulp and cellulose fibers were tested individually in this study, these data indicate that the optimum fiber type and concentration for inclusion in captive exotic felid diets is likely a combination of fermentable and nonfermentable fibers, with the optimal fiber blend being dependent on species. Smaller cats, such as cheetahs and jaguars, tolerated fermentable fibers, whereas larger cats, such as Malayan and Siberian tigers, appeared to require more insoluble fibers that limit fermentation and provide fecal bulk. Further research is required to test whether these trends hold true when fed in combination.

  3. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates.

    PubMed

    Cárdenas-Fernández, Max; Bawn, Maria; Hamley-Bennett, Charlotte; Bharat, Penumathsa K V; Subrizi, Fabiana; Suhaili, Nurashikin; Ward, David P; Bourdin, Sarah; Dalby, Paul A; Hailes, Helen C; Hewitson, Peter; Ignatova, Svetlana; Kontoravdi, Cleo; Leak, David J; Shah, Nilay; Sheppard, Tom D; Ward, John M; Lye, Gary J

    2017-09-21

    Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).

  4. Effects of different fibre sources and fat addition on cholesterol and cholesterol-related lipids in blood serum, bile and body tissues of growing pigs.

    PubMed

    Kreuzer, M; Hanneken, H; Wittmann, M; Gerdemann, M M; Machmuller, A

    2002-04-01

    Knowledge is limited on the efficacy of hindgut-fermentable dietary fibre to reduce blood, bile and body tissue cholesterol levels. In three experiments with growing pigs the effects of different kinds and levels of bacterially fermentable fibre (BFS) on cholesterol metabolism were examined. Various diets calculated to have similar contents of metabolizable energy were supplied for complete fattening periods. In the first experiment, a stepwise increase from 12 to 20% BFS was performed by supplementing diets with fermentable fibre from sugar beet pulp (modelling hemicelluloses and pectin). Beet pulp, rye bran (modelling cellulose) and citrus pulp (pectin) were offered either independently or in a mixture in the second experiment. These diets were opposed to rations characterized in carbohydrate type by starch either mostly non-resistant (cassava) or partly resistant (maize) to small intestinal digestion. The third experiment was planned to explore the interactions of BFS from citrus pulp with fat either through additional coconut oil/palm kernel oil blend or full-fat soybeans. In all experiments the increase of the BFS content was associated with a constant (cellulose) or decreasing (hemicelluloses, pectin) dietary proportion of non-digestible fibre. In experiment 1 an inverse dose-response relationship between BFS content and cholesterol in blood serum and adipose tissue as well as bile acid concentration in bile was noted while muscle cholesterol did not respond. In experiment 2 the ingredients characterized by cellulose and hemicelluloses/pectin reduced cholesterol-related traits relative to the low-BFS-high-starch controls whereas, except in adipose tissue cholesterol content, the pectinous ingredient had the opposite effect. However, the changes in serum cholesterol mainly affected HDL and not LDL cholesterol. Adipose tissue cholesterol also was slightly lower with partly resistant starch compared to non-resistant starch in the diet. Experiment 3 showed that the use of citrus pulp increased serum cholesterol concentrations when levels were low in the corresponding low-BFS diets (low-fat and soy bean diets), but caused no further increase in the coconut-oil/palm kernel oil blend diet. From the present results it seems that fermentable hemicelluloses have a more favourable effect of decreasing metabolic cholesterol and related traits than hardly digestible fibre, fermentable cellulose or, particularly, pectin. Furthermore, some types of fibre expressed a certain potential to reduce cholesterol content of fat pork and pork products by up to 10% (experiment 1) and 25% (experiment 2).

  5. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production.

    PubMed

    Berłowska, Joanna; Pielech-Przybylska, Katarzyna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr; Kręgiel, Dorota

    2016-01-01

    Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015-0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red ( S. cerevisiae ) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.

  7. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    PubMed Central

    2011-01-01

    Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP). Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose. PMID:21627804

  8. Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications

    USDA-ARS?s Scientific Manuscript database

    Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...

  9. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production

    PubMed Central

    Berłowska, Joanna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr

    2016-01-01

    Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield. PMID:27722169

  10. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.

    PubMed

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P; van den Brink, Joost

    2016-01-01

    Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been functionally characterized, and their role in plant biomass degradation is unknown. The biotechnological challenge is to select the right set of enzymes to efficiently degrade a particular biomass. This study describes a strategy using sexual crossing and screening with the thermophilic fungus Myceliophthora heterothallica to identify specific enzymes associated with improved sugar beet pulp saccharification. Two genetically diverse M. heterothallica strains CBS 203.75 and CBS 663.74 were used to generate progenies with improved growth on sugar beet pulp. One progeny, named SBP.F1.2.11, had a different genetic pattern from the parental strains and had improved saccharification activity after the growth on 3 % sugar beet pulp. The improved SBP saccharification was not explained by altered activities of the major (hemi-)cellulases. Exo-proteome analysis of progeny and parental strains after 7-day growth on sugar beet pulp showed that only 17 of the 133 secreted CAZy enzymes were more abundant in progeny SBP.F1.2.11. Particularly one enzyme belonging to the carbohydrate esterase family 5 (CE5) was more abundant in SBP.F1.2.11. This CE5-CBM1 enzyme, named as Axe1, was phylogenetically related to acetyl xylan esterases. Biochemical characterization of Axe1 confirmed de-acetylation activity with optimal activities at 75-85 °C and pH 5.5-6.0. Supplementing Axe1 to CBS 203.75 enzyme set improved release of xylose and glucose from sugar beet pulp. This study identified beneficial enzymes for sugar beet pulp saccharification by selecting progeny with improved growth on this particular substrate. Saccharification of sugar beet pulp was improved by supplementing enzyme mixtures with a previously uncharacterized CE5-CBM1 acetyl xylan esterase. This shows that sexual crossing and selection of M. heterothallica are the successful strategy to improve the composition of enzyme mixtures for efficient plant biomass degradation.

  11. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production.

    PubMed

    Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A

    2016-11-01

    The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. A comparative study of the apparent total tract digestibility of carbohydrates in Icelandic and Danish warmblood horses fed two different haylages and a concentrate consisting of sugar beet pulp and black oats.

    PubMed

    Jensen, Rasmus Bovbjerg; Brokner, Christine; Knudsen, Knud Erik Bach; Tauson, Anne-Helene

    2010-10-01

    Four Icelandic (ICE) and four Danish Warmblood (DW) horses were used in a crossover study with two treatments to investigate the effect of breed and the effect of stage of maturity of haylage on the apparent total tract digestibility (ATTD) of a diet consisting of sugar beet pulp, black oats and haylage early or late cut. Fibre was analysed as crude fibre (CF), acid detergent fibre (ADF), neutral detergent fibre (NDF) and dietary fibre (DF = non-starch polysaccharides (NSP) plus lignin). In haylage all analysed fibre fractions increased with advancing stage of maturity, with the cell wall components cellulose, non-cellulosic residue, xylose and lignin causing this increase. Crude protein (CP) and sugars decreased with advancing stage of maturity. Feeding early cut haylage resulted in a significantly (p < 0.05) higher ATTD of dry matter (DM), organic matter (OM), energy, NDF, total NSP, DF and CP compared to feeding late cut haylage. There was a significantly (p < 0.05) higher ATTD of CF, DF and starch in ICE than in DW. Diet affected several faecal parameters with a significantly (p < 0.05) lower pH in faeces when horses were fed the early cut haylage. Concentrations of total short-chain fatty acids were significantly (p < 0.05) higher in faeces from horses fed early cut haylage, reflecting the higher fermentability (higher ATTD) of this diet. There was no marked effect of breed on faecal parameters. The DF analysis method gave the most appropriate differentiation of the fibre fractions and their digestibility, compared to the traditional CF, ADF and NDF analyses. A major advantage of the DF analysis is the capacity of recovering soluble fibres. The results suggested that ICE had higher ATTD of DF than DW, and this was caused by a tendency for a higher ATTD of cellulose, but further studies are required to verify that in general.

  13. Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics

    USDA-ARS?s Scientific Manuscript database

    Sugar beet pulp (SBP), the residue from sugar extraction, was compounded and turned into thermoplastic composite materials. The compounding was performed using a common twin screw compounding extruder and water and glycerol were used as plasticizers. The plasticization of SBP utilized the water-solu...

  14. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging

    USDA-ARS?s Scientific Manuscript database

    Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...

  15. Estrogenicity of sugar beet by-products used as animal feeds

    USDA-ARS?s Scientific Manuscript database

    A veterinarian observed a reduction in embryo transfer success rates on beef and dairy farms in Minnesota, which were both feeding sugar beet by-products. Beet tailings and pelleted post-extraction beet pulp, associated with the affected farms were analyzed for estrogenicity by E-Screen (proliferati...

  16. Properties of Two Novel Esterases Identified from Culture Supernatant of Penicillium purpurogenum Grown on Sugar Beet Pulp.

    PubMed

    Oleas, Gabriela; Callegari, Eduardo; Sepulveda, Romina; Eyzaguirre, Jaime

    2016-01-01

    The filamentous fungus Penicillium purpurogenum grows on a variety of natural carbon sources, such as sugar beet pulp, and secretes to the medium a large number of enzymes that degrade the carbohydrate components of lignocellulose. Sugar beet pulp is rich in pectin, and the purpose of this work is to identify novel esterases produced by the fungus, which may participate in pectin degradation. Partially purified culture supernatants of the fungus grown on sugar beet pulp were subjected to mass spectrometry analysis. Peptides thus identified, which may be part of potential esterases were probed against the proteins deduced from the fungal genome sequence. The cDNAs of two putative esterases identified were expressed in Pichia pastoris and their properties studied. One of these enzymes, named FAET, is a feruloyl esterase, while the other, PE, is classified as a pectin methyl esterase. These findings add to our knowledge of the enzymology of pectin degradation by Penicillium purpurogenum, and define properties of two novel esterases acting on de-esterification of pectin. Their availability may be useful as tools for the study of pectin structure and degradation.

  17. Properties of Two Novel Esterases Identified from Culture Supernatant of Penicillium purpurogenum Grown on Sugar Beet Pulp

    PubMed Central

    Oleas, Gabriela; Callegari, Eduardo; Sepulveda, Romina; Eyzaguirre, Jaime

    2017-01-01

    Background The filamentous fungus Penicillium purpurogenum grows on a variety of natural carbon sources, such as sugar beet pulp, and secretes to the medium a large number of enzymes that degrade the carbohydrate components of lignocellulose. Sugar beet pulp is rich in pectin, and the purpose of this work is to identify novel esterases produced by the fungus, which may participate in pectin degradation. Methods and findings Partially purified culture supernatants of the fungus grown on sugar beet pulp were subjected to mass spectrometry analysis. Peptides thus identified, which may be part of potential esterases were probed against the proteins deduced from the fungal genome sequence. The cDNAs of two putative esterases identified were expressed in Pichia pastoris and their properties studied. One of these enzymes, named FAET, is a feruloyl esterase, while the other, PE, is classified as a pectin methyl esterase. Conclusions These findings add to our knowledge of the enzymology of pectin degradation by Penicillium purpurogenum, and define properties of two novel esterases acting on de-esterification of pectin. Their availability may be useful as tools for the study of pectin structure and degradation. PMID:28828411

  18. 40 CFR 180.411 - Fluazifop-P-butyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Beet, sugar, dried pulp 1.0 Beet, sugar, molasses 3.5 Beet, sugar, roots 0.25 Carrot, roots 2.0 Cattle....05 Soybean, seed 2.5 Sweet potato, roots 0.05 1 No U.S. registrations. (b) Section 18 emergency...

  19. 40 CFR 180.411 - Fluazifop-P-butyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Beet, sugar, dried pulp 1.0 Beet, sugar, molasses 3.5 Beet, sugar, roots 0.25 Carrot, roots 2.0 Cattle....05 Soybean, seed 2.5 Sweet potato, roots 0.05 1 No U.S. registrations. (b) Section 18 emergency...

  20. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar... Strawberry1 5.0 None Sweet potato (postharvest to sweet potato intended only for use as seed) 0.05 None Wheat...

  1. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    PubMed

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Evidence for in vitro binding of pectin side chains to cellulose.

    PubMed

    Zykwinska, Agata W; Ralet, Marie-Christine J; Garnier, Catherine D; Thibault, Jean-François J

    2005-09-01

    Pectins of varying structures were tested for their ability to interact with cellulose in comparison to the well-known adsorption of xyloglucan. Our results reveal that sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectins, which are rich in neutral sugar side chains, can bind in vitro to cellulose. The extent of binding varies with respect to the nature and structure of the side chains. Additionally, branched arabinans (Br-Arabinans) or debranched arabinans (Deb-Arabinans; isolated from sugar beet) and galactans (isolated from potato) were shown bind to cellulose microfibrils. The adsorption of Br-Arabinan and galactan was lower than that of Deb-Arabinan. The maximum adsorption affinity of Deb-Arabinan to cellulose was comparable to that of xyloglucan. The study of sugar beet and potato alkali-treated cell walls supports the hypothesis of pectin-cellulose interaction. Natural composites enriched in arabinans or galactans and cellulose were recovered. The binding of pectins to cellulose microfibrils may be of considerable significance in the modeling of primary cell walls of plants as well as in the process of cell wall assembly.

  3. E-Screen evaluation of sugar beet feedstuffs in a case of reduced embryo transfer efficiencies in cattle: the role of phytoestrogens and zearalenone

    USDA-ARS?s Scientific Manuscript database

    The E-Screen assay was used to evaluate the estrogenicity of sugar beet by-products obtained from a dairy farm experiencing low success rates of embryo transfer. The beet tailings had ~ 3 fold the estradiol equivalents of the pelleted beet pulp (3.9 and 1.2 µg estradiol equivalents or E2Eq/kg dry m...

  4. The characterization of sugar beet pectin using the EcoSEC® GPC system coupled to multi-angle light scattering, quasi-elastic light scattering, and differential viscometry

    USDA-ARS?s Scientific Manuscript database

    The need to increase the use of low valued co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. The characterization of sugar beet pectin is essential as it has the potential to be used in the production ...

  5. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.

  6. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  7. Land application of sugar beet by-products: effects on runoff and percolating water quality.

    PubMed

    Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew

    2009-01-01

    Water quality concerns, including greater potential for nutrient transport to surface waters resulting in eutrophication and nutrient leaching to ground water, exist when agricultural or food processing industry wastes and by-products are land applied. Plot- and field-scale studies were conducted to evaluate the effects of sugar beet by-products on NO3-N and P losses and biochemical oxygen demand (BOD) in runoff and NO3-N concentrations in percolating waters. In the runoff plot study, treatments in the first year included two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year, no by-products were applied on the treated plots, the control treatment was fertilized with N fertilizer, and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet (Beta vulgaris L.) in the following year. In the percolation field study, the treatments were the control, pulp (224 Mg ha(-)(1)), and spoiled beets (224 Mg ha(-1)). Results from the runoff plot showed that both by-products caused immobilization of soil inorganic N and thus reduced NO3-N losses in runoff and soil waters during the first growing season. There was some risk of NO3-N exceeding the drinking water limit of 10 mg L(-1), especially between the period of wheat harvest and soil freezing in fall when pulp was applied at 448 Mg ha(-1). The field-scale study showed that by-product application at 224 Mg ha(-1) did not result in increased ground water NO3-N concentrations. Application of spoiled beets at both rates caused significantly higher BODs in runoff in the first year of application. The concentrations of total and soluble reactive P (SRP) were also higher from both rates of spoiled beet application and from the higher application rate of pulp during the 2-yr study period. These high BODs and total P and SRP concentrations in runoff waters from land application of sugar beet by-product suggest that application rates should not be higher than 224 Mg ha(-1). Best management practices that prevent runoff from entering surface waters directly from these fields are warranted.

  8. Rheology of lyocell solutions from different cellulosic sources and development of regenerated cellulosic microfibers

    NASA Astrophysics Data System (ADS)

    Li, Zuopan

    2003-10-01

    The primary goals of the study were to develop manufactured cellulosic fibers and microfibers from wood pulps as well as from lignocellulosic agricultural by-products and to investigate alternative cellulosic sources as raw materials for lyocell solutions. A protocol was developed for the lyocell preparation from different cellulose sources. The cellulose sources included commercial dissolving pulps, commercial bleached hardwood, unbleached hardwood, bleached softwood, unbleached softwood, bleached thermomechanical pulp, unbleached thermomechanical pulp, bleached recycled newsprint, unbleached recycled newsprint, bagasse and kudzu. The rheological behavior of solutions was characterized. Complex viscosities and effective elongational viscosities were measured and the influences of parameters such as cellulose source, concentration, bleaching, and temperature were studied. One-way ANOVA post hoc tests were carried out to identify which cellulose sources have the potential to produce lyocell solutions having similar complex viscosities to those from commercial dissolving pulps. Lyocell solutions from both bleached and unbleached softwood and hardwood were classified as one homogenous subset that had the lowest complex viscosity. Kudzu solutions had the highest complex viscosity. The results showed the potential to substitute DP 1457 dissolving pulp with unbleached recycled newsprint pulps, to substitute DP 1195 dissolving pulp with bleached and unbleached thermomechanical pulps, to substitute DP 932 dissolving pulp with bleached thermomechanical pulps or bleached recycled newsprint pulps, to substitute DP 670 dissolving pulp with bagasse. Lyocell fibers were produced from selected solutions and were treated to produce microfibers. Water, sulfuric acid solutions and sodium hydroxide solutions were used. The treatment of lyocell fibers in 17.5% NaOH solutions for five minutes at 20°C successfully broke the fibers into fibrils along fiber axis. The diameters of the fibrils were generally in the range of 2 to 6 mum, and there were also finer fibrils with diameters less than 1 mum.

  9. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  10. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.50 Beet, sugar, molasses 0.80 Beet, sugar, roots 0.30 Beet, sugar, tops 0.70 Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  11. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  12. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  13. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commodities: Commodity Parts per million Bean, dry, seed 0.1 Beet, sugar, roots 0.05 Beet, sugar, tops 1 Citrus, dried pulp 0.6 Coffee, bean, green 0.1 Cotton, undelinted seed 0.1 Cotton, hulls 0.3 Grapefruit 0...

  15. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commodities: Commodity Parts per million Bean, dry, seed 0.1 Beet, sugar, roots 0.05 Beet, sugar, tops 1 Citrus, dried pulp 0.6 Coffee, bean, green 0.1 Cotton, undelinted seed 0.1 Cotton, hulls 0.3 Grapefruit 0...

  16. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commodities: Commodity Parts per million Bean, dry, seed 0.1 Beet, sugar, roots 0.05 Beet, sugar, tops 1 Citrus, dried pulp 0.6 Coffee, bean, green 0.1 Cotton, undelinted seed 0.1 Cotton, hulls 0.3 Grapefruit 0...

  17. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commodities: Commodity Parts per million Bean, dry, seed 0.1 Beet, sugar, roots 0.05 Beet, sugar, tops 1 Citrus, dried pulp 0.6 Coffee, bean, green 0.1 Cotton, undelinted seed 0.1 Cotton, hulls 0.3 Grapefruit 0...

  18. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commodities: Commodity Parts per million Bean, dry, seed 0.1 Beet, sugar, roots 0.05 Beet, sugar, tops 1 Citrus, dried pulp 0.6 Coffee, bean, green 0.1 Cotton, undelinted seed 0.1 Cotton, hulls 0.3 Grapefruit 0...

  19. 40 CFR 180.364 - Glyphosate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shoots 0.2 Banana 0.2 Barley, bran 30 Beet, sugar, dried pulp 25 Beet, sugar, roots 10 Beet, sugar, tops..., roots 0.2 Ginger, white, flower 0.2 Gourd, buffalo, seed 0.1 Governor's plum 0.2 Gow kee, leaves 0.2... Mamey apple 0.2 Mango 0.2 Mangosteen 0.2 Marmaladebox 0.2 Meadowfoam, seed 0.1 Mioga, flower 0.2 Mustard...

  20. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  1. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  2. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  3. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  4. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  5. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  6. 40 CFR 180.475 - Difenoconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., straw 0.05 Beet, sugar 0.3 Beet, sugar, dried pulp 1.9 Brassica, head and stem, subgroup 5A 1.9 Brassica..., oil 25 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet...

  7. 40 CFR 180.475 - Difenoconazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., straw 0.05 Beet, sugar 0.3 Beet, sugar, dried pulp 1.9 Brassica, head and stem, subgroup 5A 1.9 Brassica..., oil 25 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet...

  8. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  9. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.

    PubMed

    Saito, Tsuguyuki; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Vignon, Michel; Isogai, Akira

    2006-06-01

    Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.

  10. Accessibility of cellulose: Structural changes and their reversibility in aqueous media.

    PubMed

    Pönni, Raili; Kontturi, Eero; Vuorinen, Tapani

    2013-04-02

    During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test. Acidic treatments reduced WRV and caused irreversible deuteration of the pulp. However, alkaline treatments increased WRV and caused reversible deuteration of the pulp. Both deuteration and reprotonation of the deuterated pulp followed the same slow, first-order dynamics. This led us to propose that incubation of alkaline cellulosic pulp suspensions at elevated temperatures does not only lead to reduction in accessibility but also to a dynamic interconversion between accessible and inaccessible regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Solid-liquid extraction of alkali metals and organic compounds by leaching of food industry residues.

    PubMed

    Yu, Chaowei; Zheng, Yi; Cheng, Yu-Shen; Jenkins, Bryan M; Zhang, Ruihong; VanderGheynst, Jean S

    2010-06-01

    Leaching was studied for its application in extracting inorganic and organic constituents from fresh fermented grape pomace, air-dried fermented grape pomace and air-dried sugar beet pulp. Samples of each feedstock were leached in water at ambient temperature for 30 or 120 min at dry solid-to-liquid ratios of 1/20 and 1/50 kg/L. Leaching removed 82% of sodium, 86% of potassium, and 76% of chlorine from sugar beet pulp, and reduced total ash concentration in air-dry fermented grape pomace from 8.2% to 2.9% of dry matter, 8.2% to 4.4% in fresh fermented grape pomace, and 12.5% to 5.4% in sugar beet pulp. Glycerol (7-11 mg/dry g), ethanol (131-158 mg/dry g), and acetic acid (24-31 mg/dry g) were also extracted from fermented grape pomace. These results indicate that leaching is a beneficial pretreatment step for improving the quality of food processing residues for thermochemical and biochemical conversion. (c) 2010 Elsevier Ltd. All rights reserved.

  13. The provision of solid feeds to veal calves: II. Behavior, physiology, and abomasal damage.

    PubMed

    Mattiello, S; Canali, E; Ferrante, V; Caniatti, M; Gottardo, F; Cozzi, G; Andrighetto, I; Verga, M

    2002-02-01

    The aim of this study was to evaluate the effects of the addition of two roughage sources (wheat straw and beet pulp) to the milk replacer diet of veal calves, in order to reduce stress and improve animal welfare. We allocated 138 Polish Friesian male calves to three different feeding plans: a milk replacer diet (Control), 250 g/d of wheat straw in addition to the milk replacer, or 250 g/d of dried beet pulp in addition to the milk replacer. Within each feeding treatment, 16 calves were individually housed and 30 were kept in group pens (five calves/pen). Several behavioral, physiological, and health welfare indicators were monitored throughout the fattening period, which lasted for 160 d. Abnormal oral behavior around the meals was higher in Control calves (P < 0.01), while its lowest level was observed in straw-fed calves. At the beginning of the trial, chewing was higher in calves receiving solid feeds (P < 0.001), but the difference from the Control gradually decreased and disappeared at wk 13 for calves fed beet pulp and at wk 17 for those fed wheat straw. At the end of the fattening period, no differences among treatments were found in the frequency of chewing. Regardless of the diet, self-grooming decreased with age and no relationship was observed between this behavior and the presence of rumen hairballs. Cross-sucking was performed with low frequencies (from 4.70% at wk 2 to 1.05% at wk 23 around the meals, and even lower far from the meals) and was not affected by the provision of roughage. The time in contact with the bucket during the whole day was higher in Controls, whereas calves fed wheat straw maintained a lower level of this activity until the end of the trial (P < 0.01). The calves fed wheat straw spent more time in contact with the feed trough (P < 0.001) than those fed beet pulp and Control calves. No differences were found in cortisol curves due to the feeding treatment. In calves fed beet pulp, most hematological measures statistically differed from the other treatments, possibly in response to the higher iron intake and(or) to the higher hemoconcentration, probably due to the administration of beet pulp as dried feed. The incidence of abomasal ulcers and erosions was increased by the provision of the solid feeds, particularly by a structured fiber source such as straw. A roughage source able to satisfy calves' behavioral needs and to improve digestive processes without damaging the digestive apparatus still has to be identified.

  14. Morphology and physical-chemical properties of celluloses obtained by different methods

    NASA Astrophysics Data System (ADS)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  15. Investigation into nanocellulosics versus acacia reinforced acrylic films

    Treesearch

    Yunqiao Pu; Jianguo Zhang; Thomas Elder; Yulin Deng; Paul Gatenholm; Arthur J. Ragauskas

    2007-01-01

    Three closely related cellulosic acrylic latex films were prepared employing acacia pulp fibers, cellulose whiskers and nonocellulose balls and their respective strength properties were determined. Cellulose whisker reinforced composites had enhanced strength properties compared to the acacia pulp and nanoball composites. AFM analysis indicated that the cellulose...

  16. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources

    Treesearch

    Chao Jia; Liheng Chen; Ziqiang Shao; Umesh P. Agarwal; Liangbing Hu; J. Y. Zhu

    2017-01-01

    We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can easily be recovered,...

  18. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Treesearch

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  19. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    PubMed

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Heterologous expression, purification and characterization of three novel esterases secreted by the lignocellulolytic fungus Penicillium purpurogenum when grown on sugar beet pulp.

    PubMed

    Oleas, Gabriela; Callegari, Eduardo; Sepúlveda, Romina; Eyzaguirre, Jaime

    2017-04-18

    The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Heterologous expression, purification and characterization of three novel esterases secreted by the lignocellulolytic fungus Penicillium purpurogenum when grown on sugar beet pulp

    PubMed Central

    Oleas, Gabriela; Callegari, Eduardo; Sepúlveda, Romina; Eyzaguirre, Jaime

    2017-01-01

    The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10). PMID:28342968

  2. Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs.

    PubMed

    Kröger, S; Vahjen, W; Zentek, J

    2017-04-01

    Lignocellulose is an alternative fiber source for dogs; however, it has not yet been studied as a feed ingredient for the nutrition of dogs. Eight adult Beagles were involved in the study, which consisted of 3 feeding periods of 8 to 12 wk each. All dogs received 3 different diets, which either had the same concentration of fiber sources (2.7% sugar beet pulp or lignocellulose) or were formulated for a similar concentration of approximately 3% crude fiber: 12% sugar beet pulp (highSBP; 3.1% crude fiber), 2.7% sugar beet pulp (lowSBP; 0.96% crude fiber), or 2.7% lignocellulose (LC; 2.4% crude fiber). Feces samples were collected at the end of each feeding period, and the apparent nutrient digestibility, daily amount, and DM content of feces and fecal cell numbers of relevant bacteria were analyzed. The daily feces amount was lower and the feces DM was higher when dogs were fed the LC diet and the lowSBP diet compared with the highSBP diet ( < 0.001). Apparent digestibility of CP, Na, and K was highest with the lowSBP diet followed by the LC and highSBP diets ( < 0.001). After feeding LC, the bacterial cell counts of spp., spp., and the cluster were reduced compared with feeding highSBP and even more reduced after feeding lowSBP ( < 0.001). The bacterial cell count of the cluster was lower in LC and lowSBP compared with highSBP ( < 0.001). The feces of dogs fed LC and lowSBP had lower concentrations of acetate ( < 0.001), propionate ( < 0.001), -butyrate ( = 0.015), total fatty acids ( < 0.001), and lactate ( < 0.001) compared with dogs fed highSBP. The concentration of -butyrate was higher in the feces of dogs fed with LC compared with dogs fed high and low sugar beet pulp (SBP; < 0.001). The pH of the feces of the LC-fed dogs was highest followed by lowSBP- and highSBP-fed dogs ( < 0.001). Depending on the concentration, the use of LC and SBP as fiber sources in dog feed has different impacts on the fecal microbiota and the apparent digestibility of nutrients. Therefore, different areas of application should be considered.

  3. Production and bioactivity of pectic oligosaccharides from fruit and vegetable biomass

    USDA-ARS?s Scientific Manuscript database

    Pectin is abundant in various agro-industrial bio-resources such as citrus peel, apple pomace, cranberry pulp and sugar beet pulp. These materials can therefore be considered as a source of potential bioactive pectic oligosaccharides. This chapter reviews the various extraction and purification meth...

  4. Graft copolymerization of acrylonitrile onto recycled newspapers cellulose pulp

    NASA Astrophysics Data System (ADS)

    Awang, N. A.; Salleh, W. N. W.; Hasbullah, H.; Yusof, N.; Aziz, F.; Jaafar, J.; Ismail, A. F.

    2017-09-01

    The extraction of recycled newspapers (RNP) cellulose pulp began by a series of chemical alkali extraction, 5 wt% NaOH at 125°C for 2 h. Subsequently, the bleaching of alkalized pulp was carried out by using 2 wt% NaClO2 solutions in the presence of 60 wt% of nitric acid, for 4 h at 100°C. The graft copolymerization of acrylonitrile onto the bleached cellulose pulp was initiated by using ceric ammonium nitrate. The grafting conditions were optimized by varying the ceric ammonium nitrate (CAN) initiator concentration, acrylonitrile (ACN) concentration and reaction time. The successfully of the grafting process were determined by calculating the grafting yield (%GY) and grafting efficiency (%GE). The morphological and chemical structure of resulting grafted and ungrafted recycled newspaper cellulose pulp were characterized by using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy.

  5. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    USDA-ARS?s Scientific Manuscript database

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  6. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro.

    PubMed

    Wang, Yue; Liu, Junhua; Yin, Yuyang; Zhu, Weiyun; Mao, Shengyong

    2017-10-01

    Little information is available on whether or not the effect of an alpha-glucosidase inhibitor on the prevention of ruminal acidosis is influenced by the type of diet during ruminant feeding. This study was conducted to explore the effect of acarbose addition on the prevention of severe subacute ruminal acidosis induced by either cracked wheat or beet pulp in vitro. Cracked wheat and beet pulp were fermented in vitro by rumen microorganisms obtained from three dairy cows. When cracked wheat was used as the substrate and fermented for 24 h, compared with the control, acarbose addition decreased the concentrations of acetate, propionate, butyrate, total volatile fatty acids, and lactate (P < 0.05), while linearly increased the ratio of acetate to propionate, pH value, and the ammonia-nitrogen level (P < 0.05). Applying Illumina MiSeq sequencing of a fragment of the 16S rRNA gene revealed that the relative abundance of Firmicutes and Bacteroidetes as well as the ACE (abundance-based coverage estimator) value, Chao 1 value, and Shannon index increased significantly (P < 0.05), while there was a significant reduction (P < 0.05) in the relative abundance of Tenericutes as well as Proteobacteria after adding acarbose compared to the control. On the other hand, when beet pulp was used as the substrate, acarbose addition had no significant effects (P > 0.05) on the fermentation parameters and the Chao 1 value, the Shannon index, and the proportion of Firmicutes and Bacteroidetes. In general, these findings indicate that acarbose had more effects on ruminal fermentation when wheat was used as the substrate, whereas it exhibited little effect on ruminal fermentation when beet pulp was used as the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan.

    PubMed

    Filonova, Lada; Kallas, Asa M; Greffe, Lionel; Johansson, Gunnar; Teeri, Tuula T; Daniel, Geoffrey

    2007-01-01

    Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.

  8. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements.

    PubMed

    Ververis, C; Georghiou, K; Danielidis, D; Hatzinikolaou, D G; Santas, P; Santas, R; Corleti, V

    2007-01-01

    Freshwater algal biomass and orange and lemon peels were assessed as tissue paper pulp supplements. Cellulose and hemicellulose contents of algal biomass were 7.1% and 16.3%, respectively, whereas for citrus peels cellulose content ranged from 12.7% to 13.6% and hemicellulose from 5.3% to 6.1%. For all materials, lignin and ash content was 2% or lower, rendering them suitable for use as paper pulp supplements. The addition of algal biomass to paper pulp increased its mechanical strength significantly. However, brightness was adversely affected by chlorophyll. The addition of citrus peels in paper pulp had no effect on breaking length, increased bursting strength and decreased tearing resistance. Brightness was negatively affected at proportions of 10%, because citrus peel particles behave as coloured pigments. The cost of both materials is about 45% lower than that of conventional pulp, resulting in a 0.9-4.5% reduction in final paper price upon their addition to the pulp.

  10. LCA Study for Pilot Scale Production of Cellulose Nano Crystals (CNC) from Wood Pulp

    Treesearch

    Hongmei Gu; Richard Reiner; Richard Bergman; Alan Rudie

    2015-01-01

    Interest in cellulose nanocrystals (CNC)/cellulose nanofibrils (CNF) made from woody biomass has been growing rapidly with close attention from pulp and paper industry, governments, universities, and research institutes. Many new products development with CNCs have been studied intensively. However, little life-cycle analysis (LCA) has been conducted for the...

  11. Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of Bifidobacterium spp. in human fecal in vitro fermentations.

    PubMed

    Holck, Jesper; Lorentzen, Andrea; Vigsnæs, Louise K; Licht, Tine R; Mikkelsen, Jørn D; Meyer, Anne S

    2011-06-22

    The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions based on feruloyl substitution and arabino-oligosaccharide chain length: short-chain (DP 2-10) and long-chain (DP 7-14) feruloylated and nonferuloylated arabino-oligosaccharides, respectively. HPAEC, SEC, and MALDI-TOF/TOF analyses of the fractions confirmed the presence of singly and doubly substituted feruloylated arabino-oligosaccharides in the feruloyl-substituted fractions. In vitro microbial fermentation by human fecal samples (n = 6 healthy human volunteers) showed a selective stimulation of bifidobacteria by both the feruloylated and the nonferuloylated long-chain arabino-oligosaccharides to the same extent as the prebiotic fructo-oligosaccharides control. None of the fractions stimulated the growth of the potential pathogen Clostridium difficile in monocultures. This work provides a first report on the separation of potentially bioactive feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides.

  12. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  13. Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach.

    PubMed

    Castro, Laura; Blázquez, M Luisa; González, Felisa; Muñoz, Jesús A; Ballester, Antonio

    2017-11-15

    The aim of this work was to demonstrate the feasibility of the application of biosorption in the treatment of metal polluted wastewaters through the development of several pilot plants to be implemented by the industry. The use as biosorbents of both the brown seaweed Fucus vesiculosus and a sugar beet pulp was investigated to remove heavy metal ions from a wastewater generated in an electroplating industry: Industrial Goñabe (Valladolid, Spain). Batch experiments were performed to study the effects of pH, contact time and initial metal concentration on metal biosorption. It was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises from 2 to 5. The adsorption kinetic was studied using three models: pseudo first order, pseudo second order and Elovich models. The experimental data were fitted to Langmuir and Freundlich isotherm models and the brown alga F. vesiculosus showed higher metal uptake than the sugar beet pulp. The biomasses were also used for zinc removal in fixed-bed columns. The performance of the system was evaluated in different experimental conditions. The mixture of the two biomasses, the use of serial columns and the inverse flow can be interesting attempts to improve the biosorption process for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of multicore-shell Fe3O4-SiO2 magnetic nanocomposites synthesis and retention in cellulose pulp

    NASA Astrophysics Data System (ADS)

    Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad

    2017-12-01

    The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.

  15. PRODUCTION OF METALS AND THEIR COMPOUNDS

    DOEpatents

    Arden, T.V.; Burstall, F.H.; Davies, G.R.; Linstead, R.P.; Wells, R.A.

    1958-11-18

    Zirconium nitrate can be separated from hafnium nitrate by mixing the nitrates with ethyl cellulose pulp, eluting the mass with diethyl ether containing nitric acid, and passing the eluent through a column of cellulose pulp the outflow of which is substantially free of hafnium.

  16. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper.

    PubMed

    Okwonna, Okumneme O

    2013-10-15

    Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A novel green approach for the preparation of cellulose nanowhiskers from white coir.

    PubMed

    Nascimento, Diego M; Almeida, Jessica S; Dias, Amanda F; Figueirêdo, Maria Clea B; Morais, João Paulo S; Feitosa, Judith P A; de F Rosa, Morsyleide

    2014-09-22

    The aim of this work was to optimize the extraction of cellulose nanowhiskers (CNW) from unripe coconut husk fibers (CHF). The CHF was delignified using organosolv process, followed by alkaline bleaching (5% (w/w) H2O2+4% (w/w) NaOH; 50°C, 90 min). The CHF was subsequently hydrolyzed with 30% (v/v) sulfuric acid (60°C, 360 min). The process yielded a partially delignified acetosolv cellulose pulp and acetic black liquor, from which the lignin was recovered. The CNW from the acetosolv pulp exhibited an average length of 172±88 nm and a diameter of 8±3 nm, (aspect ratio of 22±8). The surface charge of the CNW was -33 mV, indicating a stable aqueous colloidal suspension. The nanocrystals presented physical characteristics close to those extracted from cellulose pulp made by CHF chlorine-pulping. This approach offers the additional advantage of extracting the lignin as an alternative to eradication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity.

    PubMed

    Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca

    2015-03-30

    An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formationmore » and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)« less

  20. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

    Treesearch

    Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil

    2012-01-01

    This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...

  1. Reinforcing Natural Rubber with Cellulose Nanofibrils Extracted from Bleached Eucalyptus Kraft Pulp

    Treesearch

    Chunmei Zhang; Tianliang Zhai; Ronald Sabo; Craig Clemons; Yi Dan; Lih-Sheng Turng

    2014-01-01

    Reinforced natural rubber (NR) nanocomposites were prepared by solution mixing, casting, and evaporation of pre-vulcanized natural rubber latex and an aqueous suspension of cellulose nanofibrils (CNFs) extracted from bleached eucalyptus kraft pulp. Scanning electron microscopy (SEM) images showed that there were no micro-scaled aggregates observed in the nanocomposites...

  2. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.

    PubMed

    Karimi, Samaneh; Tahir, Paridah Md; Karimi, Ali; Dufresne, Alain; Abdulkhani, Ali

    2014-01-30

    Cellulosic fibers from kenaf bast were isolated in three distinct stages. Initially raw kenaf bast fibers were subjected to an alkali pulping process. Then pulped fibers undergone a bleaching process and finally both pulped and bleached fibers were separated into their constituent nanoscale cellulosic fibers by mechanical shearing. The influence of each treatment on the chemical composition of fibers was investigated. Moreover morphology, functional groups, crystallinity, and thermal behavior of fiber hierarchy at different stages of purification were studied using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Microscopy studies revealed that applied procedures successfully isolated nanoscale cellulosic fibers from both unbleached and bleached pulps. Chemical composition analysis and FTIR spectroscopy showed that lignin and hemicellulose were almost entirely removed by the applied treatments. XRD and TGA analyses demonstrated progressive enhancement of properties in fibers, hierarchically, in going from micro to nano scale. Interestingly no significant evolution was observed between obtained data of characterized ubnleached and bleached nanofibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Production of bacterial cellulose from alternate feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  4. Production of Bacterial Cellulose from Alternate Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  5. In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets.

    PubMed

    Van Nevel, Christian J; Dierick, Noel A; Decuypere, Jaak A; De Smet, Stefaan M

    2006-12-01

    Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.

  6. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    PubMed

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  7. INVESTIGATION OF AQUEOUS BIPHASIC SYSTEMS FOR THE SEPARATIONS OF LIGNINS FROM CELLULOSE IN THE PAPER PULPING PROCESS. (R826732)

    EPA Science Inventory

    In efforts to apply a polymer-based aqueous biphasic system (ABS) extraction to the paper pulping process, the study of the distribution of various lignin and cellulosic fractions in ABS and the effects of temperature on system composition and solute partitioning have been inv...

  8. The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae.

    PubMed

    Biz, Alessandra; Sugai-Guérios, Maura Harumi; Kuivanen, Joosu; Maaheimo, Hannu; Krieger, Nadia; Mitchell, David Alexander; Richard, Peter

    2016-08-18

    Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp. In the current work, we describe the construction of a strain of S. cerevisiae in which the five genes of the fungal reductive pathway for D-galacturonic acid catabolism were integrated into the yeast chromosomes: gaaA, gaaC and gaaD from Aspergillus niger and lgd1 from Trichoderma reesei, and the recently described D-galacturonic acid transporter protein, gat1, from Neurospora crassa. This strain metabolized D-galacturonic acid in a medium containing D-fructose as co-substrate. This work is the first demonstration of the expression of a functional heterologous pathway for D-galacturonic acid catabolism in Saccharomyces cerevisiae. It is a preliminary step for engineering a yeast strain for the fermentation of pectin-rich substrates to ethanol.

  9. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    USDA-ARS?s Scientific Manuscript database

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  10. Green and low-cost production of thermally stable and carboxylated cellulose Nanocrystals and nanofibrils using highly recyclable dicarboxylic acids

    Treesearch

    Huiyang Bian; Liheng Chen; Ruibin Wang; Junyong Zhu

    2016-01-01

    Here we demonstrate potentially low cost and green productions of high thermally stable and carboxylated cellulose nanocrystals (CNCs) and nanofibrils (CNF) from bleached eucalyptus pulp (BEP) and unbleached mixed hardwood kraft pulp (UMHP) fibers using highly recyclable dicarboxylic solid acids. Typical operating conditions were acid concentrations of 50 - 70 wt% at...

  11. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Treesearch

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  12. Hazy Transparent Cellulose Nanopaper

    PubMed Central

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%). PMID:28128326

  13. Polyoxometalates in oxidative delignification of chemical pulps: effect on lignin

    Treesearch

    Biljana Bujanovic; Sally Ralph; Richard Reiner; Kolby Hirth; Rajai Atalla

    2010-01-01

    Chemical pulps are produced by chemical delignification of lignocelluloses such as wood or annual non-woody plants. After pulping (e.g., kraft pulping), the remaining lignin is removed by bleaching to produce a high quality, bright paper. The goal of bleaching is to remove lignin from the pulp without a negative effect on the cellulose; for this reason, delignification...

  14. Raman spectroscopic characterization of wood and pulp fibers

    Treesearch

    Umesh Prasad Agarwal

    2008-01-01

    This chapter reviews applications of Raman spectroscopy in the field of wood and pulp fibers. Most of the literature examined was published between 1998 and 2006. In addition to introduction, this chapter contains sections on wood and components, mechanical pulp, chemical pulp, modified/treated wood, cellulose I crystallinity of wood fibers, and the self-absorption...

  15. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Treesearch

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  16. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Treesearch

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  17. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    PubMed

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are juxtaposed with market penetration and saturation.

  18. Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories.

    PubMed

    Brooks, L; Parravicini, V; Svardal, K; Kroiss, H; Prendl, L

    2008-01-01

    Sugar beet press pulp (SBP) accumulates as a by-product in sugar factories and it is generally silaged or dried to be used as animal food. Rising energy prices and the opening of the European Union sugar market has put pressure on the manufacturers to find alternatives for energy supply. The aim of this project was to develop a technology in the treatment of SBP that would lead to savings in energy consumption and would provide a more competitive sugar production from sugar beets. These goals were met by the anaerobic digestion of SBP for biogas production. Lab-scale experiments confirmed the suitability of SBP as substrate for anaerobic bacteria. Pilot-scale experiments focused on process optimization and procedures for a quick start up and operational control. Both single-stage and two-stage process configurations showed similar removal efficiency. A stable biogas production could be achieved in single-stage at a maximum volumetric loading rate of 10 kgCSB/(m(3) x d). Degradation efficiency was 75% for VS and 72% for COD. Average specific gas production reached 530 NL/kgCOD(SBP) or 610 NL/kgVS(SBP). (CH(4): 50 to 53%). The first large-scale biogas plant was put into operation during the sugar processing period 2007 at a Hungarian sugar factory. Digesting approximately 50% of the SBP (800 t/d, 22%TS), the biogas produced could substitute about 40% of the natural gas required for the thermal energy supply within the sugar processing. Copyright IWA Publishing 2008.

  19. Enzymatic hydrolysis of beer brewers' spent grain and the influence of pretreatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beldman, G.; Hennekam, J.; Voragen, A.G.J.

    1987-01-01

    The enzymatic saccharification of plant material has been shown to be of interest in various fields, such as the production of fruit juices and the utilization of biomass. A combination of cellulase, pectinase, and hemicellulases is usually used because of the chemical composition of the matrix of plant cell walls. For apples, beet pulp, and potato fiber, almost a complete hydrolysis of polysaccharides is obtained by combining cellulase and pectinase. For nonparenchymatic tissue, the situation is somewhat different: pectin is a minor component and the hemicellulose content is much higher. Enzyme action is restricted by the lignin barrier and bymore » the high crystallinity of cellulose in this material. For such materials, mechanical, thermal, or chemical pretreatments are necessary to achieve efficient hydrolysis. This communication describes various enzymatic treatments and chemical and physical pretreatment, using brewers' spent grain as substrate. Spent grain is the residue of malt and grain which remains in the mash-kettle after the liquefied and saccharified starch has been removed by filtration. (Refs. 15).« less

  20. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp

    Treesearch

    Zhouyang Xiang; Wenhua Gao; Liheng Chen; Wu Lan; Junyong Zhu; Troy Runge

    2016-01-01

    Cladophora, a fresh-water green macroalgae, has unique cellulose properties and thus may be promising for production of cellulose nanofibrils (CNFs). Cellulose was extracted from Cladophora glomerata and subjected to microfluidization with or without enzymatic hydrolysis pretreatment to produce CNFs. Increasing...

  1. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  2. 40 CFR 180.510 - Pyriproxyfen; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Asparagus 2.0 Atemoya 0.20 Avocado 1.0 Banana 0.20 Beet, sugar, dried pulp 3.0 Berry, low growing, except..., wet peel 0.75 Pulasan 0.30 Rambutan 0.30 Rice, hulls 5.5 Safflower, seed 0.20 Sapodilla 1.0 Sapote...

  3. 40 CFR 180.510 - Pyriproxyfen; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Asparagus 2.0 Atemoya 0.20 Avocado 1.0 Banana 0.20 Beet, sugar, dried pulp 3.0 Berry, low growing, except..., wet peel 0.75 Pulasan 0.30 Rambutan 0.30 Rice, hulls 5.5 Safflower, seed 0.20 Sapodilla 1.0 Sapote...

  4. Quality and utilization of food co-products and residues

    NASA Astrophysics Data System (ADS)

    Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.

    2010-06-01

    Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.

  5. Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Efficiency.

    PubMed

    Ziemiński, Krzysztof; Kowalska-Wentel, Monika

    2017-03-01

    The objective of this study was to determine the effect of different sugar beet pulp (SBP) pretreatments on biogas yield from anaerobic digestion. SBP was subjected to grinding, thermal-pressure processing, enzymatic hydrolysis, or combination of these pretreatments. It was observed that grinding of SBP to 2.5-mm particles resulted in the cumulative biogas productivity of 617.2 mL/g volatile solids (VS), which was 20.2 % higher compared to the biogas yield from the not pretreated SBP, and comparable to that from not ground, enzymatically hydrolyzed SBP. The highest cumulative biogas productivity, 898.7 mL/g VS, was obtained from the ground, thermal-pressure pretreated and enzymatically hydrolyzed SBP. The latter pretreatment variant enabled to achieve the highest glucose concentration (24.765 mg/mL) in the enzymatic hydrolysates. The analysis of energy balance showed that the increase in the number of SBP pretreatment operations significantly reduced the gain of electric energy.

  6. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  8. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.

    PubMed

    Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul

    2017-04-15

    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Feeding of wheat bran and sugar beet pulp as sole supplements in high-forage diets emphasizes the potential of dairy cattle for human food supply.

    PubMed

    Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W

    2016-02-01

    Besides the widely discussed negative environmental effects of dairy production, such as greenhouse gas emissions, the feeding of large amounts of potentially human-edible feedstuffs to dairy cows is another important sustainability concern. The aim of this study was therefore to investigate the effects of a complete substitution of common cereal grains and pulses with a mixture of wheat bran and sugar beet pulp in a high-forage diet on cow performance, production efficiency, feed intake, and ruminating behavior, as well as on net food production potential. Thirteen multiparous and 7 primiparous mid-lactation Holstein dairy cows were randomly assigned to 1 of 2 treatments in a change-over design with 7-wk periods. Cows were fed a high-forage diet (grass silage and hay accounted for 75% of the dry matter intake), supplemented with either a cereal grain-based concentrate mixture (CON), or a mixture of wheat bran and dried sugar beet pulp (WBBP). Human-edible inputs were calculated for 2 different scenarios based on minimum and maximum potential recovery rates of human-edible energy and protein from the respective feedstuffs. Dietary starch and neutral detergent fiber contents were 3.0 and 44.1% for WBBP, compared with 10.8 and 38.2% in CON, respectively. Dietary treatment did not affect milk production, milk composition, feed intake, or total chewing activity. However, chewing index expressed in minutes per kilogram of neutral detergent fiber ingested was 12% lower in WBBP compared with CON. In comparison to CON, the human-edible feed conversion efficiencies for energy and protein, defined as human-edible output per human-edible input, were 6.8 and 5.3 times higher, respectively, in WBBP under the maximum scenario. For the maximum scenario, the daily net food production (human-edible output minus human-edible input) increased from 5.4 MJ and 250 g of crude protein per cow in CON to 61.5 MJ and 630 g of crude protein in the WBBP diet. In conclusion, our data suggest that in forage-based dairy production systems, wheat bran and sugar beet pulp could replace common cereal grains in mid-lactation dairy cows without impairing performance, while strongly increasing human-edible feed conversion efficiency and net food production index. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.

    PubMed

    Zhao, Jiangqi; Zhang, Wei; Zhang, Xiaodan; Zhang, Xinxing; Lu, Canhui; Deng, Yulin

    2013-09-12

    The objective of this study was to extract cellulose nanofibrils (CNFs) from dry softwood pulp through a simple and environmentally friendly physical method of refining pretreatment coupled with high shear homogenization. An optical microscopy (OM) clearly showed the morphological development from the cellulose fibers to CNFs under repeated shear forces. The morphology, structure and properties of the obtained CNFs were comprehensively investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) and thermogravimetric (TG) analysis. The results indicated that the CNFs had diameters mainly ranged from 16 to 28nm. Compared with the pulp fibers, the CNFs exhibited a slightly higher crystallinity and a lower thermal stability. Moreover, a novel nanopaper with high optical transparency was prepared from the obtained CNFs, and a possible mechanism for the high optical transparency was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Studies of the molecular interaction between cellulose and lignin as a model for the hierarchical structure of wood

    Treesearch

    Wolfgang G. Glasser; Timothy G. Rials; Stephen S. Kelly; Vipul Dave

    1998-01-01

    Wood and dietary fiber products all belong to a class of biomolecular composites that are rich in cellulose and lignin. The interaction between cellulose and lignin determines such properties as mechanical strength (wood); creep, durability, and aging; cellulose purity (pulp); and digestibility (nutrients). The understanding of the interaction between cellulose and...

  12. Chemistry of 5,8-dihydroxy-[1,4]-naphtoquinone, a key chromophore in aged cellulosics

    USDA-ARS?s Scientific Manuscript database

    5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores found in aged cellulosics. Cellulose aging and yellowing as well as bleaching of cellulosic materials are key processes in the pulp and paper industries and have considerable economic importance: the knowledge of the general re...

  13. Cellulosic ethanol byproducts as a bulking agent

    Treesearch

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang

    2017-01-01

    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...

  14. Reducing sugar production of sweet sorghum bagasse kraft pulp

    NASA Astrophysics Data System (ADS)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  15. Formation of Irreversible H-bonds in Cellulose Materials

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  16. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Treesearch

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  17. Applying Adaptive Agricultural Management & Industrial Ecology Principles to Produce Lower- Carbon Ethanol from California Energy Beets

    NASA Astrophysics Data System (ADS)

    Alexiades, Anthy Maria

    The life cycle assessment of a proposed beet-to-ethanol pathway demonstrates how agricultural management and industrial ecology principles can be applied to reduce greenhouse gas emissions, minimize agrochemical inputs and waste, provide ecosystem services and yield a lower-carbon fuel from a highly land-use efficient, first-generation feedstock cultivated in California. Beets grown in California have unique potential as a biofuel feedstock. A mature agricultural product with well-developed supply chains, beet-sugar production in California has contracted over recent decades, leaving idle production capacity and forcing growers to seek other crops for use in rotation or find a new market for beets. California's Low Carbon Fuel Standard (LCFS) faces risk of steeply-rising compliance costs, as greenhouse gas reduction targets in the transportation sector were established assuming commercial volumes of lower-carbon fuels from second-generation feedstocks -- such as residues, waste, algae and cellulosic crops -- would be available by 2020. The expected shortfall of cellulosic ethanol has created an immediate need to develop lower-carbon fuels from readily available feedstocks using conventional conversion technologies. The life cycle carbon intensity of this ethanol pathway is less than 28 gCO2e/MJEthanol: a 72% reduction compared to gasoline and 19% lower than the most efficient corn ethanol pathway (34 gCO2e/MJ not including indirect land use change) approved under LCFS. The system relies primarily on waste-to-energy resources; nearly 18 gCO2e/MJ are avoided by using renewable heat and power generated from anaerobic digestion of fermentation stillage and gasification of orchard residues to meet 88% of the facility's steam demand. Co-products displace 2 gCO2e/MJ. Beet cultivation is the largest source of emissions, contributing 15 gCO 2e/MJ. The goal of the study is to explore opportunities to minimize carbon intensity of beet-ethanol and investigate the potential contribution of this pathway toward meeting the near-term objectives of California's climate change policy.

  18. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    PubMed

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  19. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella; Beatson, Rodger; Mark Martinez, D

    2017-01-01

    Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes.

  20. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    PubMed Central

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Maarten Altelaar, A. F.; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments. PMID:26314379

  1. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization.

    PubMed

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J; Todd, Richard B; Kloezen, Wendy; Post, Harm; Heck, Albert J R; Maarten Altelaar, A F; de Vries, Ronald P

    2015-08-28

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.

  2. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp.

    PubMed

    Rezaei, Shahla; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali

    2017-04-01

    The aim of the present work was to study the ability of a halophilic bacterial laccase to efficient delignification in extreme conditions. Here, a highly stable extracellular laccase showing ligninolytic activity from halophilic Aquisalibacillus elongatus is described. The laccase production was strongly influenced by NaCl and CuSO 4 and under optimal conditions reached 4.8UmL -1 . The monomeric enzyme of 75kDa was purified by a synthetic affinity column with 68.2% yield and 99.8-fold purification. The enzyme showed some valuable features viz. stability against a wide range of organic solvents, salts, metals, inhibitors, and surfactants and specificity to a wide spectrum of substrates diverse in structure and redox potential. It retained more than 50% of the original activity at 25-75°C and pH 5.0-10.0. Furthermore, the enzyme was found to be effective in the delignification of sugar beet pulp in an ionic liquid that makes it useful for industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste.

    PubMed

    Vodnar, Dan Cristian; Călinoiu, Lavinia Florina; Dulf, Francisc Vasile; Ştefănescu, Bianca Eugenia; Crişan, Gianina; Socaciu, Carmen

    2017-09-15

    The purpose of the research was to identify the bioactive compounds and to evaluate the antioxidant, antimutagenic and antimicrobial activities of the major Romanian agro-industrial wastes (apple peels, carrot pulp, white- and red-grape peels and red-beet peels and pulp) for the purpose of increasing the wastes' value. Each type of waste material was analyzed without (fresh) and with thermal processing (10min, 80°C). Based on the obtained results, the thermal process enhanced the total phenolic content. The highest antioxidant activity was exhibited by thermally processed red-grape waste followed by thermally processed red-beet waste. Linoleic acid was the major fatty acid in all analyzed samples, but its content decreased significantly during thermal processing. The carrot extracts have no antimicrobial effects, while the thermally processed red-grape waste has the highest antimicrobial effect against the studied strains. The thermally processed red-grape sample has the highest antimutagenic activity toward S. typhimurium TA98 and TA100. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effect of nanocrystalline cellulose on flow properties of fiber crop aqueous suspension.

    PubMed

    Gharehkhani, Samira; Seyed Shirazi, Seyed Farid; Yarmand, Hooman; Montazer, Elham; Kazi, Salim Newaz; Ibrahim, Rushdan; Ashjaei, Mehdi; Zulkifli, Nurin Wahidah Binti Mohd; Rahmati, Sadegh

    2018-03-15

    Nanocrystalline cellulose (NCC) a nature-based material, has gained significant attentions for its unique properties. The present study aims to investigate the flow behavior of cellulosic suspension containing non-wood pulp fibers and NCC, by means of rheological and pressure drop measurements. The NCC sample was prepared by sulfuric acid hydrolysis from Acacia mangium fibers. The rheological properties of kenaf/NCC suspensions were studied using viscosity and yield stress measurements. The pressure drop properties of the suspension flow were studied with respect to variation in flow velocity (0.4 m/s-3.6 m/s) and the NCC concentration (70 mg/l and 150 mg/l). The pressure drop results showed that the pulp suspension containing 150 mg/l NCC had higher drag reduction than kenaf suspension alone. The present insights into the flow of pulp/NCC suspension provide a new data and promote the application of NCC in industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper.

    PubMed

    Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J

    2012-12-01

    Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-01-01

    For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch.

    PubMed

    Naseroleslami, Reza; Mesgaran, Mohsen Danesh; Tahmasbi, Abdolmansour; Vakili, Seyed Alireza; Ebrahimi, Seyed Hadi

    2018-02-01

    Two e x vivo experiments were conducted to verify the effect of barley grain ( Nusrat cultivar ) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata , on extent and digestion of starch. In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D (t) = D (i) · e (-k d · time) + I, where: D (t) = potentially digestible residues at any time, D (i) = potentially digestible fraction at any time, k d = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch.

  9. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch

    PubMed Central

    Vakili, Seyed Alireza

    2018-01-01

    Objective Two ex vivo experiments were conducted to verify the effect of barley grain (Nusrat cultivar) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata, on extent and digestion of starch. Methods In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D(t) = D(i) · e(−kd · time) + I, where: D(t) = potentially digestible residues at any time, D(i) = potentially digestible fraction at any time, kd = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Results Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). Conclusion This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch. PMID:28728361

  10. Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts.

    PubMed

    Zykwinska, Agata; Boiffard, Marie-Hélène; Kontkanen, Hanna; Buchert, Johanna; Thibault, Jean-François; Bonnin, Estelle

    2008-10-08

    Green labeled pectins were extracted by an environmentally friendly way using proteases and cellulases being able to act on proteins and cellulose present in cell walls. Pectins were isolated from different plant byproducts, i.e., chicory roots, citrus peel, cauliflower florets and leaves, endive, and sugar beet pulps. Enzymatic extraction was performed at 50 degrees C for 4 h, in order to fulfill the conditions required for microbiological safety of extracted products. High methoxy (HM) pectins of high molar mass were extracted with three different enzyme mixtures. These pectins were subsequently demethylated with two pectin methyl esterases (PMEs), either the fungal PME from Aspergillus aculeatus or the orange PME. It was further demonstrated that high molar mass low methoxy (LM) pectins could also be extracted directly from cell walls by adding the fungal PME to the mixture of protease and cellulase. Moreover, health benefit pectic oligosaccharides, the so-called modified hairy regions, were obtained after enzymatic treatment of the residue recovered after pectin extraction. The enzymatic method demonstrates that it is possible to convert vegetable byproducts into high-added value compounds, such as pectins and pectic oligosaccharides, and thus considerably reduce the amount of these residues generated by food industries.

  11. Scanning Electron Microscope Examination of Cotton Linters and Wood Pulp Fibers before and after Nitration and Gun Propellant Manufacture

    DTIC Science & Technology

    1983-03-01

    both types of cellulose , the cell walls are still intact with the microfibrils showing little damage. The cellulose microfibrils consist of long chains...25 2. Model of Cellulose Microfibril ... S............. .............. .26 3. Model of Plant Cell Wall Bonding of Microfibril Bundles...molecules protrude above and below the plane of the cellulose ribbon.J’ (See Figures 2 and 3,) Bundles of these cellulose ribbons are called microfibrils

  12. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    PubMed

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate that guar gum and sugar beet pulp supplementation diminishes postprandial use of amino acids favoring instead the use of short-chain fatty acids as substrate for the tricarboxylic acid (TCA) cycle. Further research is warranted to investigate the amino acid sparing effect of fermentable fibres in dogs with kidney/liver disease.

  13. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder

    Treesearch

    Chuanshuang Hu; Yu Zhao; Kecheng Li; J.Y. Zhu; Roland Gleisner

    2015-01-01

    The fibrillation of a bleached kraft eucalyptus pulp was investigated by means of a laboratory-scale disk grinder for the production of cellulose nanofibrils (CNF), while the parameters disk rotating speed, solid loading, and fibrillation duration were varied. The cumulative energy consumption was monitored during fibrillation. The degree of polymerization (DP) and...

  14. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Treesearch

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  15. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.

    PubMed

    Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

  16. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    NASA Astrophysics Data System (ADS)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  17. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels

    Treesearch

    Teresa Cristina Fonseca Silva; Youssef Habibi; Jorge Luiz Colodette; Thomas Elder; Lucian A. Lucia

    2012-01-01

    Freeze-dried nanofibrillated cellulose based-aerogels were produced from cellulosic pulps extracted from Eucalyptus urograndis. Nanofibers were isolated under high pressure and modified with TEMPO-mediated oxidation and/or hydroxyapatite (HAp) to observe potential changes in mechanical properties. Two degrees of oxidation (DO), 0.1 and 0.2, were achieved as measured by...

  18. Effect of starchy or fibrous carbohydrate supplementation of orchardgrass on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing an orchardgrass (Dactylis glomerata L.) herbage diet with 2 levels [5 and 10% of total dry matter (DM) fed] of starchy (barley grain; BAR) or fibrous (beet pulp; BP) carbohydrates on nutrient diges...

  19. Effect of starchy or fibrous carbohydrate supplementation of an herbage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 2 levels (5 and 10% of diet DM) of starchy (barley grain: BAR) or fibrous (beet pulp: BP) carbohydrate (CHO) to an orchardgrass diet on nutrient digestibility, VFA production, bacterial protein synt...

  20. Effect of starchy or fibrous carbohydrate supplementation of an herbage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A dual-flow continuous culture fermentor system was used to assess the effect of supplementing 2 levels (5 or 10% of diet DM) of starchy (barley: BAR) or fibrous (beet pulp: BP) carbohydrate (CHO) to an orchardgrass diet on nutrient digestibility, VFA production, bacterial protein synthesis, and met...

  1. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,X.; Burger, C.; Fang, D.

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. Themore » crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.« less

  2. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    NASA Astrophysics Data System (ADS)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  3. Nanofibrillated cellulose as an additive in papermaking process: A review.

    PubMed

    Boufi, Sami; González, Israel; Delgado-Aguilar, Marc; Tarrès, Quim; Pèlach, M Àngels; Mutjé, Pere

    2016-12-10

    During the last two decades, cellulose nanofibres (CNF) have emerged as a promising, sustainable reinforcement with outstanding potential in material sciences. Though application of CNF in papermaking is recent, it is expected to find implementation in the near future to give a broader commercial market to this type of cellulose. The present review highlights recent progress in the field of the application of cellulose nanofibres as additives in papermaking. The effect of CNF addition on the wet end process is analysed according to the type of pulp used for papermaking. According to the literature consulted, improvement in paper's overall properties after CNF addition depended not only on the type and amount of CNF applied, but also in the pulp's origin and treatment. Bulk and surface application of CNF also presented significant differences regarding paper's final properties. This review also revises the mechanisms behind CNF reinforcing effect on paper and the effect of chemically modified CNF as additives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Flexible cellulose nanofibril composite films with reduced hygroscopic capacity

    Treesearch

    Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Cellulose nanofibrils (CNFs), which are generated from abundant, environmentally friendly natural plant resources, display numerous interesting properties such as outstanding mechanical strength, negligible light scattering, and low thermal expansion (Zimmermann et al., 2010). These nanofibers are usually created by mechanical fibrillation or chemical oxidation of pulp...

  5. 40 CFR 180.635 - Spinetoram; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.30 Brassica, head and stem, subgroup 5A 2.0 Brassica... Cherimoya 0.30 Citrus, dried pulp 0.50 Citrus, oil 3.0 Corn, sweet, kernel plus cob with husks removed 0.04... 0.30 Star fruit 0.30 Strawberry 1.0 Sugar apple 0.30 Ti, leaves 10 Vegetable, bulb, group 3, except...

  6. 40 CFR 180.495 - Spinosad; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....2 Atemoya 0.3 Avocado 0.3 Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.3 Brassica, head and stem... liver 5.0 Cherimoya 0.3 Citrus, oil 3.0 Citrus, dried pulp 0.5 Coriander, leaves 8.0 Corn, sweet, kernel... Star apple 0.3 Starfruit 0.3 Strawberry 1.0 Sugar apple 0.3 Ti, leaves 10.0 Vegetable, bulb, group 3...

  7. 40 CFR 180.495 - Spinosad; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....2 Atemoya 0.3 Avocado 0.3 Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.3 Brassica, head and stem... liver 5.0 Cherimoya 0.3 Citrus, oil 3.0 Citrus, dried pulp 0.5 Coriander, leaves 8.0 Corn, sweet, kernel... Star apple 0.3 Starfruit 0.3 Strawberry 1.0 Sugar apple 0.3 Ti, leaves 10.0 Vegetable, bulb, group 3...

  8. 40 CFR 180.635 - Spinetoram; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.30 Brassica, head and stem, subgroup 5A 2.0 Brassica... Cherimoya 0.30 Citrus, dried pulp 0.50 Citrus, oil 3.0 Corn, sweet, kernel plus cob with husks removed 0.04... 0.30 Star fruit 0.30 Strawberry 1.0 Sugar apple 0.30 Ti, leaves 10 Vegetable, bulb, group 3, except...

  9. 40 CFR 180.495 - Spinosad; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....2 Atemoya 0.3 Avocado 0.3 Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.3 Brassica, head and stem... liver 5.0 Cherimoya 0.3 Citrus, oil 3.0 Citrus, dried pulp 0.5 Coriander, leaves 8.0 Corn, sweet, kernel... Star apple 0.3 Starfruit 0.3 Strawberry 1.0 Sugar apple 0.3 Ti, leaves 10.0 Vegetable, bulb, group 3...

  10. 40 CFR 180.635 - Spinetoram; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Banana 0.25 Beet, sugar, molasses 0.75 Biriba 0.30 Brassica, head and stem, subgroup 5A 2.0 Brassica... Cherimoya 0.30 Citrus, dried pulp 0.50 Citrus, oil 3.0 Corn, sweet, kernel plus cob with husks removed 0.04... 0.30 Star fruit 0.30 Strawberry 1.0 Sugar apple 0.30 Ti, leaves 10 Vegetable, bulb, group 3, except...

  11. Nanoindentation studies of paper

    Treesearch

    B.F. West; B.T. Hotle; J.E. Jakes; J.M. Considine; R.E. Rowlands; K.T. Turner

    2008-01-01

    Paper materials consist of a porous web of cellulose polymeric fibers held together by entanglement and fiber-to-fiber bonding. These materials usually contain lignin and hemicellulose carbohydrates remaining from the pulping process. Pulped fibers are a flattened ribbon shape on the order of 30 microns wide, 10 microns thick and from one to four mm long. Paper web...

  12. Exploring the effects of treatments with carbohydrases to obtain a high-cellulose content pulp from a non-wood alkaline pulp.

    PubMed

    Beltramino, Facundo; Valls, Cristina; Vidal, Teresa; Roncero, M Blanca

    2015-11-20

    In this work, treatments with a xylanase (X) and carbohydrases mixture (Cx) were applied on a TCF bleached sisal pulp in order to obtain high-cellulose content fibers applicable on a wide range of uses. A limit of ≈12% w/w final content in hemicelluloses was found regardless of the enzymatic treatment assessed. An extraction with 4% and 9% w/v NaOH was performed for further hemicelluloses removal. We found that NaOH dose could be strongly reduced if combined with Cx or Cx+X treatments. Also, if necessary, a stronger reduction could be obtained with 9% w/v NaOH, which was found to be boosted in a 14% if performed after a treatment with Cx. An end-product with a low content in xylans (≈2.9% w/w) and in HexA (5.8μmol/odp) was obtained. Pulp Fock solubility was also increased (≈30%) by enzymatic treatments. HPLC analysis of effluents provided useful information of enzymatic catalytic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornetti, Micheal; Freeman, Douglas

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve tomore » validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could produce transportation fuels and produce pulp at the same time. This has the added advantage of reducing or eliminating the need for a recovery boiler. The recovery boiler is an extremely expensive unit operation in the Kraft process and is key to the chemical recovery system that makes the Kraft process successful. Going to a gasification process with potentially higher energy efficiency, improve the pulping process and be more efficient with the use of wood. At the same time a renewable fuel product can be made. Cellulosic Based Black Liquor Gasification and Fuels Plant progressed with the design of the mill as Chemrec continued to work on their pilot plant data gathering. The design information helped to guide the pilot plant and vice versa. In the end, the design details showed that the process was technically feasible. However, at the relatively small size of this plant the specific capital cost was very high and could only be considered if the pulp operation needed to replace the recovery boiler. Some of the reasons for the costs being high are attributed to the many constraints that needed to be addressed in the pulping process. Additionally, the Methanol product did not have a vehicle fuel supply chain to enter into. A different product selection could have eliminated this issue. However, with the selected design, the installation at Escanaba Paper Mill was not economically feasible and the project was not pursued further.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrill, E.R.; Ray, A.; Stevens, M.G.

    The interfacial bond between fiber and matrix is one of the most important factors influencing fiber-reinforced composites. This is particularly apparent in cellulose wood pulp reinforced cement/quartz composites cured by autoclaving under saturated steam at 180 C. Scanning electron microscopy (SEM) studies have shown that there is little modification of the surface of the hydrated calcium silicate matrix immediately adjacent to the cellulose fiber surface, provided the cellulose fiber is relatively free from lignin, hemicelluloses, or chemicals from the pulping process. Coutts & Campbell (1979) in their investigation of water cured cement composites, applied several commercial coupling agents to cellulosemore » fibres and established that two of these agents significantly increased the strength of the interfacial bond. In this paper, the surface of cellulose fibres was modified by sodium silicate, CTBN [carboxy terminated butadiene nitrile] and ATBN [amino terminated butadiene nitrile] in order to enhance the interfacial bond, and also to increase the resistance of the cellulose to oxidation, alkaline or thermal degradation, and algal attack. Algal attack can occur as the calcium silicate matrix is neutralized by atmospheric carbonation, especially in external wall board applications of the sheet composite. In addition, suitable coatings will protect the cellulose fiber from degradation arising from the presence of elevated temperature and alkaline solutions during the autoclaving process. Cellulose reinforced composites with substandard strengths, due to inhibited autoclave reactions, cannot be reautoclaved as the resultant material is too brittle due, in part, to the degradation of the cellulose fiber.« less

  15. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites

    PubMed Central

    Immonen, Kirsi; Lahtinen, Panu; Pere, Jaakko

    2017-01-01

    Thermoplastic composite materials containing wood fibers are gaining increasing interest in the manufacturing industry. One approach is to use nano- or micro-size cellulosic fibrils as additives and to improve the mechanical properties obtainable with only small fibril loadings by exploiting the high aspect ratio and surface area of nanocellulose. In this study, we used four different wood cellulose-based materials in a thermoplastic polylactide (PLA) matrix: cellulose nanofibrils produced from softwood kraft pulp (CNF) and dissolving pulp (CNFSD), enzymatically prepared high-consistency nanocellulose (HefCel) and microcellulose (MC) together with long alkyl chain dispersion-improving agents. We observed increased impact strength with HefCel and MC addition of 5% and increased tensile strength with CNF addition of 3%. The addition of a reactive dispersion agent, epoxy-modified linseed oil, was found to be favorable in combination with HefCel and MC. PMID:29149057

  16. Studies of cellulose surfaces by titration and ESCA

    NASA Astrophysics Data System (ADS)

    Stenius, Per; Laine, Janne

    1994-01-01

    The surface properties of unbleached kraft pulp fibers of varying lignin content prepared by digestion with different amounts of excess alkali have been investigated using polyelectrolyte titration, potentiometric titration and ESCA. The surfaces contain two different acidic groups that dissociate completely above pH 7.5, one with pK ≈ 3.6 and one with pK ≈ 5.7. The amount of the latter group correlates directly with the amount of lignin in the pulp. The ESCA analysis indicates that the relative amount of carboxylic groups and alkyl carbon in the surface decreases as the lignin content decreases and also that material with high alkyl carbon content is enriched in the outermost surface of the cellulose. Thus, a combination of ESCA analysis and high-precision titrations is able to yield a very detailed picture of the effect of digestion conditions on surface properties of cellulose fibers of direct relevance to paper properties.

  17. The anaerobic digestion of pig carcase with or without sugar beet pulp, as a novel on-farm disposal method.

    PubMed

    Kirby, Marie E; Theodorou, Michael K; Brizuela, Carole M; Huntington, James A; Powles, Jayne; Wilkinson, Robert G

    2018-05-01

    Anaerobic digestion was investigated as a potential method for on-farm disposal of fallen stock (pig carcases), degrading the carcase material to produce biogas and digestate. The effects of feedstock (sugar beet pulp or pig carcase material or a 50:50 mix) and organic loading rate (50 g-TS L -1 or 100 g-TS L -1 ), during mesophilic (35 °C) anaerobic digestion were investigated. Anaerobic digestion was achieved for all experimental treatments, however the pig carcase material at the higher organic loading rate produced the second highest methane yield (0.56 Nm 3 kg-VS -1 versus a range of 0.14-0.58 Nm 3 kg-VS -1 for other treatments), with the highest percentage of methane in total biogas (61.6% versus a range of 36.1-55.2% for all other treatments). Satisfactory pathogen reduction is a legislative requirement for disposal of carcase material. Pathogens were quantified throughout the anaerobic digestion process. Enterococcus faecalis concentrations decreased to negligible levels (2.8 log 10 CFU g-TS -1 ), whilst Clostridium perfringens levels remained unaffected by treatment throughout the digestion process (5.3 ± 0.2 log 10 CFU g-TS -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    PubMed

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  19. A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition.

    PubMed Central

    Crepin, Valerie F; Faulds, Craig B; Connerton, Ian F

    2003-01-01

    Feruloyl esterases, a subclass of the carboxylic acid esterases (EC 3.1.1.1), are able to hydrolyse the ester bond between the hydroxycinnamic acids and sugars present in the plant cell wall. The enzymes have been classified as type A or type B, based on their substrate specificity for aromatic moieties. We show that Neurospora crassa has the ability to produce multiple ferulic acid esterase activities depending upon the length of fermentation with either sugar beet pulp or wheat bran substrates. A gene identified on the basis of its expression on sugar beet pulp has been cloned and overexpressed in Pichia pastoris. The gene encodes a single-domain ferulic acid esterase, which represents the first report of a non-modular type B enzyme (fae-1 gene; GenBank accession no. AJ293029). The purified recombinant protein has been shown to exhibit concentration-dependent substrate inhibition (K(m) 0.048 mM, K (i) 2.5 mM and V(max) 8.2 units/mg against methyl 3,4-dihydroxycinnamate). The kinetic behaviour of the non-modular enzyme is discussed in terms of the diversity in the roles of the feruloyl esterases in the mobilization of plant cell wall materials and their respective modes of action. PMID:12435269

  20. Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers

    Treesearch

    Lorraine C. Vander Wielen; Thomas Elder; Arthur J. Ragauskas

    2005-01-01

    This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kw/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force...

  1. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.

    PubMed

    Paananen, Markus; Sixta, Herbert

    2015-10-01

    High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  3. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Treesearch

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  4. Moisture barrier properties of xylan composite films

    Treesearch

    Amit Saxena; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    Moisture barrier properties of films based on xylan reinforced with several cellulosic resources including nanocrystalline cellulose, acacia bleached kraft pulp fibers and softwood kraft fibers have been evaluated. Measurements of water vapor transmission rate (WVTR) were performed by a modification of the wet cup method described by ASTM E 96-95, indicating that...

  5. Trichoderma genes

    DOEpatents

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  6. Properties of foam and composite materials made o starch and cellulose fiber

    USDA-ARS?s Scientific Manuscript database

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  7. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  8. Construction materials as a waste management solution for cellulose sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less

  9. Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate.

    PubMed

    Rossberg, Christine; Steffien, Doreen; Bremer, Martina; Koenig, Swetlana; Carvalheiro, Florbela; Duarte, Luís C; Moniz, Patrícia; Hoernicke, Max; Bertau, Martin; Fischer, Steffen

    2014-10-01

    Wheat straw was subjected to three different processes prior to saccharification, namely alkaline pulping, natural pulping and autohydrolysis, in order to study their effect on the rate of enzymatic hydrolysis. Parameters like medium concentration, temperature and time have been varied in order to optimize each method. Milling the raw material to a length of 4mm beforehand showed the best cost-value-ratio compared to other grinding methods studied. Before saccharification the pulp can be stored in dried form, leading to a high yield of glucose. Furthermore the relation of pulp properties (i.e. intrinsic viscosity, Klason-lignin and hemicelluloses content, crystallinity, morphology) to cellulose hydrolysis is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Treesearch

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  12. Catalysis: A Potential Alternative to Kraft Pulping

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2014-01-01

    A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low cost raw materials, collects and regenerates over 90% of the chemicals needed in the process, is indifferent to wood raw material and good at preserving the cellulose portion of the wood which is...

  13. Catalysis: A Potential Alternative to Kraft Pulping

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2014-01-01

    A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low-cost raw materials; collects and regenerates over 90% of the chemicals needed in the process; and is indifferent to wood raw material and good at preserving the cellulose portion of the wood, the...

  14. Facile preparation of nanofiller-paper using mixed office paper without deinking

    Treesearch

    Qianqian Wang; J.Y. Zhu

    2015-01-01

    Mixed office paper (MOP) pulp without deinking with an ash content of 18.1 ± 1.5% was used as raw material to produce nanofiller-paper. The MOP pulp with filler was mechanically fibrillated using a laboratory stone grinder. Scanning electron microscope imaging revealed that the ground filler particles were wrapped by cellulose nanofibrils (CNFs), which substantially...

  15. Pulpwood resources of western Oregon and western Washington (from inventory and growth phase of forest survey).

    Treesearch

    H.J. Andrews; R.W. Cowlin; F.L. Moravets; W.H. Meyer

    1935-01-01

    Increasing attention is being given to the possibility of making the United States permanently self sufficient in its paper, pulp, and pulpwood requirements. A steady increase in consumption of paper and other wood-cellulose products, accompanied by a corresponding increase in imports of paper, pulp, and pulpwood, has aroused considerable interest in the quantity of...

  16. Sanitary Norms of the Design of Industrial Enterprises. SN 245-71.

    DTIC Science & Technology

    1979-07-09

    Plants of feed 4ntibiotics. 3. Fish trades. 4. Cattle bases to 1000 heads of given cattle. 5. Shops for production of ferments with surface method of...sirloin with scrap processing shops, fisheries. 9. Shops for production of ferments with deep method of cultivation. 10. Beet sugar plants without pulp...zone by size/dimension 50 a. 1. Confectionery factories. 2. Production of table vinegar . 3. Enterprises tobacco-lov-grade tobacco (tobacco

  17. Organosolv pretreatment for enzymatic hydrolysis of poplars: I. enzyme hydrolysis of cellulosic residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H.L.; Johnson, D.K.; Black, S.

    1988-01-01

    Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H/sub 2/SO/sub 4/ and H/sub 3/PO/sub 4/) such that the cooking liquor pH less than or equal to 3 are easily digested by enzymes. The total yields of hydrolysis residues (pulps) are in the 40-60% range; the acid-catalyzed delignification followed by enzyme hydrolysis can generate 70-88% of the original six-carbon sugars contained in the wood. Glucomannan and arabinogalactan are dissolved in to the pulping liquor in the pH range of 2-4.5. Lowermore » pH (less than or equal to 3) leads to additional solubilization of six-carbon sugars. These sugars may be fermented directly. From the insoluble hydrolysis residues, 36-41% conversions of wood into fermentable sugars were obtained after enzyme hydrolysis; the starting feedstocks contain 50.8 and 46.6% hexosans, respectively, for aspen and black cottonwood. The kinetics of enzymatic hydrolysis of cellulose can be formally treated as two simultaneous pseudo-first-order reactions in which fast and slow hydrolysis of cellulose occur. Correlations between the glucan digestibility and the effect of the pretreatment have been made. The higher residual xylan content reduces the amount of the rapidly hydrolyzable glucan fraction and lowers the glucan digestibility. The proposed simple kinetic treatment is very helpful in assessing the effect of the pretreatment on pulp enzyme hydrolyzability.« less

  18. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Treesearch

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  19. Short cellulose nanofribrils as reinforcement in polyvinyl alcohol fiber

    Treesearch

    Jun Peng; Thomas Ellingham; Ron Sabo; Lih-Sheng Turng; Craig M. Clemons

    2014-01-01

    Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing...

  20. Thermal and Mechanical Properties of Natural Rubber Composites Reinforced with Cellulose Nanocrystals from Southern Pine

    Treesearch

    Chunmei Zhang; Yi Dan; Jun Peng; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2014-01-01

    There is currently a considerable interest in developing bio-based and green nanocomposites in industrial and technological areas owing to their biodegradability, biocompatibility, and environmental friendliness. In this study, a bio-based nanosized material, cellulose nanocrystals (CNC), extracted from southern pine pulp was employed as a reinforcing agent in a...

  1. CIP1 polypeptides and their uses

    DOEpatents

    Foreman, Pamela [Los Altos, CA; Van Solingen, Pieter [Naaldwijk, NL; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA

    2011-04-12

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  2. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Treesearch

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  3. Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility

    Treesearch

    Jeffrey Luo; Nikolay Semenikhin; Huibin Chang; Robert J. Moon; Satish Kumar

    2018-01-01

    Cellulose nanofibrils (CNF) were sulfonated and the dispersion quality was compared to unfunctionalized and 2,2,6,6-tetramethylpiperdine-1-oxyl radical (TEMPO) post-oxidation treatment of existing CNF (mechanically fibrillated pulp). A post-sulfonation treatment on existing CNF in chlorosulfonic acid and dimethylformamide (DMF) resulted in sulfonated CNF that retained...

  4. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Treesearch

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  5. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

    USDA-ARS?s Scientific Manuscript database

    High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers in the industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate – AD supernatant) on milled eucalyptus...

  6. Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management.

    PubMed

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V K; Bisht, Surendra S; Rana, Vikas; Gupta, P K

    2015-04-01

    In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH2COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH2COONa respectively for 3h reaction time. The rheological characteristics of 1-3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper.

    PubMed

    Djafari Petroudy, Seyed Rahman; Syverud, Kristin; Chinga-Carrasco, Gary; Ghasemain, Ali; Resalati, Hossein

    2014-01-01

    This study explores the benefits of using bagasse microfibrillated cellulose (MFC) in bagasse paper. Two different types of MFC were produced from DED bleached soda bagasse pulp. The MFC was added to soda bagasse pulp furnishes in different amounts. Cationic polyacrylamide (C-PAM) was selected as retention aid. The results show that addition of MFC increased the strength of paper as expected. Interestingly, 1% MFC in combination with 0.1% C-PAM yielded similar drainage time as the reference pulp, which did not contain MFC. In addition, the samples containing 1% MFC and 0.1% C-PAM yielded (i) a significant increment of the tensile index, (ii) a minor decrease of opacity and (iii) preserved Gurley porosity. Hence, this study proves that small fractions of MFC in combination with adequate retention aids can have positive effects with respect to paper properties, which is most interesting from an industrial point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Optimization of process parameters for foam-mat drying of papaya pulp.

    PubMed

    Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D

    2014-10-01

    Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.

  9. Enzymatic hydrolysis of potato pulp.

    PubMed

    Lesiecki, Mariusz; Białas, Wojciech; Lewandowicz, Grażyna

    2012-01-01

    Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity) and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77%) constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46%) and arabinose (40%). Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.

  10. [Influence of the cycle number in processing of cellulose from waste paper on its ability to hydrolysis by cellulases].

    PubMed

    Morozova, V V; Semenova, M V; Rozhkova, A M; Kondrat'eva, E G; Okunev, O N; Bekkarevich, A O; Novozhilov, E V; Sinitsin, A P

    2010-01-01

    Hydrolytic ability of laboratory enzyme preparations from fungus of the Penicillium genus was investigated using kraft pulp from nonbleached softwood and bleached hardwood cellulose as substrates. The enzyme preparations were shown to efficiently hydrolyze both softwood and hardwood cellulose. The yields of glucose and reducing sugars were 24-36 g/l and 27-37 g/l from 100 g/l of dry substrate in 48 h, respectively, and depended on the number of substrate grinding cycles.

  11. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Changes in the microstructure and properties of aspen chemithermomechanical pulp fibres during recycling.

    PubMed

    Fu, Yingjuan; Wang, Rongrong; Li, Dejuan; Wang, Zhaojiang; Zhang, Fengshan; Meng, Qinglin; Qin, Menghua

    2015-03-06

    The effects of recycling on the microstructure and properties of bleached aspen chemithermomechanical pulp (CTMP) fibres were systematically investigated. The low-temperature nitrogen adsorption and atomic force microscopy results showed that a substantial amount of large pores and most of the very small pores in the fibre wall closed and the fibre surface became less coarse and porous during recycling. The partial cocrystallisation of cellulose microfibrils took place, as reflected in the increment of the cellulose crystallinity and the width of the crystallite in the 0 0 2 lattice plane. These irreversible structural changes caused significant hornification of the recycled fibres, leading to the loss of swelling and bonding capability. The decrease of the tensile index, burst index, and tear index further demonstrated the deterioration of the fibre properties. However, the single-fibre strength considerably increased after recycling, which was mainly due to the enlarged cellulose aggregates in the fibre wall. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  15. Influence of the incorporation mode of sugar beet pulp in the finishing diet on the digestive tract and performances of geese reared for foie gras production.

    PubMed

    Arroyo, J; Lavigne, F; Bannelier, C; Fortun-Lamothe, L

    2017-09-01

    The aim of this work was to study the effects of incorporating sugar beet pulp (SBP) into the diet of geese in two feeding systems (complete pelleted feed or loose-mix feeding system) on crop development and performance. A total of 480 1-d-old male geese were divided into three groups whose diet differed from d 56 to 90: a complete pelleted diet containing 50% corn (control diet: AMEn 11.5 MJ/kg; CP 161 g/kg), and no SBP; a complete pelleted diet containing 50% corn and 10% SBP (SBPcp diet: AMEn: 11.5 MJ/kg; CP: 161 g/kg); and a mix in the same feeder (SBPlm diet) of 500 g/kg of protein-rich pellets containing 20% SBP (SBPprp: AMEn: 9.0 MJ/kg; CP: 250 g/kg) and 500 g/kg of whole corn (WC: AMEn: 14.0 MJ/kg; CP: 72 g/kg). Body traits, including crop volume, were measured at d 91. From d 91 to 106, 88 birds/group were overfed with a mixture containing mainly corn and water before slaughter to measure fatty liver performance. Feed intake from d 56 to 90 was higher (+10%; P = 0.004) in the SBPcp group than the other two, but at d 90, the body weight (BW) of the birds was higher (+7%; P = 0.002) in the SBPlm group than the other two. At d 91, the volume of the crop was greater in the SBPcp group (80.4 mL/kg of BW, P < 0.001) than in the control group (60.3 mL/kg of BW), the SBPlm group being intermediate (64.1 mL/kg of BW). Feed intake (13,321 g), weight gain (2,733 g), and feed-to-gain ratio (4.9) during the overfeeding period, as well as fatty liver weight (963 g) and commercial grading, were similar (P > 0.05) between the three groups. In conclusion, the use of sugar beet pulp in the diet of finishing geese helps the adaptation of the digestive tract to the overfeeding period, even in a loose-mix feeding system based on whole corn. © 2017 Poultry Science Association Inc.

  16. Effects of different sources of carbohydrates on intake, digestibility, chewing, and performance of Holstein dairy cows

    PubMed Central

    2014-01-01

    To investigate the effects of different sources of carbohydrates on intake, digestibility, chewing, and performance, nine lactating Holstein dairy cows (day in milk= 100±21 d; body weight=645.7 ± 26.5 kg) were allotted to a 3 × 3 Latin square design at three 23-d periods. The three treatments included 34.91% (B), 18.87% (BC), and 18.86% (BB) barley that in treatment B was partially replaced with only corn or corn plus beet pulp in treatments BC and BB, respectively. The concentration of starch and neutral detergent soluble carbohydrate varied (22.2, 20.2, and 14.5; 13.6, 15.9, and 20.1% of DM in treatments B, BC, and BB, respectively). Cows in treatment BB showed a higher DMI and improved digestibility of DM, NDF, and EE compared with treatments B or BC. Ruminal pH was higher in cows fed on BB (6.83) compared with those that received B or BC treatments (6.62 and 6.73, respectively). A lower proportion of propionate accompanied the higher pH in the BB group; however, a greater proportion of acetate and acetate: propionate ratio was observed compared with cows fed either on the B or BC diet. Moreover, cows fed on the BB diet showed the lowest ruminal passage rate and longest ruminal and total retention time. Eating time did not differ among treatments, rumination time was greater among cows fed on the BB diet compared with the others, whereas total chewing activity was greater than those fed on BC, but similar to those fed on B. The treatments showed no effect on milk yield. Partially replacing barley with corn or beet pulp resulted in an increase in milk fat and a lower protein concentration. Changing dietary NFC with that of a different degradability thus altered intake, chewing activity, ruminal environment, retention time or passage rate, and lactation performance. The results of this study showed that beet pulp with a higher NDF and a detergent-soluble carbohydrate or pectin established a more consistent ruminal mat than barley and corn, thus resulting in higher mean retention time and chewing activity, whereas no changes in 3.5% FCM and milk fat were observed. PMID:24410961

  17. Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paice, M.G.; Reid, I.D.; Bourbonnais, R.

    1993-01-01

    The white rot fungus Trametes (Coriolus) versicolor delignifies and bleaches kraft pulp. However, the process is slow compared with chemical bleaching and the cellulose is also attacked. This study attempts to determine the enzymology of fungal delignification and then applies the relevant enzymes directly to the pulp. Lignin peroxidase and manganese peroxidase (MnP) have both been implicated in lignin biodegradations. However, the researchers show that MnP is the critical enzyme. It is produced by bleaching cultures of T. versicolor; its peak production occurs at the same time as the maximum rate of fungal culture bleaching, and the manganese-and peroxide-dependent demethylationmore » and delignification of kraft pulp occurs in vitro. 50 refs., 4 figs., 7 tabs.« less

  18. Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods

    Treesearch

    Umesh P. Agarwal; Richard R. Reiner; Sally A. Ralph

    2013-01-01

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment...

  19. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Treesearch

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  20. 2,4,5-trihydroxy-3-methylacetophenone: A cellulosic chromophore as a case study of aromaticity

    Treesearch

    Nele Sophie Zwirchmayr; Thomas Elder; Markus Bacher; Andreas Hofinger-Horvath; Paul Kosma; Thomas Rosenau

    2017-01-01

    The title compound (2,4,5-trihydroxy-3-methylacetophenone, 1) was isolated as chromophore from aged cellulosic pulps. The peculiar feature of the compound is its weak aromatic system that can be converted into nonaromatic (quinoid or cyclic aliphatic) tautomers, depending on the conditions and reaction partners. In alkaline media, the participation of quinoid canonic...

  1. A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2017-07-25

    Extracellular esterase activity was detected in submerged cultures of Rhizoctonia solani grown in the presence of sugar beet pectin or Tween 80. Putative type B feruloyl esterase (FAE) coding sequences found in the genome data of the basidiomycete were heterologously expressed in Pichia pastoris. Recombinant enzyme production on the 5-L bioreactor scale (Rs pCAE: 3245UL -1 ) exceeded the productivity of the wild type strain by a factor of 800. Based on substrate specificity profiling, the purified recombinant Rs pCAE was classified as a p-coumaroyl esterase (pCAE) with a pronounced chlorogenic acid esterase side activity. The Rs pCAE was also active on methyl cinnamate, caffeate and ferulate and on feruloylated saccharides. The unprecedented substrate profile of Rs pCAE together with the lack of sequence similarity to known FAEs or pCAEs suggested that the Rs pCAE represents a new type of enzyme. Hydroxycinnamic acids were released from agro-industrial side-streams, such as destarched wheat bran (DSWB), sugar beet pectin (SBP) and coffee pulp (CP). Overnight incubation of coffee pulp with the Rs pCAE resulted in the efficient release of p-coumaric (100%), caffeic (100%) and ferulic acid (85%) indicating possible applications for the valorization of food processing wastes and for the enhanced degradation of lignified biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Use of carbonised beet pulp carbon for removal of Remazol Turquoise Blue-G 133 from aqueous solution.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem; Dursun, Gülbeyi

    2013-01-01

    Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g(-1)at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.

  3. Graded replacement of maize grain with molassed sugar beet pulp modulated ruminal microbial community and fermentation profile in vitro.

    PubMed

    Münnich, Matthias; Khol-Parisini, Annabella; Klevenhusen, Fenja; Metzler-Zebeli, Barbara U; Zebeli, Qendrim

    2018-02-01

    Molassed sugar beet pulp (Bp) is a viable alternative to grains in cattle nutrition for reducing human edible energy input. Yet little is known about the effects of high inclusion rates of Bp on rumen microbiota. This study used an in vitro approach and the quantitative polymerase chain reaction technique to establish the effects of a graded replacement of maize grain (MG) by Bp on the ruminal microbial community, fermentation profile and nutrient degradation. Six different amounts of Bp (0-400 g kg -1 ), which replaced MG in the diet, were tested using the in vitro semi-continuous rumen simulation technique. The increased inclusion of Bp resulted in greater dietary content and degradation of neutral detergent fibre (P < 0.01). Further, Bp feeding enhanced (P < 0.01) the abundance of genus Prevotella and shifted (P < 0.01) the short-chain fatty acid patterns in favour of acetate and propionate and at the expense of butyrate. A total replacement of MG with Bp resulted in an increased daily methane production (P < 0.01). Results suggest positive effects of the replacement of MG by Bp especially in terms of stimulating ruminal acetate and propionate fermentation. However, high replacement rates of Bp resulted in lowered utilization of ammonia and higher ruminal methane production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Gyanesh, E-mail: joshig@icfre.org; Naithani, Sanjay; Varshney, V.K.

    2015-04-15

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50%more » deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.« less

  5. Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of eucalyptus during the HWE-Kraft-ECF bleaching process.

    PubMed

    Liu, Jing; Li, Meng; Luo, Xiaolin; Chen, Lihui; Huang, Liulian

    2015-04-01

    The effectiveness of a biorefinery based on an HWE-Kraft-ECF bleaching process and the end use of pulp was systematically evaluated. Using a P-factor of 198, nearly 30% of xylan-based sugars were recovered. The resulting pulp and paper properties were found to be comparable with the control. A maximum xylan-based sugar recovery of nearly 50% was achieved at a P-factor of 738. Although the strength of this P-factor induced handsheet was lower than that of the control by about 20%, the corresponding pulp was sufficient for dissolving pulp application. However, once the P-factor rose above 1189, hemicellulose sugars were significantly degraded into furans; pulp and paper properties were also deteriorated due to cellulose degradation, lignin deposition and condensation. Thus, considering the different end use of pulps, the performance of an HWE-based biorefinery could be balanced by its HWE severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  7. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  8. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  9. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  10. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.

  11. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate

    PubMed Central

    Gan, Sinyee; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V.; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet–visible (UV–Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products. PMID:28296977

  12. 27 CFR 24.243 - Filtering aids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert...

  13. 27 CFR 24.243 - Filtering aids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert...

  14. Sugarbeet as a renewable resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edye, L.A.; Clarke, M.A.

    1995-12-01

    Sugarbeet (Beta vulgaris) is produced annually on the order of 400 million tonnes, in temperate climates. The primary product is sugar (sucrose); other products include feeds (molasses and beet pulp), and raffinose, pectin and arabinan. Recently, production of paper from sugarbeet pulp has begun. A wide range of non-food products is available through microbial and chemical reactions on sugarbeet juices, molasses and sugars. Products of microbial processes (chemical transformations are discussed in the companion presentation on sugarcane) include polymers to use as biodegradable plastics (pullulans, polyhydroxyalkanoates, polylactide) and others for food and non food use (levan, dextran). Basic chemicals, includingmore » citric acid and lactic acid, and amino acids, notably lysine, are produced from sugarbeet sources. The production of ethanol, as fuel or as beverage, is well known. Products and processes are outlined, and recent developments are emphasized.« less

  15. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Padzil, Farah Nadia Mohammad; Ng, Peivun

    2015-01-22

    The hydrothermal pretreatment on kenaf core pulp (KCP) was carried out using an autoclave heated in a oil bath at 140°C for 0.5/1/3/5h. The hydrothermal pretreated kenaf (HPK) was dissolved in a LiOH/urea aqueous solution and subsequently used to produce cellulose membrane and hydrogel. The effects of hydrothermal pretreatment time on solubility, viscosity, crystallinity and morphology of the cellulose membrane and hydrogel were investigated. The hydrothermal pretreatment leads to higher cellulose solubility and higher viscosity of the cellulose solution. The formation of cellulose II and crystallinity index of the cellulose membrane and hydrogel were examined by X-ray diffraction (XRD). The pore size of the cellulose membrane and hydrogel displayed an upward trend with respect to the hydrothermal pretreatment period observed under a field emission scanning electron microscope (FESEM). This finding provides an efficient procedure to improve the solubility, viscosity and properties of regenerated cellulose products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Treesearch

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  17. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider

    Treesearch

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Philip Kersten; Junyong Zhu; Yongcan Jin

    2016-01-01

    Three recombinant GH5 endoglucanases chosen for their contrasting hydrolytic activities, and a commercial endoglucanase were used to treat cellulose nanofibers (CNFs) after they were milled from bleached eucalyptus pulp with a supermasscolloider. This enzyme ‘‘post-treatment’’ resulted in different properties for the CNFs depending on enzyme treatment. The degree of...

  18. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Treesearch

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  19. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.

    PubMed

    Benini, Kelly Cristina Coelho de Carvalho; Voorwald, Herman Jacobus Cornelis; Cioffi, Maria Odila Hilário; Rezende, Mirabel Cerqueira; Arantes, Valdeir

    2018-07-15

    Cellulose nanoparticles (CNs) were prepared by acid hydrolysis of the cellulose pulp extracted from the Brazilian satintail (Imperata Brasiliensis) plant using a conventional and a total chlorine free method. Initially, a statistical design of experiment was carried out using Taguchi orthogonal array to study the hydrolysis parameters, and the main properties (crystallinity, thermal stability, morphology, and sizes) of the nanocellulose. X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), zeta potential and thermogravimetric analysis (TGA) were carried out to characterize the physical-chemical properties of the CNs obtained. Cellulose nanoparticles with diameter ranging from 10 to 60 nm and length between 150 and 250 nm were successfully obtained at sulfuric acid concentration of 64% (m/m), temperature 35 °C, reaction time 75 min, and a 1:20 (g/mL) pulp-to-solution ratio. Under this condition, the Imperata Brasiliensis CNs showed good stability in suspension, crystallinity index of 65%, and a cellulose degradation temperature of about 117 °C. Considering that these properties are similar to those of nanocelluloses from other lignocellulosics feedstocks, Imperata grass seems also to be a suitable source for nanocellulose production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant.

    PubMed

    Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming

    2014-08-01

    This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis.

    PubMed

    Chandra, Richard P; Chu, QiuLu; Hu, Jinguang; Zhong, Na; Lin, Mandy; Lee, Jin-Suk; Saddler, Jack

    2016-01-01

    With the goal of enhancing overall carbohydrate recovery and reducing enzyme loading refiner mechanical pulping and steam pretreatment (210°C, 5 min) were used to pretreat poplar wood chips. Neutral sulphonation post-treatment indicated that, although the lignin present in the steam pretreated substrate was less reactive, the cellulose-rich, water insoluble component was more accessible to cellulases and Simons stain. This was likely due to lignin relocation as the relative surface lignin measured by X-ray photoelectron spectroscopy increased from 0.4 to 0.8. The integration of sulphite directly into steam pretreatment resulted in the solubilisation of 60% of the lignin while more than 80% of the carbohydrate present in the original substrate was recovered in the water insoluble fraction after Na2CO3 addition. More than 80% of the sugars present in the original cellulose and xylan could be recovered after 48 h using an enzyme loading of 20 mg protein/g cellulose at a 10% substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In vitro fermentation characteristics of novel fibers, coconut endosperm fiber and chicory pulp, using canine fecal inoculum.

    PubMed

    de Godoy, M R C; Mitsuhashi, Y; Bauer, L L; Fahey, G C; Buff, P R; Swanson, K S

    2015-01-01

    The objective of this experiment was to determine the effects of in vitro fermentation of coconut endosperm fiber (CEF), chicory pulp (CHP), and selective blends of these substrates on SCFA production and changes in microbiota using canine fecal inocula. A total of 6 individual substrates, including short-chain fructooligosaccharide (scFOS; a well-established prebiotic source), pectin (PEC; used as a positive control), pelletized cellulose (PC; used as a negative control), beet pulp (BP; considered the gold standard fiber source in pet foods), CEF, and CHP, and 3 CEF:CHP blends (75:25% CEF:CHP [B1], 50:50% CEF:CHP [B2], and 25:75% CEF:CHP [B3]) were tested. Triplicate samples of each substrate were fermented for 0, 8, and 16 h after inoculation. A significant substrate × time interaction (P < 0.05) was observed for pH change and acetate, propionate, butyrate, and total SCFA concentrations. After 8 and 16 h, pH change was greatest for scFOS (-2.0 and -3.0, respectively) and smallest for PC (0.0 and -0.1, respectively). After 16 h, CEF had a greater butyrate concentration than CHP and all the CEF:CHP blends and it was not different than PEC. The substrate × time interaction was significant for bifidobacteria (P < 0.05) and lactobacilli (P < 0.05). After 8 h, bifidobacteria was greatest for BP and lowest for PC (12.7 and 10.0 log10 cfu/tube, respectively). After 16 h, PC had the lowest and scFOS had the greatest bifidobacteria (6.7 and 13.3 log10 cfu/tube, respectively). In general, CEF, CHP, and their blends had similar bifidobacteria populations after 8 and 16 h of fermentation when compared with BP and scFOS. After 16 h, lactobacilli populations were greatest for B1, B2, B3, BP, and scFOS, intermediate for PEC, and lowest for PC (P < 0.05). Overall, our data suggest that CEF had a butyrogenic effect and that CEF, CHP, and their blends had similar bifidobacteria and lactobacilli populations as popular prebiotic and fiber substrates. Future research should investigate the effects of CEF, CHP, and their blends on gastrointestinal health and fecal quality in dogs.

  3. Digestive sensitivity varies according to size of dogs: a review.

    PubMed

    Weber, M P; Biourge, V C; Nguyen, P G

    2017-02-01

    Field observations on food tolerance have repeatedly shown that when fed an identical diet, large breed (>25 kg) dogs present softer and moister faeces than small breed ones (<15 kg). The purpose of this review is to highlight the findings of four PhD theses, carried out between 1998 and 2013, whose objectives were to investigate the anatomical and physiological peculiarities that would explain, at least in part, this observation, as well as their nutritional implication. This work showed that large breed dogs, in contrast with smaller breeds, present a highly developed caecum and colon, which could explain the relatively longer colonic transit time. A prolonged colonic transit time could explain higher colonic fermentative activity, as supported by higher faecal concentrations of fermentative by-products. This effect would be reinforced by increased intestinal permeability and reduced sodium net-absorption. Taken together, these elements could be a possible cause of higher digestive sensitivity in large breed dogs. When prescribing a diet to a small or large breed dog, several aspects of the formulation must be taken into account. For a large breed dog, the general goal is to limit any ingredient that could increase the level of fermentable undigested residues and, in fine, exacerbate colonic fermentation. Highly digestible sources of proteins and starches are therefore strongly recommended to maintain an optimal digestive tolerance. Fermentable fibre sources (i.e. beet pulp and FOS) must also be used in limited quantity in their diet. Conversely, the incorporation of non-fermentable fibre (i.e. cellulose) appears useful to increase their stool quality. For a small breed dog, the general objective is to minimize any ingredient that could excessively limit colonic fermentation and induce in fine constipation. Purified starches and cellulose are therefore not really suitable for them. In contrast, cereals flours as well as non-fermentable fibre provided by cereals are recommended. © 2016 Royal Canin SAS. Journal of Animal Physiology and Animal Nutrition published by Blackwell Verlag GmbH.

  4. Effects of feeding ratio of beet pulp to alfalfa hay or grass hay on ruminal mat characteristics and chewing activity in Holstein dry cows.

    PubMed

    Izumi, Kenichi; Unno, Chigusa

    2010-04-01

    The influence of the feeding ratio of a non-forage fiber source and hay on ruminal mat characteristics and chewing activity was evaluated in dairy dry cows. Cows were fed four different diets: the ratios of alfalfa hay (AH) to beet pulp (BP) were 8:2 (dry matter basis, A8B2) and 2:8 (A2B8), and those of grass hay (GH) to BP were 8:2 (G8B2) and 2:8 (G2B8). Total eating time was decreased with increasing BP content (P < 0.01). Total rumination time for AH was shorter than that for GH (P < 0.01), and it decreased with increasing BP content (P < 0.01). The ruminal mat was detected by using a penetration resistance test of the rumen digesta. Penetration resistance value (PRV) of ruminal mat was highest with the G8B2 diet and PRV decreased with increasing BP content (P < 0.05) and feeding AH (P < 0.05). Thickness of the ruminal mat was greater for increasing BP content (P < 0.05). Simple linear regression of ruminal mat PRV on total rumination time resulted in a high positive correlation (r = 0.744; P < 0.001; n = 16). The results demonstrated that increasing the PRV of the ruminal mat stimulated rumination activity and a ruminal mat could be formed, although it was soft even when cows were offered a large quantity of BP.

  5. An improved TCF sequence for biobleaching kenaf pulp: influence of the hexenuronic acid content and the use of xylanase.

    PubMed

    Andreu, Glòria; Vidal, Teresa

    2014-01-01

    Enzymatic delignification with laccase from Trametes villosa used in combination with chemical mediators (acetosyringone, acetovanillone and 1-hydroxybenzotriazole) to improve the totally chlorine-free (TCF) bleaching of kenaf pulp was studied. The best final pulp properties were obtained by using an LHBTQPo sequence developed by incorporating a laccase-mediator stage into an industrial bleaching sequence involving chelation and peroxide stages. The new sequence resulted in increased kenaf pulp delignification (90.4%) and brightness (77.2%ISO) relative to a conventional TCF chemical sequence (74.5% delignification and 74.5% brightness). Also, the sequence provided bleached kenaf fibers with high cellulose content (pulp viscosity of 890 g·mL(-1) vs 660 g·mL(-1)). Scanning electron micrographs revealed that xylanase altered fiber surfaces and facilitated reagent access as a result. However, the LHBTX (xylanase) stage removed 21% of hexenuronic acids in kenaf pulp. These recalcitrant compounds spent additional bleaching reagents and affected pulp properties after peroxide stage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ethanol/water pulps from sugar cane straw and their biobleaching with xylanase from Bacillus pumilus.

    PubMed

    Moriya, Regina Y; Gonçalves, Adilson R; Duarte, Marta C T

    2007-04-01

    The influence of independent variables (temperature and time) on the cooking of sugar cane straw with ethanol/water mixtures was studied to determine operating conditions that obtain pulp with high cellulose contents and a low lignin content. An experimental 2(2) design was applied for temperatures of 185 and 215 degrees C, and time of 1 and 2.5 h with the ethanol/water mixture concentration and constant straw-to-solvent ratio. The system was scaled-up at 200 degrees C cooking temperature for 2 h with 50% ethanol-water concentration, and 1:10 (w/v) straw-to-solvent ratio to obtain a pulp with 3.14 cP viscosity, 58.09 kappa-number, and the chemical composition of the pulps were 3.2% pentosan and 31.5% lignin. Xylanase from Bacillus pumilus was then applied at a loading of 5-150 IU/g dry pulp in the sugar cane straw ethanol/water pulp at 50 degrees C for 2 and 20 h. To ethanol/water pulps, the best enzyme dosage was found to be 20 IU/g dry pulp at 20 h, and a high enzyme dosage of 150 IU/g dry pulp did not decrease the kappa-number of the pulp.

  7. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement ofmore » CrI of cellulose and may be applicable to other types of cellulose polymorphs.« less

  8. Cellulose extraction from orange peel using sulfite digestion reagents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2011-11-01

    Orange peel (OP) was used as raw material for cellulose extraction. Two different pulping reagents were used, sodium sulfite and sodium metabisulfite. The effect of the main process parameters, sulfite agent dosage and reaction duration, on cellulose yield was investigated. A central composite rotatable design involving two variables at five levels and response surface methodology were used for the optimization of cellulose recovery. Other two invariable parameters were reaction temperature and hydromodulus. The optimum yields, referred to the weight of double extracted OP, were 40.4% and 45.2% for sodium sulfite and sodium metabisulfite digestions, respectively. The crude celluloses were bleached with hypochlorite and oxygen. The physicochemical characterization data of these cellulose materials indicate good levels of purity, low crystallinities, good whitenesses, good water retention and moderate molecular weights. According to these specific properties the recovered celluloses could be used as fillers, water absorbents, or as raw materials for cellulose derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Decomposition and carbon storage of selected paper products in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; De la Cruz, Florentino B; Ximenes, Fabiano; Barlaz, Morton A

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.

    PubMed

    Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José

    2016-01-20

    Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-01

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30318c

  12. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  13. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  14. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  15. Polyacrylamide grafted cellulose as an eco-friendly flocculant: Key factors optimization of flocculation to surfactant effluent.

    PubMed

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Shao, Lan; Zhang, Xiumei; Yao, Juming

    2016-01-01

    The discharge of effluents from surfactant manufacturers is giving rise to increasingly serious environmental problems. In order to develop the eco-friendly flocculation materials to achieve effective removal of pollutants from the surfactant effluents, the bamboo pulp cellulose from Phyllostachys heterocycla is employed as the skeleton material to synthesize an eco-friendly bamboo pulp cellulose-g-polyacrylamide (BPC-g-PAM) for flocculation. The BPC-g-PAM is used with the metal ions as the coagulant to treat the effluent from a surfactant manufacturer. The response surface methodology coupled with Box-behnken design is employed to optimize the key factors of coagulation-flocculation. The results show that the combination of Fe(3+) with BPC-g-PAM achieves the best coagulation-flocculation performance like, the fast treatment time, minimum coagulant and BPC-g-PAM dosages compared with the other two combinations of Al(3+) with BPC-g-PAM and Ca(2+) with BPC-g-PAM. Therefore, the combination of Fe(3+) with BPC-g-PAM is expected to promote its application for the pollution control in the surfactant manufacturers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pollution prevention in the pulp and paper industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, P.G.

    1995-09-01

    Probably no other industry has made as much progress as the kraft pulp and paper industry in reclaiming waste products. About half of the wood used in making pulp is cellulose; the reclamation of the other ingredients in the wood constitutes a continuing evolution of pollution prevention and economic success. The by-products of chemical pulping include turpentine used in the paint industry, lignosulfonates used as surfactants and dispersants, ``tall oil`` used in chemical manufacturing, yeast, vanillin, acetic acid, activated carbon, and alcohol. Sulfamic turpentine recovered in the kraft process is used to manufacture pine oil, dimethyl sulfoxide (DMSO), and othermore » useful chemical products. In addition, the noncellulose portion of the wood is used to provide energy for the pulping process through the combustion of concentrated black liquor. Over 75% of the pulp produced in the US is manufactured using the kraft process. Because of the predominance of the kraft process, the remainder of this section will address pollution prevention methods for kraft pulp and paper mills. Some of these techniques may be applicable or adaptable to other pulping processes, especially sulfite mills. The major steps in the kraft process are described, followed by a discussion of major wastestreams, and proven pollution prevention methods for each of these steps.« less

  17. Better together: synergy in nanocellulose blends

    NASA Astrophysics Data System (ADS)

    Mautner, Andreas; Mayer, Florian; Hervy, Martin; Lee, Koon-Yang; Bismarck, Alexander

    2017-12-01

    Cellulose nanopapers have gained significant attention in recent years as large-scale reinforcement for high-loading cellulose nanocomposites, substrates for printed electronics and filter nanopapers for water treatment. The mechanical properties of nanopapers are of fundamental importance for all these applications. Cellulose nanopapers can simply be prepared by filtering a suspension of nanocellulose, followed by heat consolidation. It was already demonstrated that the mechanical properties of cellulose nanopapers can be tailored by the fineness of the fibrils used or by modifying nanocellulose fibrils for instance by polymer adsorption, but nanocellulose blends remain underexplored. In this work, we show that the mechanical and physical properties of cellulose nanopapers can be tuned by creating nanopapers from blends of various grades of nanocellulose, i.e. (mechanically refined) bacterial cellulose or cellulose nanofibrils extracted from never-dried bleached softwood pulp by chemical and mechanical pre-treatments. We found that nanopapers made from blends of two or three nanocellulose grades show synergistic effects resulting in improved stiffness, strength, ductility, toughness and physical properties. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  18. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    PubMed

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Reduced neophobia: a potential mechanism explaining the emergence of self-medicative behavior in sheep.

    PubMed

    Egea, A Vanina; Hall, Jeffery O; Miller, James; Spackman, Casey; Villalba, Juan J

    2014-08-01

    Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. For instance, emerging behavioral evidence suggests that ruminants self-select medicinal compounds and foods that reduce parasitic burdens. However, the mechanism/s leading to self-medicative behaviors in sick animals is still unknown. We hypothesized that when homeostasis is disturbed by a parasitic infection, consumers should respond by increasing the acceptability of novel foods relative to healthy individuals. Three groups of lambs (N=10) were dosed with 0 (Control-C), 5000 (Medium-M) and 15000 (High-H) L3 stage larvae of Haemonchus contortus. When parasites had reached the adult stage, all animals were offered novel foods and flavors in pens and then novel forages at pasture. Ingestive responses by parasitized lambs were different from non-parasitized Control animals and they varied with the type of food and flavor on offer. Parasitized lambs consumed initially more novel beet pulp and less novel beet pulp mixed with tannins than Control lambs, but the pattern reversed after 9d of exposure to these foods. Parasitized lambs ingested more novel umami-flavored food and less novel bitter-flavored food than Control lambs. When offered choices of novel unflavored and bitter-flavored foods or different forage species to graze, parasitized lambs selected a more diverse array of foods than Control lambs. Reductions in food neophobia or selection of a more diverse diet may enhance the likelihood of sick herbivores encountering novel medicinal plants and nutritious forages that contribute to restore health. Published by Elsevier Inc.

  20. Can anaerobic digestion of sugar beet pulp support the circular economy? a study of biogas and nutrient potential

    NASA Astrophysics Data System (ADS)

    Suhartini, S.; Heaven, S.; Banks, C. J.

    2018-03-01

    Anaerobic digestion (AD), known as a biological process without oxygen to convert complex organic materials into biogas, is capable of processing large tonnage quantities of biomass, such as sugar beet pulp (SBP). In addition to biogas production, its use allows nutrients and organic carbon recycle back to agriculture through the spreading of digestate. Digestate still contains high amount of nutrients (N, P, K) for use as biofertiliser. The aims of this research were to determine biogas/methane potential as a baseline for comparison with performance in semi-continuous digestion, and to determine nutrient and potentially toxic elements (PTE) of digestate fractions with respect to their potential for utilisation in agriculture. The Biochemical Methane Potential (BMP) test was performed in triplicate against blank and positive controls over a period of 28 days with gas measured at regular intervals. Semi-continuous AD of SBP was operated under mesophilic and thermophilic condition for 206 and 165 days. The results indicated that SBP is a very promising feedstock for AD, with the average BMP of 0.321 l CH4 g-1 VS and biogas potential of 0.605 l g-1 VS. Under semi-continuous operation, SBP also demonstrated positive results. Digestates from mesophilic and thermophilic AD of SBP contained useful quantities of N, P and K, with an acceptable Ni concentration in accordance to limits for PTE. These results suggest that digestate has the potential to be utilised on agricultural and arable land. This study illustrated the positive effects of applying AD to the achievement of economic savings and environmental-friendly performance.

  1. Cellulose fibers obtained by organosolv process from date palm rachis (Phoenix dactylifera L.)

    NASA Astrophysics Data System (ADS)

    Ammar, H.; Abid, M.; Abid, S.

    2012-02-01

    In this preliminary study, the chemical composition of Tunisian DPR was established and discussed. The main characteristic of this agri-residue was its high lignin content in comparison with that of alfa plant. CIMV process was used to selectively separate cellulose fibres, hemicelluloses and lignin at atmospheric pressure. The obtained unbleached pulp was analysed in accordance with Kappa index and degree of polymerisation and then bleached by treating successively with peroxyacids and hydrogen peroxide in basic media.

  2. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    PubMed

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments

    PubMed Central

    Håkansson, Karl M. O.; Fall, Andreas B.; Lundell, Fredrik; Yu, Shun; Krywka, Christina; Roth, Stephan V.; Santoro, Gonzalo; Kvick, Mathias; Prahl Wittberg, Lisa; Wågberg, Lars; Söderberg, L. Daniel

    2014-01-01

    Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved. PMID:24887005

  4. Electron-processing technology: A promising application for the viscose industry

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  5. Biodegradability of regenerated cellulose films in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Liu, H.; Zheng, L.

    1996-12-01

    Regenerated cellulose films and a water-resistant film coated with thin Tung oil were prepared by using a cellulose cuoxam solution from pulps of cotton linter, cotton stalk, and wheat straw. They were buried in the soil to test biodegradability. The results showed that viscosity average molecular weight M{sub {eta}}, tensile strength {sigma}{sub b}, and the weight of the degraded films decreased sharply with the progress of degradation time, and the kinetics of decay were discussed. The degradation half-lives t{sub 1/2} of the films in soil at 10--20 C were given to be 30--42 days, and after 2 months the filmsmore » were decomposed into CO{sub 2} and water. The {alpha}-cellulose in soil was more readily biodegraded than hemicellulose, and regenerated cellulose film was more readily biodegraded than kraft paper. Nuclear magnetic resonance and scanning electron micrographs indicated that the biodegradation process of the films was performed through random breakdown of bonds of cellulose macromolecules resulting from the microorganism cleavage.« less

  6. Understanding Longitudinal Wood Fiber Ultra-structure for Producing Cellulose Nanofibrils Using Disk Milling with Diluted Acid Prehydrolysis

    NASA Astrophysics Data System (ADS)

    Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.

    2016-10-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.

  7. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose.

    PubMed

    Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2014-09-22

    Crystallized nanocellulose (CNC) was separated from paper-mulberry (Broussonetia kazinoki Siebold) bast pulp by sulfuric acid hydrolysis method and they were blended with agar to prepare bionanocomposite films. The effect of CNC content (1, 3, 5 and 10 wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the nanocomposites were studied. Changes of the cellulose fibers in structure, morphology, crystallinity, and thermal properties of the films were evaluated using FT-IR, TEM, SEM, XRD, and TGA analysis methods. The CNC was composed of fibrous and spherical or elliptic granules of nano-cellulose with sizes of 50-60 nm. Properties of agar film such as mechanical and water vapor barrier properties were improved significantly (p<0.05) by blending with the CNC. The tensile modulus and tensile strength of agar film increased by 40% and 25%, respectively, in the composite film with 5 wt% of CNC, and the WVP of agar film decreased by 25% after formation of nanocomposite with 3 wt% of CNC. The CNC obtained from the paper-mulberry bast pulp can be used as a reinforcing agent for the preparation of bio-nanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Comparative analysis of the digestibility of sewage fine sieved fraction and hygiene paper produced from virgin fibers and recycled fibers.

    PubMed

    Ghasimi, Dara S M; Zandvoort, Marcel H; Adriaanse, Michiel; van Lier, Jules B; de Kreuk, Merle

    2016-07-01

    Sewage fine sieved fraction (FSF) is a heterogeneous substrate consisting of mainly toilet paper fibers sequestered from municipal raw sewage by a fine screen. In earlier studies, a maximum biodegradation of 62% and 57% of the sewage FSF was found under thermophilic (55°C) and mesophilic (35°C) conditions, respectively. In order to research this limited biodegradability of sewage FSF, this study investigates the biodegradation of different types of cellulosic fibers-based hygiene papers including virgin fibers based toilet paper (VTP), recycled fiber based toilet paper (RTP), virgin pulp for paper production (VPPP) as a raw material, as well as microcrystalline cellulose (MCC) as a kind of fiberless reference material. The anaerobic biodegradation or digestibility tests were conducted under thermophilic and mesophilic conditions. Results of the experiments showed different biomethane potential (BMP) values for each tested cellulose fiber-based substrate, which might be associated with the physical characteristics of the fibers, type of pulping, presence of lignin encrusted fibers, and/or the presence of additive chemicals and refractory compounds. Higher hydrolysis rates (Kh), higher specific methane production rates (SMPR) and shorter required incubation times to achieve 90% of the BMP (t90%CH4), were achieved under thermophilic conditions for all examined substrates compared to the mesophilic ones. Furthermore, the biodegradability of all employed cellulose fiber-based substrates was in the same range, 38-45%, under both conditions and less than the observed FSF biodegradability, i.e. 57-62%. MCC achieved the highest BMP and biodegradability, 86-91%, among all cellulosic substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Incorporation of Monolignol Conjugates into Lignin for Improved Processing

    USDA-ARS?s Scientific Manuscript database

    Lignin remains one of the most significant barriers to the efficient utilization of cellulosic substrates, either for pulping or for biofuels production. Now that monomer substitution in the lignification process is now well authenticated in various transgenic plants, it is opportune to begin explor...

  10. 27 CFR 24.243 - Filtering aids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...

  11. 27 CFR 24.243 - Filtering aids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...

  12. 27 CFR 24.243 - Filtering aids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...

  13. Biorefinery process for production of paper and oligomers from Leucaena leucocephala K360 with or without prior autohydrolysis.

    PubMed

    Feria, M J; García, J C; Díaz, M J; Fernández, M; López, F

    2012-12-01

    Lignocellulosic material from Leucaena leucocephala was subjected to a two-stage fractionation process to obtain a valorized effluent containing hemicellulose derivatives and a solid phase for producing cellulose pulp by conventional soda-anthraquinone delignification. This solid phase allows the production of cellulose pulp, under less rigorous conditions from NaOH-AQ process (177 °C, 21%, 120 min) than without pretreatment delignification (185 °C, 25%, 150 min) and better or similar properties in the paper sheets obtained (yield 27.6 and 34.0%, brightness 39.3 and 31.6% ISO, tensile index 7.8 and 10.5 N m/g, burst index 0.43 and 0.29 MPa m(2)/kg with and without previous autohydrolysis) have be found. Also, the first autohydrolysis stage allows up to 46.6% of the initial hemicellulose in the raw material to be extracted as xylooligomers, xylose and furfural into the liquid phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of paper.

    PubMed

    Kouko, Jarmo; Setälä, Harri; Tanaka, Atsushi; Khakalo, Alexey; Ropponen, Jarmo; Retulainen, Elias

    2018-04-15

    Wood fiber-based packaging materials, as renewable materials, have growing market potential due to their sustainability. A new breakthrough in cellulose-based packaging requires some improvement in the mechanical properties of paper. Bleached softwood kraft pulp was mechanically treated, in two stages, using high- and low-consistency refining, sequentially. Chemical treatment of pulp using the oxyalkylation method was applied to modify a portion of fiber material, especially the fiber surface, and its compatibility with polymer dispersions including one carbohydrate polymer. The results showed that the compatibility of the cellulosic fibers with some polymers could be improved with oxyalkylation. By adjusting mechanical and chemical treatments, and the thermoforming conditions, the formability of paper was improved, but simultaneously the strength and stiffness decreased. The results suggest that the formability of the paper is not a direct function of the extensibility of the applied polymer, but also depends on the fiber network structure and surface energy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency.

    PubMed

    Yang, Xuan; Berthold, Fredrik; Berglund, Lars A

    2018-05-23

    To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10°). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.

  16. Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation.

    PubMed

    Wang, Ning; Chen, Hong-Zhang

    2013-07-01

    In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification.

    PubMed

    Novo, Lísias Pereira; Gurgel, Leandro Vinícius Alves; Marabezi, Karen; Curvelo, Antonio Aprigio da Silva

    2011-11-01

    This paper describes the organosolv delignification of depithed bagasse using glycerol-water mixtures without a catalyst. The experiments were performed using two separate experimental designs. In the first experiment, two temperatures (150 and 190°C), two time periods (60 and 240 min) and two glycerol contents (20% and 80%, v/v) were used. In the second experiment, which was a central composite design, the glycerol content was maintained at 80%, and a range of temperatures (141.7-198.3°C) and time (23-277 min) was used. The best result, obtained with a glycerol content of 80%, a reaction time of 150 min and a temperature of 198.3°C, produced pulps with 54.4% pulp yield, 7.75% residual lignin, 81.4% delignification and 13.7% polyose content. The results showed that high contents of glycerol tend to produce pulps with higher delignification and higher polyoses content in relation to the pulps obtained from low glycerol content reactions. In addition, the proposed method shows potential as a pretreatment for cellulose saccharification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308.

    PubMed

    Sikora, Barbara; Kubik, Celina; Kalinowska, Halina; Gromek, Ewa; Białkowska, Aneta; Jędrzejczak-Krzepkowska, Marzena; Schüett, Fokko; Turkiewicz, Marianna

    2016-08-17

    A nonpathogenic bacterial strain Bacillus amyloliquefaciens TUL 308 synthesized minor 2,3-butanediol (2,3-BD) amounts from glucose, fructose, sucrose, and glycerol, and efficiently produced the diol from molasses and hydrolysates of food processing residues. Batch fermentations yielded 16.53, 10.72, and 5 g/L 2,3-BD from enzymatic hydrolysates of apple pomace, dried sugar beet pulp, and potato pulp (at initial concentrations equivalent to 45, 20, and 30 g/L glucose, respectively), and 25.3 g/L 2,3-BD from molasses (at its initial concentration equivalent to 60 g/L saccharose). Fed-batch fermentations in the molasses-based medium with four feedings with either glucose or sucrose (in doses increasing their concentration by 25 g/L) resulted in around twice higher maximum 2,3-BD concentration (of about 60 and 50 g/L, respectively). The GRAS Bacillus strain is an efficient 2,3-BD producer from food industry byproducts.

  19. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    PubMed

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  20. ALL NATURAL COMPOSITE SANDWICH BEAMS FOR STRUCTURAL APPLICATIONS. (R829576)

    EPA Science Inventory

    As part of developing an all natural composite roof for housing application,
    structural panels and unit beams were manufactured out of soybean oil based resin
    and natural fibers (flax, cellulose, pulp, recycled paper, chicken feathers)
    using vacuum assisted resin tran...

  1. Processing of fibre suspensions at ultra-high consistencies

    Treesearch

    Daniel F. Caulfield; Rodney E. Jacobson

    2004-01-01

    Typically the paper physicist considers pulp suspensions greater than 0.5% consistency as high consistency. In our research on cellulose fibre- reinforced engineering plastics we have had to develop a two-step method for the processing of fibers suspensions at ultrahigh consistencies (consistencies greater than 30%).

  2. Pectin-rich biomass as feedstock for fuel ethanol production.

    PubMed

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  3. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep.

    PubMed

    Lettat, Abderzak; Nozière, Pierre; Silberberg, Mathieu; Morgavi, Diego P; Berger, Claudette; Martin, Cécile

    2012-07-19

    Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA) were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C) or supplemented with Propionibacterium P63 alone (P) or combined with L. plantarum (Lp + P) or L. rhamnosus (Lr + P). Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated.

  4. The effect of yeast (Saccharomyces cerevisiae) on nutrient intake, digestibility and finishing performance of lambs fed a diet based on dried molasses sugar beet-pulp.

    PubMed

    Payandeh, S; Kafilzadeh, F

    2007-12-15

    This experiment was conducted to determine the effect of yeast (Saccharomyces cerevisiae, SC47) on finishing performance, digestibility, some blood metabolites and carcass characteristics of male lambs fed a diet based on dried Molasses Sugar Beet-Pulp (MSBP). Eighteen Sanjabi male lambs (20.95 +/- 2.7 kg initial body weight and 3 month of age) were used in a completely randomized design. Animals were assigned to one of the two dietary treatments (with or without yeast). Digestibility and nitrogen balance experiment was carried out using six mature rams on finishing diet with and without yeast. Serum metabolites were determined in samples taken from lambs at the end of finishing period. Dry matter digestibility of finishing diet was significantly increased by yeast addition. However, yeast did not have any significant effect on apparent digestibility of OM, NDF, CP and energy. Nitrogen retention was also not affected by yeast addition. Yeast resulted in a significant increase in the average daily gain, dry matter and organic matter intake. However, feed conversion ratio was not significantly affected by addition of yeast. The concentration of the serum metabolites including glucose, urea, cholesterol, sodium, potassium, calcium, phosphorous and cratinine were not affected significantly by yeast supplementation, but triglyceride concentrations increased significantly when yeast was fed. Addition of yeast to the diet did not have any significant effect on the carcass characteristics. Results of this study suggest that feeding saccharomyces cerevisiae with a diet based on MSBP can improve the performance of fattening lambs without any change in carcass characteristics or cuts.

  5. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

    PubMed Central

    2012-01-01

    Background Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Results Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA) were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C) or supplemented with Propionibacterium P63 alone (P) or combined with L. plantarum (Lp + P) or L. rhamnosus (Lr + P). Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. Conclusion This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated. PMID:22812531

  6. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Abu Amr, Salem S

    2015-01-01

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  7. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Amr, Salem S Abu

    2015-09-15

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  8. Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions.

    PubMed

    Clark, O Grant; Moehn, Soenke; Edeogu, Ike; Price, Jason; Leonard, Jeremy

    2005-01-01

    Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.

  9. Detection of prior irradiation of dried fruits by electron spin resonance (ESR)

    NASA Astrophysics Data System (ADS)

    Esteves, M. P.; Andrade, M. E.; Empis, J.

    1999-08-01

    Dried almonds, raisins, dates and pistachio were irradiated using either gamma radiation or electron beam, at an average absorbed dose of 5 kGy. To detect the previous irradiation different parts of the dried fruits were analyzed by ESR spectroscopy: almonds: skin; raisins: dried pulp; dates: dried pulp and stone; pistachio: nutshell. Analyses were carried out 2-3 months and 6 months after irradiation. A series of signals tentatively described as "cellulose-like", "sugar-like" and "complex" radical were observed, and some slight differences between spectra from samples irradiated with gamma rays and electrons were evident.

  10. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    NASA Astrophysics Data System (ADS)

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  11. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  12. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to themore » start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.« less

  13. Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment.

    PubMed

    Coelho, Caroline C S; Michelin, Michele; Cerqueira, Miguel A; Gonçalves, Catarina; Tonon, Renata V; Pastrana, Lorenzo M; Freitas-Silva, Otniel; Vicente, António A; Cabral, Lourdes M C; Teixeira, José A

    2018-07-15

    Cellulose nanocrystals (CNCs) were obtained from grape pomace through chemical and physical pretreatments. Bleached cellulose pulp was subjected to acid hydrolysis (AH) for 30 or 60 min and an ultrasound treatment to obtain CNCs (AH 30S and AH 60S ). Compositional analyses of untreated (UGP) and pretreated (PGP) grape pomace showed the effectiveness of pretreatment in removing non-cellulosic components, recovering 80.1% cellulose in PGP (compared to 19.3% of UGP). Scanning and transmission electron microscopies were used to evaluate the CNCs morphology. AH in combination with ultrasound treatment led to needle-shaped structures and apparently more dispersed suspensions. Crystallinity index and thermal stability were studied by X-ray diffraction and thermogravimetric analysis, respectively. The AH 60S sample presented high aspect ratio, crystallinity and thermal stability. CNCs toxicity was evaluated by exposing Caco-2 cells to CNCs suspension and evaluating their viability. Results showed that CNCs are non-toxic, opening the opportunity for their use on food and pharmaceutical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    PubMed

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  15. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    PubMed

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  17. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    PubMed

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Comprehensive Transcriptome Analysis of Developing Xylem Responding to Artificial Bending and Gravitational Stimuli in Betula platyphylla

    PubMed Central

    Wang, Chao; Zhang, Nan; Gao, Caiqiu; Cui, Zhiyuan; Sun, Dan; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    Betula platyphylla Suk (birch) is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW) than in opposite wood (OW) or normal wood (NW), whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level. PMID:24586282

  19. An ecotoxicological characterization of nanocrystalline cellulose (NCC).

    PubMed

    Kovacs, Tibor; Naish, Valerie; O'Connor, Brian; Blaise, Christian; Gagné, Francois; Hall, Lauren; Trudeau, Vance; Martel, Pierre

    2010-09-01

    The pulp and paper industry in Canada is developing technology for the production and use of nanocrystalline cellulose (NCC). A key component of the developmental work is an assessment of potential environmental risks. Towards this goal, NCC samples as well as carboxyl methyl cellulose (CMC), a surrogate of the parent cellulosic material, were subjected to an ecotoxicological evaluation. This involved toxicity tests with rainbow trout hepatocytes and nine aquatic species. The hepatocytes were most sensitive (EC20s between 10 and 200 mg/l) to NCC, although neither NCC nor CMC caused genotoxicity. In tests with the nine species, NCC affected the reproduction of the fathead minnow at (IC25) 0.29 g/l, but no other effects on endpoints such as survival and growth occurred in the other species at concentrations below 1 g/l, which was comparable to CMC. Based on this ecotoxicological characterization, NCC was found to have low toxicity potential and environmental risk.

  20. Effects of cellulose whiskers on properties of soy protein thermoplastics.

    PubMed

    Wang, Yixiang; Cao, Xiaodong; Zhang, Lina

    2006-07-14

    Environmentally-friendly SPI/cellulose whisker composites were successfully prepared using a colloidal suspension of cellulose whiskers, to reinforce soy protein isolate (SPI) plastics. The cellulose whiskers, having an average length of 1.2 microm and diameter of 90 nm, respectively, were prepared from cotton linter pulp by hydrolyzing with sulfuric acid aqueous solution. The effects of the whisker content on the morphology and properties of the glycerol-plasticized SPI composites were investigated by scanning electron microscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, ultraviolet-visible spectroscopy, water-resistivity testing and tensile testing. The results indicated that, with the addition of 0 to 30 wt.-% of cellulose whiskers, strong interactions occurred both between the whiskers and between the filler and the SPI matrix, reinforcing the composites and preserving their biodegradability. Both the tensile strength and Young's modulus of the SPI/cellulose whisker composites increased from 5.8 to 8.1 MPa and from 44.7 to 133.2 MPa, respectively, at a relative humidity of 43%, following an increase of the whisker content from 0 to 30 wt.-%. Furthermore, the incorporation of the cellulose whiskers into the SPI matrix led to an improvement in the water resistance for the SPI-based composites.

  1. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    NASA Astrophysics Data System (ADS)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  2. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Treesearch

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  3. Recent advances in polyoxometalate based delignification

    Treesearch

    R. H. Atalla; L. A. Weinstock; R. S. Reiner; C. J. Houtman; S. Reichel; C. G. Hill; C. L. Hill

    1999-01-01

    A new delignification technology based on the use of polyoxometalates (POMs) as delignification agents is under development at the USDA Forest Service, Forest Products Labotatory (FPL), in Madison, Wisconsin. These reagents are chlorine free and can be used under conditions wherein they oxidize lignin and chromophores in wood pulp fibers while leaving the cellulose...

  4. Converting Municipal Waste into Automobile Fuel: Ethanol from Newspaper

    ERIC Educational Resources Information Center

    Mascal, Mark; Scown, Richard

    2008-01-01

    Waste newspaper is pulped with acid and its cellulose is hydrolyzed. The resulting glucose syrup is fermented with yeast and distilled to give ethanol. The experiment highlights the potential of applied chemistry to confront problems of economic importance, that is, the effective utilization of biomass to reduce dependence on non-renewable…

  5. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    PubMed

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    PubMed Central

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241

  7. Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production.

    PubMed

    Duangwang, Sairudee; Ruengpeerakul, Taweesak; Cheirsilp, Benjamas; Yamsaengsung, Ram; Sangwichien, Chayanoot

    2016-03-01

    Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.

    PubMed

    Gabrielle, Benoît; Gagnaire, Nathalie; Massad, Raia Silvia; Dufossé, Karine; Bessou, Cécile

    2014-01-01

    The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    NASA Astrophysics Data System (ADS)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  10. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    PubMed

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Integration of pulp and paper technology with bioethanol production

    PubMed Central

    2013-01-01

    Background Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors have not been able to justify moving forward with large scale projects on woody biomass. Results Both issues have been addressed by targeting pulp and paper industry processes for application in bioethanol production, in Greenfield, Repurpose and Co-Location scenarios. Processes commercially proven in hundreds of mills for many decades have been tailored to the recalcitrance of the biomass available. Economically feasible cellulosic bioethanol can be produced in Greenfield application with hardwoods, but not softwoods, using kraft mill equipment. Both types of wood species can profitably produce ethanol when kraft mill or newsprint assets are Repurposed to a biorefinery. A third situation which can generate high financial returns is where excess kraft pulp is available at a mill which has no excess drying capacity. Each scenario is supported by laboratory simulation, engineering and financial analysis. While pretreatment is critical to providing access of the biomass to enzymes, capital investment per unit of ethanol produced can be attractive, even if ethanol yield is modest. Conclusions Three guiding principles result in attractive economics: (1) re-use existing assets to the maximum extent; (2) keep the process as simple as possible; (3) match the recalcitrance of the biomass with the severity of the pretreatment. PMID:23356540

  12. Paper sludge (PS) to bioethanol: Evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentation.

    PubMed

    Boshoff, Sonja; Gottumukkala, Lalitha Devi; van Rensburg, Eugéne; Görgens, Johann

    2016-03-01

    Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2g/L at 66.9% and 45.5 g/L at 78.2%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Relationship of wood surface energy to surface composition

    Treesearch

    Feipeng P. Liu; Timothy G. Rials; John Simonsen

    1998-01-01

    The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...

  14. Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Kaco, Hatika; Padzil, Farah Nadia Mohammad

    2014-06-15

    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cationic nanofibrillar cellulose with high antibacterial properties.

    PubMed

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cellulose nanofiber extraction from grass by a modified kitchen blender

    NASA Astrophysics Data System (ADS)

    Nakagaito, Antonio Norio; Ikenaga, Koh; Takagi, Hitoshi

    2015-03-01

    Cellulose nanofibers have been used to reinforce polymers, delivering composites with strength that in some cases can be superior to that of engineering plastics. The extraction of nanofibers from plant fibers can be achieved through specialized equipment that demands high energy input, despite delivering extremely low yields. The high extraction cost confines the use of cellulose nanofibers to the laboratory and not for industrial applications. This study aims to extract nanofibers from grass by using a kitchen blender. Earlier studies have demonstrated that paper sheets made of blender-extracted nanofibers (after 5 min to 10 min of blending) have strengths on par with paper sheets made from commercially available cellulose nanofibers. By optimizing the design of the blender bottle, nanofibrillation can be achieved in shorter treatment times, reducing the energy consumption (in the present case, to half) and the overall extraction cost. The raw materials used can be extended to the residue straw of agricultural crops, as an alternative to the usual pulp fibers obtained from wood.

  17. A kinetic study on microwave-assisted conversion of cellulose and lignocellulosic waste into hydroxymethylfurfural/furfural.

    PubMed

    da Silva Lacerda, Viviane; López-Sotelo, Juan Benito; Correa-Guimarães, Adriana; Hernández-Navarro, Salvador; Sánchez-Bascones, Mercedes; Navas-Gracia, Luis M; Martín-Ramos, Pablo; Pérez-Lebeña, Eduardo; Martín-Gil, Jesús

    2015-03-01

    Native cellulose, lignocellulosic materials from Brazil (carnauba palm leaves and macauba pulp and shell) and pine nut shell from Spain have been studied as substrates for the production of HMF and furfural in a conventional microwave oven. In order to promote the dissolution of native cellulose, several ionic liquids, catalysts, organic solvents and water doses have been assessed. The most suitable mixture (5mL of choline chloride/oxalic acid, 2mL of sulfolane, 2mL of water, 0.02g of TiO2 and 0.1g of substrate) has been chosen to conduct kinetic studies at different reaction times (5-60min) and various temperatures (120-200°C) and to evaluate the best conditions for HMF+furfural production according to Seaman's model. The best production yields of HMF+furfural have been attained for native cellulose, with a yield of 53.24% when an ultrasonic pretreatment was used prior to a microwave treatment with stirring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure

    NASA Astrophysics Data System (ADS)

    Nakagaito, A. N.; Yano, H.

    2005-01-01

    A completely new kind of high-strength composite was manufactured using microfibrillated cellulose (MFC) derived from kraft pulp. Because of the unique structure of nano-order-scale interconnected fibrils and microfibrils greatly expanded in the surface area that characterizes MFC, it was possible to produce composites that exploit the extremely high strength of microfibrils. The Young’s modulus (E) and bending strength (σb) of composites using phenolic resin as binder achieved values up to 19 GPa and 370 MPa, respectively, with a density of 1.45 g/cm2, exhibiting outstanding mechanical properties for a plant-fiber-based composite.

  19. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.

    PubMed

    Van Hai, Le; Zhai, Lindong; Kim, Hyun Chan; Kim, Jung Woong; Choi, Eun Sik; Kim, Jaehwan

    2018-07-01

    In this research, cellulose nanofiber (CNF) was isolated by the combination of chemical 2,2,6,6-tetramethylpiperidine-1-oxylradical (TEMPO)-oxidation and physical aqueous counter collision (ACC) methods The combination of TEMPO-oxidation and ACC is an efficient method to isolate CNFs by reducing chemical usage in TEMPO-oxidation and saving energy in ACC along with controlling the size of CNFs. Two cellulose sources, hardwood bleached kraft pulp (HW) and softwood bleached kraft pulp (SW), were used for the CNF isolation with different TEMPO oxidation time and a defined number of ACC pass. The CNF properties were investigated and compared in term of morphology, crystallinity index, transparency and birefringence. The width of the isolated CNFs from HW is in the range of 15.1 nm-17.5 nm, and that of the SW CNFs is between 18.4 nm and 22 nm depending on the TEMPO oxidation time. This difference is due to the fact that SW is less oxidized than HW under the same chemical dosage, which results in larger width of SW-CNFs than HW-CNFs. The HW-CNF treated with TEMPO for over 2 h and isolated using ACC with 5 pass offers almost 90% transparency. Birefringence of CNFs exhibits that HW-CNFs show better birefringence phenomenon than SW-CNFs. The combination of TEMPO-oxidation and ACC methods is useful for isolating CNFs with its size control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Development of optimal enzymatic and microbial conversion systems for biofuel production

    NASA Astrophysics Data System (ADS)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these materials can range from 470 to 533 L ethanol/metric ton (d.b.) Sugar beet leaves contain nearly equal amounts of cellulose (13%), hemicellulose (16%), and pectin (17%). The potential ethanol yield of sugar beet leaves is 340 L ethanol/metric ton (d.b.). As remaining unused in great quantities during the production of sugar beet as a sugar and energy crop, sugar beet leaves was studied as a potential feedstock for the production of biofuel and valuable products. The enzymatic hydrolysis of sugar beet leaves was optimized for fermentable sugar production. Optimization of enzyme usage was performed to make the biorefinery process more cost- and energy-effective. In this research, response surface methodology was used to study the effects of enzyme loadings during the hydrolysis of sugar beet leaves at 10% total solids content, using a mix of cellulases, hemicellulases, and pectinases. The effects of enzyme loadings were studied with a five-level rotatable central composite design for maximum conversion of sugar beet leaves to fermentable sugars. The last part of this study investigated biogas production through the anaerobic digestion of microalgae as they have received much attention as another potential biofuel feedstock. Anaerobic digestion of Spirulina ( Arthrospira platensis) was conducted in batch reactors for the study of the kinetics and, in continuous stirred tank reactors (CSTR), for the study of the two important operating parameters: hydraulic retention time (HRT) and organic loading rate (OLR). The kinetics study on methane production from batch experiments shows first order kinetics and a reaction rate constant of 0.382 d-1. The maximum biogas and methane yields for Spirulina are 0.514 L/gVS and 0.360 L CH4/gVS, respectively. The methane content of the biogas is 68%. During the continuous anaerobic digestion in CSTR for OLR in the range of 1.0-4.0 gVS/L/d, biogas and methane yields are in the ranges of 0.276-0.502 L/ gVS and 0.163-0.342 L CH4/gVS, respectively. Methane content is 59-70% of the biogas. Methane yield decreases with an increase in OLR and a decrease in HRT. The maximum methane production is 0.342 L CH4/gVS at OLR of 1.0 gVS/L d and 25d-HRT, achieving 94% of the maximum yield produced by batch digestion. Ammonia inhibition and the accumulation of volatile fatty acids (VFA) were observed at high OLR. According to the results from the continuous digestion of Spirulina, the recommended HRT should be sufficient at least 15d, with the OLRmax of 2.0 gVS/L to prevent ammonia inhibition at higher feed concentrations. The OLR can be increased when the digester is operated at longer HRT since a long HRT provides a more stable operation. A mathematical model, based on the kinetics study from the batch process, was developed for the prediction of methane production during a continuous digestion process, in relation to HRT. Further improvement of the model may have to include the effects of ammonia inhibition and low solids retention time (SRT) to overcome these limitations. (Abstract shortened by UMI.).

  1. Fuels from renewable resources

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Schnell, C.; Gieseler, G.

    Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.

  2. Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide

    NASA Astrophysics Data System (ADS)

    Yau Li, Elizabeth

    The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.

  3. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs.

    PubMed

    Patrás, P; Nitrayová, S; Brestenský, M; Heger, J

    2012-12-01

    Eight gilts (29.9 ± 1.7 kg initial BW) were used to evaluate effects of dietary (crude) fiber on N excretion via feces and urine at 2 levels of dietary CP. Pigs were fed 4 dietary treatments according to a double 4 × 4 Latin square. Treatments were low (14%) CP and low (3.25%) (crude) fiber (LPAA), low CP and high (4.46%) fiber (LPAABP), high (18.8%) CP and low fiber (HP), and high CP and high fiber (HPBP). Diets were based on soybean (Glycine max) meal, wheat (Triticum aestivum), and maize (Zea mays) and were supplemented with crystalline AA. High fiber diets contained 15% dried beet (Beta vulgaris) pulp. Pigs were housed in metabolic cages and fed 2 equal meals at 0700 and 1700 h at a daily rate of 90 g/kg BW(0.75). Water was offered ad libitum. Each experimental period consisted of a 6-d adaptation followed by a 4-d collection of feces and urine (bladder catheters). Data were analyzed using ANOVA. Differences between means (P < 0.05) were assessed using Fisher's LSD procedure. The N intake, fecal N excretion and absorption, and N retention increased (P < 0.05) in pigs fed high-CP diets with added fiber (HP vs. HPBR). With added fiber, urinary N excretion (g/d) was reduced (P < 0.02) only for the low-CP diet. Urinary N as a percentage of N intake was reduced (P < 0.01) in both groups fed high-fiber diets irrespective of dietary CP content. Dietary fiber level did not affect DMI. Fecal DM excretion (g/d) was higher (P < 0.02) in pigs fed diets with high CP and high fiber content than in pigs fed diets with high CP and low fiber content. In conclusion, beet pulp fiber added to diets increased fecal N and reduced urinary N and in diets with higher CP content increased overall N retention.

  4. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.

    PubMed

    Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi

    2013-09-12

    Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.

    PubMed

    Vallejos, María Evangelina; Felissia, Fernando Esteban; Area, María Cristina; Ehman, Nanci Vanesa; Tarrés, Quim; Mutjé, Pere

    2016-03-30

    Nanofibrillated cellulose has been obtained from the cellulosic fraction of eucalyptus sawdust. The fractionation process involved the partial removal of hemicelluloses and lignin. CNF was obtained using TEMPO oxidation with NaOCl in basic medium followed by mechanical homogenization. The obtained CNF was subsequently used as a dry strength agent on unbleached unrefined eucalyptus pulp. The addition of 3, 6 and 9 wt.% of CNF increased lineally the tensile index of handsheets to about 55 N mg(-1) at 35°SR, compatible with papermachine runnability. The other mechanical properties also increased substantially, and porosity decreased moderately. The estimated specific surface and average diameter of these CNF were 60 m(2)g(-1), and of 41.0 nm, respectively. The addition of 9 wt.% of CNF produced an increase in mechanical strength, equivalent to that produced by PFI refining at 1600 revolutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control

    PubMed Central

    Karan, Anik; Darder, Margarita; Kansakar, Urna; Norcross, Zach

    2018-01-01

    We previously described the novel synthesis of a copper high-aspect ratio structure (CuHARS) biohybrid material using cystine. While extremely stable in water, CuHARS is completely (but slowly) degradable in cellular media. Here, integration of the CuHARS into cellulose matrices was carried out to provide added control for CuHARS degradation. Synthesized CuHARS was concentrated by centrifugation and then dried. The weighed mass was re-suspended in water. CuHARS was stable in water for months without degradation. In contrast, 25 μg/mL of the CuHARS in complete cell culture media was completely degraded (slowly) in 18 days under physiological conditions. Stable integration of CuHARS into cellulose matrices was achieved through assembly by mixing cellulose micro- and nano-fibers and CuHARS in an aqueous (pulp mixture) phase, followed by drying. Additional materials were integrated to make the hybrids magnetically susceptible. The cellulose-CuHARS composite films could be transferred, weighed, and cut into usable pieces; they maintained their form after rehydration in water for at least 7 days and were compatible with cell culture studies using brain tumor (glioma) cells. These studies demonstrate utility of a CuHARS-cellulose biohybrid for applied applications including: (1) a platform for biomedical tracking and (2) integration into a 2D/3D matrix using natural products (cellulose). PMID:29693569

  7. Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum.

    PubMed

    Hama, Shinji; Mizuno, Shino; Kihara, Maki; Tanaka, Tsutomu; Ogino, Chiaki; Noda, Hideo; Kondo, Akihiko

    2015-01-01

    This study focused on the process development for the d-lactic acid production from cellulosic feedstocks using the Lactobacillus plantarum mutant, genetically modified to produce optically pure d-lactic acid from both glucose and xylose. The simultaneous saccharification and fermentation (SSF) using delignified hardwood pulp (5-15% loads) resulted in the lactic acid titers of 55.2-84.6g/L after 72h and increased productivities of 1.77-2.61g/L/h. To facilitate the enzymatic saccharification of high-load pulp at a fermentation temperature, short-term (⩽10min) pulverization of pulp was conducted, leading to a significantly improved saccharification with the suppressed formation of formic acid by-product. The short-term milling followed by SSF resulted in a lactic acid titer of 102.3g/L, an optical purity of 99.2%, and a yield of 0.879g/g-sugars without fed-batch process control. Therefore, the process presented here shows promise for the production of high-titer d-lactic acid using the L. plantarum mutant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol.

    PubMed

    Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos; Thomsen, Mette Hedegaard

    2017-02-01

    In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).

  9. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  10. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    PubMed

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.

  12. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  13. Recycling waste-paper

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1990-01-01

    Perhaps 80 percent of papermaking energy is expended in chemical pulping of vegetable cellulose, a natural polymer. Commercial supplies of wood, bagasse, cotton and flax are valued as renewable resources and bio-mass assets; however, few enterprises will salvage waste-paper and cardboard from their trash. A basic experiment in the Materials Lab uses simple equipment to make crude handsheets. Students learn to classify secondary fibers, identify contraries, and estimate earnings.

  14. Achievements in the utilization of poplarwood : guideposts for the future

    Treesearch

    John J. Balatinecz; David E. Kretschmann; Andre Leclercq

    2001-01-01

    From an early status as a “weed tree,” poplar has become an important commercial genus in North America during the past 20 years. The many and varied uses of poplar wood now include pulp and paper, lumber, veneer, plywood, composite panels, structural composite lumber, containers, pallets, furniture components, match splints and chopsticks.The high cellulose and...

  15. Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching.

    PubMed

    Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar

    2017-10-01

    Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.

  16. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGES

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; ...

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DP w) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of cellulose microfibril dimensions and crystallite size becomes more apparent. Further, this enlargement of cellulose microfibril dimensions is attributed to specific processes, including the co-crystallization of crystalline cellulose driven by irreversible inter-chain hydrogen bonding (similar to hornification) and/or cellulose annealing that converts amorphous cellulose to paracrystalline and crystalline cellulose. Essentially, lignin acts as a barrier to prevent cellulose crystallinity increase and cellulose fibril coalescence during DAP.« less

  17. Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites

    PubMed Central

    Wang, Jinwu

    2018-01-01

    Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315

  18. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.

    PubMed

    Zhao, Yadong; Moser, Carl; Lindström, Mikael E; Henriksson, Gunnar; Li, Jiebing

    2017-04-19

    This work reveals the structural variations of cellulose nanofibers (CNF) prepared from different cellulose sources, including softwood (Picea abies), hardwood (Eucalyptus grandis × E. urophylla), and tunicate (Ciona intestinalis), using different preparation processes and their correlations to the formation and performance of the films prepared from the CNF. Here, the CNF are prepared from wood chemical pulps and tunicate isolated cellulose by an identical homogenization treatment subsequent to either an enzymatic hydrolysis or a 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. They show a large structural diversity in terms of chemical, morphological, and crystalline structure. Among others, the tunicate CNF consist of purer cellulose and have a degree of polymerization higher than that of wood CNF. Introduction of surface charges via the TEMPO-mediated oxidation is found to have significant impacts on the structure, morphology, optical, mechanical, thermal, and hydrophobic properties of the prepared films. For example, the film density is closely related to the charge density of the used CNF, and the tensile stress of the films is correlated to the crystallinity index of the CNF. In turn, the CNF structure is determined by the cellulose sources and the preparation processes. This study provides useful information and knowledge for understanding the importance of the raw material for the quality of CNF for various types of applications.

  19. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films

    NASA Astrophysics Data System (ADS)

    Barbash, V. A.; Yaschenko, O. V.; Alushkin, S. V.; Kondratyuk, A. S.; Posudievsky, O. Y.; Koshechko, V. G.

    2016-09-01

    The development of the nanomaterials with the advanced functional characteristics is a challenging task because of the growing demand in the market of the optoelectronic devices, biodegradable plastics, and materials for energy saving and energy storage. Nanocellulose is comprised of the nanosized cellulose particles, properties of which depend on characteristics of plant raw materials as well as methods of nanocellulose preparation. In this study, the effect of the mechanochemical treatment of bleached softwood sulfate pulp on the optical and mechanical properties of nanocellulose films was assessed. It was established that the method of the subsequent grinding, acid hydrolysis and ultrasound treatment of cellulose generated films with the significant transparency in the visible spectral range (up to 78 % at 600 nm), high Young's modulus (up to 8.8 GPa), and tensile strength (up to 88 MPa) with increased ordering of the packing of the cellulose macromolecules. Morphological characterization was done using the dynamic light scattering (DLS) analyzer and transmission electron microscopy (TEM). The nanocellulose particles had an average diameter of 15-30 nm and a high aspect ratio in the range 120-150. The crystallinity was increased with successive treatments as shown by the X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The thermal degradation behavior of cellulose samples was explored by thermal gravimetric analysis (TGA).

  20. Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery.

    PubMed

    Prathap, Annamalai; Sureshan, Kana M

    2017-08-01

    Marine oil spills pose serious threats to the ecosystem and economy. There is much interest in developing sorbents that can tackle such spills. We have developed a novel sorbent by impregnating cellulose pulp with a sugar-derived oleogelator, 1,2:5,6-di-O-cyclohexylidene-mannitol. The gelator molecules mask the surface-exposed hydroxyl groups of cellulose fibrils by engaging them in H-bonding and expose their hydrophobic parts making the fibers temporarily hydrophobic (water contact angle 110°). This sorbent absorbs oil effectively, selectively and instantly from oil-water mixtures due to its hydrophobicity. Then the gelator molecules get released uniformly in the oil and later self-assemble to fibers, as evident from SEM analysis, congealing the oil within the matrix. This hierarchical entrapment of the oil by non-covalent polymeric fibers within a covalent polymer matrix makes the gel very strong (230-fold increase in the yield stress) and rigid, making it suitable for practical use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improvement of the ESR detection of irradiated food containing cellulose employing a simple extraction method

    NASA Astrophysics Data System (ADS)

    Delincée, Henry; Soika, Christiane

    2002-03-01

    Fruit may be irradiated at rather low doses, below 1 kGy in combination treatments or for quarantine purposes. To improve the ESR detection sensitivity of irradiated fruit de Jesus et al. (Int. J. Food Sci. Technol. 34 (1999) 173.) proposed extracting the fruit pulp with 80% ethanol and measuring the residue with ESR using low power (0.25 mW) for detection of 'cellulosic' radicals. An improvement in ESR sensitivity using the extraction procedure could be confirmed in this paper for strawberries and papayas. In most cases, a radiation dose of 0.5 kGy could be detected in both fruits even after 2-3 weeks storage. In addition, some herbs and spices were also tested, but only for a few of them the ESR detection of the 'cellulosic' signal was improved by previous alcoholic extraction. As an alternative to ESR measurements, other detection methods like DNA Comet Assay and thermoluminescence were also tested.

  2. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.

    PubMed

    Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola

    2016-11-05

    In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties.

    PubMed

    Claro, Pedro Ivo Cunha; Corrêa, Ana Carolina; de Campos, Adriana; Rodrigues, Vanessa Bolzan; Luchesi, Bruno Ribeiro; Silva, Luiz Eduardo; Mattoso, Luiz Henrique Capparelli; Marconcini, José Manoel

    2018-02-01

    A wide variety of new green materials such as curaua leaf fibers (CLFs) has potential applications in nanotechnology. This study aims to investigate the thermomechanical properties and morphological structure of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) films obtained by continuous casting. The CNCs were obtained by acid hydrolysis and CNFs by mechanical shearing from bleached CLFs and eucalyptus pulp. The morphology after continuous casting resulted in oriented nanofibers, and as a consequence there was mechanical anisotropy. CNCs films showed the greatest values of tensile strength (36±4MPa) and the more effective fibrillation provided better mechanical strength of eucalyptus CNFs films than curaua CNFs films. Sulfur groups and mechanical shear degradation affected the stability of CNCs and CNFs films, respectively. Thus, the type of nanostructure, the way they interact to each other, the cellulose source and the process interfere significantly on the properties of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary; Kuznetsova, Nina; Garaeva, Milyausha; Leirset, Ingebjørg; Galiullina, Guzaliya; Kostochko, Anatoly; Syverud, Kristin

    2012-12-01

    This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m-2 day-1 atm-1, which is a good property for some packaging applications.

  5. Gravity models of forest products trade: applications to forecasting and policy analysis

    Treesearch

    Joseph Buongiorno

    2016-01-01

    To predict the value of trade between countries, a differential gravity model of bilateral trade flowswas formulated and estimated with panel data from 2005 to 2014 for each of the commodity groups HS44 (wood and articles of wood), HS47 (pulp of wood, fibrous cellulosic material) and HS48 (paper and paperboard). The parameters were estimated with a large database by...

  6. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.

    PubMed

    Owolabi, Abdulwahab F; Haafiz, M K Mohamad; Hossain, Md Sohrab; Hussin, M Hazwan; Fazita, M R Nurul

    2017-02-01

    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.

    PubMed

    Li, Yang; Ren, Hongfeng; Ragauskas, Arthur J

    2011-08-01

    Novel rigid polyurethane nanocomposite foams have been prepared by the polymerization of a sucrose-based polyol, a glycerol-based polyol and polymeric diphenylmethane diisocyanate in the presence of cellulose whiskers. Varying amounts of sulfuric acid hydrolyzed cellulose whiskers (0.25, 0.50, 0.75 and 1.00 wt%) prepared from a commercial fully bleached softwood kraft pulp were incorporated to investigate the effect of its dosage on the mechanical and thermal properties of polyurethane nanocomposites. Fourier transform infrared spectra of the nanocomposite foams suggested that additional hydrogen bonds were developed and crosslinking occurred between the hydroxyl groups of cellulose whiskers and isocyanate groups which increased the phase separation of soft and hard segments in the polyurethane. The closed cells of control foam and nanocomposite foams were homogeneously dispersed and the cell sizes were approximately 350 microm in diameter as observed by scanning electron microscope. A substantial improvement of mechanical properties at low whisker content (< or = 1.00 wt%) was obtained, especially the compressive strength and modulus at 1.00 wt% whiskers content which were increased by 269.7% and 210.0%, respectively. Thermal stability of the nanocomposites was also enhanced as determined by differential scanning calorimetry and thermogravimetric analysis.

  8. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    NASA Astrophysics Data System (ADS)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  9. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of bacterial cellulose and enzymes through sequential fermentation. The concept studied offers efficient utilization of the various components in fiber sludge hydrolysates and affords a possibility to combine production of two high value-added products using residual streams from pulp mills and biorefineries. Cellulase produced in this manner could tentatively be used to hydrolyze fresh fiber sludge to obtain medium suitable for production of BC in the same biorefinery. PMID:23414733

  10. Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4.

    PubMed

    Fan, Huiyan; Sun, Haiwen; Wang, Ying; Zhang, Yongliang; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui

    2014-01-01

    Beet necrotic yellow vein virus (BNYVV), encodes either four or five plus-sense single stranded RNAs and is the causal agent of sugar beet rhizomania disease, which is widely distributed in most regions of the world. BNYVV can also infect Nicotiana benthamiana systemically, and causes severe curling and stunting symptoms in the presence of RNA4 or mild symptoms in the absence of RNA4. Confocal laser scanning microscopy (CLSM) analyses showed that the RNA4-encoded p31 protein fused to the red fluorescent protein (RFP) accumulated mainly in the nuclei of N. benthamiana epidermal cells. This suggested that severe RNA4-induced symptoms might result from p31-dependent modifications of the transcriptome. Therefore, we used next-generation sequencing technologies to analyze the transcriptome profile of N. benthamiana in response to infection with different isolates of BNYVV. Comparisons of the transcriptomes of mock, BN3 (RNAs 1+2+3), and BN34 (RNAs 1+2+3+4) infected plants identified 3,016 differentially expressed transcripts, which provided a list of candidate genes that potentially are elicited in response to virus infection. Our data indicate that modifications in the expression of genes involved in RNA silencing, ubiquitin-proteasome pathway, cellulose synthesis, and metabolism of the plant hormone gibberellin may contribute to the severe symptoms induced by RNA4 from BNYVV. These results expand our understanding of the genetic architecture of N. benthamiana as well as provide valuable clues to identify genes potentially involved in resistance to BNYVV infection. Our global survey of gene expression changes in infected plants reveals new insights into the complicated molecular mechanisms underlying symptom development, and aids research into new strategies to protect crops against viruses.

  11. Changes in ruminal fermentation, milk performance and milk fatty acid profile in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp.

    PubMed

    Guo, Yongqing; Wang, Libin; Zou, Yang; Xu, Xiaofeng; Li, Shengli; Cao, Zhijun

    2013-12-01

    The aims of the experiment were to investigate the variation in ruminal fermentation, milk performance and milk fatty acid profile triggered by induced subacute ruminal acidosis (SARA); and to evaluate the ability of beet pulp (BP) as a replacement for ground maize in order to alleviate SARA. Eight Holstein-Friesian cows were fed four diets (total mixed rations) during four successive periods (each of 17 d): (1) without wheat (W0); (2) with 10% finely ground wheat (FGW) (W10); (3) with 20% FGW (W20); (4) with 20% FGW and 10% pelleted BP (BP10). Inducing SARA by diet W20 decreased the daily mean ruminal pH (6.37 vs. 5.94) and the minimum ruminal pH (5.99 vs. 5.41) from baseline to challenge period. Ruminal concentrations of total volatile fatty acid, propionate, butyrate, valerate and isovalerate increased with the W20 compared with the W0 and W10 treatments. The substitution of BP for maize increased the minimum ruminal pH and molar percentage of acetate and decreased the molar percentage of butyrate. The diets had no effect on dry matter intake (DMI) and milk yield, but the milk fat percentage and yield as well as the amount of fat-corrected milk was reduced in the W20 and BP10 treatments. The cows fed the W20 diet had greater milk concentrations of C11:0, C13:0, C15:0, C14:1, C16:1, C17:1, C18:2n6c, C20:3n6, total polyunsaturated fatty acids (FA) and total odd-chain FA, and lower concentrations of C18:0 and total saturated FA compared with the cows fed the W0 diet. Therefore, it can be concluded that changes in ruminal fermentation, milk fat concentration and fatty acid profile are highly related to SARA induced by feeding high FGW diets, and that the substitution of BP for maize could reduce the risk of SARA in dairy cows.

  12. Controlling the release of wood extractives into water bodies by selecting suitable eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kilulya, K. F.; Msagati, T. A. M.; Mamba, B. B.; Ngila, J. C.; Bush, T.

    Pulping industries are increasing worldwide as a result of the increase in the demand for pulp for cellulose derivatives and paper manufacturing. Due to the activities involved in pulping processes, different chemicals from raw materials (wood) and bleaching agents are released in pulp-mill effluent streams discharged into the environment and find their way into water bodies. Large quantities of water and chemicals used in pulping result in large amounts of wastewater with high concentrations of extractives such as unsaturated fatty acids, which are known to be toxic, and plant sterols which affect the development, growth and reproduction of aquatic organisms. This study was aimed at assessing the composition of extractives in two eucalyptus species used for pulp production in South Africa, in order to identify the suitable species with regard to extractive content. Samples from two eucalyptus plant species (Eucalyptus grandis and Eucalyptus dunnii) were collected from three sites and analysed for extractives by first extracting with water, followed by Soxhlet extraction using acetone. Compounds were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Major classes of extractives identified were fatty acids (mainly hexadecanoic acid, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic acids) and sterols (mainly β-sitosterol and stigmastanol). E. dunnii was found to contain higher amounts of the compounds compared to those found in E. grandis in all sampled sites. Principal component analysis (PCA) was performed and explained 92.9% of the total variation using three principal components. It was revealed that the percentage of fatty acids, which has a negative influence on both principal components 2 and 3, was responsible for the difference between the species. E. grandis, which was found to contain low amounts of extractives, was therefore found suitable for pulping with regard to minimal water usage and environment pollution.

  13. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets, sugar-beet...

  15. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets, sugar-beet...

  16. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets, sugar-beet...

  17. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets, sugar-beet...

  18. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets, sugar-beet...

  19. Water requirements of the pulp and paper industry

    USGS Publications Warehouse

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills are manufacturing sulfate pulp; because of the antipollution laws, many sulfite-pulp mills are being converted to sulfate-pulp mills. The waste from the manufacture of a ton of sulfate pulp is much more readily disposed of than that from a ton of sulfite pulp. Pulp mills are located near the source of raw material, which means that they are located in the eastern half of the United States and in the Pacific Northwest. It is advantageous for paper mills to be located close to a market and therefore a large number of paper mills are in the northeastern section of the United States from Minnesota to Maine. However, much of the coarser paper, which will ship well, is produced close to the pulp mills. The entire process of making paper from pulpwood, with special reference to water use is briefly described to provide an understanding of how the water is used and reused.

  20. Impact of thermal pretreatment and MSW origin on composition and hydrolysability in a sugar platform biorefinery

    NASA Astrophysics Data System (ADS)

    Vaurs, L. P.; Heaven, S.; Banks, C. J.

    2018-03-01

    Municipal solid waste (MSW) is a widely available large volume source of lignocellulosic material containing a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a sugar platform biorefinery. Thermal pretreatments are generally applied to MSW to facilitate the extraction of the lignocellulosic material from recyclable materials (plastics, metals etc.) and improve the paper pulp conversion to sugars. Applying high temperature might enhance food waste solubilisation but may collapse cellulose fibre decreasing its hydrolysability. Low temperature pre-treatment will reduce the energy demand but might result in highly contaminated pulp. Preliminary results showed that the enzymatic hydrolysis performances were dependent on the MSW origins. Using 8 different samples, the impact of thermal pretreatment and MSW origin on pulp composition and hydrolysability was assessed in this work. Low pre-treatment temperature produced pulp which contained less lignocellulosic material but which hydrolysed to a higher degree than MSW treated at high temperatures. High temperature pre-treatment could have exposed more of the inhibiting lignin to cellulase. This information would have a significant economic impact on a commercial plant as expensive autoclave could be advantageously replaced by a cheaper process. Glucan conversions were also found to vary depending on the region, the recycling rate possibly because of the lower recycling rate resulting in the use of less paper additive in the material or the difference in paper production technology (chemical VS mechanical pulping). This could also be explained by the differences in paper composition.

  1. Evaluation of Enzymatic Deinking of Non-impact Ink Laser-Printed Paper Using Crude Enzyme from Penicillium rolfsii c3-2(1) IBRL.

    PubMed

    Lee, Kok Chang; Tong, Woei Yenn; Ibrahim, Darah; Arai, Takamitsu; Murata, Yoshinori; Mori, Yutaka; Kosugi, Akihiko

    2017-01-01

    Application of microbial enzymes for paper deinking is getting tremendous attention due to the rapidly increasing of waste paper every year. This study reports the deinking efficiency of laser-printed paper by the lignocellulolytic enzyme from Penicillium rolfsii c3-2(1) IBRL strain compared to other enzyme sources as well as commercial available enzymes. High enzymatic deinking efficiency of approximately 82 % on laser-printed paper was obtained by pulp treatment with crude enzyme from P. rolfsii c3-2(1) IBRL. However, this crude enzyme was found to reduce the paper strength properties of the pulp based on the results of tensile, tear and burst indices, most probably due to the cellulose degradation. This was further proven by the low viscosity of paper pulp obtained after enzymatic treatment and increasing of sugar production during the treatment. Balancing to this detrimental effect on paper pulp, high deinking efficiency was achieved within a short period of time, in which the enzymatic treatment was conducted for 30 min that enabled contribution to higher brightness index obtained, thus promoting savings of time and energy consumption, therefore environmental sustainability. Extensive research should be conducted to understand the nature and mechanism of enzymatic deinking process by the crude enzyme from P. rolfsii c3-2(1) IBRL in order to improve paper strength properties.

  2. Novel arabinan and galactan oligosaccharides from dicotyledonous plants

    NASA Astrophysics Data System (ADS)

    Wefers, Daniel; Tyl, Catrin; Bunzel, Mirko

    2014-11-01

    Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS2 and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation.

  3. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating sound, mature, good quality, edible beets. (2) Color additive mixtures made with dehydrated beets may contain as...

  4. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.

    PubMed

    Peciulyte, Ausra; Anasontzis, George E; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2014-11-01

    The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    PubMed

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy shed light on the superior properties of these nanomaterials.

  6. Cloning and heterologous expression of cellulose free thermostable xylanase from Bacillus brevis.

    PubMed

    Goswami, Girish K; Krishnamohan, Medichtrla; Nain, Vikrant; Aggarwal, Chetana; Ramesh, Bandarupalli

    2014-01-01

    Xylanase gene isolated from Bacillus brevis was expressed in E. coli BL21. Sequencing of the gene (Gen Bank accession number: HQ179986) showed that it belongs to family 11 xylanases. The recombinant xylanase was predominantly secreted to culture medium and showed mesophilic nature (optimum activity at 55°C and pH 7.0). The cell free culture medium exhibited 30 IU/ml xylanse activity. The enzyme did not show any cellulose activity and was active under wide range of temperature (40°C to 80°C) and pH (4 to 9). The enzyme showed considerable thermo stability and regained over 90% of activity, when returned to 55°C after boiling for 5 min. These physiochemical properties of B. brevis xylanse show high potential of its applications in paper and pulp industry.

  7. Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view

    NASA Astrophysics Data System (ADS)

    Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F.

    2018-04-01

    This work presents the isolation and functionalization of cellulose nanocrystals (CNCs) extracted from sugarcane bagasse (SCB). CNCs were obtained by acid hydrolysis of bleached bagasse pulp and functionalized with adipic acid. The results showed that unmodified CNCs exhibit both a high crystallinity index and a significant aspect ratio. Surface modification with adipic acid decreases the nanocrystal dimensions due to removal of the amorphous region between the crystalline domains and also changes the electrostatic repulsion and hydrophilic affinity of CNCs. Unmodified CNCs offer potential applications as reinforcing phase in hydrophilic polymeric matrices, while modified CNCs interact better with hydrophobic matrices. The use of CNCs as reinforcement in polymer nanocomposites expands the application of this renewable material and increases its added value, providing nonenergy-based markets for the main biomass of the sugarcane industry.

  8. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    PubMed

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex -1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli.

    PubMed

    Ko, Chun-Han; Tsai, Chung-Hung; Lin, Po-Heng; Chang, Ko-Cheng; Tu, Jenn; Wang, Ya-Nang; Yang, Chien-Ying

    2010-10-01

    The Cel-BL11 gene from Paenibacillus campinasensis BL11 was cloned and expressed in Escherichia coli as a His-tag fusion protein. Zymographic analysis of the recombinant protein revealed cellulase activity corresponding to a protein with a 38-kDa molecular weight. The optimum temperature and pH for purified cellulase were 60 °C and pH 7.0, respectively. The enzyme retained more than 80% activity after 8h at 60 °C at pH 6 and 7. The cellulase has a Km of 11.25 mg/ml and a Vmax of 1250 μmol/min/mg with carboxylmethyl cellulose (CMC). Then enzyme was active on Avicel, swollen Avicel, CMC, barley β-glucan, laminarin in the presence of 100 mM acetate buffer. It was inhibited by Hg²⁺, Cu²⁺ and Zn²⁺. Significant kraft pulp refining energy saving, 10%, was exhibited by the pretreatment of this cellulase applied at 2 IU per gram of oven-dried pulp. Broad pH and temperature stability render this cellulase a convenient applicability toward current mainstream biomass conversion and other industrial processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure.

  11. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest that there is no significant difference of the immersion ice nucleation activity of MCC and fibrous cellulose in supercooled water. Overall, our findings support the view that MCC may be a good proxy for inferring water uptake, wettability and ice nucleating properties of various cellulose materials. In addition, we discuss the ice-nucleating efficiencies of both cellulose samples and plant debris from the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) chamber experiments in comparison to the BINARY results. The influence of the acid processing of cellulose on its ice nucleation propensity may also be discussed to further demonstrate their atmospheric relevancy. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).

  12. Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production.

    PubMed

    Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat

    2017-10-01

    In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.

  13. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet...) Sugar beet extract flavor base is the concentrated residue of soluble sugar beet extractives from which...

  14. Recovery Effects of Oral Administration of Glucosylceramide and Beet Extract on Skin Barrier Destruction by UVB in Hairless Mice.

    PubMed

    Tokudome, Yoshihiro; Masutani, Noriomi; Uchino, Shohei; Fukai, Hisano

    2017-10-27

    Purified glucosylceramide from beet extract (beet GlcCer) and beet extract containing an equal amount of GlcCer were administered orally to ultra violet B (UVB)-irradiated mice, and differences in the protective effects against skin barrier dysfunction caused by UVB irradiation were compared. In the beet GlcCer group, epidermal thickening and the decrease in stratum corneum (SC) ceramide content caused by UVB irradiation were reduced. In the group that was orally administered beet extract containing glucosylceramide, effects similar to those in the beet GlcCer group were observed. Oral administration of beet GlcCer had no obvious effects against an increase in TEWL or decrease in SC water content after UVB irradiation, but there was improvement in the beet extract group. Oral administration of beet GlcCer is effective in improving skin barrier function in UVB-irradiated mice. Beet extract contains constituents other than GlcCer that are also effective in improving skin barrier function.

  15. Isolation and characterization of microcrystalline cellulose from roselle fibers.

    PubMed

    Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Alothman, Othman Y

    2017-10-01

    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Organic and conventional fertilisation procedures on the nitrate, antioxidants and pesticide content in parts of vegetables.

    PubMed

    Lima, G P P; Teixeira da Silva, Jaime A; Bernhard, A B; Pirozzi, D C Z; Fleuri, L F; Vianello, F

    2012-01-01

    Different parts of plant foods are generally discarded by consumers such as peel, stalk and leaves, which could however possess a nutritional value. However, few studies have analysed the composition of these marginal foods. The phenolic compound, flavonoid, polyamine, nitrate and pesticide contents of parts of vegetables that are usually discarded--but which were cultivated according to conventional and non-conventional procedures--were analysed to provide suggestions on how to improve the consumption of these parts and to reduce the production of urban solid waste. Few, but significant, differences between the two manuring procedures were observed. Higher nitrate content and the presence of organochlorine pesticides were found in conventional cultivated papaya peel, lemon balm leaves, jack fruit pulp, and beet stalk and peel. Discarded parts of plant foods such as stalk, leaves and peels can be used as a source of antioxidant compounds, such as phenolic compounds.

  17. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.

    PubMed

    Gan, Sinyee; Piao, Shang Hao; Choi, Hyoung Jin; Zakaria, Sarani; Chia, Chin Hua

    2016-02-10

    Cellulose carbamate (CC) was produced from kenaf core pulp (KCP) via a microwave reactor-assisted method. The formation of CC was confirmed by Fourier transform infrared spectroscopy and nitrogen content analysis. The degree of substitution, zeta potential and size distribution of CC were also determined. The CC was characterized with scanning electron microscopy, X-ray diffraction and thermogravimetry analysis. The CC particles were then dispersed in silicone oil to prepare CC-based anhydrous electric stimuli-responsive electrorheological (ER) fluids. Rhelogical measurement was carried out using rotational rheometer with a high voltage generator in both steady and oscillatory shear modes to examine the effect of electric field strength on the ER characteristics. The results showed that the increase in electric field strength has enhanced the ER properties of CC-based ER fluid due to the chain formation induced by electric polarization among the particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Beet curly top virus strains associated with sugar beet in Idaho, Oregon, and a Western U.S. collection

    USDA-ARS?s Scientific Manuscript database

    Curly top of sugar beet is a serious, yield limiting disease in semi-arid production areas caused by Beet curly top virus (BCTV) and transmitted by the beet leafhopper. One of the primary means of control for BCTV in sugar beet is host resistance but effectiveness of resistance can vary among BCTV ...

  19. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product.

    PubMed

    Mouelhi, Refka; Abidi, Ferid; Galai, Said; Marzouki, M Nejib

    2014-03-01

    The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent K(m) and V(max) for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month's storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.

  20. Performance of improved bacterial cellulose application in the production of functional paper.

    PubMed

    Basta, A H; El-Saied, H

    2009-12-01

    The purpose of this work was to study the feasibility of producing economic flame retardant bacterial cellulose (BC) and evaluating its behaviour in paper production. This type of BC was prepared by Gluconacetobacter subsp. xylinus and substituting the glucose in the cultivation medium by glucose phosphate as a carbon source; as well as using corn steep liquor as a nitrogen source. The investigated processing technique did not dispose any toxic chemicals that pollute the surroundings or cause unacceptable effluents, making the process environmentally safe. The fire retardant behaviour of the investigated BC has been studied by non-isothermal thermogravimetric analysis (TGA & DTGA). The activation energy of each degradation stage and the order of degradation were estimated using the Coats-Redfern equation and the least square method. Strength, optical properties, and thermogravimetric analysis of BC-phosphate added paper sheets were also tested. The study confirmed that the use of glucose phosphate along with glucose was significant in the high yield production of phosphate containing bacterial cellulose (PCBC1); more so than the use of glucose phosphate alone (PCBC2). Incorporating 5% of the PCBC with wood pulp during paper sheet formation was found to significantly improve kaolin retention, strength, and fire resistance properties as compared to paper sheets produced from incorporating bacterial cellulose (BC). This modified BC is a valuable product for the preparation of specialized paper, in addition to its function as a fillers aid.

  1. Effect of feeding olive-pulp ensiled with additives on feedlot performance and carcass attributes of fat-tailed lambs.

    PubMed

    Taheri, Mohammad Reza; Zamiri, Mohammad Javad; Rowghani, Ebrahim; Akhlaghi, Amir

    2013-01-01

    Feed cost has a significant effect on the economic efficiency of feedlot lambs; therefore, the use of low-cost non-conventional feedstuffs, such as olive pulp (OP), has the potential to decrease the production costs. Because optimum inclusion of OP-treated silages has not been determined in feedlot lambs, an experiment was conducted to determine the effect of inclusion of OP ensiled with additives in the diet on the feedlot performance and carcass attributes of feedlot lambs. Ram lambs of Mehraban and Ghezel breeds (n = 50 lambs per breed) were randomly allotted to 10 groups and fed with one of the nine diets containing OP silage or a control diet. Silage treatments were: (1) OP silage without additives (OPS), (2) OP ensiled with 8 % beet molasses and 0.4 % formic acid (OP-MF), and (3) OP ensiled with 8 % beet molasses, 0.4 % formic acid and 0.5 % urea (OP-MFU). The control diet contained 50 % alfalfa hay and 50 % barley grain. Three levels from each silage were chosen to replace the barley grain (10, 20, or 30 % dry matter basis). The lambs were slaughtered after 92 days, and the average daily gain (ADG), feed conversion ratio (FCR), and carcass characteristics were determined. Feeding OPS to fat-tailed lambs, at an inclusion level of 30 %, decreased the carcass dressing percentage, mainly as a result of decreased brisket percentage, but the ADG and FCR values were not adversely affected. Ghezel lambs had higher ADG than Mehraban lambs, but the visceral fat weight percentage, flap weight percentage, and back fat depth were higher in Mehraban. The crude protein content in the longissimus dorsi (LD) muscle was higher in Ghezel, but the dry matter percentage was higher in Mehraban (P < 0.05). Other attributes were not significantly affected by breed (P > 0.05). Most carcass characteristics, including major cuts, were not affected by OPS feeding; therefore, feeding OPS (up to 30 %) can be economical for feedlot lambs. Most carcass characteristics, including major cuts, were not affected by OPS levels used in this experiment; therefore, inclusion of OPS (up to 30 %) in the diet may reduce the cost of raising feedlot lambs. This also could help alleviate the problem of storage of OP in oil factories.

  2. Biofibers from agricultural byproducts for industrial applications.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2005-01-01

    Lignocellulosic agricultural byproducts are a copious and cheap source for cellulose fibers. Agro-based biofibers have the composition, properties and structure that make them suitable for uses such as composite, textile, pulp and paper manufacture. In addition, biofibers can also be used to produce fuel, chemicals, enzymes and food. Byproducts produced from the cultivation of corn, wheat, rice, sorghum, barley, sugarcane, pineapple, banana and coconut are the major sources of agro-based biofibers. This review analyses the production processes, structure, properties and suitability of these biofibers for various industrial applications.

  3. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  4. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    PubMed Central

    Hirn, Ulrich; Schennach, Robert

    2015-01-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption. PMID:26000898

  5. 40 CFR 180.408 - Metalaxyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...-(methoxyacetyl)-alanine methyl ester, each expressed as metalaxyl equivalents, in or on the following food... Beet, garden, tops 0.1 Beet, sugar 0.1 Beet, sugar, molasses 1.0 Beet, sugar, roots 0.5 Beet, sugar...

  6. 40 CFR 180.408 - Metalaxyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...-(methoxyacetyl)-alanine methyl ester, each expressed as metalaxyl equivalents, in or on the following food... Beet, garden, tops 0.1 Beet, sugar 0.1 Beet, sugar, molasses 1.0 Beet, sugar, roots 0.5 Beet, sugar...

  7. 40 CFR 180.408 - Metalaxyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...-(methoxyacetyl)-alanine methyl ester, each expressed as metalaxyl equivalents, in or on the following food... Beet, garden, tops 0.1 Beet, sugar 0.1 Beet, sugar, molasses 1.0 Beet, sugar, roots 0.5 Beet, sugar...

  8. Beet curly top resistance in USDA-ARS Ft. Collins Germplasm, 2012

    USDA-ARS?s Scientific Manuscript database

    Seventeen sugar beet (Beta vulgaris L.) lines from the USDA-ARS Ft. Collins sugar beet program were screened for resistance to Beet severe curly top virus (BSCTV) and other closely related Curtovirus species in 2012. Commercial sugar beet cultivars Monohikari and HM PM90 were included as susceptibl...

  9. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 32 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  10. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 28 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  11. Milled industrial beet color kinetics and total soluble solid contents by image analysis

    USDA-ARS?s Scientific Manuscript database

    Industrial beets are an emerging feedstock for biofuel and bioproducts industry in the US. Milling of industrial beets is the primary step in front end processing (FEP) for ethanol production. Milled beets undergo multiple pressings with water addition during raw beet juice extraction, and extracted...

  12. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2016

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 22 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  13. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2016

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 31 experimental cultivars were screened by growing them in a sugar beet field infested with...

  14. The Assessment of Red Beet as a Natural Colorant, and Evaluation of Quality Properties of Emulsified Pork Sausage Containing Red Beet Powder during Cold Storage

    PubMed Central

    Jin, Sang-Keun; Choi, Jung-Seok; Moon, Sung-Sil; Jeong, Jin-Yeon

    2014-01-01

    The purpose of this study was to assess red beet as a natural colorant in emulsified pork sausage and to investigate the effect of red beet on quality characteristics of emulsified pork sausage during 20 d of cold storage. Red beet was prepared as a powder and a substitute with sodium nitrite at 0.5% and 1.0% levels in emulsified pork sausage. Red beet significantly increased the moisture content and pH (p<0.0001) and affected color traits. Lightness of emulsified pork sausage decreased by the addition of red beet powder (p<0.01), whereas lightness with red beet treatments slightly increased during 20 d of cold storage at 4℃ (p<0.05). Redness dramatically increased with red beet powder (p<0.0001). Color by sensory evaluation also showed a significant effect from red beet addition (p<0.05), whereas the other sensory properties such as flavor, tenderness, juiciness, and overall acceptability were not affected by the addition of red beet powder (p>0.05). Texture and 2-thiobabituric acid reactive substance were also not affected by red beet addition (p>0.05). Therefore, red beet could be a good natural colorant in emulsified pork sausage but it needs additional processing, such as betalain concentration and extraction as a juice, to be used as an antioxidant in meat products. PMID:26761285

  15. Oil spills abatement: factors affecting oil uptake by cellulosic fibers.

    PubMed

    Payne, Katharine C; Jackson, Colby D; Aizpurua, Carlos E; Rojas, Orlando J; Hubbe, Martin A

    2012-07-17

    Wood-derived cellulosic fibers prepared in different ways were successfully employed to absorb simulated crude oil, demonstrating their possible use as absorbents in the case of oil spills. When dry fibers were used, the highest sorption capacity (six parts of oil per unit mass of fiber) was shown by bleached softwood kraft fibers, compared to hardwood bleached kraft and softwood chemithermomechanical pulp(CTMP) fibers. Increased refining of CTMP fibers decreased their oil uptake capacity. When the fibers were soaked in water before exposure to the oil, the ability of the unmodified kraft fibers to sorb oil was markedly reduced, whereas the wet CTMP fibers were generally more effective than the wet kraft fibers. Predeposition of lignin onto the surfaces of the bleached kraft fibers improved their ability to take up oil when wet. Superior ability to sorb oil in the wet state was achieved by pretreating the kraft fibers with a hydrophobic sizing agent, alkenylsuccinic anhydride (ASA). Contact angle tests on a model cellulose surface showed that some of the sorption results onto wetted fibers could be attributed to the more hydrophobic nature of the fibers after treatment with either lignin or ASA.

  16. Kimberly sugar beet germplasm evaluated for rhizomania and storage rot resistance in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet germplasm lines with resistance to BNYVV and storage rots, 11germplasm lines from the USDA-ARS Kimberly sugar beet program were screened. The lines wer...

  17. Beet curly top resistance in USDA-ARS Kimberly sugar beet germplasm lines, 2016

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to identify no...

  18. Effects of cationic xylan from annual plants on the mechanical properties of paper.

    PubMed

    Deutschle, Alexander L; Römhild, Katrin; Meister, Frank; Janzon, Ron; Riegert, Christiane; Saake, Bodo

    2014-02-15

    Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge.

    PubMed

    Gottumukkala, Lalitha Devi; Haigh, Kate; Collard, François-Xavier; van Rensburg, Eugéne; Görgens, Johann

    2016-09-01

    The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.

    PubMed

    Chen, Liheng; Fu, Shiyu

    2013-04-03

    Pretreatment combining FeCl3 and Tween80 was performed for cellulose-to-ethanol conversion of eucalyptus alkaline peroxide mechanical pulping waste fibers (EAWFs). The FeCl3 pretreatment alone showed a good effect on the enzymatic hydrolysis of EAWFs, but inhibited enzyme activity to some extent. A surfactant, Tween80, added during FeCl3 pretreatment was shown to significantly enhance enzyme reaction by eluting enzymatic inhibitors such as iron(III) that are present at the surface of the pretreated biomass. Treatment temperature, liquid-solid ratio, treatment time, FeCl3 concentration, and Tween80 dosage for pretreatment were optimized as follows: 180 °C, 8:1, 30 min, 0.15 mol/L, and 1% (w/v). Pretreated EAWFs under such optimal conditions provided enzymatic glucose (based on 100 g of oven-dried feedstock) and substrate enzymatic digestibility of EAWFs of 34.8 g and 91.3% after 72 h of enzymatic hydrolysis, respectively, with an initial cellulase loading of 20 FPU/g substrate.

  1. Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure

    PubMed Central

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-01-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926

  2. Beet curly top virus strains associated with sugar beet in Idaho, Oregon, and a survey collection

    USDA-ARS?s Scientific Manuscript database

    Curly top of sugar beet is a serious yield limiting disease in semi-arid production areas caused by Beet curly top virus (BCTV) and vectored by the beet leafhopper (Circulifer tennellus). The primary means of control for BCTV is host resistance, but effectiveness of resistance can vary among BCTV s...

  3. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sugar beet extract flavor base. 172.585 Section... Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section. (a) Sugar beet extract flavor base is...

  4. Influence of Beet necrotic yellow vein virus and freezing temperatures on sugar beet roots in storage

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is a yield limiting sugar beet disease that was observed to influence root resistance to freezing in storage. Thus, studies were conducted to gain a better understanding of the influence BNYVV and freezing on sugar beet roots to improve p...

  5. Beta vulgaris L. serine proteinase inhibitor gene expression correlates to insect pest resistance in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Analyzing genes that can be used for improving sugar beet resistance to the sugar beet root maggot (SBRM, Tetanops myopaeformis Roder), one of the most destructive insect pests of sugar beet in North America, was a major goal in our investigation. We report on the expression patterns of a sugar beet...

  6. Influence of beet necrotic yellow vein virus and freezing temperatures on sugar beet roots in storage

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is a yield limiting sugar beet disease that was also observed to influence the roots ability to resist freezing in storage. Roots from 5 commercial sugar beet cultivars (1 susceptible and 4 resistant to BNYVV) were produced in fields unde...

  7. 29 CFR 780.816 - Processing of specific commodities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap... processing of sugar beets, sugar-beet molasses, sugarcane, or maple sap is within the exemption. Operations...

  8. 29 CFR 780.816 - Processing of specific commodities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap... processing of sugar beets, sugar-beet molasses, sugarcane, or maple sap is within the exemption. Operations...

  9. 29 CFR 780.816 - Processing of specific commodities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap... processing of sugar beets, sugar-beet molasses, sugarcane, or maple sap is within the exemption. Operations...

  10. 29 CFR 780.816 - Processing of specific commodities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap... processing of sugar beets, sugar-beet molasses, sugarcane, or maple sap is within the exemption. Operations...

  11. 29 CFR 780.816 - Processing of specific commodities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap... processing of sugar beets, sugar-beet molasses, sugarcane, or maple sap is within the exemption. Operations...

  12. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION...-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may... microorganisms in cane-sugar and/or beet-sugar mills as specified in paragraph (b) of this section. (b) They are...

  13. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  14. 40 CFR 180.353 - Desmedipham; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agricultural commodities in the table that follows: Commodity Parts per million Beet, garden, roots 0.05 Beet, garden, tops 1.0 Beet, sugar, roots 0.1 Beet, sugar, tops 5.0 Spinach 6.0 (b) Section 18 emergency...

  15. 40 CFR 180.353 - Desmedipham; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agricultural commodities in the table that follows: Commodity Parts per million Beet, garden, roots 0.05 Beet, garden, tops 1.0 Beet, sugar, roots 0.1 Beet, sugar, tops 5.0 Spinach 6.0 (b) Section 18 emergency...

  16. 40 CFR 180.353 - Desmedipham; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agricultural commodities in the table that follows: Commodity Parts per million Beet, garden, roots 0.05 Beet, garden, tops 1.0 Beet, sugar, roots 0.1 Beet, sugar, tops 5.0 Spinach 6.0 (b) Section 18 emergency...

  17. 40 CFR 180.353 - Desmedipham; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agricultural commodities in the table that follows: Commodity Parts per million Beet, garden, roots 0.05 Beet, garden, tops 1.0 Beet, sugar, roots 0.1 Beet, sugar, tops 5.0 Spinach 6.0 (b) Section 18 emergency...

  18. 40 CFR 180.353 - Desmedipham; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agricultural commodities in the table that follows: Commodity Parts per million Beet, garden, roots 0.05 Beet, garden, tops 1.0 Beet, sugar, roots 0.1 Beet, sugar, tops 5.0 Spinach 6.0 (b) Section 18 emergency...

  19. Biogas production from pretreated coffee-pulp waste by mixture of cow dung and rumen fluid in co-digestion

    NASA Astrophysics Data System (ADS)

    Juliastuti, Sri Rachmania; Widjaja, Tri; Altway, Ali; Iswanto, Toto

    2017-05-01

    Coffee is an excellent commodity in Indonesia that has big problem in utilizing its wastes. As the solution, the abundant coffee pulp waste from processing of coffee bean industry has been used as a substrate of biogas production. Coffee pulp waste (CPW) was approximately 48% of total weight, consisting 42% of the coffee pulp and 6% of the seed coat. CPW holds good composition as biogas substrate that is consist of cellulose (63%), hemicellulose (2.3%) and protein (11.5%). Methane production from coffee pulp waste still has much problems because of toxic chemicals content such as caffeine, tannin, and total phenol which can inhibit the biogas production. In this case, CPW was pretreated by ethanol/water (50/50, v/v) at room temperature to remove those inhibitors. This study was to compare the methane production by microbial consortium of cow dung and rumen fluid mixture coffee pulp waste as a substrate with and without pretreatment. The pretreated CPW was fermented with mixture of Cow Dung (CD) and Rumen Fluid (RF) in anaerobic co-digestion for 30 days at mesophilic temperature (30-40°C) and the pH was maintained from 6.8 to 7.2 on a reactor with working volume of 3.6 liters. There were two reactors with each containing the mixture of CPW without pretreatment, cow dung and rumen fluid (CD+RF+CPW) and then compared with the CPW with pretreatment (CD+RF+PCPW) reactor. The measured parameters included the decreasing of inhibitor compound concentration, Volatile Fatty Acids (VFAs), Chemical Oxygen Demand (COD), Total Solid (TS), Volatile Solid (VS), Methane and the Calorific value of gas (heating value) were studied as well. The result showed a decrease in inhibitor component concentration due to methanol pretreatment was 90% of caffeine; 78% of polyphenols (total phenol) and 66% of tannins. The highest methane content in biogas was produced in CD+RF+PCPW digester with concentration amounted of 44.56% with heating value of 27,770 BTU/gal.

  20. Survey of Some Actinomycetales for α-Galactosidase Activity1

    PubMed Central

    Lyons, A. J.; Pridham, T. G.; Hesseltine, C. W.

    1969-01-01

    The enzyme α-galactosidase offers potential to (i) eliminate possibly the flatus-inducing factor(s) in edible beans, (ii) eliminate raffinose during beet-sugar processing, and (iii) determine raffinose analytically. Accordingly, 20 genera of the order Actinomycetales Buchanan 1917 were tested for evidence of α-galactosidase activity. Test filtrates were prepared with a medium containing D-galactose and soybean meal. Enzyme activity was demonstrated through cellulose thin-layer chromatography. Of 123 strains tested, 28 produced extracellular α-galactosidase. Almost all were streptomycetes. Members of the genera Actinoplanes Couch 1950, Micromonospora ϕOrskov 1923, and Promicromonospora Krasil'nikov et al. 1961 also exhibited α-galactosidase activity. Additional tests led to the selection of five strains whose filtrates degraded melibiose, raffinose, and stachyose but not lactose and sucrose. Tests also were made with several soybean preparations. PMID:5392462

  1. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment.

    PubMed

    Yoshino, Aya; Tabuchi, Mari; Uo, Motohiro; Tatsumi, Hiroto; Hideshima, Katsumi; Kondo, Seiji; Sekine, Joji

    2013-04-01

    Dental root canal treatment is required when dental caries progress to infection of the dental pulp. A major goal of this treatment is to provide complete decontamination of the dental root canal system. However, the morphology of dental root canal systems is complex, and many human dental roots have inaccessible areas. In addition, dental reinfection is fairly common. In conventional treatment, a cotton pellet and paper point made from plant cellulose is used to dry and sterilize the dental root canal. Such sterilization requires a treatment material with high absorbency to remove any residue, the ability to improve the efficacy of intracanal medication and high biocompatibility. Bacterial cellulose (BC) is produced by certain strains of bacteria. In this study, we developed BC in a pointed form and evaluated its applicability as a novel material for dental canal treatment with regard to solution absorption, expansion, tensile strength, drug release and biocompatibility. We found that BC has excellent material and biological characteristics compared with conventional materials, such as paper points (plant cellulose). BC showed noticeably higher absorption and expansion than paper points, and maintained a high tensile strength even when wet. The cumulative release of a model drug was significantly greater from BC than from paper points, and BC showed greater compatibility than paper points. Taken together, BC has great potential for use in dental root canal treatment. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. 7 CFR 1435.300 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar... allotments for: (1) Processor marketings of sugar domestically processed from sugar beets or in-process beet sugar, whether such sugar beets or in-process beet sugar were produced domestically or imported, (2...

  3. 7 CFR 1435.300 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar... allotments for: (1) Processor marketings of sugar domestically processed from sugar beets or in-process beet sugar, whether such sugar beets or in-process beet sugar were produced domestically or imported, (2...

  4. 7 CFR 1435.300 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar... allotments for: (1) Processor marketings of sugar domestically processed from sugar beets or in-process beet sugar, whether such sugar beets or in-process beet sugar were produced domestically or imported, (2...

  5. 7 CFR 1435.300 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar... allotments for: (1) Processor marketings of sugar domestically processed from sugar beets or in-process beet sugar, whether such sugar beets or in-process beet sugar were produced domestically or imported, (2...

  6. 7 CFR 1435.300 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar... allotments for: (1) Processor marketings of sugar domestically processed from sugar beets or in-process beet sugar, whether such sugar beets or in-process beet sugar were produced domestically or imported, (2...

  7. Environmental assessment of mild bisulfite pretreatment of forest residues into fermentable sugars for biofuel production.

    PubMed

    Nwaneshiudu, Ikechukwu C; Ganguly, Indroneil; Pierobon, Francesca; Bowers, Tait; Eastin, Ivan

    2016-01-01

    Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.

  8. Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products.

    PubMed

    Ovalle-Serrano, S A; Gómez, F N; Blanco-Tirado, C; Combariza, M Y

    2018-06-01

    Fique fibers are extracted from Furcraea spp. leaves, with 5% average mass yield, using mechanical decortication. Juice, pulp and tow, the by-products of this process, amount 95% of the leaf weight and are considered waste. We extracted cellulose nanofibrils (CNF) from Fique tow, via ultrasound-assisted TEMPO followed by mechanical disintegration with sonication. Fique CNF exhibit diameters around 100 nm, degree of oxidation (DO) of 0.27 and surface charge density (σ) of 1.6 mmol/g. Fique CNF aqueous suspensions show optical birefringence and high colloidal stability due to a high ζ potential (-53 mV). The morphology, chemical structure, crystallinity and phase transitions of Fique CNF were studied using FESEM, IR-ATR, XRD and TGA. We observed that the delignification pretreatment and the TEMPO reaction assisted by ultrasound significantly increase Fique CNF σ and ζ potential, in contrast with the oxidation carried out without ultrasound or with raw (lignified) tow. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco.

    PubMed

    Chen, B W; Xiao, Y F; Li, J J; Liu, H L; Qin, Z H; Gai, Y; Jiang, X N

    2016-12-02

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in lignin biosynthesis. The genus Eucalyptus belongs to the family Myrtaceae, which is the main cultivated species in China. Eucalyptus urophylla GLU4 (GLU4) is widely grown in Guangxi. It is preferred for pulping because of its excellent cellulose content and fiber length. Based on GLU4 and CAD gene expression, a Eucalyptus variety low in lignin content should be obtained using transgenic technology, which could reduce the cost of pulp and improve the pulping rate, and have favorable prospects for application. However, the role and function of CAD in GLU4 is still unclear. In the present study, EuCAD was cloned from GLU4 and identified using bioinformatic tools. Subsequently, in order to evaluate its impact on lignin synthesis, a full-length EuCAD RNAi vector was constructed, and transgenic tobacco was obtained via Agrobacterium-mediated transformation. A significant decrease in CAD expression and lignin content in transgenic tobacco demonstrated a key role for EuCAD in lignin biosynthesis and established a regulatory role for RNAi. In our study, the direct molecular basis of EuCAD expression was determined, and the potential regulatory effects of this RNAi vector on lignin biosynthesis in E. urophylla GLU4 were demonstrated. Our results provide a theoretical basis for the study of lignin biosynthesis in Eucalyptus.

  10. Phylogenetic relationships and the occurrence of interspecific recombination between beet chlorosis virus (BChV) and Beet mild yellowing virus (BMYV).

    PubMed

    Kozlowska-Makulska, Anna; Hasiow-Jaroszewska, Beata; Szyndel, Marek S; Herrbach, Etienne; Bouzoubaa, Salah; Lemaire, Olivier; Beuve, Monique

    2015-02-01

    Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene. Moreover, a partial correlation between geographic origin and phylogenetic clustering was observed for BMYV isolates.

  11. Biological and molecular characterization of Beet oak-leaf virus

    USDA-ARS?s Scientific Manuscript database

    Beet oak-leaf virus (BOLV) was first isolated from Rhizomania infested fields in California in early 2000. The infected sugar beet leaves showed oak-leaf pattern symptoms in some breeding lines different from Rhizomania, while some beet cultivars were symptomless. BOLV is transmitted by Polymyxe bet...

  12. Sugar beet breeding

    USDA-ARS?s Scientific Manuscript database

    Sugar beet is a recent crop developed solely for extraction of the sweetener sucrose. Breeding and improvement of Beta vulgaris for sugar has a rich historical record. Sugar beet originated from fodder beet in the 1800s, and selection has increased sugar content from 4 to 6% then to over 18% today. ...

  13. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    NASA Astrophysics Data System (ADS)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  14. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint.

    PubMed

    Virk, Antar Puneet; Puri, Minakshi; Gupta, Vijaya; Capalash, Neena; Sharma, Prince

    2013-01-01

    The development in the deinking process has made recycled fiber a major part of the raw material for pulp and paper industry. Enzymes have revolutionized the deinking process obtaining brightness levels surpassing conventional deinking processes. This study explores the deinking efficiencies of bacterial alkalophilic laccase (L) and xylanase (X) enzymes along with physical deinking methods of microwaving (MW) and sonication (S) for recycling of old newsprint (ONP). The operational parameters viz. enzyme dose, pH and treatment time for X and L deinking were optimized statistically using Response Surface Methodology. Laccase did not require any mediator supplementation for deinking. Deinking of ONP pulp with a combination of xylanase and laccase enzymes was investigated, and fiber surface composition and morphological changes were studied using X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the pulp deinked with xylanase (47.9%) or laccase (62.2%) individually, the percentage reduction of effective residual ink concentration (ERIC) was higher for the combined xylanase/laccase-deinked pulp (65.8%). An increase in brightness (21.6%), breaking length (16.5%), burst factor (4.2%) tear factor (6.9%), viscosity (13%) and cellulose crystallinity (10.3%) along with decrease in kappa number (22%) and chemical consumption (50%) were also observed. Surface appeared more fibrillar along with changes in surface functional groups. A combination of physical and enzymatic processes (S-MW-XL) for deinking further improved brightness (28.8%) and decreased ERIC (73.9%) substantially. This is the first report on deinking of ONP with laccase without any mediator supplementation. XL pretreatment resulted in marked improvement in paper quality and a new sequence being reported for deinking (S-MW-XL) will contribute further in decreasing chemical consumption and making the process commercially feasible.

  15. Combined Enzymatic and Physical Deinking Methodology for Efficient Eco-Friendly Recycling of Old Newsprint

    PubMed Central

    Virk, Antar Puneet; Puri, Minakshi; Gupta, Vijaya; Capalash, Neena; Sharma, Prince

    2013-01-01

    Background The development in the deinking process has made recycled fiber a major part of the raw material for pulp and paper industry. Enzymes have revolutionized the deinking process obtaining brightness levels surpassing conventional deinking processes. This study explores the deinking efficiencies of bacterial alkalophilic laccase (L) and xylanase (X) enzymes along with physical deinking methods of microwaving (MW) and sonication (S) for recycling of old newsprint (ONP). Methods and Results The operational parameters viz. enzyme dose, pH and treatment time for X and L deinking were optimized statistically using Response Surface Methodology. Laccase did not require any mediator supplementation for deinking. Deinking of ONP pulp with a combination of xylanase and laccase enzymes was investigated, and fiber surface composition and morphological changes were studied using X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the pulp deinked with xylanase (47.9%) or laccase (62.2%) individually, the percentage reduction of effective residual ink concentration (ERIC) was higher for the combined xylanase/laccase-deinked pulp (65.8%). An increase in brightness (21.6%), breaking length (16.5%), burst factor (4.2%) tear factor (6.9%), viscosity (13%) and cellulose crystallinity (10.3%) along with decrease in kappa number (22%) and chemical consumption (50%) were also observed. Surface appeared more fibrillar along with changes in surface functional groups. A combination of physical and enzymatic processes (S-MW-XL) for deinking further improved brightness (28.8%) and decreased ERIC (73.9%) substantially. Conclusion This is the first report on deinking of ONP with laccase without any mediator supplementation. XL pretreatment resulted in marked improvement in paper quality and a new sequence being reported for deinking (S-MW-XL) will contribute further in decreasing chemical consumption and making the process commercially feasible. PMID:23977287

  16. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a... mixtures for coloring foods. (b) Specifications. The color additive shall conform to the following... that it may not be used to color foods for which standards of identity have been promulgated under...

  17. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a... mixtures for coloring foods. (b) Specifications. The color additive shall conform to the following... that it may not be used to color foods for which standards of identity have been promulgated under...

  18. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a... mixtures for coloring foods. (b) Specifications. The color additive shall conform to the following... that it may not be used to color foods for which standards of identity have been promulgated under...

  19. Sugar Beet, Energy Beet, and Industrial Beet

    USDA-ARS?s Scientific Manuscript database

    Sugar beet (Beta vulgaris) is a temperate root crop grown primarily as a source of sucrose for human diets. Breeding has focused on sucrose yield, which is simply the product of total root yield times the proportion of sucrose in the harvested roots, minus loss of sucrose in molasses due to impuriti...

  20. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mixtures for coloring foods. (b) Specifications. The color additive shall conform to the following... used for the coloring of foods generally in amounts consistent with good manufacturing practice, except... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dehydrated beets (beet powder). 73.40 Section 73...

  1. Beet curly top resistance in USDA-ARS Ft. Collins germplasm, 2017

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...

  2. Foliar insecticides for the control of curly top in Idaho sugar beet, 2017

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. The neonicotiono...

  3. Beet curly top resistance in USDA-ARS plant introduction lines, 2017

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...

  4. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  5. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  6. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  7. Beet curly top resistance in USDA-ARS plant introduction lines, 2016

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...

  8. Beet curly top resistance in USDA-ARS Kimberly germplasm lines, 2015

    USDA-ARS?s Scientific Manuscript database

    Curly top caused by Beet curly top virus is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to identify no...

  9. Beta vulgaris crop types: Genomic signatures of selection (GSS) using next generation sequencing of pooled samples

    USDA-ARS?s Scientific Manuscript database

    Beta vulgaris crop types represent highly diverged populations with distinct phenotypes resulting from long-term selection. Differential end use in the crop types includes: leaf quality (chard/leaf beet), root enlargement and biomass, (table beet, fodder beet, sugar beet), and secondary metabolite a...

  10. The quality of meat from sheep treated with tannin- and saponin-based remedies as a natural strategy for parasite control.

    PubMed

    Brogna, D M R; Tansawat, R; Cornforth, D; Ward, R; Bella, M; Luciano, G; Priolo, A; Villalba, J

    2014-02-01

    Lambs were assigned to four groups of seven and treated as follows for 12 days: control group (BP) was fed beet pulp; group T (tannin remedy) received the BP diet including 80 g/kg of quebracho extract; group S (saponin remedy) received the BP diet including 15 g/kg of quillaja extract; and group C had a free choice between T and S remedies. Lipid oxidation was lower in meat from S lambs compared to T lambs (P<0.05). Among the volatile compounds, lactate was lower in meat from S lambs compared to T animals (P=0.05). Metabolomic analysis showed that the T treatment increased ribose, fructose, glucose and sorbitol concentration in meat (P<0.05), while cholesterol was decreased by S and C treatments. The T treatment increased the concentration of C14:1 cis-9 (P<0.05). These findings indicate that treatments for parasite control containing tannins and saponins do not detrimentally affect sheep meat quality. © 2013.

  11. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.

    PubMed

    Mäkelä, Miia R; Mansouri, Sadegh; Wiebenga, Ad; Rytioja, Johanna; de Vries, Ronald P; Hildén, Kristiina S

    2016-12-25

    In industrial applications, efficient mixtures of polysaccharide-degrading enzymes are needed to convert plant biomass into fermentable sugars. Most of the commercially produced lignocellulolytic enzymes are from a limited number of filamentous fungi, such as Trichoderma and Aspergillus species. In contrast, the plant biomass-degrading capacity of Penicillia has been less explored. We performed growth profiling of several Penicillia on diverse plant biomass-related substrates demonstrating the capacity particularly of Penicillium subrubescens to degrade crude lignocellulose feedstock, as well as polysaccharides, and metabolise their monomeric components. We focussed on the lignocellulolytic potential of P. subrubescens FBCC1632, which produced a variable set of (hemi-)cellulolytic activities on plant biomass substrates with activity levels comparable to those of Aspergillus niger. The good ability of the extracellular enzyme mixtures produced by P. subrubescens to saccharify complex plant biomasses, wheat bran and sugar beet pulp, indicated a high potential for this strain as a producer of industrial enzyme cocktails. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Aflatoxin Control in Maize by Trametes versicolor

    PubMed Central

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A.; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-01-01

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1. PMID:25525683

  13. Feruloyl esterases from Schizophyllum commune to treat food industry side-streams.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2016-11-01

    Agro-industrial side-streams are abundant and renewable resources of hydroxycinnamic acids with potential applications as antioxidants and preservatives in the food, health, cosmetic, and pharmaceutical industries. Feruloyl esterases (FAEs) from Schizophyllum commune were functionally expressed in Pichia pastoris with extracellular activities of 6000UL(-1). The recombinant enzymes, ScFaeD1 and ScFaeD2, released ferulic acid from destarched wheat bran and sugar beet pectin. Overnight incubation of coffee pulp released caffeic (>60%), ferulic (>80%) and p-coumaric acid (100%) indicating applicability for the valorization of food processing wastes and enhanced biomass degradation. Based on substrate specificity profiling and the release of diferulates from destarched wheat bran, the recombinant FAEs were characterized as type D FAEs. ScFaeD1 and ScFaeD2 preferably hydrolyzed feruloylated saccharides with ferulic acid esterified to the O-5 position of arabinose residues and showed an unprecedented ability to hydrolyze benzoic acid esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Aflatoxin control in maize by Trametes versicolor.

    PubMed

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-12-17

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1.

  15. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  16. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this...

  17. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35...

  18. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35...

  19. Evaluation of fungicide and biological treatments for control of fungal storage rots in sugar beet, 2014

    USDA-ARS?s Scientific Manuscript database

    Preventing sucrose losses in storage is important to the economic viability of the sugar beet industry. In an effort to establish additional measures for reducing sucrose losses in storage, ten fungicide and/or biological treatments were evaluated on sugar beet roots in a commercial sugar beet stor...

  20. Energy beets: an undiscovered crop for the Southeastern US

    USDA-ARS?s Scientific Manuscript database

    Energy beets (Beta vulgaris), which are sugar beets grown for non-food sources, are a potential winter cash crop for growers in the southeastern U.S. that are planted in the autumn and harvested in the spring, complementing current summer crop rotations. The end-product from energy beets will be in...

  1. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this...

  2. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35...

  3. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35...

  4. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35...

  5. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this...

  6. Management of curly top in sugar beet with seed and foliar insecticides

    USDA-ARS?s Scientific Manuscript database

    Curly top in sugar beet can result in severe yield losses and is caused by Beet severe curly top virus (BSCTV) and other closely related Curtovirus spp. which are vectored by the beet leafhopper. Neonicotinoid seed treatments (Cruiser, NipsIt, and Poncho) have been shown to be an effective suppleme...

  7. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-03-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 °C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical "cellulose-like" EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs—Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  8. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  9. First report of sugar beet cyst nematode, Heterodera schachtii, in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Sugar beet (Beta vulgaris L.) and canola (Brassica napus L.) are major cops in North Dakota with sugar beet production primarily in the eastern part of the state in the Red River Valley and canola production along the northern half of the state from east to west. Both crops are hosts of sugar beet ...

  10. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  11. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  12. Ft. Collins sugar beet germplasm evaluated for rhizomania and storage rot resistance in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Fifty-seven sugar beet (Beta vulgaris L.) lines from the USDA-ARS Ft. Collins sugar beet program and four check cultivars were screened for resistance to Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and storage rot. The rhizomania evaluation was conducted at the USDA-ARS...

  13. Ft. Collins Sugar Beet Germplasm Evaluated for Resistance to Rhizomania and Storability in Idaho, 2010

    USDA-ARS?s Scientific Manuscript database

    Sugar beet germplasm and commercial check cultivars were evaluated in a sprinkler-irrigated sugar beet field near Kimberly, ID where sugar beet was grown in 2009. The field trial relied on natural inoculum for rhizomania development. The seed was treated with clothianidin (2.1 oz a.i. per 100,000 ...

  14. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  15. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  16. First report of QoI resistance in Alternaria spp. infecting sugar beet (Beta vulgaris) in Michigan, USA

    USDA-ARS?s Scientific Manuscript database

    Alternaria leaf spot (ALS) of sugar beet is caused by Alternaria spp. in the A. alternata species complex. ALS is common wherever sugar beet is grown, but historically has been a minor issue for sugar beet production in the USA with damage usually not affecting crop yield significantly. Occurrence o...

  17. Diaper wars: Chapter six -- technology strikes back

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naquin, D.

    1997-10-01

    With $1.5 million in funding, including $80,000 from the Israeli Office of the Chief Scientist, Israeli and US investors developed and patented Diapactor, a self-contained unit designed to process 60 used diapers per hour, while reducing volume by 95%. The group introduced the product at WasteExpo `97, held in May in Atlanta. Its end products are pellets of commingled plastic and of cellulose pulp. The machine, about twice the size of the average family washing machine, is produced by Diatec Recycling Technologies USA, Inc. (Agoura Hills, Calif.). Diapers go in at the top of the Diapactor. The machine does themore » rest, opening the diaper, pumping in water, heating the material, and separating it into usable components. Since paper used for personal hygiene products must meet high standards, the resulting pulp is high grade. It can be recycled into new diapers or various paper products, including stationery. Plastic pellets, produced from the diaper`s tape and lining, can be melted down and recycled into a variety of items, including paving tiles, asphalt, and plastic fencing.« less

  18. Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation.

    PubMed

    Min, Byeong Cheol; Ramarao, Bandaru V

    2017-06-01

    Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.

  19. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp

    PubMed Central

    2013-01-01

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows. PMID:23947764

  1. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp.

    PubMed

    Guo, Yongqing; Xu, Xiaofeng; Zou, Yang; Yang, Zhanshan; Li, Shengli; Cao, Zhijun

    2013-08-16

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows.

  2. Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions

    PubMed Central

    Kim, Hyun-Wook; Hwang, Ko-Eun

    2017-01-01

    We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p<0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions. PMID:28515652

  3. Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions.

    PubMed

    Choi, Yun-Sang; Kim, Tae-Kyung; Jeon, Ki-Hong; Park, Jong-Dae; Kim, Hyun-Wook; Hwang, Ko-Eun; Kim, Young-Boong

    2017-01-01

    We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract ( p <0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score ( p <0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid ( p >0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid ( p <0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.

  4. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period.

    PubMed

    Sorathiya, L M; Patel, M D; Tyagi, K K; Fulsoundar, A B; Raval, A P

    2015-01-01

    The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L.) tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50%) of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding.

  5. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period

    PubMed Central

    Sorathiya, L. M.; Patel, M. D.; Tyagi, K. K.; Fulsoundar, A. B.; Raval, A. P.

    2015-01-01

    Aim: The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. Materials and Methods: This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L.) tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50%) of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Results: Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. Conclusion: It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding. PMID:27046988

  6. Effect of curtovirus species competitiveness in host plants on transmission and incidence of Beet severe curly top virus and Beet mild curly top virus

    USDA-ARS?s Scientific Manuscript database

    Curly top disease, caused by viruses in the genus Curtovirus, causes significant economic losses for sugarbeet and other crops throughout the western United States. Recent studies demonstrated the two most abundant curtovirus species in the US are Beet severe curly top virus (BSCTV) and Beet mild c...

  7. Preparation and characterization of reinforced papers using nano bacterial cellulose.

    PubMed

    Tabarsa, Taghi; Sheykhnazari, Somayeh; Ashori, Alireza; Mashkour, Mahdi; Khazaeian, Abolghasem

    2017-08-01

    The main goal of this work was to reinforce softwood pulp (SP) with bacterial cellulose (BC) to generate a sustainable biocomposite. BC is a nanocellulose, which was anticipated to increase interfacial adhesion between the cellulosic fibers and BC. The organism used was Gluconacetobacter xylinus, which was incubated in a static Hestrin-Schramm culture at 28°C for 14days. The specimens of BC, SP and the reinforced SP with BC were characterized using X-ray diffraction (XRD), FT-IR, FESEM, and physico-mechanical testing. The crystallinity index was found to be 83 and 54% for BC and SP, respectively. FT-IR spectra showed that the composition of BC was fully different from that of SP fibers. Based on FESEM images, one can conclude that BC and softwood fibers do form a good combination with a nonporous structure. BC fibers fill in among the softwood fibers in the sheet. The physical and mechanical properties showed that as the dosage of BC increased, the properties of tensile index, tear index, and burst index greatly improved, while the porosity and the elongation decreased. The reason for the improved mechanical properties can be attributed to the increase of interfibrillar bonding which reduced porosity. This would be due to the high aspect ratio of BC that is capable of connecting between the cellulosic fibers and BC nanofibers, enhancing a large contact surface and therefore producing excellent coherence. This study suggests that BC could be a promising material for reinforcing composites at low loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanical properties of sugar beet root during storage

    NASA Astrophysics Data System (ADS)

    Nedomová, Šárka; Kumbár, Vojtěch; Pytel, Roman; Buchar, Jaroslav

    2017-10-01

    This paper is an investigation via two experimental methods, of the textural properties of sugar beet roots during the storage period. In the work, sugar beet roots mechanical properties were evaluated during the post-harvest period - 1, 8, 22, 43, and 71 days after crop. Both experimental methods, i.e. compression test and puncture test, suggest that the failure strength of the sugar beet root increases with the storage time. The parameters obtained using the puncture test, are more sensitive to the storage duration than those obtained by way of the compression test. We also found that such mechanical properties served as a reliable tool for monitoring the progress of sugar beet roots storage. The described methods could also be used to highlight important information on sugar beet evolution during storage.

  9. "We Were Beet Workers, and that Was All": Beet Field Laborers in the North Platte Valley, 1902-1930

    ERIC Educational Resources Information Center

    Kipp, Dustin

    2011-01-01

    The experiences of the men, women, and children who labored in the beet fields of the North Platte Valley changed significantly as the sugar beet industry went through a period of rapid expansion prior to 1920 and then reached a relatively stable plateau. During the period of expansion, laborers were attracted by promises of reasonable wages, good…

  10. Technical and economic assessments of storage techniques for long-term retention of industrial-beet sugar for non-food industrial fermentations

    NASA Astrophysics Data System (ADS)

    Vargas-Ramirez, Juan Manuel

    Industrial beets may compete against corn grain as an important source of sugars for non-food industrial fermentations. However, dependable and energy-efficient systems for beet sugar storage and processing are necessary to help establish industrial beets as a viable sugar feedstock. Therefore, technical and economic aspects of beet sugar storage and processing were evaluated. First, sugar retention was evaluated in whole beets treated externally with either one of two antimicrobials or a senescence inhibitor and stored for 36 wk at different temperature and atmosphere combinations. Although surface treatment did not improve sugar retention, full retention was enabled by beet dehydration caused by ambient air at 25 °C and with a relative humidity of 37%. This insight led to the evaluation of sugar retention in ground-beet tissue ensiled for 8 wk at different combinations of acidic pH, moisture content (MC), and sugar:solids. Some combinations of pH ≤ 4.0 and MC ≤ 67.5% enabled retentions of at least 90%. Yeast fermentability was also evaluated in non-purified beet juice acidified to enable long-term storage and partially neutralized before fermentation. None of the salts synthesized through juice acidification and partial neutralization inhibited yeast fermentation at the levels evaluated in that work. Conversely, yeast fermentation rates significantly improved in the presence of ammonium salts, which appeared to compensate for nitrogen deficiencies. Capital and operating costs for production and storage of concentrated beet juice for an ethanol plant with a production capacity of 76 x 106 L y-1 were estimated on a dry-sugar basis as U.S. ¢34.0 kg-1 and ¢2.2 kg-1, respectively. Storage and processing techniques evaluated thus far prove that industrial beets are a technically-feasible sugar feedstock for ethanol production.

  11. Clustered Single Cellulosic Fiber Dissolution Kinetics and Mechanisms through Optical Microscopy under Limited Dissolving Conditions.

    PubMed

    Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W T

    2018-05-14

    Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.

  12. 29 CFR 780.801 - Statutory provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar..., sugar-beet molasses, sugarcane, or maple sap, into sugar (other than refined sugar) or syrup. Section 13...

  13. 29 CFR 780.801 - Statutory provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar..., sugar-beet molasses, sugarcane, or maple sap, into sugar (other than refined sugar) or syrup. Section 13...

  14. 29 CFR 780.801 - Statutory provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar..., sugar-beet molasses, sugarcane, or maple sap, into sugar (other than refined sugar) or syrup. Section 13...

  15. 29 CFR 780.801 - Statutory provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar..., sugar-beet molasses, sugarcane, or maple sap, into sugar (other than refined sugar) or syrup. Section 13...

  16. 29 CFR 780.801 - Statutory provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar..., sugar-beet molasses, sugarcane, or maple sap, into sugar (other than refined sugar) or syrup. Section 13...

  17. 29 CFR 780.800 - Scope and significance of interpretative bulletin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS ACT Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane..., sugar-beet molasses, sugarcane or maple sap, into sugar (other than refined sugar) or syrup. The limited...

  18. 29 CFR 780.800 - Scope and significance of interpretative bulletin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS ACT Employment in Ginning of Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane..., sugar-beet molasses, sugarcane or maple sap, into sugar (other than refined sugar) or syrup. The limited...

  19. Biosynthesis of poly-beta-hydroxyalkanoates by Sphingopyxis chilensis S37 and Wautersia sp. PZK cultured in cellulose pulp mill effluents containing 2,4,6-trichlorophenol.

    PubMed

    Tobella, Lorena M; Bunster, Marta; Pooley, Amalia; Becerra, José; Godoy, Felix; Martínez, Miguel A

    2005-09-01

    Poly-beta-hydroxyalkanoates (PHA) polymer is synthesized by different bacterial species. There has been considerable interest in the development and production of biodegradable polymers; however, the high cost of PHA production has restricted its applications. Kraft cellulose industry effluents containing 2,4,6-trichlorophenol (10 or 20 microg ml(-1)) were used by the bacteria Sphingopyxis chilensis S37 and Wautersia sp. PZK to synthesize PHA. In this condition, S. chilensis S37 was able to grow and degrade 2,4,6-trichlorophenol (ca. 60%) and 80% of these cells accumulated PHA. Wautersia PZK completely degraded 2,4,6-TCP and more than 90% of the cells accumulated PHA in 72 h. The PHA detection was performed by flow cytometry and polyester composition was characterized by gas chromatography-mass spectroscopy (GC-MS), indicating that these polymers are made by 3-hydroxybutyric acid and 3-hydroxyhexadecanoic acid for S37 and PZK strains, respectively. Results demonstrated that strains' growth and PHA production and composition are not modified in cellulose effluents with or without 2,4,6-TCP (10-20 microg ml(-1)). Therefore, our results indicate that S. chilensis S37 and Wautersia sp. PZK are able to degrade a toxic compound such as a 2,4,6-TCP and simultaneously produce a valuable biopolymer using low-value substrates.

  20. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Microalgae cultivation in a tubular bioreactor and utilization of their cells

    NASA Astrophysics Data System (ADS)

    Koyu, Hon-Nami; Shunji, Kunito

    1998-03-01

    In this study on the possiblities of microalgae technology as an option for CO2 mitigation, many microalgae were isolated from seawater. Some species of the isolates, Chlamydomonas sp. strain YA-SH-1, which accumulates starch in cells under light and ferment ethanol in dark and anaerobic condition, was grown outdoors by using 50-L tubular bioreactors in batch cultivation and harvested. Using these cells, the performance of ethanol production was examined quantitatively in a 0.5-L scale fermentor. Another species, Tetraselmis sp. strain Tt-1, was cultivated in a semi-batch manner by a similar type of tubular bioreactor indoors and examined for its utilization. Tests showed these cells could be used as partial substitute for wood and kenaf pulp for processing into paper. With the idea of making microalgae produce cellulose by genetic engineering in their minds, the authors studied the structure of bacterial cellulose synthase genes and the low temperature-induced, reversible flocculation in a thermophilic blue green alga (Cyanobacterium), Synechocystis vulcanus in order to examine the feasibility of using these genes as gene source and the cynanobacterium as host.

  3. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Environmental implications of gene flow from sugar beet to wild beet--current status and future research needs.

    PubMed

    Bartsch, Detlef; Cuguen, Joel; Biancardi, Enrico; Sweet, Jeremy

    2003-01-01

    Gene flow via seed or pollen is a basic biological process in plant evolution. The ecological and genetic consequences of gene flow depend on the amount and direction of gene flow as well as on the fitness of hybrids. The assessment of potential risks of transgenic plants should take into account the fact that conventional crops can often cross with wild plants. The precautionary approach in risk management of genetically modified plants (GMPs) may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Gene flow is hard to control in wind-pollinated plants like beet (Beta vulgaris). In addition, wild beet populations potentially can undergo evolutionary changes which might expand their geographical distribution. Unintended products of cultivated beets pollinated by wild beets are weed beets that bolt and flower during their first year of planting. Weed beets cause yield losses and can delay harvest. Wild beets are important plant genetic resources and the preservation of wild beet diversity in Europe has been considered in biosafety research. We present here the methodology and research approaches that can be used for monitoring the geographical distribution and diversity of Beta populations. It has recently been shown that a century of gene flow from Beta vulgaris ssp. vulgaris has not altered the genetic diversity of wild Beta vulgaris L. ssp. maritima (L.) Arcang. in the Italian sugar beet seed production area. Future research should focus on the potential evolution of transgenic wild beet populations in comparison to these baseline data. Two monitoring models are presented describing how endpoints can be measured: (1) "Pre-post" crop commercialization against today's baseline and (2) "Parallel" to crop commercialization against GMP free reference areas/ populations. Model 2 has the advantage of taking ongoing changes in genetic diversity and population dynamics into account. Model 1 is more applicable if gene flow is so strong that most areas/populations contain GMPs. Important traits that may change the ecology of populations are genes that confer tolerance to biotic and abiotic stress. An assessment of environmental effects can realistically only be based on endpoints and consequences of gene introgression, which may include economic values of biodiversity in littoral and other ecosystems containing wild beet. In general, there is still a great need to harmonize worldwide monitoring systems by the development of appropriate methods to evaluate the environmental impact of introgressed transgenes.

  5. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    PubMed

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  6. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses.

    PubMed

    Abe, Tatsuya; Horiuchi, Kenichi; Kikuchi, Hiroto; Aritsuka, Tsutomu; Takata, Yusuke; Fukushi, Eri; Fukushi, Yukiharu; Kawabata, Jun; Ueno, Keiji; Onodera, Shuichi; Shiomi, Norio

    2012-08-27

    Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC) and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS), and nuclear magnetic resonance (NMR) measurements. The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named β-planteose), α-D-galactopyranosyl-(1- > 1)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named1-planteose), α-D-glucopyranosyl-(1- > 6)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (theanderose), and β-D-glucopyranosyl-(1- > 3)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (laminaribiofructose). 1-planteose and laminaribiofructose were isolated from natural sources for the first time.

  7. Photoacoustic and optothermal studies of tomato ketchup adulterated by the red beet (Beta vulgaris)

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Westra, E.; Seters, J.; van Houten, S.; Huberts, D.; Colić-Barić, I.; Cozijnsen, J.; Boshoven, H.

    2005-06-01

    Photoacoustic (PA) spectroscopy and optothermal window (OW) technique were used to explore their potential to detect red beet added as a colorant to tomato ketchup. The associated changes of colour resulting in the changes of absorbance (and hence of PA and OT signals) were monitored in the 500 nm region corresponding to the absorption maximum of lycopene. Both methods were shown capable of quantifying about 1% of red beet (by mass) in the mixture of ketchup and red beet.

  8. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.

    PubMed

    Oun, Ahmed A; Rhim, Jong-Whan

    2015-12-10

    Cellulose nanocrystals (CNCs) were prepared by acid hydrolysis of cotton linter pulp fibers and three different purification methods, i.e., without post purification (CNC1), dialyzed against distilled water (CNC2), and neutralized with NaOH (CNC3), and their effect on film properties was evaluated by preparation of agar/CNCs composite films. All the CNCs were rod in shape with diameter of 15-50 nm and length of 210-480 nm. FTIR result indicated that there was no distinctive differences in the chemical structure between CNCs and cotton linter cellulose fiber. No significant relationship was observed between the sulfate content and crystallinity index of CNCs. The CNC3 showed higher thermal stability than the other type of CNCs due to the less adverse effect on the thermal stability of sulfate groups induced by the neutralization with NaOH. The tensile strength (TS) of agar film increased by 15% with incorporation of 5 wt% of CNC3, on the contrary, it decreased by 10% and 15% with incorporation of CNC1 and CNC2, respectively. Other performance properties of agar/CNCs composite films such as optical and water vapor barrier properties showed that the CNC3 was more effective filler than the other CNCs. In the range of concentration of CNC3 tested (1-10 wt%), inclusion of 5 wt% of CNC3 was the maximum concentration for improving or maintaining film properties of the composite films. The neutralization of acid hydrolyzed cellulose using NaOH was simple and convenient for the preparation of CNC and bionanocomposite films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, M; Kochergin, V; Hess, R

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less

  10. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain.

    PubMed

    Shi, YingWu; Yang, Hongmei; Zhang, Tao; Sun, Jian; Lou, Kai

    2014-01-01

    Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19-121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.

  11. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...

  12. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...

  13. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...

  14. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...

  15. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...

  16. Influence of cultivating conditions on the alpha-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation.

    PubMed

    Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H

    2004-01-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.

  17. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

  18. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet "Beta vulgaris L.": GMO application.

    PubMed

    Chaouachi, Maher; Alaya, Akram; Ali, Imen Ben Haj; Hafsa, Ahmed Ben; Nabi, Nesrine; Bérard, Aurélie; Romaniuk, Marcel; Skhiri, Fethia; Saïd, Khaled

    2013-01-01

    KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

  19. Postharvest Rhizopus rot on sugar beet

    USDA-ARS?s Scientific Manuscript database

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  20. Laccase-mediated synthesis of lignin-core hyperbranched copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. But, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification ofmore » its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. A preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. Our results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.« less

Top