Science.gov

Sample records for cellulose pour applications

  1. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  2. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  3. Electrospinning cellulose based nanofibers for sensor applications

    NASA Astrophysics Data System (ADS)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  4. Cellulose Modifications and Their Future Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this poster, we will describe the synthesis and structural characterizations of a benzyl-, nitrobenzyl-, and aminobenzyl celluloses. Nitrobenzyl- and aminobenzyl cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogeneous solution. Nitrobe...

  5. Cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  6. Review on biomedical and bioengineering applications of cellulose sulfate.

    PubMed

    Zhang, Qilei; Lin, Dongqiang; Yao, Shanjing

    2015-11-01

    Polysaccharide sulfates are naturally existing chemicals that show important biological activities in living organisms. Cellulose sulfate is a semi-synthesized polysaccharide sulfate with a relatively simple chain structure and unique biological properties and its biological applications have been explored in research and clinical trials. With the advance of cellulose derivatization and characterization, cellulose sulfate molecules with tailored structures have been developed to fulfill individual requirements. This review aims to provide a summary of recent development of cellulose sulfate in biomedical applications. Its synthesis pathways were discussed with structure-property relationship elucidated. The application of cellulose sulfate in drug delivery and microbe/cell immobilization were summarized with emphasis given on its polyelectrolyte complex formation processes.

  7. Review on biomedical and bioengineering applications of cellulose sulfate.

    PubMed

    Zhang, Qilei; Lin, Dongqiang; Yao, Shanjing

    2015-11-01

    Polysaccharide sulfates are naturally existing chemicals that show important biological activities in living organisms. Cellulose sulfate is a semi-synthesized polysaccharide sulfate with a relatively simple chain structure and unique biological properties and its biological applications have been explored in research and clinical trials. With the advance of cellulose derivatization and characterization, cellulose sulfate molecules with tailored structures have been developed to fulfill individual requirements. This review aims to provide a summary of recent development of cellulose sulfate in biomedical applications. Its synthesis pathways were discussed with structure-property relationship elucidated. The application of cellulose sulfate in drug delivery and microbe/cell immobilization were summarized with emphasis given on its polyelectrolyte complex formation processes. PMID:26256354

  8. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    NASA Astrophysics Data System (ADS)

    Moon, Robert J.; Schueneman, Gregory T.; Simonsen, John

    2016-09-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is happening because of the unique combination of characteristics (e.g., high mechanical properties, sustainability, and large-scale production potential) and utility across a broad spectrum of material applications (e.g. as an additive, self-sustaining structures, and template structures) that CNs offer. Despite the challenges typical for materials development, CN and near-CN production is ramping up with pilot scale to industry demonstration trials, and the first commercial products are starting to hit the marketplace. This review provides a broad overview of CNs and their capabilities that are enabling new application areas for cellulose-based materials.

  9. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    NASA Astrophysics Data System (ADS)

    Moon, Robert J.; Schueneman, Gregory T.; Simonsen, John

    2016-07-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is happening because of the unique combination of characteristics (e.g., high mechanical properties, sustainability, and large-scale production potential) and utility across a broad spectrum of material applications (e.g. as an additive, self-sustaining structures, and template structures) that CNs offer. Despite the challenges typical for materials development, CN and near-CN production is ramping up with pilot scale to industry demonstration trials, and the first commercial products are starting to hit the marketplace. This review provides a broad overview of CNs and their capabilities that are enabling new application areas for cellulose-based materials.

  10. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose. PMID:25666681

  11. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  12. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    NASA Astrophysics Data System (ADS)

    Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2014-09-01

    Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  13. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    PubMed

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP).

  14. The future prospects of microbial cellulose in biomedical applications.

    PubMed

    Czaja, Wojciech K; Young, David J; Kawecki, Marek; Brown, R Malcolm

    2007-01-01

    Microbial cellulose has proven to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, such as paper products, electronics, acoustics, and biomedical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. For example, a microbial cellulose membrane has been successfully used as a wound-healing device for severely damaged skin and as a small-diameter blood vessel replacement. The nonwoven ribbons of microbial cellulose microfibrils closely resemble the structure of native extracellular matrices, suggesting that it could function as a scaffold for the production of many tissue-engineered constructs. In addition, microbial cellulose membranes, having a unique nanostructure, could have many other uses in wound healing and regenerative medicine, such as guided tissue regeneration (GTR), periodontal treatments, or as a replacement for dura mater (a membrane that surrounds brain tissue). In effect, microbial cellulose could function as a scaffold material for the regeneration of a wide variety of tissues, showing that it could eventually become an excellent platform technology for medicine. If microbial cellulose can be successfully mass produced, it will eventually become a vital biomaterial and will be used in the creation of a wide variety of medical devices and consumer products. PMID:17206781

  15. Cellulose nanowhiskers and nanofibers from biomass for composite applications

    NASA Astrophysics Data System (ADS)

    Wang, Tao

    2011-12-01

    Biological nanocomposites such as plant cell wall exhibit high mechanical properties at a light weight. The secret of the rigidity and strength of the cell wall lies in its main structural component -- cellulose. Native cellulose exists as highly-ordered microfibrils, which are just a few nanometers wide and have been found to be stiffer than many synthetic fibers. In the quest for sustainable development around the world, using cellulose microfibrils from plant materials as renewable alternatives to conventional reinforcement materials such as glass fibers and carbon fibers is generating particular interest. In this research, by mechanical disintegration and by controlled chemical hydrolysis, both cellulose nanofibers and nanowhiskers were extracted from the cell wall of an agricultural waste, wheat straw. The reinforcement performances of the two nanofillers were then studied and compared using the water-soluble polyvinyl alcohol (PVOH) as a matrix material. It was found that while both of these nanofillers could impart higher stiffness to the polymer, the nanofibers from biomass were more effective in composite reinforcement than the cellulose crystals thanks to their large aspect ratio and their ability to form interconnected network structures through hydrogen bonding. One of the biggest challenges in the development of cellulose nanocomposites is achieving good dispersion. Because of the high density of hydroxyl groups on the surface of cellulose, it remains a difficult task to disperse cellulose nanofibers in many commonly used polymer matrices. The present work addresses this issue by developing a water-based route taking advantage of polymer colloidal suspensions. Combining cellulose nanofibers with one of the most important biopolymers, poly(lactic acid) (PLA), we have prepared nanocomposites with excellent fiber dispersion and improved modulus and strength. The bio-based nanocomposites have a great potential to serve as light-weight structural materials

  16. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    PubMed

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  17. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  18. Fabrication of cellulose nanofiber transparent films for IT applications

    NASA Astrophysics Data System (ADS)

    Zhai, Lindong; Song, Sangho; Kim, Jeong Woong; Li, Yaguang; Kim, Jaehwan

    2016-04-01

    One of the abundant renewable biomaterials in the world - cellulose is produced from plants forming micro-fibrils which in turn aggregate of form cellulose fibers. These fibers size can be disintegrated from micro-fibrils to nanofibers by physical and chemical methods. Cellulose nanofibers (CNF) can be a new building block of renewable smart materials. The CNF has excellent mechanical strength, dimensional stability, thermal stability and good optical properties on top of their renewable behavior. This paper reports CNF transparent films made by CNF extracted by the physical method: a high pressure physical, so called aqueous counter collision method. Natural behaviors, extraction and film formation of CNF are explained and their characteristics are illustrated, which is suit for IT applications.

  19. Conception et calibration d'un sonoreacteur pour l'oxydation de la cellulose par le systeme TEMPO/NaOCl/NaBr

    NASA Astrophysics Data System (ADS)

    Paquin, Michel

    Avec le contexte economique actuel dans le domaine des pates et papiers au Canada, l'industrie se doit de diversifier ses produits mis en marche. La fermeture de plus de 20 usines depuis 2005, une baisse du PIB de l'industrie de 1,4 milliard CAD entre 1999--2008, une baisse de la demande de 2,4 %, une diminution du prix de la pate de 20,9 % depuis juillet 2009. La delocalisation du secteur vers l'Asie et l'hemisphere sud sont autant de raisons pour laquelle l'industrie se doit d'etre a l'avant plan de nouvelle technologie a base de fibre de bois. Pour augmenter leur rentabilite, l'industrie se doit de diversifier ses produits dans d'autres secteurs que le simple fabricant de papier impression-ecriture. Sa diversification passe par l'elaboration de nouveaux papiers a valeur ajoutee (papier conducteur, papier bioactif, etc.), par l'utilisation de la biomasse forestiere pour la production d'energie, par l'utilisation de la biomasse forestiere pour l'elaboration d'une plateforme de chimie verte, par l'utilisation de la lignine pour le developpement de polymeres et par l'utilisation de la fibre cellulosique pour la fabrication de nanomateriaux. La fabrication de nanofibrille de cellulose peut devenir un des produits qui servira a diversifier la production des usines de pates et papiers. Les nanofibrilles de cellulose possedent des proprietes mecaniques et chimiques exceptionnelles. Les nanofibrilles de cellulose sont fabriquees a partir d'une oxydation selective de la pate kraft de feuillu avec le systeme TEMPO-NaOCl-NaBr. L'oxydation selective de l'alcool primaire en C6 du monomere de glucose sous forme de carboxylates engendre une modification chimique de la cellulose qui accroit l'hydrophilicite des fibrilles. Suite a cette oxydation, nous devons effectuer une desintegration mecanique de la fibre kraft de feuillu oxydee pour separer les fibrilles. Le processus d'oxydation de la fibre par le systeme TEMPO-NaOCl-NaBr et sa defibrillation par la suite engendre une

  20. New application of crystalline cellulose in rubber composites

    NASA Astrophysics Data System (ADS)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  1. New applications for cellulose nanofibers: Rheological challenges

    NASA Astrophysics Data System (ADS)

    Nazari-Nasrabad, Behzad

    Cellulose nanofibers (CNF) are an exciting new renewable material produced from wood fibers. Even at low solids content, CNF-water suspensions have a complex rheology that includes extreme shear-thinning as well as viscoelastic properties and a yield stress. In the rheology of CNF suspensions, the measurement method may influence the results due to wall-slippage, but it is unclear how the behavior near walls influences the measurement method and what process equipment can manipulate this material. Parallel-plate and vane geometries were utilized to compare yielding and flow of CNF suspensions obtained by steady-state shear and oscillatory rheological measurements. Four different methods were compared as techniques to obtain a yield stress. The results are compared to pressure driven flow in a tube. Cone and plate geometries were found to lead to sample ejection at low shear rates: floc-floc interactions can explain this ejection. The suspensions violated the Cox-Merz rule in a significant manner as a sign of containing weak gel structures and the formation of a water-rich layer near the solid boundaries. For suspensions lower than 3% solids, the yield stress measured with different procedures were within 20% of each other, but for high solids suspensions, differences among the methods could be as large as 100%; the water-rich layer formation likely is the cause of these results. Oscillatory methods are suggested as a technique to obtain yield stress values. The pressure driven flow results were consistent with the power-law line fitted to the parallel-plate geometry data from steady shear. The capability of the extrusion process was investigated for pumping CNF suspensions through different dies. The extrusion process resulted in acceptable pumping rates which was in good agreement with the mathematical model. However, attributable to the extreme shear-thinning behavior of CNF, the pressure counter-flow dominates the drag flow along the screw channel and does not

  2. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    PubMed

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.

  3. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    PubMed

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications. PMID:27312632

  4. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  5. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    PubMed Central

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  6. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  7. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  8. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation.

  9. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. PMID:27185125

  10. A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.

    PubMed

    Karuppusamy, Sembanadar; Pratheepkumar, Annamalai; Dhandapani, Perumal; Maruthamuthu, Sundaram; Kulandainathan, Manickam Anbu

    2015-09-01

    Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages.

  11. Synthesis of cellulose nanofiber composites for mechanical reinforcement and other advanced applications

    NASA Astrophysics Data System (ADS)

    Xu, Xuezhu

    Cellulose nanofibers from bioresources have attracted intensive research interest in recent years due to their unique combination of properties including high strength and modulus, low density, biocompatibility/biodegradability and rich surface chemistry for functionalization. The nanofibers have been widely studied as nanoreinforcements in polymer nanocomposites; while the nanocomposite research is still very active, new research directions of using the nanofibers for hydrogels/aerogels, template for nanoparticle synthesis, scaffold, carbon materials, nanopaper, etc. have emerged. In this Ph.D. thesis, fundamental studies and application developments are performed on three types of cellulose nanofibers, i.e. cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs) and bacterial cellulose (BC). First CNCs and CNFs are systematically compared in terms of their effects on the mechanical properties, crystallization and failure behavior of the nanocomposites, which provides a guideline for the design of cellulose nanofiber reinforced composites. Second, CNFs and BC are used to develop core-shell carbon fibers and flexible carbon aerogels for energy storage applications. This part is focused on developing nanocarbon materials with multi-scale features. Lastly, hybrid CNC/CNF nanopaper with superior optical, mechanical, and electrical properties is developed and its application is demonstrated on a LED device.

  12. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review.

    PubMed

    Olivera, Sharon; Muralidhara, Handanahally Basavarajaiah; Venkatesh, Krishna; Guna, Vijay Kumar; Gopalakrishna, Keshavanarayana; Kumar K, Yogesh

    2016-11-20

    This work concerns the investigation of potential candidature of cellulose and chitosan-based nano-sized materials for heavy metals and dyes removal. Cellulose and chitosan being the first two abundant biopolymers in nature offer wide opportunities to be utilized for high-end applications such as water purification. The nano-sized cellulose and nano-sized chitosan present superior adsorption behavior compared to their micro-sized counterparts. This area of research which explores the possible usage of nano-biopolymers is relatively new. The present review article outlines the development history of research in the field of cellulose and chitosan, various methods employed for the functionalization of the biopolymers, current stage of research, and mechanisms involved in adsorption of heavy metals and dyes using nanocellulose and nanochitosan. The significance of research using nano-biopolymers and future prospects are also identified. PMID:27561533

  13. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp.

    PubMed

    Xu, Qinghua; Gao, Yang; Qin, Menghua; Wu, Kaili; Fu, Yingjuan; Zhao, Jian

    2013-09-01

    Nanocrystalline cellulose (NCC) isolated from bleached aspen kraft pulp was characterized, and its application as pulp strengthening additive and retention aid was investigated. Results showed that NCC with high crystallinity of more than 80% can be obtained using 64 wt% sulfuric acid. The structure of nanocrystalline cellulose is parallelepiped rod-like, and their cross-sectional dimension is in the nanometer range with a high aspect ratio. The formation of microparticle retention systems during the application of NCC together with cationic polyacrylamide and cationic starch in deinked pulp was able to further improve pulp retention and strength properties without negative influence on the drainage.

  14. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Li, Jian

    2016-10-01

    Hybrid aerogels consisting of graphene oxide (GO) and cellulose were prepared via a solution mixing-regeneration-freeze drying process. The presence of GO affected the micromorphology of the hybrid aerogels, and a self-assembly behavior of cellulose was observed after the incorporation of GO. Moreover, there is no remarkable modification in the crystallinity index and thermal stability after the insertion of GO. After the reduction of GO in the hybrid aerogels by l-ascorbic acid and the subsequent pyrolysis of the aerogels, the resultant displays some interesting characteristics, including good electromagnetic interference (EMI) shielding capacity (SEtotal=58.4dB), high electrical conductivity (19.1Sm(-1)), hydrophobicity, and fire resistance, which provide an opportunity for some advanced applications such as EMI protection, electrochemical devices, water-proofing agents, and fire retardants. Moreover, this work possibly helps to facilitate the development of both cellulose and GO-based materials and expand their application scope.

  15. Feasibility Investigation of Cellulose Polymers for Mucoadhesive Nasal Drug Delivery Applications.

    PubMed

    Hansen, Kellisa; Kim, Gwangseong; Desai, Kashappa-Goud H; Patel, Hiren; Olsen, Karl F; Curtis-Fisk, Jaime; Tocce, Elizabeth; Jordan, Susan; Schwendeman, Steven P

    2015-08-01

    The feasibility of various cellulose polymer derivatives, including methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), sodium-carboxymethylcellulose (sodium-CMC), and cationic-hydroxyethylcellulose (cationic-HEC), for use as an excipient to enhance drug delivery in nasal spray formulations was investigated. Three main parameters for evaluating the polymers in nasal drug delivery applications include rheology, ciliary beat frequency (CBF), and permeation across nasal tissue. Reversible thermally induced viscosity enhancement was observed at near nasal physiological temperature when cellulose derivatives were combined with an additional excipient, poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) graft copolymer (PVCL-PVA-PEG). Cationic-HEC was shown to enhance acyclovir permeation across the nasal mucosa. None of the tested cellulosic polymers caused any adverse effects on porcine nasal tissues and cells, as assessed by alterations in CBF. Upon an increase in polymer concentration, a reduction in CBF was observed when ciliated cells were immersed in the polymer solution, and this decrease returned to baseline when the polymer was removed. While each cellulose derivative exhibited unique advantages for nasal drug delivery applications, none stood out on their own to improve more than one of the performance characteristics examined. Hence, these data may be useful for the development of new cellulose derivatives in nasal drug formulations.

  16. Noble metal/functionalized cellulose nanofiber composites for catalytic applications.

    PubMed

    Gopiraman, Mayakrishnan; Bang, Hyunsik; Yuan, Guohao; Yin, Chuan; Song, Kyung-Hun; Lee, Jung Soon; Chung, Ill Min; Karvembu, Ramasamy; Kim, Ick Soo

    2015-11-01

    In this study, cellulose acetate nanofibers (CANFs) with a mean diameter of 325 ± 2.0 nm were electrospun followed by deacetylation and functionalization to produce anionic cellulose nanofibers (f-CNFs). The noble metal nanoparticles (RuNPs and AgNPs) were successfully decorated on the f-CNFs by a simple wet reduction method using NaBH4 as a reducing agent. TEM and SEM images of the nanocomposites (RuNPs/CNFs and AgNPs/CNFs) confirmed that the very fine RuNPs or AgNPs were homogeneously dispersed on the surface of f-CNFs. The weight percentage of the Ru and Ag in the nanocomposites was found to be 13.29 wt% and 22.60 wt% respectively; as confirmed by SEM-EDS analysis. The metallic state of the Ru and Ag in the nanocomposites was confirmed by XPS and XRD analyses. The usefulness of these nanocomposites was realized from their superior catalytic activity. In the aerobic oxidation of benzyl alcohol to benzaldehyde, the RuNPs/CNFs system gave a better yield of 89% with 100% selectivity. Similarly, the AgNPs/CNFs produced an excellent yield of 99% (100% selectivity) in the aza-Michael reaction of 1-phenylpiperazine with acrylonitrile. Mechanism has been proposed for the catalytic systems. PMID:26256382

  17. Noble metal/functionalized cellulose nanofiber composites for catalytic applications.

    PubMed

    Gopiraman, Mayakrishnan; Bang, Hyunsik; Yuan, Guohao; Yin, Chuan; Song, Kyung-Hun; Lee, Jung Soon; Chung, Ill Min; Karvembu, Ramasamy; Kim, Ick Soo

    2015-11-01

    In this study, cellulose acetate nanofibers (CANFs) with a mean diameter of 325 ± 2.0 nm were electrospun followed by deacetylation and functionalization to produce anionic cellulose nanofibers (f-CNFs). The noble metal nanoparticles (RuNPs and AgNPs) were successfully decorated on the f-CNFs by a simple wet reduction method using NaBH4 as a reducing agent. TEM and SEM images of the nanocomposites (RuNPs/CNFs and AgNPs/CNFs) confirmed that the very fine RuNPs or AgNPs were homogeneously dispersed on the surface of f-CNFs. The weight percentage of the Ru and Ag in the nanocomposites was found to be 13.29 wt% and 22.60 wt% respectively; as confirmed by SEM-EDS analysis. The metallic state of the Ru and Ag in the nanocomposites was confirmed by XPS and XRD analyses. The usefulness of these nanocomposites was realized from their superior catalytic activity. In the aerobic oxidation of benzyl alcohol to benzaldehyde, the RuNPs/CNFs system gave a better yield of 89% with 100% selectivity. Similarly, the AgNPs/CNFs produced an excellent yield of 99% (100% selectivity) in the aza-Michael reaction of 1-phenylpiperazine with acrylonitrile. Mechanism has been proposed for the catalytic systems.

  18. Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration.

    PubMed

    Xu, Dingfeng; Fan, Lin; Gao, Lingfeng; Xiong, Yan; Wang, Yanfeng; Ye, Qifa; Yu, Aixi; Dai, Honglian; Yin, Yixia; Cai, Jie; Zhang, Lina

    2016-07-13

    Conducting polymers have emerged as frontrunners to be alternatives for nerve regeneration, showing a possibility of the application of polyaniline (PANI) as the nerve guidance conduit. In the present work, the cellulose hydrogel was used as template to in situ synthesize PANI via the limited interfacial polymerization method, leading to one conductive side in the polymer. PANI sub-micrometer dendritic particles with mean diameter of ∼300 nm consisting of the PANI nanofibers and nanoparticles were uniformly assembled into the cellulose matrix. The hydrophobic PANI nanoparticles were immobilized in the hydrophilic cellulose via the phytic acid as "bridge" at presence of water through hydrogen bonding interaction. The PANI/cellulose composite hydrogels exhibited good mechanical properties and biocompatibility as well as excellent guiding capacity for the sciatic nerve regeneration of adult Sprague-Dawley rats without any extra treatment. On the basis of the fact that the pure cellulose hydrogel was an inert material for the neural repair, PANI played an indispensable role on the peripheral nerve regeneration. The hierarchical micro-nanostructure and electrical conductivity of PANI could remarkably induce the adhesion and guiding extension of neurons, showing its great potential in biomedical materials.

  19. 16 CFR 1209.31 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standard for Cellulose Insulation (16 CFR part 1209, subpart A). This subpart B includes requirements for... fill, thermal insulation that is suitable for blowing or pouring applications. ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.31 Purpose and applicability....

  20. 16 CFR 1209.31 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standard for Cellulose Insulation (16 CFR part 1209, subpart A). This subpart B includes requirements for... fill, thermal insulation that is suitable for blowing or pouring applications. ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.31 Purpose and applicability....

  1. Application of cellulose acetate for controlled release of thymol.

    PubMed

    Milovanovic, Stoja; Markovic, Darka; Aksentijevic, Ksenija; Stojanovic, Dusica B; Ivanovic, Jasna; Zizovic, Irena

    2016-08-20

    Cellulose acetate (CA) was investigated as a carrier towards development of material with controlled release of thymol as a natural substance with strong antibacterial properties using high pressure techniques. Effect of thymol content on CA was confirmed by SEM, FTIR and DSC methods. Kinetic of thymol release from CA was tested using simulated gastric and intestinal fluids (hydrochloric acid and phosphate buffer saline). Results were correlated with Korsmeyer-Peppas and Weibull model. Depending on the thymol content and chemical nature of the release medium, the time of thymol release varied from one to three days indicating CA as a promising carrier of thymol with potential uses from medicine to agriculture. The impregnated CA showed antibacterial activity against 23 tested bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) which is particularly important bearing in mind that this strain causes fatal infections in humans and animals. PMID:27178940

  2. Application of cellulose acetate for controlled release of thymol.

    PubMed

    Milovanovic, Stoja; Markovic, Darka; Aksentijevic, Ksenija; Stojanovic, Dusica B; Ivanovic, Jasna; Zizovic, Irena

    2016-08-20

    Cellulose acetate (CA) was investigated as a carrier towards development of material with controlled release of thymol as a natural substance with strong antibacterial properties using high pressure techniques. Effect of thymol content on CA was confirmed by SEM, FTIR and DSC methods. Kinetic of thymol release from CA was tested using simulated gastric and intestinal fluids (hydrochloric acid and phosphate buffer saline). Results were correlated with Korsmeyer-Peppas and Weibull model. Depending on the thymol content and chemical nature of the release medium, the time of thymol release varied from one to three days indicating CA as a promising carrier of thymol with potential uses from medicine to agriculture. The impregnated CA showed antibacterial activity against 23 tested bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) which is particularly important bearing in mind that this strain causes fatal infections in humans and animals.

  3. Progress in bacterial cellulose matrices for biotechnological applications.

    PubMed

    Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R

    2016-08-01

    Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties. PMID:26927233

  4. Production, characterization, and biogas application of magnetic hydrochar from cellulose.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Tölle, Rainer; Werner, Maja; Ramm, Patrice; Mumme, Jan

    2015-06-01

    Hydrothermal carbonization (HTC) produces carbon-rich nano-micro size particles. In this study, magnetic hydrochar (MHC) was prepared from model compound cellulose by simply adding ferrites during HTC. The effects of ferrites on HTC were evaluated by characterizing solid MHC and corresponding process liquid. Additionally, magnetic stability of MHC was tested by magnetic susceptibility method. Finally, MHC was used as support media for anaerobic films in anaerobic digestion (AD). Ash-free mass yield was around 50% less in MHC than hydrochar produced without ferrites at any certain HTC reaction condition, where organic part of MHC is mainly carbon. In fact, amorphous hydrochar was growing on the surface of inorganic ferrites. MHC maintained magnetic susceptibility regardless of reaction time at reaction temperature 250°C. Pronounced inhibitory effects of magnetic hydrochar occurred during start-up of AD but diminished with prolong AD times. Visible biofilms were observed on the MHC by laser scanning microscope after AD.

  5. Progress in bacterial cellulose matrices for biotechnological applications.

    PubMed

    Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R

    2016-08-01

    Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties.

  6. Application of chemical and thermal analysis methods for studying cellulose ester plastics.

    PubMed

    Schilling, Michael; Bouchard, Michel; Khanjian, Herant; Learner, Tom; Phenix, Alan; Rivenc, Rachel

    2010-06-15

    Cellulose acetate, developed about 100 years ago as a versatile, semisynthetic plastic material, is used in a variety of applications and is perhaps best known as the basis of photographic film stock. Objects made wholly or partly from cellulose acetate are an important part of modern and contemporary cultural heritage, particularly in museum collections. Given the potential instability of the material, however, it is imperative to understand the aging mechanisms and deterioration pathways of cellulose ester plastics to mitigate decomposition and formulate guidelines for storage, exhibition, and conservation. One important aspect of this process is the ability to fully characterize the plastic, because variations in composition affect its aging properties and ultimate stability. In this Account, we assess the potential of a range of analytical techniques for plastics made from cellulose acetate, cellulose propionate, and cellulose butyrate. Comprehensive characterization of cellulose ester plastics is best achieved by applying several complementary analytical techniques. Fourier-transform IR (FTIR) and Raman spectroscopy provide rapid means for basic characterization of plastic objects, which can be useful for quick, noninvasive screening of museum collections with portable instruments. Pyrolysis GC/MS is capable of differentiating the main types of cellulose ester polymers but also permits a richly detailed compositional analysis of additives. Thermal analysis techniques provide a wealth of compositional information and thermal behavior. Thermogravimetry (TG) allows for quantitative analysis of thermally stable volatile additives, and weight-difference curves offer a novel means for assessing oxidative stability. The mechanical response to temperature, such as the glass transition, can be measured with dynamic mechanical analysis (DMA), but results from other thermal analysis techniques such as TG, differential scanning calorimetry (DSC), and dynamic load

  7. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.

    PubMed

    Ul-Islam, Mazhar; Khan, Taous; Park, Joong Kon

    2012-08-01

    Polymer composites containing solid clay nanoparticles have attracted immense attention due to the reinforced physico-mechanical properties of the final product. Bacterial cellulose-montmorillonite (BC-MMT) composites were prepared by impregnation of BC sheets with MMT suspension. FE-SEM showed that MMT adsorbed onto the surface as well as penetrated into the matrix of the BC sheets. Peaks for both BC and MMT were present in the FT-IR spectrum of the composite. XRD also showed diffraction peaks for MMT and BC with a slight decrease in the composite crystallinity from 63.22% of pure BC to 49.68% of BC-MMT3. The mechanical and thermal properties of BC-MMT composites were significantly improved compared to those of the pure BC. Tensile strength for composites was increased up to 210 MPa from 151.3 Mpa (BC) while their degradation temperature extended from 232 °C (BC) up to 310 °C. Similarly, the water holding capacity was decreased while the water release rate was improved for the BC-MMT composites as compared to the pure BC.

  8. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.

    PubMed

    de Oliveira Barud, Hélida Gomes; da Silva, Robson Rosa; da Silva Barud, Hernane; Tercjak, Agnieszka; Gutierrez, Junkal; Lustri, Wilton Rogério; de Oliveira, Osmir Batista; Ribeiro, Sidney J L

    2016-11-20

    Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented. PMID:27561512

  9. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.

    PubMed

    de Oliveira Barud, Hélida Gomes; da Silva, Robson Rosa; da Silva Barud, Hernane; Tercjak, Agnieszka; Gutierrez, Junkal; Lustri, Wilton Rogério; de Oliveira, Osmir Batista; Ribeiro, Sidney J L

    2016-11-20

    Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented.

  10. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.

    PubMed

    Lee, Koon-Yang; Buldum, Gizem; Mantalaris, Athanasios; Bismarck, Alexander

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium, pH, temperature, and oxygen content on the morphology and yield of BC are reviewed. In addition, the progress made to date on the genetic modification of bacteria to increase the yield of BC and the large-scale production of BC using various bioreactors, namely static and agitated cultures, stirred tank, airlift, aerosol, rotary, and membrane reactors, is reviewed. The challenges in commercial scale production of BC are thoroughly discussed and the efficiency of various bioreactors is compared. In terms of the application of BC, particular emphasis is placed on the utilization of BC in advanced fiber composites to manufacture the next generation truly green, sustainable and renewable hierarchical composites.

  11. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging.

  12. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications.

    PubMed

    Miao, Jianjun; Pangule, Ravindra C; Paskaleva, Elena E; Hwang, Elizabeth E; Kane, Ravi S; Linhardt, Robert J; Dordick, Jonathan S

    2011-12-01

    With the emergence of "super bacteria" that are resistant to antibiotics, e.g., methicillin-resistant Staphylococcus aureus, novel antimicrobial therapies are needed to prevent associated hospitalizations and deaths. Bacteriophages and bacteria use cell lytic enzymes to kill host or competing bacteria, respectively, in natural environments. Taking inspiration from nature, we have employed a cell lytic enzyme, lysostaphin (Lst), with specific bactericidal activity against S. aureus, to generate anti-infective bandages. Lst was immobilized onto biocompatible fibers generated by electrospinning homogeneous solutions of cellulose, cellulose-chitosan, and cellulose-poly(methylmethacrylate) (PMMA) from 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), room temperature ionic liquid. Electron microscopic analysis shows that these fibers have submicron-scale diameter. The fibers were chemically treated to generate aldehyde groups for the covalent immobilization of Lst. The resulting Lst-functionalized cellulose fibers were processed to obtain bandage preparations that showed activity against S. aureus in an in vitro skin model with low toxicity toward keratinocytes, suggesting good biocompatibility for these materials as antimicrobial matrices in wound healing applications.

  13. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. PMID:27474622

  14. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications.

    PubMed

    Miao, Jianjun; Pangule, Ravindra C; Paskaleva, Elena E; Hwang, Elizabeth E; Kane, Ravi S; Linhardt, Robert J; Dordick, Jonathan S

    2011-12-01

    With the emergence of "super bacteria" that are resistant to antibiotics, e.g., methicillin-resistant Staphylococcus aureus, novel antimicrobial therapies are needed to prevent associated hospitalizations and deaths. Bacteriophages and bacteria use cell lytic enzymes to kill host or competing bacteria, respectively, in natural environments. Taking inspiration from nature, we have employed a cell lytic enzyme, lysostaphin (Lst), with specific bactericidal activity against S. aureus, to generate anti-infective bandages. Lst was immobilized onto biocompatible fibers generated by electrospinning homogeneous solutions of cellulose, cellulose-chitosan, and cellulose-poly(methylmethacrylate) (PMMA) from 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), room temperature ionic liquid. Electron microscopic analysis shows that these fibers have submicron-scale diameter. The fibers were chemically treated to generate aldehyde groups for the covalent immobilization of Lst. The resulting Lst-functionalized cellulose fibers were processed to obtain bandage preparations that showed activity against S. aureus in an in vitro skin model with low toxicity toward keratinocytes, suggesting good biocompatibility for these materials as antimicrobial matrices in wound healing applications. PMID:21959009

  15. Highly Porous Regenerated Cellulose Fiber Mats via the Co-Forcespinning of Cellulose Acetate for Separator Applications

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Mao, Yuanbing

    2015-03-01

    Improvements in battery technology are necessary for the transition away from a fossil fuel based economy. An important bottle-neck in battery efficiency is the quality of the separator, which separates the cathode and anode to prevent a short-circuit while still allowing the ions in solution to flow as close to unabated as possible. In this work solutions of cellulose acetate, polyvinyldiflourine (pvdf), and polyvinylpyrrolidone (pvp) dissolved in a 2:1 v/v acetone/dimethylacetamide solvent mixture were Forcespun to create nonwoven fiber mats of nanoscale diameter. These mats were then soaked in a NaOH solution so as to both strip the pvp from the fiber as well as regenerate cellulose from its acetate derivative for the purpose of creating high surface area, nanoporous, hydrophilic, and ioniclly conductive cellulose/pvdf nonwoven mats for the purposes of testing their suitability as battery separators

  16. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites.

    PubMed

    Ullah, Hanif; Wahid, Fazli; Santos, Hélder A; Khan, Taous

    2016-10-01

    Bacterial cellulose (BC) synthesized by certain species of bacteria, is a fascinating biopolymer with unique physical and mechanical properties. BC's applications range from traditional dessert, gelling, stabilizing and thickening agent in the food industry to advanced high-tech applications, such as immobilization of enzymes, bacteria and fungi, tissue engineering, heart valve prosthesis, artificial blood vessels, bone, cartilage, cornea and skin, and dental root treatment. Various BC-composites have been designed and investigated in order to enhance its biological applicability. This review focuses on the application of BC-based composites for microbial control, wound dressing, cardiovascular, ophthalmic, skeletal, and endodontics systems. Moreover, applications in controlled drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy and skin tissue repair are also highlighted. This review will provide new insights for academia and industry to further assess the BC-based composites in terms of practical applications and future commercialization for biomedical and pharmaceutical purposes. PMID:27312644

  17. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites.

    PubMed

    Ullah, Hanif; Wahid, Fazli; Santos, Hélder A; Khan, Taous

    2016-10-01

    Bacterial cellulose (BC) synthesized by certain species of bacteria, is a fascinating biopolymer with unique physical and mechanical properties. BC's applications range from traditional dessert, gelling, stabilizing and thickening agent in the food industry to advanced high-tech applications, such as immobilization of enzymes, bacteria and fungi, tissue engineering, heart valve prosthesis, artificial blood vessels, bone, cartilage, cornea and skin, and dental root treatment. Various BC-composites have been designed and investigated in order to enhance its biological applicability. This review focuses on the application of BC-based composites for microbial control, wound dressing, cardiovascular, ophthalmic, skeletal, and endodontics systems. Moreover, applications in controlled drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy and skin tissue repair are also highlighted. This review will provide new insights for academia and industry to further assess the BC-based composites in terms of practical applications and future commercialization for biomedical and pharmaceutical purposes.

  18. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment.

    PubMed

    Yoshino, Aya; Tabuchi, Mari; Uo, Motohiro; Tatsumi, Hiroto; Hideshima, Katsumi; Kondo, Seiji; Sekine, Joji

    2013-04-01

    Dental root canal treatment is required when dental caries progress to infection of the dental pulp. A major goal of this treatment is to provide complete decontamination of the dental root canal system. However, the morphology of dental root canal systems is complex, and many human dental roots have inaccessible areas. In addition, dental reinfection is fairly common. In conventional treatment, a cotton pellet and paper point made from plant cellulose is used to dry and sterilize the dental root canal. Such sterilization requires a treatment material with high absorbency to remove any residue, the ability to improve the efficacy of intracanal medication and high biocompatibility. Bacterial cellulose (BC) is produced by certain strains of bacteria. In this study, we developed BC in a pointed form and evaluated its applicability as a novel material for dental canal treatment with regard to solution absorption, expansion, tensile strength, drug release and biocompatibility. We found that BC has excellent material and biological characteristics compared with conventional materials, such as paper points (plant cellulose). BC showed noticeably higher absorption and expansion than paper points, and maintained a high tensile strength even when wet. The cumulative release of a model drug was significantly greater from BC than from paper points, and BC showed greater compatibility than paper points. Taken together, BC has great potential for use in dental root canal treatment. PMID:23268234

  19. Application of GPC/LALLS to cellulose research. [Gel permeation chromatography/low-angle laser light scattering

    SciTech Connect

    Cael, J.J.; Cietek, D.J.; Kolpak, F.J.

    1983-01-01

    The techniques of gel permeation chromatography and low-angle laser light scattering (GPC/LALLS) have been combined for absolute determination of cellulose molecular weights and molecular weight distributions (MWD). The GPC/LALLS technique has been applied to tetrahydrofuran (THF) solutions of cellulose tricarbanilate (CTC) derivatives prepared from celluloses having a wide range of molecular weights. The molecular weight data obtained are consistent with values determined by intrinsic viscosity methods; and as a consequence of the absolute nature of this technique, Mark-Houswink coefficients can be predicted from a single, broad-distribution, linear homopolymer without recourse to tedious and time-consuming fractional precipitation methods. A unique application of the technique has been in correlating GPC/LALLS molecular weight data with the viscosity of nonderivatized celluloses dissolved in 0.5 M cupiethylenediamine hydroxide (CuEn). The procedure yields an absolute viscosity-molecular weight relationship which is comparable with a similar relationship originally derived from cellulose nitrates. The results indicate that the weight-average degree of polymerization (DP/sub w/) for CTC preparations is considerably greater than that obtained from cellulose nitrates, and this discrepancy, in DP/sub w/ has been attributed to errors in the Mark-Houwink coefficients for the cellulose nitrate-acetone system. 25 references, 9 figures, 7 tables.

  20. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications.

    PubMed

    Konwarh, Rocktotpal; Karak, Niranjan; Misra, Manjusri

    2013-01-01

    Cellulose acetate (CA) has been a material of choice for spectrum of utilities across different domains ranging from high absorbing diapers to membrane filters. Electrospinning has conferred a whole new perspective to polymeric materials including CA in the context of multifarious applications across myriad of niches. In the present review, we try to bring out the recent trend (focused over last five years' progress) of research on electrospun CA fibers of nanoscale regime in the context of developmental strategies of their blends and nanocomposites for advanced applications. In the realm of biotechnology, electrospun CA fibers have found applications in biomolecule immobilization, tissue engineering, bio-sensing, nutraceutical delivery, bioseparation, crop protection, bioremediation and in the development of anti-counterfeiting and pH sensitive material, photocatalytic self-cleaning textile, temperature-adaptable fabric, and antimicrobial mats, amongst others. The present review discusses these diverse applications of electrospun CA nanofibers. PMID:23318668

  1. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    NASA Astrophysics Data System (ADS)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  2. Guides d'ondes infrarouges pour applications en télécommunications, capteurs chimiques et biochimiques

    NASA Astrophysics Data System (ADS)

    Smektala, F.; Bureau, B.; Adam, J. L.; Lucas, J.

    2002-06-01

    Les énergies de phonons élevés des verres à base de silice limitent leurs applications dans l'infrarouge. Il devient donc incontournable de créer des verres à plus faible énergie de phonons pour développer une optique passive guidée opérationnelle dans l'IR moyen et pour réaliser de nouveaux guide d'ondes optiques activés par des lanthanides pouvant jouer le rôle soit d'amplificateurs optiques soit de fibres lasers. Les compositions de verres stables répondant à ces critères sont exceptionnelles et appartiennent aux familles chimiques des fluorures et des chalcogénures. Les verres de fluorures, convenablement dopés par des terres rares, ont permis la réalisation d'amplificateurs optiques opérant dans la fenêtre télecom de la silice (1.3 μm avec le praséodyme, 1.45 μm avec le thulium et 1.55 μm avec l'erbium. Les verres de chalcogénures permettent la réalisation de fibres opérationnelles jusqu'à 12 μm mais seulement pour des applications courtes distances telles que le transport d'énergie moyenne, la radiométrie à l'ambiante et la spectrométrie IR déportée par fibre optique de molécules chimiques ou de tissus biologiques.

  3. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    NASA Astrophysics Data System (ADS)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  4. Application of tetra-n-methylammonium hydroxide on cellulose dissolution and isolation from sugarcane bagasse.

    PubMed

    Zhong, Chao; Wang, Chunming; Wang, Fengxue; Jia, Honghua; Wei, Ping; Zhao, Yin

    2016-01-20

    Cellulose isolation, a promising way for lignocellulosic biomass utilization, is always restricted by the poor solubility of cellulose. In this paper, tetra-n-methylammonium hydroxide (TMAH) was confirmed to be capable of readily dissolving/regenerating cellulose without chemical modification at room temperature. Meanwhile, cellulose isolation from lignocellulosic biomass by initially dissolving the biomass in TMAH followed by cellulose precipitation was proposed, and the isolated substance with average cellulose purity of 92.1 ± 0.3% could be obtained throughout this process under the optimum conditions: temperature 52 °C, time 60 min, and loading ratio of TMAH/biomass (w/w) 7.2:1. Besides, high efficiency cellulose isolation (i.e. >70% cellulose purity) could be continuously remained during 4-round cycles by using the recycled TMAH solvent without distinct activity loss.

  5. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release.

    PubMed

    Ciolacu, Diana; Rudaz, Cyrielle; Vasilescu, Mihai; Budtova, Tatiana

    2016-10-20

    Porous cellulose matrices were prepared via cellulose dissolution in 8wt% NaOH-water, physical gelation and chemical cross-linking with epichlorohydrin (ECH), coagulation in water and lyophilisation. Cellulose and cross-linker concentration were varied. The behaviour of gels upon coagulation and the swelling of cryogels in water were analysed. An anomalous high swelling at cross-linker concentration around stoichiometric molar ratio with cellulose was observed. Cellulose cryogel morphology, crystallinity and density were studied. The influence of chemical cross-linking on cellulose swelling was explained by suggesting that ECH acts as a spacer preventing cellulose chains tight packing during coagulation. Cellulose was loaded with a model drug, procaine hydrochloride, and the kinetics of its release was investigated. PMID:27474581

  6. Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications

    SciTech Connect

    Brown, Elvie; Hu, Dehong; Abu-Lail, Nehal; Zhang, Xiao

    2013-02-19

    Nanocrystalline cellulose, a new bio-nanomaterial is utilized as a reinforcing material for biocompatible fibrin matrix to form into a nanocomposite for small-diameter replacement vascular graft application (SDRVG). The periodate oxidation of NCC, which provided it with a reactive carbonyl group, allowed molecular interaction between NCC and fibrin. Such interaction resulted into an effective mechanical reinforcement indicated by the improvement of max. force, elongation at break and modulus when oxidized NCC (ONCC) was incorporated into fibrin. The nanocomposite’s mechanical properties can be manipulated to conform to the native blood vessel by varying the ONCC to fibrin ratio and/or by controlling the degree of oxidation of NCC. Using atomic force microscopy had provided fundamental information on the effects of molecular interactions to the nanolevel mechanical properties of NCC/fibrin nanocomposites. This fundamental information established the positive feasibility and commenced continuing investigation for the practical SDRVG application of NCC/fibrin nanocomposite.

  7. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

    PubMed

    Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo

    2015-12-01

    A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale. PMID:26590897

  8. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    PubMed Central

    Kamel, Samir; Salama, Ahmed; Sarhan, Hebat-Allah

    2014-01-01

    Carboxymethyl cellulose acetate butyrate (CMCAB) has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW) thermoplastic polymers with high glass transition temperatures (Tg). CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD) formulations. PMID:25548679

  9. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  10. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  11. A versatile method for producing functionalized cellulose nanofibers and their application

    NASA Astrophysics Data System (ADS)

    Huang, Pei; Zhao, Yang; Kuga, Shigenori; Wu, Min; Huang, Yong

    2016-02-01

    A facile method was developed to produce functionalized cellulose nanofibers in one step by ball milling. Through the synergy of mechanical and chemical actions, the produced cellulose nanofibers are ca. 20 nm wide and several micrometers long, with surface properties tailored by choice of modifying reagent. Modified by succinic anhydride, a cellulose nanofiber shows enhanced hydrophilicity, can be readily dispersed in water or DMSO, and gives a zeta potential of -38.7 mV due to carboxyl groups on the surface. Modified by dodecyl succinic anhydride, a cellulose nanofiber has excellent dispersibility in o-xylene and good compatibility with polyethylene. The polyethylene-cellulose nanofiber composite presents overall enhancement of mechanical properties. This method opens a new way to the production of functionalized cellulose nanofibers.A facile method was developed to produce functionalized cellulose nanofibers in one step by ball milling. Through the synergy of mechanical and chemical actions, the produced cellulose nanofibers are ca. 20 nm wide and several micrometers long, with surface properties tailored by choice of modifying reagent. Modified by succinic anhydride, a cellulose nanofiber shows enhanced hydrophilicity, can be readily dispersed in water or DMSO, and gives a zeta potential of -38.7 mV due to carboxyl groups on the surface. Modified by dodecyl succinic anhydride, a cellulose nanofiber has excellent dispersibility in o-xylene and good compatibility with polyethylene. The polyethylene-cellulose nanofiber composite presents overall enhancement of mechanical properties. This method opens a new way to the production of functionalized cellulose nanofibers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08179c

  12. Efficient application of boron fire retardant to cellulosic loose-fill insulation

    SciTech Connect

    Wegner, T.H.; Holmes, C.A.

    1983-01-01

    Different methods of applying boron fire-retardant chemicals were investigated for their effectiveness in improving the fire performance of cellulose insulation. Loose-fill insulation derived from newsprint was treated with boric acid/borax (1:1) applied as either a dry powder or an aqueous solution; vapor deposition treatment was also evaluated for applying boric acid. Insulation produced by direct conversion from wood chips was treated with an aqueous solution and by vapor deposition. Nominal fire retardant application levels of 10, 18, and 25% (based on newsprint or wood fiber weight) were employed. The aqueous method gave better flame-spread resistance than dry powder or vapor application. Wavelength dispersive spectroscopy showed more uniform distribution of fire retardant on the fiber surface and penetration into the fiber when applied by the aqueous method. Smoldering resistance showed little dependence on application method but did depend on fire retardant level, insulation density, and particle size. Thermal conductivity was independent of fire-retardant application method, fire retardant level, and insulation density. Overall, wood fiber and newsprint insulation gave very comparable results.

  13. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    NASA Astrophysics Data System (ADS)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  16. Exploring biosensor applications with cotton cellulose nanocrystalline protein and peptide conjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor I: Nano-crystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respective...

  17. A versatile pathway to end-functionalized cellulose ethers for click chemistry applications.

    PubMed

    Kamitakahara, Hiroshi; Suhara, Ryo; Yamagami, Mao; Kawano, Haruko; Okanishi, Ryoko; Asahi, Tomoyuki; Takano, Toshiyuki

    2016-10-20

    This paper describes a versatile pathway to heterobifunctional/telechelic cellulose ethers, such as tri-O-methyl cellulosyl azide and propargyl tri-O-methyl celluloside, having one free C-4 hydroxyl group attached to the glucosyl residue at the non-reducing end for the use in Huisgen 1,3-dipolar cycloaddition and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The one-step end-functionalization of cellulose ethers for molecular rod synthesis involves the introduction of two reactive groups at both ends of the cellulose molecule, and can afford linear triblock copolymers via CuAAC and further reactions. We were able to tailor the degree of polymerization of end-functionalized cellulose ethers with controlled amounts of a Lewis acid, namely SnCl4. Chemical structures of the above cellulose ethers and the reaction conditions for controlling molecular length are discussed.

  18. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.

    PubMed

    Singh, B N; Panda, N N; Mund, R; Pramanik, K

    2016-10-20

    Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (≤100nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and type1 collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application. PMID:27474575

  19. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.

    PubMed

    Singh, B N; Panda, N N; Mund, R; Pramanik, K

    2016-10-20

    Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (≤100nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and type1 collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application.

  20. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications.

    PubMed

    Vatankhah, Elham; Prabhakaran, Molamma P; Jin, Guorui; Mobarakeh, Laleh Ghasemi; Ramakrishna, Seeram

    2014-02-01

    The major component of fibrous extracellular matrix of dermis is composed of a complex combination of proteins and polysaccharides. Electrospun cellulose acetate/gelatin might be an effective simulator of the structure and composition of native skin and during this study, we electrospun cellulose acetate/gelatin membranes in various compositions and their performance as a scaffold for either skin tissue engineering or as a wound dressing was evaluated. Skin treatment products, whether tissue-engineered scaffolds or wound dressings, should be sufficiently hydrophilic to allow for gas and fluid exchange and absorb excess exudates while controlling the fluid loss. However, a wound dressing should be easily removable without causing tissue damage and a tissue-engineered scaffold should be able to adhere to the wound, and support cell proliferation during skin regeneration. We showed that these distinct adherency features are feasible just by changing the composition of cellulose acetate and gelatin in composite cellulose acetate/gelatin scaffolds. High proliferation of human dermal fibroblasts on electrospun cellulose acetate/gelatin 25:75 confirmed the capability of cellulose acetate/gelatin 25:75 nanofibers as a tissue-engineered scaffold, while the electrospun cellulose acetate/gelatin 75:25 can be a potential low-adherent wound dressing.

  1. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field.

  2. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field. PMID:26106949

  3. The association effect of quaternary ammonium salt on carboxymethyl cellulose and its analytical applications.

    PubMed

    Wang, Yanhua; Gao, Chanjuan; Yang, Shengke

    2015-01-01

    Sodium carboxymethyl cellulose (CMC) has been extensively used in petroleum, geology, common household chemicals, food, medicine and other industries, owing to its excellent water-soluble, emulsifying, water retention and film forming properties. It is known as 'industrial monosodium glutamate'. However, the research of the test method on CMC is far behind the research of its actual application value. This study showed that, weak acid or weak basic medium, the carboxyl groups dissociated from CMC, existing as a big negative ion, which can form ion-association complexes with some quaternary ammonium cations through electrostatic and hydrophobic interactions. The absorption spectrum changes and Triton-X100 can increase the sensitivity of the system. The maximum absorption wavelengths are, respectively, about 256 nm for dodecyl trimethyl ammonium bromide (LTAB), 244 nm for tetradecyltrimethyl ammonium bromide (TTAB) and 240 nm for cetyltrimethyl ammonium bromide (CTAB) with CMC. The reactions show very high sensitivities and the maximum molar absorption coefficients are 1.10 × 10(4) L/(mol·cm) for LTAB system, 1.24 × 10(6) L/(mol·cm) for TTAB system and 1.78 × 10(6) L/(mol·cm) for CTAB system. This method is simple and rapid, and can be applied for the spectrophotometric determination of trace CMC in the supernatant of centrifuged drilling mud.

  4. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. PMID:26344279

  5. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.

  6. The association effect of quaternary ammonium salt on carboxymethyl cellulose and its analytical applications.

    PubMed

    Wang, Yanhua; Gao, Chanjuan; Yang, Shengke

    2015-01-01

    Sodium carboxymethyl cellulose (CMC) has been extensively used in petroleum, geology, common household chemicals, food, medicine and other industries, owing to its excellent water-soluble, emulsifying, water retention and film forming properties. It is known as 'industrial monosodium glutamate'. However, the research of the test method on CMC is far behind the research of its actual application value. This study showed that, weak acid or weak basic medium, the carboxyl groups dissociated from CMC, existing as a big negative ion, which can form ion-association complexes with some quaternary ammonium cations through electrostatic and hydrophobic interactions. The absorption spectrum changes and Triton-X100 can increase the sensitivity of the system. The maximum absorption wavelengths are, respectively, about 256 nm for dodecyl trimethyl ammonium bromide (LTAB), 244 nm for tetradecyltrimethyl ammonium bromide (TTAB) and 240 nm for cetyltrimethyl ammonium bromide (CTAB) with CMC. The reactions show very high sensitivities and the maximum molar absorption coefficients are 1.10 × 10(4) L/(mol·cm) for LTAB system, 1.24 × 10(6) L/(mol·cm) for TTAB system and 1.78 × 10(6) L/(mol·cm) for CTAB system. This method is simple and rapid, and can be applied for the spectrophotometric determination of trace CMC in the supernatant of centrifuged drilling mud. PMID:26360741

  7. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.

    PubMed

    Mohite, Bhavna V; Patil, Satish V

    2014-01-01

    Bacterial cellulose (BC) is an interesting biopolymer produced by bacteria having superior properties. BC produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and explored for its applications in dye removal and bioadsorption of protein and heavy metals. Purity of BC was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analysis. BC removed azo dye and Aniline blue (400 mg/L) with 80% efficiency within 60 min. The adsorption and elution of Bovine serum albumin (BSA) and heavy metals like lead, cadmium and nickel (Pb(2+), Cd(2+) and Ni(2+)) was achieved with BC which confirms the exclusion ability with reusability. The BSA adsorption quantity was increased with increase in protein concentration with more than 90% adsorption and elution ratio. The effect of pH and temperature on BSA adsorption has been investigated. Bioadsorption (82%) and elution ratio (92%) of BC for Pb(2+) was more when compared with Cd(2+) (41 and 67%) and Ni(2+) (33 and 85%), respectively. BC was also explored as soil conditioner to increase the water-holding capacity and porosity of soil. The results elucidated the significance of BC as renewable effective ecofriendly bioadsorption agent.

  8. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    PubMed

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification. PMID:24555432

  9. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production.

    PubMed

    Saratale, Ganesh D; Saratale, Rijuta G; Lo, Yung-Chung; Chang, Jo-Shu

    2010-01-01

    Among four cellulolytic microorganisms examined, Cellulomonas biazotea NCIM-2550 can grow on various cellulosic substrates and produce reducing sugar. The activity of cellulases (endoglucanase, exoglucanase, and cellobiase), xylanase, amylase, and lignin class of enzymes produced by C. biazotea was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (carboxymethyl cellulose [CMC], sugarcane bagasse [SCB], and xylan) used for growth. Effects of physicochemical conditions on cellulolytic enzyme production were systematically investigated. Using MnCl(2) as a metal additive significantly induces the cellulase enzyme system, resulting in more reducing sugar production. The efficiency of fermentative conversion of the hydrolyzed SCB and xylan into clean H(2) energy was examined with seven H(2)-producing pure bacterial isolates. Only Clostridiumbutyricum CGS5 exhibited efficient H(2) production performance with the hydrolysate of SCB and xylan. The cumulative H(2) production and H(2) yield from using bagasse hydrolysate (initial reducing sugar concentration = 1.545 g/L) were approximately 72.61 mL/L and 2.13 mmol H(2)/g reducing sugar (or 1.91 mmol H(2)/g cellulose), respectively. Using xylan hydrolysate (initial reducing sugar concentration = 0.345 g/L) as substrate could also attain a cumulative H(2) production and H(2) yield of 87.02 mL/L and 5.03 mmol H(2)/g reducing sugar (or 4.01 mmol H(2)/g cellulose), respectively.

  10. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold.

    PubMed

    Cai, Hongli; Sharma, Sudhir; Liu, Wenying; Mu, Wei; Liu, Wei; Zhang, Xiaodan; Deng, Yulin

    2014-07-14

    We demonstrated that ultralight pure natural aerogel microspheres can be fabricated using cellulose nanofibrials (CNF) directly. Experimentally, the CNF aqueous gel droplets, produced by spraying and atomizing through a steel nozzle, were collected into liquid nitrogen for instant freezing followed by freeze-drying. The aerogel microspheres are highly porous with bulk density as low as 0.0018 g cm(-3). The pore size of the cellulose aeogel microspheres ranges from nano- to macrometers. The unique ultralight and high porous structure ensured high moisture (~90 g g(-1)) and water uptake capacity (~100 g g(-1)) of the aerogel microspheres. Covalent cross-linking between the native nanofibrils and cross-linkers made the aerogel microspheres very stable even in a harsh environment. The present study also confirmed this kind of aerogel microspheres from native cellulose fibers can be used as cell culture scaffold.

  11. Amelioration de la precision d'un bras robotise pour une application d'ebavurage

    NASA Astrophysics Data System (ADS)

    Mailhot, David

    Process automation is a more and more referred solution when it comes to complex, tedious or even dangerous tasks for human. Flexibility, low cost and compactness make industrial robots very attractive for automation. Even if many developments have been made to enhance robot's performances, they still can not meet some industries requirements. For instance, aerospace industry requires very tight tolerances on a large variety of parts, which is not what robots were designed for at first. When it comes to robotic deburring, robot imprecision is a major problem that needs to be addressed before it can be implemented in production. This master's thesis explores different calibration techniques for robot's dimensions that could overcome the problem and make the robotic deburring application possible. Some calibration techniques that are easy to implement in production environment are simulated and compared. A calibration technique for tool's dimensions is simulated and implemented to evaluate its potential. The most efficient technique will be used within the application. Finally, the production environment and requirements are explained. The remaining imprecision will be compensated by the use of a force/torque sensor integrated with the robot's controller and by the use of a camera. Many tests are made to define the best parameters to use to deburr a specific feature on a chosen part. Concluding tests are shown and demonstrate the potential use of robotic deburring. Keywords: robotic calibration, robotic arm, robotic precision, robotic deburring

  12. Preparation and Application as the Filler for Elastomers of Flake-Shaped Cellulose Particles and Nanofibers

    NASA Astrophysics Data System (ADS)

    Nagatani, Asahiro; Lee, Seung-Hwan; Endo, Takashi; Tanaka, Tatsuya

    Fibrous cellulose made from wood pulp was mechanically milled into flake-shaped cellulose particles(FS-CPs) using a planetary ball mill with additives under several conditions. The average particle diameter of the FS-CPs was ca. 15μm, and the particles were available in a variety of thicknesses by changing the kind of the additives used in the milling process. FS-CPs-reinforced olefinic thermoplastic elastomer composites were prepared under melt mixing and passed through an open roll to orient the particles. The tensile modulus of the composites with a compatibilizer increased with increasing the particle content. The damping properties of the composites improved, compared to the neat elastomer. On the other hand, the fibrous cellulose was suspended in water, followed by wet disk-milled to prepare cellulose nanofibers(CNFs). The wet ground products showed nanoscopic fine morphology. CNFs-reinforced natural rubber(NR) composites were prepared by mixing the water suspension of CNFs with NR latex using a homogenizer. Then, it was dried in an oven and mixed again with vulcanizing ingredients of rubber using an open roll. The tensile properties of the composites improved remarkably by the addition of small amount of CNFs.

  13. SYNTHESIS OF THERMALLY STABLE CARBOXYMETHYL CELLULOSE/METAL BIODEGRADABLE NANOCOMPOSITES FOR POTENTIAL BIOLOGICAL APPLICATIONS

    EPA Science Inventory

    A green approach is described that generates bulk quantities of nanocomposites containing transition metals such as Cu, Ag, In and Fe at room temperature using a biodegradable polymer carboxymethyl cellulose (CMC) by reacting respective metal salts with sodium salt of CMC in aqu...

  14. Recepteur SBAS-GNSS logiciel pour des applications temps-reel

    NASA Astrophysics Data System (ADS)

    Guay, Jean-Christophe

    Satellite positioning is at a critical point of its existence. The modernization of Global Positioning System (GPS) and GLObal Navigation Satellite System (GLONASS) and the arrival of European and Chinese systems will allow a multitude of new applications. This combination of global positioning system satellites and the GPS augmentation system will improve the integrity, availability, accuracy and electromagnetic vulnerability. To takes full advantage of these new signals, the GNSS receiver will be rethought. The objective of this thesis is to develop SBAS-GNSS receiver software for real-time applications to take advantage of these new GNSS signals. To achieve this goal, a channel architecture BPSK (Binary Phase Shift Keying) has been implemented in order to profit from the similarities between different GNSS signals considered in this work. These signals are: GPS L1 CIA, GPS L2C, SBAS L1, L5 SBAS, GLONASS L1 and L2 GLONASS. In addition, this thesis also focuses on implementing a full SBAS solution to improve the accuracy of the navigation solution. BPSK channel tracks GPS L1 CIA, SBAS L1, L5 SBAS, GLONASS L1, L2 GLONASS, COMPASS and COMPASS B1 B2 covering all the band GNSS 1176 MHz to 1602 MHz This channel does not degrade any receiver performance. In fact, the horizontal accuracy is increased from 2.3 m at 1 sigma to 1.1 m at 1 sigma with some minor adjustments. In addition, the implementation of a smoothing algorithm using the carrier improves accuracy up to 0.96 mat 1 cr. The circle of 50% probability (CEP) for the smoothed solution is 0.62 m and for 95% (R95) is 2.21 m. Finally, the implementation of the SBAS solution improves the performance to 0.73 m at 1 sigma, to a CEP of 0.44 m and to a R95 of 1.4 m. Moreover, an improvement of 70% can be observed between the previous works and the actual one when we compare the 1 sigma performance. In addition, new channels and algorithms are also tested dynamically. An improvement of 5% can be observed on the standard

  15. Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose

    PubMed Central

    2013-01-01

    Background The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid–liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. Results The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in V max /K m in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. Conclusions The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the

  16. Feasibility of e-paper made with cellulose

    NASA Astrophysics Data System (ADS)

    Yoo, K. H.; Han, K. J.; Chen, Yi; Kang, K. S.; Kim, Jaehwan

    2008-03-01

    Cellulose is a beneficial material that has low cost, light weight, high compatibility, and biodegradability. Recently electro-active paper (EAPap) composed with cellulose was discovered as a smart material for application to variety industrial fields such as smart wall-paper, actuator, and magic carpet. It also exhibited actuator property through ion migration and piezoelectric effect. Since cellulose acetate (CA) film has optically transparent property, we focused on optical field application, such as electronic paper, prismsheet, and polarized film. Since CA can be easily dissolved in variety of organic solvent, various weight % (from 1 to 25 wt. %) of CA solution in acetone was prepared. Polydimethylsilane (PDMS) master pattern was fabricated on the silicone wafer. CA solution was poured to the master mold and dried using spin-coating or tape casting method. Various shape and height patterns, such as circle, honeycomb, and rectangular patterns were fabricated using 12 wt. % CA solution. The resulting pattern showed uniform size in the large area without defect. These patterns can be utilized as a substrate and cell pattern for the electronic paper. To investigate saponification (SA) effect to convert CA to regenerated cellulose, CA film was immersed into the sodium methoxide solution in methanol for various times. The fabricated CA films were stretched and immersed into the sodium methoxide solution in methanol to desubstitute the acetate group. These regenerated cellulose films have larger mechanical strength than CA films. Although the UV-visible transmittance was decreased as increasing SA time, the transmittance of the further SA process and stretched film backed up near untreated CA film. Although the cross-sectional image of the saponified and unstretched CA film did not have specific directional structure, the cross-sectional FESEM image of the saponified and stretched CA film had one directional fiber structure. The fiber was aligned to the stretched

  17. Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications.

    PubMed

    Wang, Peipei; Zhao, Jun; Xuan, Ruifei; Wang, Yun; Zou, Chen; Zhang, Zhiquan; Wan, Yizao; Xu, Yan

    2014-05-14

    The use of self-assembled biomacromolecules in the development of functional bionanocomposite foams is one of the best lessons learned from nature. Here, we show that monolithic, flexible and porous zinc oxide bionanocomposite foams with a hierarchical architecture can be assembled through the mediation of bacterial cellulose. The assembly is achieved by controlled hydrolysis and solvothermal crystallization using a bacterial cellulose aerogel as a template in a non-aqueous polar medium. The bionanocomposite foam with a maximum zinc oxide loading of 70 wt% is constructed of intimately packed spheres of aggregated zinc oxide nanocrystals exhibiting a BET surface area of 92 m(2) g(-1). The zinc oxide bionanocomposite foams show excellent antibacterial activity, which give them potential value as self-supporting wound dressing and water sterilization materials.

  18. Moisture induced softening and swelling of natural cellulose fibres in composite applications

    NASA Astrophysics Data System (ADS)

    Gamstedt, E. K.

    2016-07-01

    Composites based on natural cellulose fibres are susceptible to moisture. The fibres as well as the composite will inevitably soften and swell as moisture is absorbed. The intention of the present paper is to shed some light on the mechanisms behind softening and swelling. Also references to modelling work are made, to predict the moisture-induced dimensional stability. Characterisation techniques and models of such kind can be useful in choosing suitable fibres for improved moisture resistance, and identifying the main controlling parameters which affect the engineering consequences of moisture absorption. Understanding of the mechanisms and the main contributions to swelling can rationalise materials development. The examples shown in this review attempt to show the benefits by experimental mechanics and modelling in development of moisture resistant cellulose composites.

  19. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  20. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst.

    PubMed

    Wang, Jianqiang; Lu, Xinkun; Ng, Pui Fai; Lee, Ka I; Fei, Bin; Xin, John H; Wu, Jian-yong

    2015-02-15

    Bacterial cellulose (BC) nanofiber membranes were simply aminalized by a flush-coating and post-crosslinking method. Firstly, wet BC membranes were flushed through by an aqueous solution of polyethylenimine (PEI) and glycerol diglycidyl ether (GDE) under vacuum suction, then further heated up to 70 °C to crosslink the resultant coating on the surface of the nanofibers. The PEI coated bacterial cellulose (BC@PEI) nanofiber membrane presented excellent adsorption performance for Cu(2+) and Pb(2+) ions from aqueous solutions. Desorption of these ions was achieved using ethylene diamine tetraacetic acid treatment. This cycle of adsorption and desorption was repeated for several times with good remain adsorption performance (over 90%). Furthermore, the adsorbed Cu(2+) ions can be reduced to copper nanoparticles, and showed excellent catalytic performance for methylene blue reduction in aqueous solution. The catalytic performance can remained after several times of usage. PMID:25460686

  1. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiming; Ma, Kaikai; Du, Jinmei; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-01-01

    2,4,6-Trichloro-s-triazine has been used as one of the important linkers of reactive dyes for textiles such as cellulosic fibers. N-Halamine precursors could be bonded to a triazine-based linker by the chloride displacement reaction, and the synthesized compounds could attach to cotton fabrics by covalent bonds through a reactive dyeing process. In this study, two novel antimicrobial N-halamine precursors, 2,2,6,6-tetramethyl-4-piperidinol-s-trizine (TMPT) and 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), were synthesized and used to coat cotton fabrics. The synthesized s-triazine-based N-halamine precursors react with cellulose to produce biocidal cellulosic fibers upon exposure to diluted household bleach. The coated fabrics were characterized by FT-IR and SEM. The chlorinated treated cotton swatches demonstrated excellent antimicrobial properties against S. aureus (Gram-positive) and E. coli O157:H7 (Gram-negative) with short contact times. Washing test and UVA light test showed that chlorinated BTMPT-coated cotton fabrics were more stable than TMPT-coated cotton fabrics. Compared to the traditional pad-dry-cure technique to produce antimicrobial textiles, the novel process in this study has advantages of saving energy and maintaining tensile strength of fabrics.

  2. The application of nanoindentation for determination of cellulose nanofibrils (CNF) nanomechanical properties

    NASA Astrophysics Data System (ADS)

    Yildirim, N.; Shaler, S.

    2016-10-01

    Nanocellulose is a polymer which can be isolated from nature (woods, plants, bacteria, and from sea animals) through chemical or mechanical treatments, as cellulose nanofibrils (CNF), cellulose nanocrystals or bacterial celluloses. Focused global research activities have resulted in decreasing costs. A nascent industry of producers has created a huge market interest in CNF. However, there is still lack of knowledge on the nanomechanical properties of CNF, which create barriers for the scientist and producers to optimize and predict behavior of the final product. In this research, the behavior of CNF under nano compression loads were investigated through three different approaches, Oliver–Pharr (OP), fused silica (FS), and tip imaging (TI) via nanoindentation in an atomic force microscope. The CNF modulus estimates for the three approaches were 16.6 GPa, for OP, 15.8 GPa for FS, and 10.9 GPa for TI. The CNF reduced moduli estimates were consistently higher and followed the same estimate rankings by analysis technique (18.2, 17.4, and 11.9 GPa). This unique study minimizes the uncertainties related to the nanomechanical properties of CNFs and provides increased knowledge on understanding the role of CNFs as a reinforcing material in composites and also improvement in making accurate theoretical calculations and predictions.

  3. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  4. Transmission Sur Fibres Optiques Dans Un Systeme D'Archivage Et De Communication D'Images Pour Des Applications Medicales

    NASA Astrophysics Data System (ADS)

    Aaron, Gilles; Bonnard, Rene

    1984-03-01

    Dans l'hOpital, le besoin d'un reseau de communication electronique ne cesse de crottre au fur et a mesure de la numerisation des images. Ce reseau local a pour but de relier quelques sources d'images telles la radiologie numerique, la tomodensitometrie, la resonance magnetique nucleaire, l'echographie ultraso-nore etc..., a un systme d'archivage. Des consoles de visualisation interacti-ves peuvent etre utilisees dans les salles d'examens, les bureaux des medecins et les services de soins. Dans un tel systme, trois caracteristiques princi-pales doivent etre prises en compte le debit, la longueur du cable et le nombre de connexions. - Le debit est tr?)s important, en effet, un temps de reponse maxima de quel-ques secondes doit etre garanti pour des images de plusieurs millions d'ele-ments binaires. - La distance entre connexions peut etre de quelques km dans certains grands hopitaux. - Le nombre de connexions au reseau ne depasse jamais quelques dizaines car les sources d'images et les unites de traitement representent des materiels importants, par ailleurs les consoles de visualisation simples peuvent etre groupees en grappe. Toutes ces conditions sont remplies par les transmissions sur fibres optiques. Selon la topologie et la methode d'accNs, deux solutions peuvent etre envisa-gees : - Anneau actif - Etoile active ou passive Enfin, les developpements de Thomson-CSF en composants pour transmissions optiques pour les grands reseaux de tel4distribution nous apportent un support technologique et une production de masse qui diminuera les collts du materiel.

  5. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Reversible redox activity of ferrocene functionalized hydroxypropyl cellulose and its application to detect H2O2.

    PubMed

    Li, Pingping; Kang, Hongliang; Zhang, Chao; Li, Weiwei; Huang, Yong; Liu, Ruigang

    2016-04-20

    Novel ferrocene functionalized hydroxypropyl cellulose (HPC-Fc) were prepared by azide-alkyne cycloaddition and characterized. HPC-Fc exhibits an excellent reversible redox activity and could establish amazing electron transfer ability between enzyme and electrode. HPC-Fc and horseradish peroxidase (HRP) were coated on a platinized carbon electrode to prepare an amperometric biosensor for hydrogen peroxide (H2O2) detection. The amperometric response was measured as a function of H2O2 concentration at a fixed potential of 0.35V in 100mM phosphate buffer solution (pH 7.0). The novel biosensor exhibits a fast linear response toward H2O2 in the range of 0.1-8μM with sensitivity of 4.21nA/μM. Moreover, the enzyme assays measured by the spectrophotometer method confirm that abundant hydroxyl groups of HPC backbones are conductive for HRP to maintaining or even enhancing their activity. The redox active HPC-Fc with the unique properties of both ferrocene and cellulose is a good candidate for biosensor applications. PMID:26876825

  8. Reversible redox activity of ferrocene functionalized hydroxypropyl cellulose and its application to detect H2O2.

    PubMed

    Li, Pingping; Kang, Hongliang; Zhang, Chao; Li, Weiwei; Huang, Yong; Liu, Ruigang

    2016-04-20

    Novel ferrocene functionalized hydroxypropyl cellulose (HPC-Fc) were prepared by azide-alkyne cycloaddition and characterized. HPC-Fc exhibits an excellent reversible redox activity and could establish amazing electron transfer ability between enzyme and electrode. HPC-Fc and horseradish peroxidase (HRP) were coated on a platinized carbon electrode to prepare an amperometric biosensor for hydrogen peroxide (H2O2) detection. The amperometric response was measured as a function of H2O2 concentration at a fixed potential of 0.35V in 100mM phosphate buffer solution (pH 7.0). The novel biosensor exhibits a fast linear response toward H2O2 in the range of 0.1-8μM with sensitivity of 4.21nA/μM. Moreover, the enzyme assays measured by the spectrophotometer method confirm that abundant hydroxyl groups of HPC backbones are conductive for HRP to maintaining or even enhancing their activity. The redox active HPC-Fc with the unique properties of both ferrocene and cellulose is a good candidate for biosensor applications.

  9. Novel carboxymethyl cellulose based nanocomposite membrane: Synthesis, characterization and application in water treatment.

    PubMed

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Heydaripour, Samira; Abdouss, Majid

    2016-01-15

    Significant efforts have been made to develop composite membranes with high adsorption efficiencies for water treatment. In this study, a carboxymethyl cellulose-graft-poly(acrylic acid) membrane was synthesized in the presence of silica gel, which was used as an inorganic support. Then, different amounts of bentonite were introduced to the carboxymethyl cellulose (CMC) grafted networks as a multifunctional crosslinker, and nanocomposite membranes were prepared. The nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, and scanning electron microscopy, which revealed their compositions and surface morphologies. The novel synthesized nanocomposite membranes were utilized as adsorbents for the removal of crystal violet (CV) and cadmium (Cd (II)) ions, which were selected as representatives of a dye and a heavy metal, respectively. We explored the effects of various parameters, such as time, pH, temperature, initial concentration of adsorbate solution and amount of adsorbent, on membrane adsorption capacity. Furthermore, the kinetic, adsorption isotherm models and thermodynamic were employed for the description of adsorption processes. The maximum adsorption capacities of membranes for CV and Cd (II) ions were found to be 546 and 781 mg g(-1), respectively. The adsorption of adsorbate ions by all types of nanocomposite membranes followed pseudo-second-order kinetic model and was best fit with the Freundlich adsorption isotherm. The results indicated that the synthesized nanocomposite membrane is an efficient adsorbent for the removal of cationic dye and metal contaminants from aqueous solution during water treatment. PMID:26560638

  10. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications.

    PubMed

    Eftekhari, Samin; El Sawi, Ihab; Bagheri, Zahra Shaghayegh; Turcotte, Ginette; Bougherara, Habiba

    2014-06-01

    The purpose of this research is to develop and characterize a novel biomimetic nanocomposite that closely mimics the properties of real bone such as morphology, composition and mechanical characteristics. This novel porous nanocomposite is composed of cotton-sourced cellulose microcrystals, hydroxyapatite nanoparticles and poly l-lactide acid. A unique combination of commonly used fabrication procedures has been developed including pre-treatment of particles using a coupling agent. The effect of various weight ratios of the reinforcing agents was evaluated to assess their influence on the chemical, thermal, and mechanical properties of the nanocomposites. The prepared nanocomposites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and compression testing. Our results indicated the presence of molecular interactions between all components leading to an increase of the crystallinity of the polymer from 50% to 80%. Compression test results revealed that increasing the weight ratio of microcrystalline cellulose/poly l-lactide acid and hydroxyapatite/poly l-lactide acid from 0.1 to 0.5 enhanced the compressive yield stress from 0.127 to 2.2MPa and The Young's modulus from 6.6 to 38MPa, respectively. It was found that the fabricated nanocomposites are comparable with the trabecular bone from compositional, structural, and mechanical point of view. PMID:24863207

  11. Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors

    NASA Astrophysics Data System (ADS)

    Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo

    2015-11-01

    Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.

  12. Application of Vat Green 1 dye on gamma ray treated cellulosic fabric

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Taj, Hina

    2014-09-01

    For the present study, Vat Green 1 dye has been selected for dyeing gamma irradiated cellulosic fabric. The dyeing variables such as dyeing temperature, dyeing time and dyeing pH were optimized. Concentrations of sodium hydrosulphite for reduction process and hydrogen peroxide for oxidation process were also optimized. After evaluation of dyed fabrics in a CIE Lab system using Spectraflash SF-650 it has been found that 6 kGy is the effective absorbed dose for improvement in dyeing behaviour of cellulosic fabric. Good colour strength has been obtained by dyeing optimal irradiated fabric (6 kGy, IC) at 75 °C for 1 h. by employing dyeing solution of pH 11. It has also been found that gamma ray treatment has reduced the necessary quantity of reducing (NaHSO3) and oxidizing agents (H2O2). The rating results after implementation of suggested standard methods of ISO for colourfastness showed that using irradiated textiles, the fastness to light, washing and rubbing has been significantly improved.

  13. Characterisation of microcrystalline cellulose from oil palm fibres for food applications.

    PubMed

    Xiang, Loo Yu; P Mohammed, Mohd Afandi; Samsu Baharuddin, Azhari

    2016-09-01

    Microcrystalline cellulose (MCC) extracted from empty fruit bunches (EFB), stalk and spikelet were characterised through physicochemical and microstructure analyses. Raw stalk fibres yielded the highest cellulose content (42.43%), followed by EFB (32.33%) and spikelet (18.83%). Likewise, lowest lignin and residual oil content was reported in raw stalk fibres compared to EFB and spikelet. SEM revealed significant changes on fibres' surface morphology throughout the extraction process. FTIR analysis showed that main characteristic peaks of hemicellulose and lignin was absent on the extracted MCC. The crystallinity index for MCC extracted from EFB (82.5%), stalk (82.2%) and spikelet (86.5%) was comparable to commercial MCC (81.9%). Results suggested stalk fibres is more preferable for the production of MCC compared to EFB and spikelet. Further rheological studies showed viscoelastic behaviour with no significant differences between commercial and stalk-based MCC, while modelling work showed ability to simulate complex deformation of the MCC-hydrogel/food mixture during processing/handling stage. PMID:27185110

  14. A simple, efficient method for coupling DNA to cellulose. Development of the method and application to mRNA purification.

    PubMed

    Moss, L G; Moore, J P; Chan, L

    1981-12-25

    A simple, efficient method to couple covalently DNA to cellulose is described. It utilizes the bifunctional oxirane 1,4-butanediol diglycidyl ether to activate cellulose and subsequently to link DNA to the cellulose. The optimal conditions for the latter reaction included use of a dehydration technique whereby DNA and activated cellulose were allowed to react on a glass slide in 0.1 N NaOH. Initial volume of the reaction was important; less than or equal to 250 microliters/50 mg cellulose was necessary for maximum efficiency. At DNA concentrations of less than or equal to 4 micrograms/mg cellulose, efficiency of binding was 90%. Binding studies using nucleotide homopolymers indicated that the order of the relative efficiencies of binding was poly(dT) greater than poly(dC) = poly(dA) greater than poly(dG). DNAs subjected to the binding conditions had an average of 0-1 breaks/molecule (for a 915-base DNA). A cloned double-stranded cDNA was coupled to cellulose by this technique. The cDNA was coupled to cellulose by this technique. The DNA-cellulose matrix was successfully used to purify the complementary mRNA from total poly(A)-enriched RNA by affinity chromatography. This method is very simple and highly efficient and can be conveniently adapted for the covalent coupling of various DNA species to cellulose for affinity chromatography.

  15. Preparation of naproxen-ethyl cellulose microparticles by spray-drying technique and their application to textile materials.

    PubMed

    Arici, Mesut; Topbas, Ozlem; Karavana, Sinem Yaprak; Ertan, Gokhan; Sariisik, Merih; Ozturk, Cihat

    2014-01-01

    The objective of this study is to develop a new textile-based drug delivery system containing naproxen (NAP) microparticles and to evaluate the potential of the system as the carrier of NAP for topical delivery. Microparticles were prepared by spray-drying using an aqueous ethyl cellulose dispersion. The drug content and entrapment efficiency, particle size and distribution, particle morphology and in vitro drug release characteristics of microparticles were optimized for the application of microparticles onto the textile fabrics. Microparticles had spherical shape in the range of 10-15 μm and a narrow particle size distribution. NAP encapsulated in microparticles was in the amorphous or partially crystalline nature. Microparticles were tightly fixed onto the textile fabrics. In vitro drug release exhibited biphasic release profile with an initial burst followed by a very slow release. Skin permeation profiles were observed to follow near zero-order release kinetics. PMID:24861324

  16. Application of the triolein-embedded cellulose acetate membrane passive sampler for monitoring of polycyclic aromatic hydrocarbons in water.

    PubMed

    Tang, Jianfeng; He, Guiying; Li, Gang

    2014-01-01

    Triolein-embedded cellulose acetate membrane (TECAM) can be used as a passive sampler to measure hydrophobic organic contaminants in water. Uptake constant rates (k u ) for polycyclic aromatic hydrocarbons (PAHs) by TECAM sampling were measured under different hydrodynamic conditions. The measured k u values were modeled to enable the quantification of time weighed average (TWA) concentrations of PAHs in the field. An empirical relationship that enables the calculation of in situ k u values of chemicals using performance reference compounds (PRCs) was derived and its application was demonstrated in a field study. The results showed that freely dissolved concentrations of hydrophobic organic compounds (HOCs) can be accurately measured in the field using TECAM method based on empirical uptake models calibrated with PRCs.

  17. Modeling of competitive mutualistic relationships. Application to cellulose degradation by Streptomyces sp. strains.

    PubMed

    Thierie, Jacques; Penninckx, Michel J

    2007-12-01

    A "cascade" model depicts microbial degradation of a complex nutrient/substrate through a succession of intermediate compounds. Each stage is characterized by a particular species producing a typical degradation enzyme induced by its own degradation product. The final compound of the cascade consists of a single assimilable substrate used by all species. This results in a competition situation, whereas the contribution of all strains to the production of a complete set of efficient enzymes generates a mutualistic relationship. The model was shown to be appropriate to describe degradation of cellulose by a consortium of Streptomyces sp. strains. The simplicity and the model capacity for generalization are promising and could be used for various degradation processes both at laboratory and environmental scales.

  18. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications

    NASA Astrophysics Data System (ADS)

    Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C.

    2016-07-01

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films

  19. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  20. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  1. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites.

    PubMed

    Choi, YongJae; Simonsen, John

    2006-03-01

    Polymer nanocomposites are one of the important application areas for nanotechnology. Naturally derived organic nanophase materials are of special interest in the case of polymer nanocomposites. Carboxymethyl cellulose is a polyelectrolyte derived from natural materials. It has been extensively studied as a hydrogel polymer. Methods to modify the mechanical properties of gels and films made from CMC are of interest in our lab and in the commercial marketplace. The effect of nano-sized fillers on the properties of CMC-based composites is of interest in the development of novel or improved applications for hydrogel polymers in general and CMC in particular. This project investigated cellulose nanocrystals (CNXLs) as a filler in CMC and compared the effects to microcrystalline cellulose (MCC). The composite material was composed of CMC, MCC or CNXL, with glycerin as a plasticizer. CNXL and MCC concentrations ranged from 5% to 30%. Glycerin concentrations were kept constant at 10%. CNXLs improved the strength and stiffness of the resulting composite compared to MCC. In addition, a simple heat treatment was found to render the nanocomposite water resistant.

  2. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields.

    PubMed

    Ul-Islam, Mazhar; Khan, Shaukat; Ullah, Muhammad Wajid; Park, Joong Kon

    2015-12-01

    Bacterial cellulose (BC), owing to its pure nature and impressive physicochemical properties, including high mechanical strength, crystallinity, porous fibrous structure, and liquid absorbing capabilities, has emerged as an advanced biomaterial. To match the market demand and economic values, BC has been produced through a number of synthetic routes, leading to slightly different structural features and physical appearance. Chemical nature, porous geometry, and 3D fibrous structure of BC make it an ideal material for composites synthesis that successfully overcome certain deficiencies of pure BC. In this review, we have focused various strategies developed for synthesizing BC and BC composites. Reinforcement materials including nanoparticles and polymers have enhanced the antimicrobial, conducting, magnetic, biocompatible, and mechanical properties of BC. Both pure BC and its composites have shown impressive applications in medical fields and in the development of optoelectronic devices. Herein, we have given a special attention to discuss its applications in the medical and electronic fields. In conclusion, BC and BC composites have realistic potential to be used in future development of medical devices, artificial organs and electronic and conducting materials. The contents discussed herein will provide an eye-catching theme to the researchers concerned with practical applications of BC and BC composites.

  3. TEMPO-oxidized cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka

    2011-01-01

    Native wood celluloses can be converted to individual nanofibers 3-4 nm wide that are at least several microns in length, i.e. with aspect ratios >100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (~74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately -75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200-300 MPa and elastic moduli of 6-7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

  4. TEMPO-oxidized cellulose nanofibers.

    PubMed

    Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka

    2011-01-01

    Native wood celluloses can be converted to individual nanofibers 3-4 nm wide that are at least several microns in length, i.e. with aspect ratios>100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (∼74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately -75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200-300 MPa and elastic moduli of 6-7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

  5. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.

    PubMed

    Cao, Jie; Zhang, Xinxing; Wu, Xiaodong; Wang, Shuman; Lu, Canhui

    2016-04-20

    In this study, we report a green assembled approach to prepare natural rubber (NR) composites with 3D interconnected graphene-based conductive networks. Taking advantage of the water-dispersity and amphiphilicity of cellulose nanocrystals (CNC), well suspended graphene@CNC aqueous colloids could be prepared by the CNC-mediated reduction of graphene oxide. When homogenized with NR latex under ultrasonication and subsequently co-coagulation, the graphene@CNC nanohybrids selectively located in the interstitial space between the NR latex microspheres and constructed an ordered 3D conductive structure. This unique 3D conductive network endowed the NR composites with remarkably enhanced electric conductivity (the percolation threshold is twofold lower than that of the conventional NR/graphene composites), mechanical properties and more importantly resistivity response to organic liquids. Our strategy offered a novel, simple and eco-friendly route for the fabrication of liquid sensors capable of sensing and discriminating various solvent leakage in chemical industry as well as environmental monitoring. PMID:26876831

  6. Development of microporous structure and its application to optical film for cellulose triacetate containing diisodecyl adipate.

    PubMed

    Shimada, Hikaru; Nobukawa, Shogo; Yamaguchi, Masayuki

    2015-04-20

    Phase separation in plasticized cellulose triacetate (CTA) films is investigated to produce a microporous film that can be used in optical devices. Hot-stretched CTA films containing diisodecyl adipate (DIDA) show negative orientation birefringence similar to the hot-stretched pure CTA. After extracting DIDA from the stretched films by immersion into an organic solvent, however, the films exhibit positive birefringence. Moreover, the magnitude of the birefringence increases with the wavelength, known as extraordinary dispersion, which is an essential property in the preparation of an ideal quarter-wave plate. Numerous ellipsoidal pores with micro-scale were detected in the film after the immersion, indicating that DIDA were segregated and formed ellipsoidal domains in the CTA matrix during annealing and stretching. These results indicate that extraordinary wavelength dispersion is given by the combinations of orientation birefringence from CTA and form birefringence from micropores. Furthermore, it was found that annealing time and stretching condition affect the phase separation as well as the shape and size of pores. PMID:25662683

  7. CHITOSAN-CELLULOSE COMPOSITE MATERIALS: PREPARATION, CHARACTERIZATION AND APPLICATION FOR REMOVAL OF MICROCYSTIN

    PubMed Central

    Tran, Chieu D.; Duri, Simon; Delneri, Ambra; Franko, Mladen

    2013-01-01

    We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm+Cl−], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL+CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL+CS], the method is recyclable. XRD, FTIR, NIR, 13C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5X increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4X times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency. PMID:23542326

  8. Application of Flumethrin Pour-On on Reservoir Dogs and Its Efficacy against Sand Flies in Endemic Focus of Visceral Leishmaniasis, Meshkinshahr, Iran

    PubMed Central

    Jalilnavaz, Mohammad Reza; Abai, Mohammad Reza; Vatandoost, Hassan; Mohebali, Mehdi; Akhavan, Amir Ahmad; Zarei, Zabihollah; Rafizadeh, Sayena; Bakhshi, Hassan; Rassi, Yaver

    2016-01-01

    Background: Visceral leishmaniasis (VL) is one of the most important parasitic zoonotic diseases in the world. Domestic dogs are the main domestic reservoirs of VL in endemic foci of Iran. Various methods, including vaccination, treatment of dogs, detection and removal of infected dogs have different results around the world. General policy on control of canine visceral leishmaniasis is protection of them from sand fly bites. The aim of this study was evaluation of pour-on application of flumethrin on dogs against blood-feeding and mortality of field-caught sand flies. Methods: Once every 20 days from May untill September 2013, the treated and control dogs were exposed with field caught sandflies for 2 hours under bed net traps. After the exposure time, both alive and dead sand flies were transferred in netted cups to the laboratory. The mortality rate of them was assessed after 24 hours. The blood-fed or unfed conditions were determined 2 hours after exposure to the dogs under stereomicroscope. Results: The blood feeding index was varied from 12.0 to 25.0 % and 53.0 to 58.0 % for treated and control dogs respectively (P< 0.0001). The blood feeding inhibition was 75.0–87.0 % and 41.0–46.0 % for the control and treated dogs (P< 0.0001), respectively.The total mortality rate was 94.0–100 % and 19.0–58.0 % respectively for the treated and control groups (P< 0.001). Conclustion: Application of pour-on flumethrin on dogs caused 90–100 % mortality until 2.5 month and inhibited the blood-feeding of sand flies. PMID:27047974

  9. Cellulose conversion under heterogeneous catalysis.

    PubMed

    Dhepe, Paresh L; Fukuoka, Atsushi

    2008-01-01

    In view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non-food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value-added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

  10. Cellulose Insulation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  11. Water dispersible microbicidal cellulose acetate phthalate film

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao

    2003-01-01

    Background Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. Methods CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. Results The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. Conclusions Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not

  12. Developpement et application d'un systeme mobile de laser terrestre pour quantifier le bilan sedimentaire des plages

    NASA Astrophysics Data System (ADS)

    Van-Wierts, Stefanie

    Au Québec maritime, l'érosion côtière est une problématique d'envergure, notamment sur les côtes de formations meubles. Les plages ont un rôle de zone tampon ayant comme fonction naturelle d'absorber l'énergie des vagues et donc d'assurer l'équilibre de certains écosystèmes et le maintien de l'écoumène en réduisant l'érosion de la côte. Les méthodes d'acquisition conventionnelles ne permettent pas de quantifier convenablement les changements morphosédimentaires d'une plage à l'échelle des cellules hydrosédimentaires. Le manque de méthode d'acquisition fiable et de données quantitatives mène à une surestimation ou à une sous-estimation de la disponibilité sédimentaire d'un système côtier. Pour contrer ces lacunes et afin de minimiser les coûts d'acquisition, un nouveau système mobile de LiDAR terrestre a été mis en place, permettant d'acquérir des données topographiques de l'estran, de la haute plage et des falaises. Le système multicapteurs comprend un LiDAR, un système de navigation à haute précision (IMU et D-GPS) et une caméra. L'ensemble des instruments et capteurs sont montés sur un véhicule de type tout-terrain. Le système a été évalué sur la zone côtière de la péninsule de Manicouagan. La comparaison des données LiDAR avec 1 050 points de référence géopositionnés au D-GPS montre une erreur verticale moyenne de 0,1 m sur les secteurs de plage. Les résultats montrent que le volume sédimentaire moyen des plages devant les zones où la ligne de rivage présente un ouvrage de protection en enrochement (12 m 3/m) est plus de trois fois plus faible que devant les secteurs à l'état naturel (35,5 m3/m). La moyenne des secteurs en transition, constituant les segments où une zone artificielle et une zone naturelle se chevauchent présentent un volume moyen de 28 m3/m. Aussi, les plages devant les secteurs anthropisés sont en moyenne près de 2 fois plus étroites (12,7 m) que devant les secteurs naturels (25

  13. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; Payyavula, Raja S.; Samuel, Reichel; Tuskan, Gerald A.; Kalluri, Udaya C.; Ragauskas, Arthur J.

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  14. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  15. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances.

    PubMed

    Azzaoui, Khalil; Lamhamdi, Abdelatif; Mejdoubi, El Miloud; Berrabah, Mohammed; Hammouti, Belkheir; Elidrissi, Abderrahman; Fouda, Moustafa M G; Al-Deyab, Salem S

    2014-10-13

    The aim of this work is to develop composite materials with hydroxyapatite (HAp) mineral and organic matrix such as cellulosic polymers. We use cellulose acetate with different percentages, and then inorganic-organic films were fabricated by evaporation of solvent. The composite films were characterized using emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FT-IR) spectra. Test results show that these films are uniform and have good ductility. A strong interaction existed between HAp and cellulosic polymers, and the method allows the production of very fine particles size of about 92 nm. We have developed a new chromatographic method for the quantification of bisphenol A (BPA) in samples of baby food. The result of this study demonstrates how to use this type of composite materials to remove pollutants.

  16. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.

    PubMed

    Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang

    2015-05-01

    With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials.

  17. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  18. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Application d'une technique de modelisation aerodynamique conceptuelle sur la simulation d'un pilote automatique a commande optimale pour un avion d'affaires

    NASA Astrophysics Data System (ADS)

    Pollender-Moreau, Olivier

    Ce document présente, dans le cadre d'un contexte conceptuel, une méthode d'enchaînement servant à faire le lien entre les différentes étapes qui permettent de réaliser la simulation d'un aéronef à partir de ses données géométriques et de ses propriétés massiques. En utilisant le cas de l'avion d'affaires Hawker 800XP de la compagnie Hawker Beechcraft, on démontre, via des données, un processus de traitement par lots et une plate-forme de simulation, comment (1) modéliser la géométrie d'un aéronef en plusieurs surfaces, (2) calculer les forces aérodynamiques selon une technique connue sous le nom de Vortex Lattice Method, (3) construire un modèle de vol servant à la simulation des aéronefs pour leur enveloppe de vol en ajoutant des fonctions supplémentaires, (4) construire un modèle de turbosoufflante simplifié, (5) développer un algorithme d'équilibre (trim) du mouvement longitudinal, (6) développer des algorithmes de contrôle à commande moderne, (7) développer certaines fonctions d'un système de pilotage automatique, et (8) rassembler le tout sous une même plate-forme de simulation. Afin de supporter ce travail, une application publique Matlab, connue sous le nom de Tornado, est utilisée conjointement avec d'autres fonctions pour la conception du modèle de vol aérodynamique. D'ailleurs, il sera démontré que le modèle de vol, quoiqu'il soit quand même crédible, ne concorde pas tout à fait avec les données de référence. Par contre, puisque le modèle des moteurs fonctionne bien, que l'algorithme d'équilibrage du mouvement longitudinal fonctionne bien et que les pôles des systèmes dynamiques concordent avec la littérature, les tests dynamiques effectués au sein de la plate-forme de simulation permettent d'obtenir des résultats fonctionnels et crédibles. D'ailleurs, deux systèmes d'augmentation de la stabilité basés sur la méthode de contrôle moderne LQR et couvrant l

  20. Biofunctional Paper via Covalent Modification of Cellulose

    PubMed Central

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  1. Specific quantification of Trichoderma reesei cellulases in reconstituted mixtures and its application to cellulase-cellulose binding studies

    SciTech Connect

    Nidetzky, B. . Inst. of Food Technology Technical Univ. of Graz . Inst. of Biotechnology); Claeyssens, M. . Dept. of Biochemistry, Physiology, and Microbiology)

    1994-10-01

    Specific quantification of the major cellulolytic components of the Trichoderma reesei enzyme complex, i.e., endoglucanases I and III and cellobiohydrolases I and II, are described and, employing a defined mixture of these four cellulases reconstituted according to the composition of the native Trichoderma cellulase complex, used to determine the binding of each individual component onto filter paper. During substrate degradation by this enzyme mixture, the specific adsorption of each individual cellulase gradually increases and no preferential binding of one enzyme component in any particular phase of cellulose hydrolysis is found. T. reesei cellobiohydrolases I and II admixed with endoglucanases I and II represent a full-value'' cellulase system that is capable of degrading semicrystalline cellulose efficiently. In comparison with crude Trichoderma enzyme complex, almost identical adsorption properties and similar hydrolytic efficiency are found for the reconstituted mixture.

  2. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  3. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    PubMed Central

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; Hancock, William O.

    2014-01-01

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. These procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry. PMID:25232006

  4. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  5. Development of nonflammable cellulosic foams

    NASA Technical Reports Server (NTRS)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  6. Single-cell protein from waste cellulose

    NASA Technical Reports Server (NTRS)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  7. [Terahertz and Infrared Spectroscopic Investigation of Cellulose].

    PubMed

    Qiu, Guo-hua; Zhang, Le; Shentu, Nan-ying

    2016-03-01

    To investigate the Terahertz's application prospect, corn, wheat husk and reed were used to detect their Terahertz Time Domain Spectroscopy, and be compared with that of cellulose powder. The experimental results show that all of their absorption peaks exist at 1.75, 1.62, 1.1, and 0.7 THz. Absorption intensity of cellulose powder, corn, wheat husk and reed were compared in some frequencies points. It finds that corn, wheat husk and reed have higher absorption intensity than cellulose powder in early frequency domain. However, absorption intensity of cellulose powder is the strongest at 1.62 THz. Cellulose content in corn, wheat husk and reed were detected by using the method of chemical analysis. The peaks of absorption coefficient are related to their cellulose content at this frequency. It shows that plant cellulose occur lattice vibration in the frequency. Deformation, bending, flexing, and other changes appear to their functional keys. Quantum chemical calculation was carried out by using density functional theory to cellulose and the structure diagram of cellulose molecular formula was obtained. It also finds some absorption peaks exist at 0.7, 1.1, and 1.75 THz. Characterization of cellulose clusters mainly includes CH2, OH, CH, and so on. Glucose hydroxyl radical on the ring is active in the cellulose chain. Where hydroxyl related chemical reaction can occur, Hydroxyl can also be integrated into the intermolecular and intramolecular hydrogen bond. Terahertz wave can promote hydrogen bond vibration. This kind of vibration is weak in the intermolecular interaction. The vibration and rotating happen in dipole transition. The crystal lattice rotates and is absorptive in low frequency, and large molecular skeleton vibrates. All of them can show different intensity and position of the absorption peak in the terahertz band. Corn and cellulose were analyzed by infrared spectrum. The reverse and vibration mode of cellulose was discussed. The absorption peak is

  8. [Terahertz and Infrared Spectroscopic Investigation of Cellulose].

    PubMed

    Qiu, Guo-hua; Zhang, Le; Shentu, Nan-ying

    2016-03-01

    To investigate the Terahertz's application prospect, corn, wheat husk and reed were used to detect their Terahertz Time Domain Spectroscopy, and be compared with that of cellulose powder. The experimental results show that all of their absorption peaks exist at 1.75, 1.62, 1.1, and 0.7 THz. Absorption intensity of cellulose powder, corn, wheat husk and reed were compared in some frequencies points. It finds that corn, wheat husk and reed have higher absorption intensity than cellulose powder in early frequency domain. However, absorption intensity of cellulose powder is the strongest at 1.62 THz. Cellulose content in corn, wheat husk and reed were detected by using the method of chemical analysis. The peaks of absorption coefficient are related to their cellulose content at this frequency. It shows that plant cellulose occur lattice vibration in the frequency. Deformation, bending, flexing, and other changes appear to their functional keys. Quantum chemical calculation was carried out by using density functional theory to cellulose and the structure diagram of cellulose molecular formula was obtained. It also finds some absorption peaks exist at 0.7, 1.1, and 1.75 THz. Characterization of cellulose clusters mainly includes CH2, OH, CH, and so on. Glucose hydroxyl radical on the ring is active in the cellulose chain. Where hydroxyl related chemical reaction can occur, Hydroxyl can also be integrated into the intermolecular and intramolecular hydrogen bond. Terahertz wave can promote hydrogen bond vibration. This kind of vibration is weak in the intermolecular interaction. The vibration and rotating happen in dipole transition. The crystal lattice rotates and is absorptive in low frequency, and large molecular skeleton vibrates. All of them can show different intensity and position of the absorption peak in the terahertz band. Corn and cellulose were analyzed by infrared spectrum. The reverse and vibration mode of cellulose was discussed. The absorption peak is

  9. Application of silicified microcrystalline cellulose (Prosolv) as a polymer carrier of Epilobium parviflorum Schreb. extract in oral solid drug form.

    PubMed

    Marczyński, Zbigniew; Zgoda, Marian Mikołaj; Jambor, Jerzy

    2007-01-01

    Direct tableting is simpler and more cost-effective from the point of view of good manufacturing practice (GMP) than wet granulation or dry compacting. Thus, pharmaceutical industry more and more frequently uses this particular process. Only few therapeutic substances form under compression tablets meeting current requirements. Very often additional adjuvants must be used. These substances have the ability of increasing plastic deformation and tablet mass liquidity. Microcrystalline cellulose belongs to the best adjuvant substances of the type. It has binding, disintegrating and improving liquidity properties. This study aims at investigating the usefulness of selected high-molecular substances with particular consideration of silici-fled microcrystalline cellulose (Prosolv) and croscarmellose sodium (Vivasol) as a carrier of E. parviflorum Schreb. extract in oral solid drug form in the process of direct tab-leting. The manufactured tablets were subjected to morphological tests and pharmaceutical availability tests of biologically active substances from a tablet to the acceptor fluid. The investigations were based on general and detailed principles of Polish Pharmacopoeia VI. The obtained results allow to state that the applied high-molecular adjuvant substances proved to be useful in adequate proportions in the production of tablets from dry extract from Epilobium parviflo-rum Schreb. Generally, a significant shortening of the tablets disintegration time was obtained as compared to earlier produced tablets with the method of initial granulation. The tablets formed from E. parviflorum Schreb. extract with silicified microcrystalline cellulose (Prosolv SMCC 50) and croscarmellose sodium can be included into preparations of short dissolution time of the therapeutic substance. PMID:17957946

  10. Supercritical fluid assisted process for the generation of cellulose acetate loaded structures, potentially useful for tissue engineering applications.

    PubMed

    Cardea, Stefano; Scognamiglio, Mariarosa; Reverchon, Ernesto

    2016-02-01

    Supercritical CO2 phase inversion offers an alternative to obtain solvent free structures with short processing times and preservation of the morphology. We prepared cellulose acetate structures loaded with drug (ibuprofen) to perform experiments at pressures and temperatures ranging between 150 and 250 bars and 35 and 55 °C. The structures were properly characterized by SEM, EDX and DSC; drug controlled release experiments were also performed. Analyses showed that the operating conditions strongly influenced the structure morphology, porosity and drug release profiles. Indeed, connected microparticles, nanofibrous networks and cellular membranes were produced, which have generated different drug release profiles.

  11. VIEW POURING PLATFORM SHOWING MOLD POURING JACKETS AND WEIGHTS AND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW POURING PLATFORM SHOWING MOLD POURING JACKETS AND WEIGHTS AND, IN THE FOREGROUND, SAND RETURN FROM THE SHAKEOUT ACTUATING A SIMPLE LEVER SYSTEM THAT ADDED FRESH WATER TO THE SAND IN PREPARATION FOR ITS REUSE. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  12. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  13. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

    PubMed

    Wang, Wenhang; Du, Guanhua; Li, Cong; Zhang, Hongjie; Long, Yunduo; Ni, Yonghao

    2016-10-20

    Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied. PMID:27474537

  14. Properties and Structure of Cellulose Nanocrystal Hydrogels for Potential Applications as Three-Dimensional Artificial Extracellular Matrices

    NASA Astrophysics Data System (ADS)

    Sriskandha, Shivanthi Easwari

    This thesis describes the preparation of hydrogels of cellulose nanocrystals (CNCs) into environments that would support the growth of cells either by (i) adding Hank's Balanced Salt Solution to CNC suspensions to induce gelation or (ii) by modifying the surface of CNCs with a thermoresponsive polymer to stimulate gelation in situ. Fibroblast cells were grown within suspensions of CNCs of varying concentrations and the mechanical properties and structure of the resulting suspensions were examined. The viability of the cells cultured within the cellulose nanocrystal matrix was evaluated using two spectroscopic techniques: UV-Vis absorption and fluorescence confocal microscopy. The synthesis of thermoresponsive CNCs was conducted via an atom-transfer radical-polymerization-based living radical polymerization. The thermoresponsive polymers, poly(N-isopropylacrylamide) and poly(N -isopropylacrylamide-co-polyethylene glycol methacrylate) were polymerized from the surface of initiator-modified CNCs. The resulting polymer was characterized by attenuated total reflectance Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and dynamic light scattering.

  15. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

    PubMed

    Wang, Wenhang; Du, Guanhua; Li, Cong; Zhang, Hongjie; Long, Yunduo; Ni, Yonghao

    2016-10-20

    Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied.

  16. Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters.

    PubMed

    Vismara, Elena; Melone, Lucio; Gastaldi, Giuseppe; Cosentino, Cesare; Torri, Giangiacomo

    2009-10-30

    Cellulose material C1 was prepared by grafting of glycidyl methacrylate (GMA) in the presence of Fenton-type reagent. This one-pot procedure provided C1 with glycidyl isobutyrate branches. Glycidyl epoxide ring opening with water turned C1-C2 material branched with glycerol isobutyrate. So, C1 surface bears hydrophobic branches ending with the glycidyl group, while C2 surface presents hydrophilic branches ending with the glycerol group. The adsorption of aromatic polluting substances like phenol (Ph), 4-nitrophenol (pNPh), 2,4-dinitrophenol (dNPh), 2,4,6-trinitrophenol (picric acid, tNPh) and 2-naphtol (BN) from their water solutions was tested with C1, C2 and with the untreated cellulose material C0. Phenol adsorption did not occur. All the other aromatic molecules were removed in different amount both by C1 and C2. C1 and C2 showed different affinities towards nitrophenols and 2-naphtol. While C1 was much more effective for removing the hydrophobic 2-naphtol, C2 had higher adsorption capacity towards the hydrophilic nitrophenols, in agreement with their branches polarity, respectively.

  17. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    PubMed

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  18. Prediction of physical aging in controlled-release coatings: the application of the relaxation coupling model to glassy cellulose acetate.

    PubMed

    Sinko, C M; Yee, A F; Amidon, G L

    1991-06-01

    The effect of physical aging on both the water transport properties and the mechanical properties of glassy cellulose acetate was investigated. Results indicate a reduction in the mechanical rate of relaxation as well as a reduction in the water permeability as the glass ages. A model which describes the low-frequency relaxation behavior of condensed, amorphous systems is used to quantitate the mechanical relaxation data. Systematic changes in key parameters from this model signify alterations in the microscopic or short-range structure as the glass physically ages. Predictions from this model correlate quite closely with the observed water permeability reductions and thus indicate that the transport properties of glassy polymers are dependent on the structure of the glass. This approach may provide further insight into the effects of nonequilibrium behavior on pharmaceutically important properties and may serve as a basis for predicting aging and permeability changes in controlled-release dosage forms.

  19. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  20. Radiation degradation of cellulose

    NASA Astrophysics Data System (ADS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Hübert, S.

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20 % up to about 80 %. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given.

  1. Responsive mesoporous photonic cellulose films by supramolecular cotemplating.

    PubMed

    Giese, Michael; Blusch, Lina K; Khan, Mostofa K; Hamad, Wadood Y; MacLachlan, Mark J

    2014-08-18

    Cellulose-based materials have been and continue to be exceptionally important for humankind. Considering the bioavailability and societal relevance of cellulose, turning this renewable resource into an active material is a vital step towards sustainability. Herein we report a new form of cellulose-derived material that combines tunable photonic properties with a unique mesoporous structure resulting from a new supramolecular cotemplating method. A composite of cellulose nanocrystals and a urea-formaldehyde resin organizes into a chiral nematic assembly, which yields a chiral nematic mesoporous continuum of desulfated cellulose nanocrystals after alkaline treatment. The mesoporous photonic cellulose (MPC) films undergo rapid and reversible changes in color upon swelling, and can be used for pressure sensing. These new active mesoporous cellulosic materials have potential applications in biosensing, optics, functional membranes, chiral separation, and tissue engineering. PMID:24981200

  2. Enhancement of Cellulose Degradation by Cattle Saliva

    PubMed Central

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  3. Enhancement of Cellulose Degradation by Cattle Saliva.

    PubMed

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale.

  4. Cellulose nanofibrils aerogels generated from jute fibers.

    PubMed

    Lin, Jinyou; Yu, Liangbo; Tian, Feng; Zhao, Nie; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2014-08-30

    In this work, we report the cellulose nanofibrils extracted from the pristine jute fibers via the pretreatments followed by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and mechanical disintegration. The effects of pretreatments by using the NaOH solution and dimethyl sulfoxide solvent on the fiber morphology and macro/micro-structures were investigated by polarizing microscope and synchrotron radiation wide/small-angle X-ray scattering (WAXS/SAXS). The cellulose nanofibrils exhibit a diameter ranging from 5 nm to 20 nm and a length of several micrometers, which have been assembled into cellulose aerogels by the lyophilization of as-prepared nanofibrils dispersions with various concentrations. The results indicated that the hierarchical structures of as-prepared cellulose aerogels were dependent on the dispersion concentrations. The WAXS results show that the typical cellulose aerogels are coexistence of cellulose I and cellulose II, which has a great promise for many potential applications, such as pharmaceutical, liquid filtration, catalysts, bio-nanocomposites, and tissue engineering scaffolds.

  5. Cellulose nanofibrils aerogels generated from jute fibers.

    PubMed

    Lin, Jinyou; Yu, Liangbo; Tian, Feng; Zhao, Nie; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2014-08-30

    In this work, we report the cellulose nanofibrils extracted from the pristine jute fibers via the pretreatments followed by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and mechanical disintegration. The effects of pretreatments by using the NaOH solution and dimethyl sulfoxide solvent on the fiber morphology and macro/micro-structures were investigated by polarizing microscope and synchrotron radiation wide/small-angle X-ray scattering (WAXS/SAXS). The cellulose nanofibrils exhibit a diameter ranging from 5 nm to 20 nm and a length of several micrometers, which have been assembled into cellulose aerogels by the lyophilization of as-prepared nanofibrils dispersions with various concentrations. The results indicated that the hierarchical structures of as-prepared cellulose aerogels were dependent on the dispersion concentrations. The WAXS results show that the typical cellulose aerogels are coexistence of cellulose I and cellulose II, which has a great promise for many potential applications, such as pharmaceutical, liquid filtration, catalysts, bio-nanocomposites, and tissue engineering scaffolds. PMID:24815398

  6. Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications.

    PubMed

    Yano, Shinya; Mori, Megumi; Teramoto, Naozumi; Iisaka, Makoto; Suzuki, Natsumi; Noto, Masanari; Kaimoto, Yasuko; Kakimoto, Masashi; Yamada, Michio; Shiratsuchi, Eri; Shimasaki, Toshiaki; Shibata, Mitsuhiro

    2015-01-09

    Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC) were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO). First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N'-dicyclohexylcarbodiimide (DCC), a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI) to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress-strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  7. Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation.

    PubMed

    Castro, Rafael Cunha A; Roberto, Inês C

    2014-02-01

    The development of technologies for cellulosic ethanol production by simultaneous saccharification and fermentation (SSF) depends on the use of microorganisms with high fermentative rates and thermotolerance. In this study, the ability of five Kluyveromyces marxianus strains to produce ethanol from glucose at 45 °C was investigated. The highest fermentative parameters were observed with K. marxianus NRRL Y-6860, which was then further studied. An initial evaluation of the oxygen supply on ethanol production by the selected yeast and a comparison of SSF process from acid pretreated rice straw between K. marxianus NRRL Y-6860 and Saccharomyces cerevisiae at 30 and 45 °C were carried out. Under the lowest evaluated conditions of aeration and agitation, K. marxianus NRRL Y-6860 produced 21.5 g/L ethanol from 51.3 g/L glucose corresponding to YP/S of 0.44 g/g and QP of 3.63 g/L h. In the SSF experiments, K. marxianus NRRL Y-6860 was more efficient than S. cerevisiae at both evaluated temperatures (30 and 45 °C), attained at the highest temperature an ethanol yield of 0.24 g/g and productivity of 1.44 g/L h.

  8. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  9. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    PubMed Central

    Yano, Shinya; Mori, Megumi; Teramoto, Naozumi; Iisaka, Makoto; Suzuki, Natsumi; Noto, Masanari; Kaimoto, Yasuko; Kakimoto, Masashi; Yamada, Michio; Shiratsuchi, Eri; Shimasaki, Toshiaki; Shibata, Mitsuhiro

    2015-01-01

    Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC) were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO). First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC), a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI) to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity. PMID:25584682

  10. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application.

    PubMed

    Iqbal, Hafiz M N; Kyazze, Godfrey; Locke, Ian Charles; Tron, Thierry; Keshavarz, Tajalli

    2015-11-01

    A series of bio-composites including poly3-hydroxybutyrate [P(3HB)] grafted ethyl cellulose (EC) stated as P(3HB)-EC were successfully synthesised. Furthermore, natural phenols e.g., p-4-hydroxybenzoic acid (HBA) and ferulic acid (FA) were grafted onto the newly developed P(3HB)-EC-based bio-composites under laccase-assisted environment without the use of additional initiators or crosslinking agents. The phenol grafted bio-composites were critically evaluated for their antibacterial and biocompatibility features as well as their degradability in soil. In particular, the results of the antibacterial evaluation for the newly developed bio-composites indicated that 20HBA-g-P(3HB)-EC and 15FA-g-P(3HB)-EC bio-composites exerted strong bactericidal and bacteriostatic activity against Gram(-)E. coli NTCT 10418 as compared to the Gram(+)B. subtilis NCTC 3610. This study shows further that at various phenolic concentrations the newly synthesised bio-composites remained cytocompatible with human keratinocyte-like HaCaT skin cells, as 100% cell viability was recorded, in vitro. As for the degradation, an increase in the degradation rate was recorded during the soil burial analyses over a period of 42 days. These findings suggest that the reported bio-composites have great potential for use in wound healing; covering the affected skin area which may favour tissue repair over shorter periods.

  11. Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gao, Kezheng; Shao, Ziqiang; Peng, Xiaoqing; Wu, Xue; Wang, Feijun

    2014-03-01

    Cellulose nanofibers (CNFs) paper with low thermal expansion and electrolyte absorption properties is considered to be a good potential substrate for supercapacitors. Unlike traditional substrates, such as glass or plastic, CNFs paper saves surfaces pretreatment when Layer-by-Layer (LbL) assembly method is used. In this study, negatively charged graphene oxide (GO) nanosheets and poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate)) (PEDOT:PSS) nanoparticles are deposited onto CNFs paper with positively charged polyaniline (PANI) nanowires as agents to prepare multilayer thin film electrodes, respectively. Due to the different nanostructures of reduced graphene oxide (RGO) and PEDOT:PSS, the microstructures of the electrodes are distinguishing. Our work demonstrate that CNFs paper/PANI/RGO electrode provides a more effective pathway for ion transport facilitation compared with CNFs paper/PANI/PEDOT:PSS electrode. The supercapacitor fabricated by CNFs/[PANI-RGO]8 (S-PG-8) exhibits an excellent areal capacitance of 5.86 mF cm-2 at a current density of 0.0043 mA cm-2, and at the same current density the areal capacitance of the supercapacitor fabricated by CNFs/[PANI-PEDOT:PSS]8 (S-PP-8) is 4.22 mF cm-2. S-PG-8 also exhibits good cyclic stability. This study provides a novel method using CNFs as substrate to prepare hybrid electrodes with diverse microstructures that are promising for future flexible supercapacitors.

  12. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis.

    PubMed

    Li, Chen; Yang, Zhenhua; Zhang, Ronglin He Can; Zhang, Dongyuan; Chen, Shulin; Ma, Lijuan

    2013-12-01

    A low-cost of cellulase achieved through improving fermentation technology remains a key requirement for commercialization of cellulosic biofuels and biochemicals. pH plays a very important role in the process of cellulase synthesis by Trichoderma reesei. In this work, effects of pH on the production and production rates of three cellulase components (endoglucanase, exoglucanase, β-glucosidase) and mycelial morphology were studied. Production rates of the cellulase components were kept highest and the mycelial morphology was maintained at the optimal status by developing a phased pH control strategy in order to improve cellulase production. Cellulase production in terms of filter paper activity and β-glucosidase production in batch fermentation increased 17.6% and 22%. Saccharification efficiency of the enzyme obtained by pH control was evaluated by hydrolyzing pretreated corn cob. Saccharification yield increased significantly (up to 26.2%) compared with that without pH control. These results add new knowledge on approach for improving cellulase production.

  13. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %. PMID:24052336

  14. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis.

    PubMed

    Li, Chen; Yang, Zhenhua; Zhang, Ronglin He Can; Zhang, Dongyuan; Chen, Shulin; Ma, Lijuan

    2013-12-01

    A low-cost of cellulase achieved through improving fermentation technology remains a key requirement for commercialization of cellulosic biofuels and biochemicals. pH plays a very important role in the process of cellulase synthesis by Trichoderma reesei. In this work, effects of pH on the production and production rates of three cellulase components (endoglucanase, exoglucanase, β-glucosidase) and mycelial morphology were studied. Production rates of the cellulase components were kept highest and the mycelial morphology was maintained at the optimal status by developing a phased pH control strategy in order to improve cellulase production. Cellulase production in terms of filter paper activity and β-glucosidase production in batch fermentation increased 17.6% and 22%. Saccharification efficiency of the enzyme obtained by pH control was evaluated by hydrolyzing pretreated corn cob. Saccharification yield increased significantly (up to 26.2%) compared with that without pH control. These results add new knowledge on approach for improving cellulase production. PMID:24129314

  15. Wrinkle resistant cellulosic textiles

    SciTech Connect

    Kitchens, J.D.; Patton, R.T.; Nadar, R.S.

    1991-08-27

    This patent describes a process for treating a cellulosic textile material so as to impart wrinkle resistance and smooth drying properties. It comprises treating the cellulosic textile material with an aqueous solution comprising trans-1,2,3,4-cyclobutane tetracarboxylic acid, and a curing catalyst, and heating the treated material so as to produce esterification and crosslinking of the material with the acid.

  16. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  17. Magnetic Mesoporous Photonic Cellulose Films.

    PubMed

    Giese, Michael; Blusch, Lina K; Schlesinger, Maik; Meseck, Georg R; Hamad, Wadood Y; Arjmand, Mohammad; Sundararaj, Uttandaraman; MacLachlan, Mark J

    2016-09-13

    Novel hybrid materials of cellulose and magnetic nanoparticles (NPs) were synthesized and characterized. The materials combine the chiral nematic structural features of mesoporous photonic cellulose (MPC) with the magnetic properties of cobalt ferrite (CoFe2O4). The photonic, magnetic, and dielectric properties of the hybrid materials were investigated during the dynamic swelling and deswelling of the MPC films. It was observed that the dielectric properties of the generated MPC films increased tremendously following swelling in water, endorsing efficient swelling ability of the generated mesoporous films. The high magnetic permeability of the developed MPC films in conjunction with their superior dielectric properties, predominantly in the swollen state, makes them interesting for electromagnetic interference shielding applications. PMID:27588561

  18. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    PubMed Central

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10−3 S cm−1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm−2, 610 mV and 69.1%, respectively. PMID:26659087

  19. Immobilization of Aspergillus oryzae  β-Galactosidase on Cellulose Acetate-Polymethylmethacrylate Membrane and Its Application in Hydrolysis of Lactose from Milk and Whey

    PubMed Central

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Kashif Zaidi, Syed; Ahmad, Abrar

    2014-01-01

    The present study demonstrates the immobilization of Aspergillus oryzae β-galactosidase on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane and its application in hydrolyzing lactose in dairy industries. The effect of physical and chemical denaturants like pH, temperature, product inhibition by galactose, storage stability, and reuse number of the enzyme immobilized on CA-PMMA membrane has been investigated. Lactose was hydrolyzed from milk and whey in batch reactors at 50°C by free and immobilized β-galactosidase (IβG). Optimum pH for the free and immobilized enzyme was found to be the same, that is, 4.5. However, IβG retained greater fractions of catalytic activity at lower and higher pH ranges. The temperature optimum for the immobilized enzyme was increased by 10°C. Moreover, Michaelis-Menten constant was increased for IβG as compared to the native one while maximum reaction rate was reduced for the immobilized enzyme. The preserved activity of free and immobilized enzyme was found to be 45% and 83%, respectively, after five weeks of storage at 4°C. Reusability of IβG was observed to be 86% even after fifth repeated use, thereby signifying its application in lactose hydrolysis (as shown in lab-scale batch reactors) in various dairy products including milk and whey. PMID:27350979

  20. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    PubMed

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. PMID:25753198

  1. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid.

    PubMed

    Khanmirzaei, Mohammad Hassan; Ramesh, S; Ramesh, K

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively. PMID:26659087

  2. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    NASA Astrophysics Data System (ADS)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  3. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    PubMed

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne.

  4. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid.

    PubMed

    Khanmirzaei, Mohammad Hassan; Ramesh, S; Ramesh, K

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.

  5. A facile route to prepare cellulose-based films.

    PubMed

    Xu, Qin; Chen, Chen; Rosswurm, Katelyn; Yao, Tianming; Janaswamy, Srinivas

    2016-09-20

    Cellulose is the most abundant renewable and biodegradable material available in nature. Its insoluble character in water as well as common organic and inorganic liquids, however, curtails the wholesome utility. The continuous rise for biodegradable products based on cellulose coupled with its intrinsic ability to form a viable substitute for the petroleum-based materials necessitates the critical need for solubilizing the cellulose. Herein, we demonstrate the feasibility of ZnCl2 solutions, especially the 64-72% concentrations, to dissolve cellulose. FTIR results suggest that Zn(2+) ions promote Zn⋯O3H interactions, which in-turn weaken the intrinsic O3H⋯O5 hydrogen bonds that are responsible for strengthening the cellulose chains. Interestingly, Ca(2+) ions promote interactions among the Zn-cellulose chains leading to the formation of nano fibrils and yield gelling solutions. The tensile strength of the Ca(2+) added Zn-cellulose films increases by around 250% compared to the Zn-cellulose films. Overall, utilization of inorganic salt solutions to solubilize and crosslink cellulose is cost-effective, recyclable and certainly stands out tall among the other available systems. More importantly, the proposed protocol is simple and is a "green" process, and thus its large-scale adaptability is quite feasible. We strongly believe that the outcome opens up a new window of opportunities for cellulose in the biomedical, pharmaceutical, food and non-food applications. PMID:27261751

  6. A facile route to prepare cellulose-based films.

    PubMed

    Xu, Qin; Chen, Chen; Rosswurm, Katelyn; Yao, Tianming; Janaswamy, Srinivas

    2016-09-20

    Cellulose is the most abundant renewable and biodegradable material available in nature. Its insoluble character in water as well as common organic and inorganic liquids, however, curtails the wholesome utility. The continuous rise for biodegradable products based on cellulose coupled with its intrinsic ability to form a viable substitute for the petroleum-based materials necessitates the critical need for solubilizing the cellulose. Herein, we demonstrate the feasibility of ZnCl2 solutions, especially the 64-72% concentrations, to dissolve cellulose. FTIR results suggest that Zn(2+) ions promote Zn⋯O3H interactions, which in-turn weaken the intrinsic O3H⋯O5 hydrogen bonds that are responsible for strengthening the cellulose chains. Interestingly, Ca(2+) ions promote interactions among the Zn-cellulose chains leading to the formation of nano fibrils and yield gelling solutions. The tensile strength of the Ca(2+) added Zn-cellulose films increases by around 250% compared to the Zn-cellulose films. Overall, utilization of inorganic salt solutions to solubilize and crosslink cellulose is cost-effective, recyclable and certainly stands out tall among the other available systems. More importantly, the proposed protocol is simple and is a "green" process, and thus its large-scale adaptability is quite feasible. We strongly believe that the outcome opens up a new window of opportunities for cellulose in the biomedical, pharmaceutical, food and non-food applications.

  7. Cellulose biosynthesis and function in bacteria.

    PubMed Central

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications. Images PMID:2030672

  8. The effect of cellulose molar mass on the properties of palmitate esters.

    PubMed

    Willberg-Keyriläinen, Pia; Talja, Riku; Asikainen, Sari; Harlin, Ali; Ropponen, Jarmo

    2016-10-20

    Nowadays one of the growing trends is to replace oil-based products with cellulose-based materials. Currently most cellulose esters require a huge excess of chemicals and have therefore, not been broadly used in the industry. Here, we show that decreasing the molar mass of cellulose by ozone hydrolysis provides cellulose functionalization with less chemical consumption. To reveal the differences in reactivity and chemical consumption, we showed esterification of both native cellulose and ozone treated hydrolyzed cellulose. Based on the results, the molar mass of the starting cellulose has a significant effect on the end product's degree of substitution and properties. Furthermore, molar mass controlled palmitate esters form mechanically strong, flexible and optically transparent films with excellent water barrier properties. We anticipate that molar mass controlled cellulose will provide a starting point for the greater use of cellulose based materials, in various application, such as films and composites. PMID:27474646

  9. Recent developments in the catalytic conversion of cellulose

    PubMed Central

    Wang, Yan; Song, Hang; Peng, Lincai; Zhang, Qiangsheng; Yao, Shun

    2014-01-01

    The increasing demand for energy has led to the development of biomass conversion technologies. As the most abundant biomass on Earth, cellulose is generally chosen as the primary research target for biomass conversion. In this review, gasification and pyrolysis of cellulose are briefly discussed and hydrolysis is then considered in detail. Moreover, many new developments and applications are introduced in cellulose conversion in recent years. Among these technologies, heterogeneous catalysis, hydrolysis in ionic liquid and hydrolysis by hot-compressed water exhibit a promising potential in cellulose conversion. Therefore, they are well recognized as powerful, fast and efficient techniques, becoming the focus of intensive research. PMID:26019586

  10. UV response of cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Ko, Hyun-U.; Min, Seung-Ki; Kim, Hyun-Chan; Kim, Jaehwan

    2016-04-01

    ZnO nanorods grown cellulose film is a fascinating inorganic-organic hybrid nanocomposite in terms of synergistic properties with semiconductive functionality of ZnO and renewability and flexibility of cellulose film. This paper reports the fabrication and evaluation of cellulose ZnO hybrid nanocomposite (CEZOHN). ZnO nanorod is well grown on a cellulose film by simple chemical reaction with direct seeding and hydrothermal growing. CEZOHN has unique electric, electro-mechanical and photo-electrical behaviors. The performance of CEZOHN is estimated by measuring induced photocurrent under UV exposure. Mechanism of UV sensing and its possible applications for flexible and wearable UV sensor are addressed.

  11. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  12. Brief overview on cellulose dissolution/regeneration interactions and mechanisms.

    PubMed

    Medronho, Bruno; Lindman, Björn

    2015-08-01

    The development of cellulose dissolution/regeneration strategies constitutes an increasingly active research field. These are fundamental aspects of many production processes and applications. A wide variety of suitable solvents for cellulose is already available. Nevertheless, most solvent systems have important limitations, and there is an intense activity in both industrial and academic research aiming to optimize existing solvents and develop new ones. Cellulose solvents are of highly different nature giving great challenges in the understanding of the subtle balance between the different interactions. Here, we briefly review the cellulose dissolution and regeneration mechanisms for some selected solvents. Insolubility is often attributed to strong intermolecular hydrogen bonding between cellulose molecules. However, recent work rather emphasizes the role of cellulose charge and the concomitant ion entropy effects, as well as hydrophobic interactions.

  13. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    PubMed Central

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-01-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films. PMID:27143197

  14. Effect of Surface Attachment on Synthesis of Bacterial Cellulose

    SciTech Connect

    Evans, Barbara R; O'Neill, Hugh Michael

    2005-01-01

    Gluconacetobacter spp. synthesize a pure form of hydrophilic cellulose that has several industrial specialty applications. Literature reports have concentrated on intensive investigation of static and agitated culture in liquid media containing high nutrient concentrations optimized for maximal cellulose production rates. The behavior of these bacteria on semisolid and solid surfaces has not been specifically addressed. The species Gluconacetobacter hansenii was examined for cellulose synthesis and colony morphology on a range of solid supports, including cotton linters, and on media thickened with agar, methyl cellulose, or gellan. The concentration and chemical structure of the thickening agent were found to be directly related to the formation of contiguous cellulose pellicules. Viability of the bacteria following freezer storage was improved when the bacteria were frozen in their cellulose pellicules.

  15. Chapter 5: Meso-Scale Modeling of Polysaccharides in Plant Cell Walls: An Application to Translation of CBMs on Cellulose Surface

    SciTech Connect

    Bu, L.; Himmel, M. E.; Nimlos, M. R.

    2010-01-01

    A coarse-grained model and force field for simulating cellulose I{beta} surface (1,0,0) was derived, in which each {beta}-D-glucose unit is represented by three beads. The coarse-grained model can reproduce a stable cellulose (1,0,0) surface with an excellent agreement with an all-atom model. When used to study the interaction of the family 1 carbohydrate-binding module (CBM1) with this cellulose surface model, the CBM 'opens' as in earlier atomistic simulations. This cellulose I{beta} surface model produces simulations in which the CBM translates along a broken cellodextrin chain. This processive motion of the exoglucanase cellobiohydrolase I has long been suggested by experimental studies, but has never before been observed in computer simulations.

  16. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.

    PubMed

    Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang

    2015-05-01

    With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials. PMID:25659673

  17. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  18. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  19. Elaboration d'un composite conducteur a base de polypyrrole et de nanofibres de cellulose

    NASA Astrophysics Data System (ADS)

    Bideau, Benoit

    Le projet de production de nanocellulose à grande échelle par l'équipe de recherche du professeur Claude Daneault, ne pourra se faire sans avoir démontré sa quelconque utilité sur le marché économique. C'est dans cette optique que s'est articulé mon travail afin de mettre en avant une des voix de valorisation de ces nanocelluloses. Nous avons travaillé plus précisément sur le développement d'un nanocomposite conducteur biodégradable. Nous nous sommes proposé dans ce travail de développer une technique simple et écologique permettant la conception d'un matériau composite conducteur. Nous avons étudié l'influence des nanofibres de cellulose, du pyrrole, de la température, de la durée de polymérisation et l'ajout d'additifs dans le matériau composite. L'étude de ces paramètres nous a permis de déterminer les meilleures conditions pour le développement d'un film composite conducteur avec des propriétés mécaniques acceptables. L'ajout de ce renfort (nanofibres), au sein de la matrice de polypyrrole a permis d'obtenir des films intéressants, de part leurs propriétés mécaniques, électriques et de leur caractère biodégradable. Des comparaisons ont été effectuées avec des fibres oxydées, afin d'étudier l'apport des nanofibres de cellulose au composite. Notre étude a ensuite été élargie à l'ajout d'additifs dans les matériaux conducteurs afin d'améliorer certaines propriétés du composite. L'objectif de ce travail visait l'étude de l'incorporation des nanofibres de cellulose dans une matrice de polypyrrole en vue de son utilisation en tant que matériau conducteur biodégradable pour des applications dans le domaine énergétique. Mots Clés: Nanocellulose, polypyrrole, composite, conducteur, biodégradable, propriétés mécaniques, additifs.

  20. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  1. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  2. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  4. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  5. Method of saccharifying cellulose

    DOEpatents

    Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  6. Method of saccharifying cellulose

    DOEpatents

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  7. Modification of bacterial cellulose through exposure to the rotating magnetic field.

    PubMed

    Fijałkowski, Karol; Żywicka, Anna; Drozd, Radosław; Niemczyk, Agata; Junka, Adam Feliks; Peitler, Dorota; Kordas, Marian; Konopacki, Maciej; Szymczyk, Patrycja; Fray, Mirosława El; Rakoczy, Rafał

    2015-11-20

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds. PMID:26344254

  8. Modification of bacterial cellulose through exposure to the rotating magnetic field.

    PubMed

    Fijałkowski, Karol; Żywicka, Anna; Drozd, Radosław; Niemczyk, Agata; Junka, Adam Feliks; Peitler, Dorota; Kordas, Marian; Konopacki, Maciej; Szymczyk, Patrycja; Fray, Mirosława El; Rakoczy, Rafał

    2015-11-20

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds.

  9. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. PMID:26352877

  10. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry.

  11. When It Rains, It Pours

    ERIC Educational Resources Information Center

    Mills, Linda

    2012-01-01

    "It's raining, it's pouring, the old man is snoring!" "The itsy, bitsy spider crawled up the waterspout, down came the rain and washed the spider out. Out came the sun and dried up all the rain, and the itsy, bitsy spider went up the spout again." What do children's nursery rhymes have to do with the school library? The author begins by telling a…

  12. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  13. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    PubMed

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. PMID:24274511

  14. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  15. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    PubMed Central

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  16. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-03-24

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  17. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    SciTech Connect

    Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

    2010-05-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  18. Synthesis and properties of cellulose functionalized -4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nanocomposites materials for high performance applications

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Heung-Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2013-04-01

    The general class of organic-inorganic hybrid nanocomposites materials is a fast growing area of research. The significant effort is focused on the ability to control the nanoscale structures via organic functional synthetic approaches with inorganic metal oxides. The properties of nanocomposites material depends on the properties of their individual components but also their morphological and interfacial characteristics. This rapidly expanding field is generating many exciting new materials with novel properties. Mainly, cellulose is considered as the richest renewable materials are presently among the most promising candidates for use in photonics due to their versatility, flexibility, light weight, low cost and ease of modification. Cellulose-metal oxide nanomaterials were developed the technologies to manipulate selfassembly and multifunctionallity, of new technologies to the point where industry can produce advanced and costcompetitive cellulose metal oxide hybrid materials. Therefore, the present study is focused on cellulose-functionalized - 4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nano-composites materials by in-situ sol-gel process. The chemical and morphological properties of cellulose-functionalized SiO2/TiO2 materials via covalent crosslinking hybrids were characterized by FTIR, XRD, TGA, DSC, SEM, TEM and optical properties.

  19. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.

    PubMed

    Wilkinson, Karl A; Hine, Nicholas D M; Skylaris, Chris-Kriton

    2014-11-11

    We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here. PMID:26584365

  20. HPMC reinforced with different cellulose nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  1. Electron (charge) density studies of cellulose models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...

  2. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application.

  3. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. PMID:26572446

  4. Biocompatibility of Bacterial Cellulose Based Biomaterials

    PubMed Central

    Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. PMID:24955750

  5. Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities.

    PubMed

    Elschner, Thomas; Heinze, Thomas

    2015-06-01

    Cellulose carbonates as a platform compound open new possibilities for the design of advanced materials based on the most important renewable resource cellulose. In the present feature, the chemistry of cellulose carbonates is discussed considering own research results adequately. After a short overview about methods for activation of polysaccharides for a conversion with nucleophilic compounds in particular with amines, details about various methods for the synthesis of polysaccharide carbonates are discussed. The main issue of the feature is the synthesis and aminolysis of cellulose carbonates with low, intermediate, and high degree of substitution and the evaluation of this chemistry with respect to specific challenges. Functional cellulose carbamates, obtained from cellulose phenyl carbonate by aminolysis, show the potential use of this class of celluloses. Immunoassays and zwitterionic polymers are included as representative examples regarding properties and application of the new cellulose-based products.

  6. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.

    PubMed

    Fang, Ju; Kawano, Shin; Tajima, Kenji; Kondo, Tetsuo

    2015-10-12

    Bacterial cellulose pellicle produced by Gluconacetobacter xylinus (G. xylinus) is one of the best biobased materials having a unique supernetwork structure with remarkable physiochemical properties for a wide range of medical and tissue-engineering applications. It is still necessary to modify them to obtain materials suitable for biomedical use with satisfactory mechanical strength, biodegradability, and bioactivity. The aim of this research was to develop a gene-transformation route for the production of bacterial cellulose/Curdlan (β-1,3-glucan) nanocomposites by separate but simultaneous in vivo synthesis of cellulose and Curdlan. Modification of the cellulose-nanofiber-producing system of G. xylinus enabled Curdlan to be synthesized simultaneously with cellulose nanofibers in vivo, resulting in biopreparation of nanocomposites. The obtained Curdlan/cellulose composites were characterized, and their properties were compared with those of normal bacterial cellulose pellicles, indicating that Curdlan mixed with the cellulose nanofibers at the nanoscale without disruption of the nanofiber network structure in the pellicle.

  7. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size.

    PubMed

    Yeasmin, Mst Sarmina; Mondal, Md Ibrahim H

    2015-09-01

    Corn husk is an abundant agricultural waste. It has great potential for use as a cellulose source for the production of carboxymethyl cellulose (CMC). The chemical composition of corn husk, such as cellulose, hemicelluloses, lignin, fatty and waxy matter, pectic matter and aqueous extract was determined. The cellulose extracted from corn husk was carboxymethylated using sodium hydroxide (NaOH) and monochloroacetic acid (MCA), in aqueous ethanolic medium, under heterogeneous conditions. The carboxymethylation reaction was optimized as to the NaOH concentration, MCA concentration, reaction temperature, reaction time and cellulose particle size. The degree of substitution (DS) was determined with respect to the reaction conditions using chemical methods. The produced CMC was identified by FTIR and the crystallinity of the CMC was determined by XRD. The CMC product had an optimized DS of 2.41 and the optimal conditions for carboxymethylation were NaOH concentration, 7.5 mol/L; MCA concentration, 12 mol/L; reaction temperature, 55 °C; reaction time, 3.5 h and cellulose particle size, 74 μm. These optimization factors allowed to prepare highly substituted CMC with higher yield, 2.40 g/g, providing plenty of opportunities for its many applications.

  8. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    PubMed

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. PMID:27561528

  9. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  10. Load distribution in native cellulose.

    PubMed

    Hinterstoisser, Barbara; Akerholm, Margaretha; Salmén, Lennart

    2003-01-01

    The properties of cellulose materials are dependent on interactions between and within the cellulose chains. To investigate the deformation behavior of cellulose and its relation to molecular straining, sheets with fibers oriented preferably in one direction were studied by dynamic FT-IR spectroscopy. Celluloses with different origins (spruce pulp, Cladophora cellulose, cotton linters) were used. The sheets were stretched sinusoidally at low strains and small amplitudes while being irradiated with polarized infrared radiation. The cellulose fibers showed mainly an elastic response. The cellulose fibers showed mainly an elastic response. The glucose rings and the C-O-C bridges connecting adjacent rings, as well as the O(3)H.O(5) intramolecular hydrogen bonds are the components mainly deformed under stress, whereas the O(2)H.O(6) intramolecular hydrogen bonds play a minor role. The load distribution was also found to be different in the different allomorphic forms of cellulose I, namely, I(alpha) and I(beta).

  11. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste.

    PubMed

    Mondal, Md Ibrahim H; Yeasmin, Mst Sarmina; Rahman, Md Saifur

    2015-08-01

    Alpha-cellulose extracted from corn husks was used as the raw material for the production of food-grade carboxymethyl cellulose (CMC). Preparation of CMC from husk cellulose was carried out by an etherification process, using sodium hydroxide and monochloroacetic acid (MCA), with ethanol as the supporting medium. Characterizations of CMC were carried out by analyzing the spectra of FTIR, XRD patterns and SEM photomicrographs. Degree of substitution (DS) was determined with respect to particle size using chemical methods. Solubility, molecular weight and DS of CMC increased with decreased cellulose particle sizes. Microbiological testing of the prepared CMC was done by the pour plate method. Concentrations of heavy metals such as arsenic, lead, cadmium and mercury in the purified CMC were measured by Atomic Absorption Spectroscopy technique and found to be within the WHO/FAO recommended value. A comparative study with CMC available in the international market was conducted. The purity of the prepared CMC was higher, at 99.99% well above the purity of 99.5% for standard CMC. High purity CMC showed a yield 2.4 g/g with DS 2.41, water holding capacity 5.11 g/g, oil holding capacity 1.59 g/g. The obtained product is well suited for pharmaceutical and food additives.

  12. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration.

  13. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.

    PubMed

    Yang, Quanling; Saito, Tsuguyuki; Berglund, Lars A; Isogai, Akira

    2015-11-14

    All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials.

  14. Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site.

    PubMed

    Field, Erin K; D'Imperio, Seth; Miller, Amber R; VanEngelen, Michael R; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-05-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  15. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  16. Isolation and characterization of a ß-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported on a new yeast strain of Clavispora sp. NRRL Y-50464 that is capable of utilizing cellobiose as sole source of carbon and energy by producing sufficient native ß-glucosidase enzyme activity without further enzyme supplementation for cellulosic ethanol production using simultan...

  17. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

  18. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  19. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  20. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis

    PubMed Central

    2011-01-01

    Background In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. Results After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin

  1. Cellulose Synthesis and Its Regulation

    PubMed Central

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174

  2. Essays concerning the cellulosic biofuel industry

    NASA Astrophysics Data System (ADS)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  3. A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes.

    PubMed Central

    Goldkorn, T; Prockop, D J

    1986-01-01

    Single-stranded DNAs (ssDNAs) were covalently bound by a simple and efficient enzymatic method to a solid support matrix and used to develop several new procedures for gene analysis. The novel procedure to prepare a ssDNA stably coupled to a solid support employed T4 DNA ligase to link covalently oligo (dT)-cellulose and (dA)-tailed DNA. Beginning with essentially any double stranded DNA the procedure generates a ssDNA linked by its 5' end to a cellulose matrix in a concentration of over 500 ng per mg. DNA from the plasmid pBR322 (4300 bp) and a fragment of the beta-globin gene (1800 bp) were coupled to the solid support and used for several experiments. The ssDNAs on the cellulose efficiently hybridized with as little as 5 pg of complementary double-stranded DNAs. The DNA hybrids formed on the solid support were specifically and efficiently cleaved by restriction endonucleases. These specific restriction cuts were utilized for the diagnosis of correct sequences. In addition, the ssDNA on the solid support served as an efficient template for the synthesis of complementary ssDNAs. The complementary synthesized ssDNAs were uniformly labeled, more than two kilobases in size, and largely full length. About 85% of the ssDNA linked to cellulose was available for the synthesis of complementary DNA, and after strand-separation, the preparation was reusable for the synthesis of additional complementary DNA. Images PMID:3024131

  4. Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate.

    PubMed

    Labafzadeh, Sara R; Helminen, K Juhani; Kilpeläinen, Ilkka; King, Alistair W T

    2015-01-01

    Dialkylcarbonates are viewed as low-cost, low-toxicity reagents, finding application in many areas of green chemistry. Homogeneous alkoxycarbonylation of cellulose was accomplished by applying dialkycarbonates (dimethyl and diethyl carbonate) in the ionic liquid-electrolyte trioctylphosphonium acetate ([P8881 ][OAc])/DMSO or 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). Cellulose dialkylcarbonates with a moderate degree of substitution (DS∼1) are accessible via this procedure and cellulose methylcarbonate was thoroughly characterized for its chemical and physical properties after regeneration. This included HSQC & HMBC NMR, ATR-IR, molecular weight distribution, morphology, thermal properties, and barrier properties after film formation. PMID:25378289

  5. Low pour crude oil compositions

    SciTech Connect

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  6. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    NASA Astrophysics Data System (ADS)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  7. Composite edible films based on hydroxypropyl methyl cellulose reinforced with microcrystalline cellulose nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...

  8. [Insights into engineering of cellulosic ethanol].

    PubMed

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  9. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.

    PubMed

    Deng, Sha; Huang, Rui; Zhou, Mi; Chen, Feng; Fu, Qiang

    2016-12-10

    Cellulose films with excellent mechanical strength are of interest to many researchers, but unfortunately they often lack the ductility and water resistance. This work demonstrates an efficient and easily industrialized method for hydrophobic cellulose films made of modified microfibrillated cellulose (MFC). Prior to film fabrication, the simultaneous exfoliation and acylation of MFC was achieved through the synergetic effect of mechanical and chemical actions generated from ball milling in the presence of hexanoyl chloride. Largely enhanced tensile strength and elongation at break have been achieved (4.98MPa, 4.37% for original MFC films, 140MPa, 21.3% for modified ones). Due to hydrophobicity and compact structure, modified films show excellent water resistance and decreased water vapor permeability. Moreover, optical performance of modified films is also improved compared with the original MFC films. Our work can largely expand the application of this biodegradable resource and ultimately reduce the need for petroleum-based plastics. PMID:27577904

  10. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  11. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  12. Processes for treating cellulosic material

    NASA Technical Reports Server (NTRS)

    Ladisch, Michael R. (Inventor); Kohlman, Karen L. (Inventor); Westgate, Paul L. (Inventor); Weil, Joseph R. (Inventor); Yang, Yiqi (Inventor)

    1998-01-01

    Disclosed are processes for pretreating cellulosic materials in liquid water by heating the materials in liquid water at a temperature at or above their glass transition temperature but not substantially exceeding 220.degree. C., while maintaining the pH of the reaction medium in a range that avoids substantial autohydrolysis of the cellulosic materials. Such pretreatments minimize chemical changes to the cellulose while leading to physical changes which substantially increase susceptibility to hydrolysis in the presence of cellulase.

  13. Cellulose biogenesis in Dictyostelium discoideum

    SciTech Connect

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  14. Pretreating cellulosic substrates and producing sugar therefrom

    SciTech Connect

    Grethlein, H.E.

    1980-12-02

    Saccharification of mineral acid-pretreated oakwood chips with cellulase (I) from Trichoderma viride resulted in manufacture of glucose (II) in high yield. The II was obtained in 90.4% yield when the chips were pretreated with 1% H/sub 2/SO/sub 4/ at 189/sup 0/ and saccharified with I for 48 hours. The method is also applicable to cellulosic wastes such as waste newspapers, and the product may be further fermented to produce ethanol for fuel use.

  15. De UVX 92 (premier laser X saturé) à UVX 2002 (LASERIX) le laser X devient un outil pour les applications scientifiques

    NASA Astrophysics Data System (ADS)

    Jamelot, G.; Ros, D.; Klisnick, A.; Zeitoun, Ph.; Dubau, J.; Lagron, J.-C.; Vanbostal, L.

    2003-06-01

    Les lasers X pompés par laser ont vigoureusement progressé au cours des 10 dernières années. Les premiers lasers X, quasistationnaires, furent produits dans des installations laser de très grande puissance principalement destinées à la physique de la fusion inertielle. Aujourd'hui, le pompage transitoire nécessite une énergie de pompe beaucoup plus petite et peut être réalisé dans des installations laser de taille modeste. LASERIX sera une station de travail destinée spécifiquement à la réalisation de lasers X transitoires, à la recherche de nouveaux schémas de lasers X, ainsi qu'au développement de leurs applications; le projet est basé sur une chaîne laser de pompe capable de délivrer 10J en 500ps et 10J en 1ps.

  16. Application de l'A.D.L, pour la mesure du champ de vitesses instationnaires de llecoulement a Ilechappement d'un moteur a combustion interne

    NASA Astrophysics Data System (ADS)

    Boutrif, M. S.; Thelliez, M.

    1993-01-01

    We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2mm thickness. We also show that the cylinder discharges in two phases : the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly : its velocity varies between - 100m/s and 200m/s within a period shorter than 1ms ; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. Nous présentons des résultats expérimentaux du champ de vitesses instationnaires, obtenus par adaptation et application de la vélocimétrie laser interférentielle communément appelée à effet Doppler (L.D.A.), à l'échappement d'un moteur altematif à combustion inteme en fonctionnement nominal. Tout d'abord, nous montrons que dans un tube d'échappement long et droit, la vitesse instantanée est bien monodimensionnelle et que l'écoulement occupe la quasitotalité de la section droite géométrique du tube (une couche limite d'épaisseur inférieure à 2mm se développe très près de la paroi du tube). Nous pouvons également décrire la vidange du cylindre du moteur étudié en deux phases principales : bouffée d'échappement et refoulement des gaz brûlés par le piston. Nous mettons de même en évidence l'état très pulsé de l'écoulement, puisqu'en un intervalle de temps inférieur à 1ms, la vitesse de l'écoulement varie de - 100m/s à 200m/s ; nous enregistrons ainsi l'apparition du phénomène de résonance acoustique à des vitesses de rotation supérieures à 3 500

  17. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  18. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system.

    PubMed

    Ullah, Muhammad Wajid; Ul-Islam, Mazhar; Khan, Shaukat; Kim, Yeji; Park, Joong Kon

    2016-01-20

    This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were thicker and more compact than microbial cellulose. The specific positions of peaks in the X-ray diffraction and nuclear magnetic resonance spectra indicated that bio-cellulose possessed cellulose II polymorphic structure. Bio-cellulose presented superior physico-mechanical properties than microbial cellulose. The water holding capacity of bio-cellulose and microbial cellulose were found to be 188.6 ± 5.41 and 167.4 ± 4.32 times their dry-weights, respectively. Tensile strengths and degradation temperature of bio-cellulose were 17.63 MPa and 352 °C, respectively compared to 14.71 MPa and 327 °C of microbial cellulose. Overall, the results indicated successful synthesis and superior properties of bio-cellulose that advocate its effectiveness for various applications.

  19. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  20. Preparation of succinylated cellulose membranes for functionalization purposes.

    PubMed

    Ribeiro-Viana, Renato M; Faria-Tischer, Paula C S; Tischer, Cesar A

    2016-09-01

    The anhydroglucose chains of cellulose possess hydroxyls that facilitate different chemical modification strategies to expand on, or provide new applications for membranes produced by the bacteria Gluconacetobacter xylinus. Conjugation with biomolecules such as proteins, especially by the amine groups, is of great value and interest for the production of biomaterial derivatives from bacterial cellulose. To assist in these modifications, cellulose was succinylated in order to prevent steric hindrance and to create an attachment point for conjugation. Bacterial cellulose membranes were first treated in dichloromethane and reacted with succinic anhydride through a series of conditions. The membrane structure remained intact after these first processes and the product was confirmed by Infra-Red spectroscopy and solid state nuclear magnetic resonance and characterized by X-ray diffraction, thermogravimetry and atomic force microscopy. Hydrolyzed collagen was used as a model protein of interest to be conjugated to these membranes, which furnished a biomaterial functionalized over its surface. PMID:27185111

  1. Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution.

    PubMed

    Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-12-01

    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent.

  2. Application of a two-stream radiative transfer model for leaf lignin and cellulose concentrations from spectral reflectance measurements, part 2

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Vandenbosch, Jeannette; Grove, Cindy I.

    1993-01-01

    We used the Kubelka-Munk theory of diffuse spectral reflectance in layers to analyze influences of multiple chemical components in leaves. As opposed to empirical approaches to estimation of plant chemistry, the full spectral resolution of laboratory reflectance data was retained in an attempt to estimate lignin or other constituent concentrations from spectral band positions. A leaf water reflectance spectrum was derived from theoretical mixing rules, reflectance observations, and calculations from theory of intrinsic k- and s-functions. Residual reflectance bands were then isolated from spectra of fresh green leaves. These proved hard to interpret for composition in terms of simple two component mixtures such as lignin and cellulose. We next investigated spectral and dilution influences of other possible components (starch, protein). These components, among others, added to cellulose in hypothetical mixtures, produce band displacements similar to lignin, but will disguise by dilution the actual abundance of lignin present in a multicomponent system. This renders interpretation of band positions problematical. Knowledge of end-members and their spectra, and a more elaborate mixture analysis procedure may be called for. Good observational atmospheric and instrumental conditions and knowledge thereof are required for retrieval of expected subtle reflectance variations present in spectra of green vegetation.

  3. Application of a two-stream radiative transfer model for leaf lignin and cellulose concentrations from spectral reflectance measurements, part 1

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Vandenbosch, Jeannette; Grove, Cindy I.

    1993-01-01

    Lignin and nitrogen contents of leaves constitute the primary rate-limiting parameters for the decomposition of forest litter, and are determinants of nutrient- and carbon-cyclic rates in forest ecosystems (Melillo et al., 1982). Wessman et al. (1988a) developed empirical multivariate relationships between forest canopy lignin amount and the (first-difference) AIS spectral response in three bands spread over the wavelength interval 1256-1555 nm. Wessman et al. (1988b) and McLellan et al. (1991) developed similar regression relationships from laboratory reflectance measurements on dried samples prepared in a standard fashion. They used four to six infrared bands for analysis of nitrogen, lignin and cellulose content of foliage in forest and prairie species. In the present article (Parts 1 and 2) the feasibility of compositional determinations is explored using positions of composite absorption bands that originate from mixtures of lignin, cellulose, and possibly other chemical constituents in the spectral reflectance of green leaves. To carry out this program, we employ full-spectral-resolution single-leaf diffuse reflectance measurements made with a laboratory spectrometer and integrating sphere. The leaf and other chemical reflectance data compiled by Elvidge (1990) have also been utilized extensively.

  4. Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution.

    PubMed

    Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-12-01

    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent. PMID:27552427

  5. Hairy cellulose nanocrystalloids: a novel class of nanocellulose.

    PubMed

    van de Ven, Theo G M; Sheikhi, Amir

    2016-08-18

    Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems. Despite numerous advantages of synthetic nanomaterials, issues such as renewability, sustainability, biocompatibility, and cost efficiency have drawn significant attention towards natural products such as cellulose-based nanomaterials. Within the past decade, nanocelluloses, most remarkably nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC), have successfully been used for a wide spectrum of applications spanning from nanocomposites, packaging, and mechanical and rheological property modifications, to chemical catalysis and organic templating. Yet, there has been little effort to introduce fundamentally new polysaccharide-based nanomaterials. We have been able to develop the first kind of cellulose-based nanoparticles bearing both crystalline and amorphous regions. These nanoparticles comprise a crystalline body, similar to conventional NCC, but with polymer chains protruding from both ends; therefore, these particles are called hairy cellulose nanocrystalloids (HCNC). In this article, we touch on the philosophy of HCNC synthesis, the striking superiority over existing nanocelluloses, and applications of this novel class of nanocelluloses. We hope that the emergence of hairy cellulose nanocrystalloids extends the frontiers of sustainable, green nanotechnology. PMID:27453347

  6. Anomalous scaling law of strength and toughness of cellulose nanopaper

    PubMed Central

    Zhu, Hongli; Zhu, Shuze; Jia, Zheng; Parvinian, Sepideh; Li, Yuanyuan; Vaaland, Oeyvind; Hu, Liangbing; Li, Teng

    2015-01-01

    The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough. PMID:26150482

  7. Establishment of alpha-cellulose extraction method and its application using tropical tree sungkai (Peronema canescens Jack) for reliable paleoclimate reconstruction in tropical areas

    NASA Astrophysics Data System (ADS)

    Harada, M.; Watanabe, Y.; Nakatsuka, T.; Tazuru, S.; Horikawa, Y.; Sugiyama, J.; Tsuda, T.; Tagami, T.

    2012-04-01

    Tree rings are widely used to reconstruct paleoclimate in terrestrial areas in terms of high spatial / temporal resolution and great sensitivity for climatic factors (e.g., precipitation, relative humidity, air temperature, etc.). However, this is not necessarily the case for Asian tropical trees because growth rings of many tropical trees are ambiguous and also because trees that grow in dense rainforest are affected by other environmental factors, such as the existence of neighboring trees. Oxygen isotopic ratio of tree-ring alpha-cellulose can be a proxy of paleoclimate reconstruction in areas where little correlation is found between tree-ring widths and climatic factors [Waterhouse et al., 2002; Rinne et al., 2005]. Thus, continuous, alternative meteorological data in Asian tropical areas that drive the global climate system can also be provided by measuring the oxygen isotopic ratio of alpha-cellulose of tropical trees. Previous works showed that tree-ring components (mainly cellulose, hemicelluloses and lignin) have different isotopic ratios [Wilson and Grinsted, 1977; Loader et al., 2003]. In addition, the isotopic ratios of untreated samples show weaker correlations with climate signals than that of chemically treated samples [Rinne et al., 2005]. For these reasons, it is necessary to effectively extract only alpha-cellulose for reliable paleoclimatic reconstruction. Furtermore, an optimum processing time can be different between species and hence it needs to be determined for each. However, there is no report that aims at estimation of an optimum processing time using tropical hardwoods. Sungkai (Peronema canescens Jack) is one of tropical hardwood species that formed distinct growth rings and has high sensitivity species for environment [Ohashi et al., 1992]. In this study, the optimum alpha-cellulose extraction time was estimated for sungkai (SungkaiNAN7, collected at Serang, West Java, Indonesia) by measuring oxygen and carbon isotopic ratios, ATR

  8. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.

  9. Cellulose Synthesis in Agrobacterium tumefaciens

    SciTech Connect

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  10. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  11. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  12. Process Dependence of Cellulose Nanofiber Fabrication

    NASA Astrophysics Data System (ADS)

    Henderson, Doug; Zhang, Xin; Mao, Yimin; Jang, Soo-Hwan; Hu, Liangbing; Briber, Robert; Wang, Howard

    Cellulose nanofibers (CNF) are the most abundant natural nanomaterial on earth with potential applications in renewable energy, polymer nanocomposites and flexible electronics. CNF can be produced through TEMPO oxidation which separates the hierarchical structure of cellulose fibers into smaller micro- and nanofibers by altering their surface chemistry, inducing a repulsive electrostatic charge on the fibers. This work will examine the structural evolution of CNF during production. Samples were prepared by removing and quenching aliquots during the TEMPO reaction. The fibers were washed, filtered and re-dispersed into D2O for small angle neutron scattering (SANS) measurements. The SANS data was analyzed to track the changes in the CNF structure as a function of reaction time.

  13. Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-05-01

    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.

  14. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  15. Disposable chemical sensors and biosensors made on cellulose paper

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U.; Yun, Gyu-Young; Kim, Jaehwan

    2014-03-01

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

  16. Nanofibrillated cellulose as an additive in papermaking process: A review.

    PubMed

    Boufi, Sami; González, Israel; Delgado-Aguilar, Marc; Tarrès, Quim; Pèlach, M Àngels; Mutjé, Pere

    2016-12-10

    During the last two decades, cellulose nanofibres (CNF) have emerged as a promising, sustainable reinforcement with outstanding potential in material sciences. Though application of CNF in papermaking is recent, it is expected to find implementation in the near future to give a broader commercial market to this type of cellulose. The present review highlights recent progress in the field of the application of cellulose nanofibres as additives in papermaking. The effect of CNF addition on the wet end process is analysed according to the type of pulp used for papermaking. According to the literature consulted, improvement in paper's overall properties after CNF addition depended not only on the type and amount of CNF applied, but also in the pulp's origin and treatment. Bulk and surface application of CNF also presented significant differences regarding paper's final properties. This review also revises the mechanisms behind CNF reinforcing effect on paper and the effect of chemically modified CNF as additives. PMID:27577906

  17. Antibacterial Activity of Nanocomposites of Copper and Cellulose

    PubMed Central

    Pinto, Ricardo J. B.; Daina, Sara; Neto, Carlos Pascoal; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  18. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    SciTech Connect

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  19. Ca²+ sorption on regenerated cellulose fibres.

    PubMed

    Fitz-Binder, Christa; Bechtold, Thomas

    2012-10-01

    High calcium content in cellulose materials can cause considerable problems in pulp processing, textile chemical treatment and consumer use, e.g. dyeing operations or household laundry. The Ca(2+) binding capacity of cellulose also is of relevance in food and medical applications. Through their carboxyl group content regenerated cellulose fibres can act as weak anion exchangers, thus all types of regenerated cellulose fibres such as lyocell, viscose and modal fibres, show a distinct ability to bind Ca(2+) ions. The binding capacity is limited by the carboxyl group content, which was determined with 15 mmol/kg for lyocell fibres and 20 mmol/kg for viscose fibres, using the Methylene Blue sorption method. The presence of bound Ca(2+) also was demonstrated by complex formation with alizarin. The molar ratio between carboxylic group content and bound Ca(2+) ions was one Ca(2+) ion for a single carboxyl group. As a result of Ca(2+) sorption a positive net charge of the cellulose results and another anion has to be bound as counter ion for reasons of charge neutralisation. Results of potentiometric titrations indicate HCO(3)(-) to be present as counter ion in the Ca(2+) cellulose system. Thus under the experimental conditions studied, bound Ca(2+) is proposed to be present in the form COO(-)Ca(2+)HCO(3)(-).

  20. Antibacterial activity of nanocomposites of copper and cellulose.

    PubMed

    Pinto, Ricardo J B; Daina, Sara; Sadocco, Patrizia; Pascoal Neto, Carlos; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  1. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydroxypropyl cellulose. 172.870 Section 172.870... Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except...) The additive consists of one of the following: (1) A cellulose ether containing propylene...

  2. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  3. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  4. Cellulose Derivatives for Water Repellent Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this poster presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide h...

  5. Cellulose Derivatives for Water Repellent Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis and structural characterizations of nitro-benzyl cellulose, amino-benzyl cellulose and pentafluoro –benzyl cellulose were carried out. Cellulose derivatives were synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogeneous solution. Nitrobenzylation was effec...

  6. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  7. Visualization of Nanofibrillar Cellulose in Biological Tissues Using a Biotinylated Carbohydrate Binding Module of β-1,4-Glycanase.

    PubMed

    Knudsen, Kristina Bram; Kofoed, Christian; Espersen, Roall; Højgaard, Casper; Winther, Jakob Rahr; Willemoës, Martin; Wedin, Irene; Nuopponen, Markus; Vilske, Sara; Aimonen, Kukka; Weydahl, Ingrid Elise Konow; Alenius, Harri; Norppa, Hannu; Wolff, Henrik; Wallin, Håkan; Vogel, Ulla

    2015-08-17

    Nanofibrillar cellulose is a very promising innovation with diverse potential applications including high quality paper, coatings, and drug delivery carriers. The production of nanofibrillar cellulose on an industrial scale may lead to increased exposure to nanofibrillar cellulose both in the working environment and the general environment. Assessment of the potential health effects following exposure to nanofibrillar cellulose is therefore required. However, as nanofibrillar cellulose primarily consists of glucose moieties, detection of nanofibrillar cellulose in biological tissues is difficult. We have developed a simple and robust method for specific and sensitive detection of cellulose fibers, including nanofibrillar cellulose, in biological tissue, using a biotinylated carbohydrate binding module (CBM) of β-1,4-glycanase (EXG:CBM) from the bacterium Cellulomonas fimi. EXG:CBM was expressed in Eschericia coli, purified, and biotinylated. EXG:CBM was shown to bind quantitatively to five different cellulose fibers including four different nanofibrillar celluloses. Biotinylated EXG:CBM was used to visualize cellulose fibers by either fluorescence- or horse radish peroxidase (HRP)-tagged avidin labeling. The HRP-EXG:CBM complex was used to visualize cellulose fibers in both cryopreserved and paraffin embedded lung tissue from mice dosed by pharyngeal aspiration with 10-200 μg/mouse. Detection was shown to be highly specific, and the assay appeared very robust. The present method represents a novel concept for the design of simple, robust, and highly specific detection methods for the detection of nanomaterials, which are otherwise difficult to visualize. PMID:26208679

  8. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  9. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  10. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  11. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  12. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam.

    PubMed

    Eo, Mi Young; Fan, Huan; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun

    2016-01-01

    The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article.

  13. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam.

    PubMed

    Eo, Mi Young; Fan, Huan; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun

    2016-01-01

    The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article. PMID:27418974

  14. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C....

  15. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C....

  16. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C....

  17. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    DOE PAGES

    Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; Ragauskas, Arthur J.

    2015-05-08

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  18. Hydrogen peroxide production from fibrous pectic cellulose analogs and effect on dermal fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally derived products with folklore remedies have in recent years been reconsidered for their benefit to wound healing i.e., honey’s application to chronic wound dressing products. Similarly, we have undertaken an evaluation of Fibrous pectin-cellulose (FPC) (cellulose blended with primary cel...

  19. Physical and mechanical testing of essential oil-embedded cellulose ester films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...

  20. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  1. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites.

    PubMed

    Pullawan, Tanittha; Wilkinson, Arthur N; Eichhorn, Stephen J

    2012-08-13

    Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.

  3. Cellulose pretreatments of lignocellulosic substrates

    NASA Technical Reports Server (NTRS)

    Weil, J.; Westgate, P.; Kohlmann, K.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Cellulose in inedible plant materials, forestry residues, and municipal wastes must be pretreated to disrupt its physical structure, thereby making its hydrolysis to glucose practical. Developments since 1991 are summarized.

  4. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  5. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.

    PubMed

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2012-10-01

    Cellulose nanowhiskers is a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Here, for the first time, a novel controllable fabrication of cellulose nanowhiskers from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization is reported. The versatile jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and high crystallinity (69.72%), contains C6 carboxylate groups converted from C6 primary hydroxyls, which would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, pharmaceutical and optical industries as additives.

  6. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.

    PubMed

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2012-10-01

    Cellulose nanowhiskers is a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Here, for the first time, a novel controllable fabrication of cellulose nanowhiskers from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization is reported. The versatile jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and high crystallinity (69.72%), contains C6 carboxylate groups converted from C6 primary hydroxyls, which would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, pharmaceutical and optical industries as additives. PMID:22840042

  7. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal.

    PubMed

    Zhang, Nan; Zang, Guo-Long; Shi, Chen; Yu, Han-Qing; Sheng, Guo-Ping

    2016-10-01

    This study describes the preparation of a novel adsorbent based on cellulose nanofibrils by first TEMPO mediated oxidation and then PEI grafting (TOCN-PEI) for heavy metal removal. FTIR results demonstrated the successful introduction of the adsorption functional groups (carboxyl and amino groups), and the elemental analysis and acid base titration were used to quantify the contents of these introduced groups. The kinetics curve suited the pseudo-second-order model better and the equilibrium data well fitted the Langmuir model, with the maximum Cu(II) uptake of 52.32mgg(-1). Kinetic study showed that the PEI grafting increased the initial adsorption rate of the TOCN-PEI compared with the adsorbents without PEI. Thermodynamic study was carried out through isothermal titration calorimetry (ITC) measurement and the binding reaction was found to be exothermic and driven by enthalpy change. The adsorption process by TOCN-PEI was pH dependent, and decreasing pH would lead to desorption of Cu(II) ions, thus make the reuse of the absorbent more convenient through adsorption-desorption cycles.

  8. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal.

    PubMed

    Zhang, Nan; Zang, Guo-Long; Shi, Chen; Yu, Han-Qing; Sheng, Guo-Ping

    2016-10-01

    This study describes the preparation of a novel adsorbent based on cellulose nanofibrils by first TEMPO mediated oxidation and then PEI grafting (TOCN-PEI) for heavy metal removal. FTIR results demonstrated the successful introduction of the adsorption functional groups (carboxyl and amino groups), and the elemental analysis and acid base titration were used to quantify the contents of these introduced groups. The kinetics curve suited the pseudo-second-order model better and the equilibrium data well fitted the Langmuir model, with the maximum Cu(II) uptake of 52.32mgg(-1). Kinetic study showed that the PEI grafting increased the initial adsorption rate of the TOCN-PEI compared with the adsorbents without PEI. Thermodynamic study was carried out through isothermal titration calorimetry (ITC) measurement and the binding reaction was found to be exothermic and driven by enthalpy change. The adsorption process by TOCN-PEI was pH dependent, and decreasing pH would lead to desorption of Cu(II) ions, thus make the reuse of the absorbent more convenient through adsorption-desorption cycles. PMID:27208612

  9. Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications.

    PubMed

    Xu, F J; Zhu, Y; Liu, F S; Nie, J; Ma, J; Yang, W T

    2010-03-17

    Hydroxypropyl cellulose (HPC) possesses a lower critical solution temperature (LCST) above 40 °C, while the poly(N-isopropylacrylamide) (P(NIPAAm)) exhibits a LCST of about 32 °C. Herein, comb-shaped copolymer conjugates of HPC backbones and low-molecular-weight P(NIPAAm) side chains (HPC-g-P(NIPAAm) or HPN) were prepared via atom transfer radical polymerization (ATRP) from the bromoisobutyryl-functionalized HPC biopolymers. By changing the composition ratio of HPC and P(NIPAAm), the LCSTs of HPNs can be adjusted to be lower than the body temperature. The MTT assay from the HEK293 cell line indicated that HPNs possess reduced cytotoxicity. Some of the hydroxyl groups of HPNs were used as cross-linking sites for the preparation of stable HPN hydrogels. In comparison with the HPC hydrogels, the cross-linked HPN hydrogels possess interconnected pore structures and higher swelling ratios. The in vitro release kinetics of fluorescein isothiocyanate-labeled dextran and BSA (or dextran-FITC and BSA-FITC) as model drugs from the hydrogels showed that the HPN hydrogels are suitable for long-term sustained release of macromolecular drugs at body temperature.

  10. Cellulose biosynthesis in Acetobacter xylinum

    SciTech Connect

    Lin, F.C.

    1988-01-01

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-{beta}-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 {plus minus} 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-({sup 3}H) glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I.

  11. Surface modification of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  12. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  13. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications.

  14. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc–ccp–cesAB–cesC–cesD–bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  15. Rapid synthesis of graft copolymers from natural cellulose fibers.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. PMID:23987417

  16. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    PubMed

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  17. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    PubMed

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing. PMID:25926011

  18. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects.

    PubMed

    Sternberg, Leonel; Pinzon, Maria Camila; Anderson, William T; Jahren, A Hope

    2006-10-01

    The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

  19. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose

    PubMed Central

    2013-01-01

    Background Plant expansins and fungal swollenin that can disrupt crystalline cellulose have great potential for applications in conversion of biomass. Recent studies have been mainly focused on Trichoderma reesei swollenin that show relatively low activity in the promotion of cellulosic hydrolysis. Our aim was to isolate a novel swollenin with greater disruptive activity, to establish an efficient way of producing recombinant swollenin, and to optimize the procedure using swollenin in facilitation of cellulosic hydrolysis. Results A novel gene encoding a swollenin-like protein, POSWOI, was isolated from the filamentous fungus Penicillium oxalicum by Thermal Asymmetric Interlaced PCR (TAIL-PCR). It consisted of a family 1 carbohydrate-binding module (CBM1) followed by a linker connected to a family 45 endoglucanase-like domain. Using the cellobiohydrolase I promoter, recombinant POSWOI was efficiently produced in T. reesei with a yield of 105 mg/L, and showed significant disruptive activity on crystalline cellulose. Simultaneous reaction with both POSWOI and cellulases enhanced the hydrolysis of crystalline cellulose Avicel by approximately 50%. Using a POSWOI-pretreatment procedure, cellulases can produce nearly twice as many reducing sugars as without pretreatment. The mechanism by which POSWOI facilitates the saccharification of cellulose was also studied using a cellulase binding assay. Conclusion We present a novel fungal swollenin with considerable disruptive activity on crystalline cellulose, and develop a better procedure for using swollenin in facilitating cellulosic hydrolysis. We thus provide a new approach for the effective bioconversion of cellulosic biomass. PMID:23688024

  20. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells.

    PubMed

    Ren, Z; Steinberg, L M; Regan, J M

    2008-01-01

    Converting biodegradable materials into electricity, microbial fuel cells (MFCs) present a promising technology for renewable energy production in specific applications. Unlike typical soluble substrates that have been used as electron donors in MFC studies, cellulose is unique because it requires a microbial consortium that can metabolize both an insoluble electron donor (cellulose) and electron acceptor (electrode). In this study, electricity generation and the microbial ecology of cellulose-fed MFCs were analyzed using a defined co-culture of Clostridium cellulolyticum and Geobacter sulfurreducens. Fluorescent in situ hybridization and quantitative PCR showed that when particulate MN301 cellulose was used as sole substrate, most Clostridium cells were found adhered to cellulose particles in suspension, while most Geobacter cells were attached to the electrode. By comparison, both bacteria resided in suspension and biofilm samples when soluble carboxymethyl cellulose was used. This distinct function-related distribution of the bacteria suggests an opportunity to optimize reactor operation by settling cellulose and decanting supernatant to extend cellulose hydrolysis and improve cellulose-electricity conversion.

  1. The bioactive composite film prepared from bacterial cellulose and modified by hydrolyzed gelatin peptide.

    PubMed

    Lin, Shih-Bin; Chen, Chia-Che; Chen, Li-Chen; Chen, Hui-Huang

    2015-05-01

    The hydrolyzed gelatin peptides, obtained from the hydrolysis of Tilapia nilotica skin gelatin with alcalase and pronase E, were fractionated using an ultrafiltration system into hydrolyzed gelatin peptides-a (10 kDa membrane), hydrolyzed gelatin peptides-b1, and hydrolyzed gelatin peptides-b2 (5 kDa membrane) fractions. The highest oxygen radical absorbance capacity was observed in hydrolyzed gelatin peptides-b2, which contained more nonpolar amino acids than the other hydrolyzed gelatin peptides. Hydrolyzed gelatin peptides-b2 at a concentration of 12.5 mg/ml exhibited the highest proliferation ability and increased the expression of Type I procollagen mRNA, which indicated an enhanced collagen synthesis. Hydrolyzed gelatin peptides protected Detroit 551 cells from 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative damage and increased cell viability. Hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm were less eligible for Detroit 551 cell proliferation than bacterial cellulose. The release of hydrolyzed gelatin peptides in bacterial cellulose film was slower than that in hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm; thus, bacterial cellulose film and hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm are suitable candidates for applications in delayed release type and rapid release type biofilms, respectively.

  2. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects.

    PubMed

    Sternberg, Leonel; Pinzon, Maria Camila; Anderson, William T; Jahren, A Hope

    2006-10-01

    The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose. PMID:16930314

  3. Electrospun cellulose nitrate and polycaprolactone blended nanofibers

    NASA Astrophysics Data System (ADS)

    Nartker, Steven; Hassan, Mohamed; Stogsdill, Michael

    2015-03-01

    Pure cellulose nitrate (CN) and blends of CN and polycaprolactone were electrospun to form nonwoven mats. Polymers were dissolved in a mixed solvent system of tetrahydrofuran and N,N-dimethylformamide. The concentrations were varied to obtain sub-micron and nanoscale fiber mats. Fiber mats were analyzed using scanning electron microscopy, contact angle analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The fiber morphology, surface chemistry and contact angle data show that these electrospun materials are suitable for applications including biosensing, biomedical and tissue engineering.

  4. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Quanling; Saito, Tsuguyuki; Berglund, Lars A.; Isogai, Akira

    2015-10-01

    All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials.All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials. Electronic supplementary information (ESI) available: Fig. S1-S3 show an AFM image of TOCN, SEM

  5. Thermal Behaviour of Nanocomposites based on Glycerol Plasticized Thermoplastic Starch and Cellulose Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kaushik, Anupama; Kaur, Ramanpreet

    2011-12-01

    The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.

  6. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    PubMed

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  7. Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields

    SciTech Connect

    Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  8. Gravity effects on cellulose assembly

    NASA Technical Reports Server (NTRS)

    Brown, R. M. Jr; Kudlicka, K.; Cousins, S. K.; Nagy, R.; Brown RM, J. r. (Principal Investigator)

    1992-01-01

    The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.

  9. Pipeline transportation of high pour Handil crude

    SciTech Connect

    Irani, C.A.; Zajac, J.

    1981-01-01

    Problems related with the pipeline transportation of high pour Handil (Indonesia) crude between Huntington Beach and Santa Fe Springs, California are discussed. The results of laboratory and field studies of chemical additives for pour depression are presented. A rotational viscometer was used to establish the relevant rheological parameters of treated and untreated crude. Chemical treatment at the 200 ppm level was found to be economically more attractive than the available heating step. A limited discussion is also presented of the use of analytical methods for improved characterization of the wax-wax and wax-additive interactions. 11 refs.

  10. PROCESS FOR OBTAINING CELLULOSE ACETATE FROM AGRICULTURAL BY-PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method of preparation of commercially useful product, cellulose acetate from discarded byproducts such as rice-straw, wheat hull and corn fiber will be discussed. This work will provide potential new markets and applications for low-value agricultural wastes and co-products. By converting the ce...

  11. Microfibrillated cellulose: morphology and accessibility

    SciTech Connect

    Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R.

    1983-01-01

    Microfibrillated cellulose (MFC) is prepared by subjecting dilute slurries of cellulose fibers to repeated high-pressure homogenizing action. A highly microfibrillated product will have a gel-like appearance at 2% concentration in water. Such gels have pseudoplastic viscosity properties and are very fluid when stirred at high shear rate. The relative viscosity of 2% MFC dispersions may be used as a measure of the degree of homogenization or microfibrillation of a given wood cellulose pulp. The water retention value of an MFC product can also be used as an indicator for degree of homogenization. Structurally, MFC appears to be a web of interconnected fibrils and microfibrils, the latter having diameters in the range 10-100 nm as observed in scanning and transmission electron micrographs. Chemical studies have revealed that MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC toward chemical reagents is greatly increased. Higher reactivity was demonstrated in dilute cupriethylenediamine solubility, triphenylmethylation, acetylation, periodate oxidation, and mineral acid and cellulase enzyme hydrolysis rates. 16 references, 8 figures, 7 tables.

  12. Multifilament cellulose/chitin blend yarn spun from ionic liquids.

    PubMed

    Mundsinger, Kai; Müller, Alexander; Beyer, Ronald; Hermanutz, Frank; Buchmeiser, Michael R

    2015-10-20

    Cellulose and chitin, both biopolymers, decompose before reaching their melting points. Therefore, processing these unmodified biopolymers into multifilament yarns is limited to solution chemistry. Especially the processing of chitin into fibers is rather limited to distinctive, often toxic or badly removable solvents often accompanied by chemical de-functionalization to chitosan (degree of acetylation, DA, <50%). This work proposes a novel method for the preparation of cellulose/chitin blend fibers using ionic liquids (ILs) as gentle, removable, recyclable and non-deacetylating solvents. Chitin and cellulose are dissolved in ethylmethylimidazolium propionate ([C2mim](+)[OPr](-)) and the obtained one-pot spinning dope is used to produce multifilament fibers by a continuous wet-spinning process. Both the rheology of the corresponding spinning dopes and the structural and physical properties of the obtained fibers have been determined for different biopolymer ratios. With respect to medical or hygienic application, the cellulose/chitin blend fiber show enhanced water retention capacity compared to pure cellulose fibers.

  13. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  14. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.

    PubMed

    Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F

    2014-07-31

    Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies.

  15. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.

    PubMed

    Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F

    2014-07-31

    Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies. PMID:25036217

  16. INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING MOLTEN METAL INTO A 1,300 TON ELECTRIC HOLDING FURNACE OR MIXER. AN ELECTRONIC SCALE RECORDED THAT 50.5 TONS OF METAL WERE POURED INTO THE FURNACE DURING THIS POUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  17. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  18. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    PubMed

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system.

  19. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.

  20. Microbial Cellulose Assembly in Microgravity

    NASA Technical Reports Server (NTRS)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  1. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity. PMID:25784051

  2. Characterization of Cellulose Synthesis in Plant Cells

    PubMed Central

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  3. Characterization of Cellulose Synthesis in Plant Cells.

    PubMed

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  4. A molecular description of cellulose biosynthesis.

    PubMed

    McNamara, Joshua T; Morgan, Jacob L W; Zimmer, Jochen

    2015-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  5. A Molecular Description of Cellulose Biosynthesis

    PubMed Central

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  6. A Statistical Treatment of Bioassay Pour Fractions

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Hughes, David W.

    2014-01-01

    The binomial probability distribution is used to treat the statistics of a microbiological sample that is split into two parts, with only one part evaluated for spore count. One wishes to estimate the total number of spores in the sample based on the counts obtained from the part that is evaluated (pour fraction). Formally, the binomial distribution is recharacterized as a function of the observed counts (successes), with the total number (trials) an unknown. The pour fraction is the probability of success per spore (trial). This distribution must be renormalized in terms of the total number. Finally, the new renormalized distribution is integrated and mathematically inverted to yield the maximum estimate of the total number as a function of a desired level of confidence ( P(pour fraction. The extension to recovery efficiency corrections is also presented. Now the product of recovery efficiency and pour fraction may be small enough that the likely value may be much larger than the usual calculation: the number of spores divided by that product. The use of this analysis would not be limited to microbiological data.

  7. Reverse osmosis cellulose and cellulosic membranes prepared by repeated drying and rewetting

    SciTech Connect

    Black, L.E.; Wan, W.K.

    1989-08-15

    In a method for separating extraction solvents from extract of raffinate phases by selectively permeating the extraction solvent through a cellulose or cellulosic membrane under reverse conditions. This paper describes an improvement comprising using a cellulose or cellulosic membrane which has been dried, rewet and redried before being used to effect the desired separation.

  8. Electron beam irradiation of cellulose

    NASA Astrophysics Data System (ADS)

    Driscoll, Mark; Stipanovic, Arthur; Winter, William; Cheng, Kun; Manning, Mellony; Spiese, Jessica; Galloway, Richard A.; Cleland, Marshall R.

    2009-07-01

    Using a 90 kW, 3 MeV Dynamitron™, the molecular weight of microcrystalline cellulose (MCC) was reduced from 82,000 to 5000 Da with a dose of 100 kGy. The relative crystallinity of the MCC was reduced from 87% to 45% with a dose of 1000 kGy. The available surface area, an indication on how well cellulose will react with chemical agents, was increased from 274 m 2/g for the control sample (0 kGy) to 318 m 2/g at a dose 1000 kGy.

  9. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  10. Synthese et utilisation de fibres cellulosiques phosphatees pour la valorisation de la fibre vegetale dans l'amelioration des proprietes de surface du papier et la fabrication de materiaux ignifuges

    NASA Astrophysics Data System (ADS)

    Lentsolo Yalli, Gym Clerc

    Dans cette etude, nous souhaitions principalement greffer des groupements phosphates directement sur la cellulose comme materiau modele, et par la suite transposer les conditions optimales du design concu pour la cellulose, determine par modelisation a l'aide de l'outil JMP, sur la pate kraft. Ensuite, evaluer les proprietes physico-chimiques, optiques, d'hydrophilie, thermiques et d'inflammabilite des materiaux fabriques (feuilles ou pastilles fabriquees) a partir des fibres phosphorylees. Pour ce faire, nous avons pretraite la cellulose et la pate kraft dans une solution aqueuse de 10 a 15 % de LiCl a 70°C pendant 7 heures. Par la suite, nous avons procede a la reaction de phosphorylation in situ avec l'acide phosphorique et l'uree, dans des conditions de temperatures et de reactifs decrites par un design experimental, pendant 3 heures. La reaction de phosphorylation s'est realisee avec succes pour l'ensemble des resultats sur la cellulose, avec des taux de greffage variables selon les conditions operatoires. Les degres de substitutions (DSP), determines par ICP-OES, et les degres de polymerisation (DP), determines par viscosimetrie, etaient aussi variables, selon les conditions. L'etude des parametres experimentaux a permis de determiner les conditions optimales transposables sur la pate kraft (DSP = 1,47 et DP = 142,42 pour la cellulose, qui represente un taux de coupure de 38% de la fibre) et les facteurs critiques de la reaction. Les resultats de la reaction sur la fibre ont permis, non seulement de constater que les conditions utilisees pour la cellulose n'etaient directement transposables a la fibre, mais permettaient quand d'obtenir un DSP interessant ≥ a 1 avec un taux de coupure de 50 a 60 %. La structure du produit principal de la reaction (le sel de calcium du pyrophosphate d'ester de cellulose ou de pate kraft) a ete determinee par les analyses FTIR, XPS, RMN-13C et RMN-31P. L'etude de l'effet de la reaction de phosphorylation sur les proprietes

  11. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.

    PubMed

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir; Tuck Whye, Wong; Ibrahim Akos, Noel; Heidar Pour, Raheleh; Ali Yussuf, Abdirahman

    2014-06-15

    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas. PMID:24721086

  12. Photobactericidal plastic films based on cellulose esterified by chloroacetate and a cationic porphyrin.

    PubMed

    Krouit, Mohammed; Granet, Robert; Krausz, Pierre

    2008-12-01

    The synthesis and characterisation of pyridinium porphyrinic chloroacetyl cellulose ester chlorides, where photosensitizing agents are covalently bounded to the polymeric chain, is presented in this paper. First, cellulose was homogenously converted into chloroacetate cellulose ester in DMAc/LiCl solvent by using chloroacetyl chloride. The complete substitution of cellulose was achieved using 7equiv of chloroacetyl chloride for a 2h reaction at room temperature. The absence of base did not prove detrimental to reaction. The grafting of monopyridyltritolylporphyrin onto chloroacetate cellulose ester was then realised by alkylation of the photosensitizer in DMF. These new plastic films were found to be thermostable up to 55 degrees C; higher temperatures led to progressive deacetylation. First results of their photobactericidal activity against Staphylococcus aureus and Escherichia coli strains are very encouraging. Such materials could find applications in medical environments as an alternative to overcome the rampant bacterial multiresistance to classical antibiotics.

  13. Properties of high-quality long natural cellulose fibers from rice straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2006-10-18

    This paper reports the structure and properties of novel long natural cellulose fibers obtained from rice straw. Rice straw fibers have 64% cellulose with 63% crystalline cellulose, strength of 3.5 g/denier (450 MPa), elongation of 2.2%, and modulus of 200 g/denier (26 GPa), similar to that of linen fibers. The rice straw fibers reported here have better properties than any other natural cellulose fiber obtained from an agricultural byproduct. With a worldwide annual availability of 580 million tons, rice straw is an annually renewable, abundant, and cheap source for natural cellulose fibers. Using rice straw for high-value fibrous applications will help to add value to the rice crops, provide a sustainable resource for fibers, and also benefit the environment.

  14. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2007-07-11

    For the first time, sorghum leaves and stems have been used to produce natural cellulose fibers with properties suitable for composite, textile, and other high-value fibrous applications. The leaf and stems fibers produced are multicellular and have similar cellulose contents. The breaking tenacity and elongation of the fibers are similar to that of natural cellulose fibers such as kenaf and cornstalk fibers. However, the sorghum fibers have a modulus of about 113 g/denier (15 GPa) similar to the modulus of cornstalk fibers but higher than that of cotton and cornhusk fibers. At least 7 million tons of natural cellulose fibers can be produced by using the sorghum stems and leaves available as byproducts every year. Using the sorghum byproducts as a source for cellulose fibers will help to add value to the sorghum crops and also make the fiber industry more sustainable.

  15. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    PubMed

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. PMID:26917383

  16. Thermal behavior of nano cellulose doped polymer dispersed liquid crystal (PDLC)

    NASA Astrophysics Data System (ADS)

    Kashyap, Swati; Saxena, S. K.; Gupta, S. J.; Mahajan, Jyoti

    2016-05-01

    Nano cellulose or cellulose nanofibers (CNF) material is composed of Nano sized cellulose fibrils with a high aspect ratio and typical lateral dimensions are 20-50 nm. Its pseudo-plastic characteristics exhibit the property of certain gels or fluids (viscous) and over a period of time, becomes, Thixotropic. The ability of CNFs to go into a PDLC ultrasonically with a helical arrangement results in dried CNF films. The films thus acquire attractive thermal properties, creating possibilities for their use in various applications. In this presentation, we discuss the thermal behavior of Nano cellulose doped in PDLC that governs the formation of the desired helical structure. By comparison with the corresponding self-assembly processes of other rod-like nanoparticles, for example, carbon nanotubes particles, we outline in the present paper the variation in the number of mesogen phases in varying compositions of Nano Cellulose doped PDLCs.

  17. Possibility of cellulose-based electro-active paper energy scavenging transducer.

    PubMed

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo Hyung

    2014-10-01

    In this paper, a cellulose-based Electro-Active Paper (EAPap) energy scavenging transducer is presented. Cellulose is proven as a smart material, and exhibits piezoelectric effect. Specimens were prepared by coating gold electrodes on both sides of cellulose film. The fabricated specimens were tested by a base excited aluminum cantilever beam at resonant frequency. Different tests were performed with single and multiple parallel connected electrodes coated on the cellulose film. A maximum of 131 mV output voltage was measured, when three electrodes were connected in parallel. It was observed that voltage output increases significantly with the area of electrodes. From these results, it can be concluded that the piezoelectricity of cellulose-based EAPap can be used in energy transduction application.

  18. Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging

    PubMed Central

    Zhou, Juan; Butchosa, Núria; Jayawardena, H. Surangi N.; Park, JaeHyeung; Zhou, Qi; Yan, Mingdi; Ramström, Olof

    2015-01-01

    Multifunctional cellulose nanocrystals have been synthesized and applied as a new type of glyconanomaterial in lectin binding and bacterial imaging. The cellulose nanocrystals were prepared by TEMPO-mediated oxidation and acidic hydrolysis, followed by functionalization with a quinolone fluorophore and carbohydrate ligands. The cellulose nanocrystals were subsequently applied in interaction studies with carbohydrate-binding proteins and in bacterial imaging. The results show that the functional cellulose nanocrystals could selectively recognize the corresponding cognate lectins. In addition, mannosylated nanocrystals were shown to selectively interact with FimH-presenting E. coli, as detected by TEM and confocal fluorescence microscopy. These glyconanomaterials provide a new application of cellulose nanocrystals in biorecognition and imaging. PMID:25738860

  19. Printed optically transparent graphene cellulose electrodes

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  20. Atomic-scale modeling of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  1. Anaerobic fermentations of cellulose to methane

    SciTech Connect

    Peck, H.D. Jr.; Odom, M.

    1981-01-01

    A review with 54 references is presented. Subjects discussed include cellulose degradation in the presence of high sulfate, interspecies H transfer, cellulose fermentation to CH4 and CO2, cellulose fermentation in the rumen, interaction between primary and ancillary microorganisms, and H metabolism in desulfovibrio.

  2. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except standardized foods that do not provide for such use,...

  3. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  4. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except standardized foods that do not provide for such use,...

  5. Iodine catalyzed acetylation of starch and cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

  6. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  7. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  8. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  9. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  10. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  11. Microbial Cellulose Utilization: Fundamentals and Biotechnology

    PubMed Central

    Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Isak S.

    2002-01-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts. PMID:12209002

  12. Microbial cellulose utilization: fundamentals and biotechnology.

    PubMed

    Lynd, Lee R; Weimer, Paul J; van Zyl, Willem H; Pretorius, Isak S

    2002-09-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

  13. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  14. First come, first served. Does pouring sequence matter for consumption?

    PubMed

    Stroebele-Benschop, Nanette; Dieze, Anastasia; Hilzendegen, Carolin

    2016-10-01

    Various environmental factors associated with eating and drinking affect people's food choice and food intake. Lately, the role of tableware has been studied in more detail. The aim of this study was to determine whether pouring sequence of food components affects portion size. Study 1 invited participants to pour a beverage containing both apple juice and sparkling water. Pouring apple juice first increased juice by almost 25% compared to pouring water first. Pouring water first increased water by almost 19% compared to pouring juice first confirming our hypothesis that pouring sequence affects the ratio poured. Study 2 asked participants to prepare themselves a snack containing cereals with milk. Within-subject comparisons revealed that pouring milk before cereals significantly increased both milk and cereal amounts resulting in larger overall portion size compared to pouring cereals before adding milk. Habitual tendencies for preparing foods causing a perception bias or a perception bias itself could be possible explanations for the divergent study findings. These findings show for the first time the influence of pouring and preparation sequence on portion size. PMID:27417334

  15. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications.

  16. Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity.

    PubMed

    Ma, Ming-Guo; Dong, Yan-Yan; Fu, Lian-Hua; Li, Shu-Ming; Sun, Run-Cang

    2013-02-15

    The purposes of this article are to synthesize the biomass-based hybrid nanocomposites using green method in green solvent and evaluate its biological activity. In this paper, microwave-assisted ionic liquid method is applied to the preparation of cellulose/CaCO(3) hybrid nanocomposites in the alkali extraction cellulose using CaCl(2) and Na(2)CO(3) as starting reactants. The ionic liquid acts as the excellent solvent for absorbing microwave and the dissolution of cellulose, and the synthesis of cellulose/CaCO(3) nanocomposites. The influences of reaction parameters such as the cellulose concentration and the types of solvent on the products were investigated. The increasing cellulose concentration favored the growth of CaCO(3). The morphologies of CaCO(3) changed from polyhedral to cube to particle with increasing cellulose concentration. Moreover, the solvents had an effect on the shape and dispersion of CaCO(3). Cytotoxicity experiments demonstrated that the cellulose/CaCO(3) nanocomposites had good biocompatibility and could be a candidate for the biomedical applications. PMID:23399205

  17. An Atomic Force Microscopy Study of the Mechanism of Cellulose Biodegradation

    NASA Astrophysics Data System (ADS)

    Quirk, Amanda; Chen, Maohui; Cockburn, Darrell; Regli, Sarah; Clarke, Anthony; Dutcher, John; Lipkowski, Jacek; Roscoe, Sharon

    2009-03-01

    Cellulose, a biopolymer consisting of long chain β-(1->4) linked glucose sugars, is used as structural material by plants and bacteria. Degradation of cellulose to glucose, a sugar easily fermented to ethanol, occurs by the enzymatic hydrolysis of cellulose by cellulase enzymes. The enzymes have a complex structure including carbohydrate binding modules and catalytic domains responsible for the binding and degradation of cellulose, respectively. Atomic force microscopy (AFM) was used to study native cellulose films prepared from Acetobacter xylinum using a novel application of the Langmuir-Blodgett technique. These films allowed AFM images of single fibers and their microfibril structure to be obtained. Further in situ AFM studies of single fibers were performed in solution using cellulolytic enzymes. The in situ degradation of cellulose fibers was monitored over 20-hours using AFM. These studies provided insight into the degradation timeline of a single fiber. Complementary studies of proteins adsorbed on cellulose fibers revealed information about the binding of the enzymes to the substrate. Studying the modular enzyme action separately will provide insight into the mechanism of cellulose binding and contribute to our understanding of the degradation process.

  18. Rheological behaviors in the regimes from dilute to concentrated in cellulose solutions dissolved at low temperature.

    PubMed

    Lue, Ang; Zhang, Lina

    2009-05-13

    Cellulose was dissolved rapidly in 9.5 wt.-% NaOH/4.5 wt.-% thiourea aqueous solution pre-cooled to -5 degrees C to prepare cellulose solution with different concentrations. The rheological properties of the cellulose solutions in wide concentration regimes from dilute (0.008 wt.-%) to concentrated (4.0 wt.-%) at 25 degrees C were investigated. On the basis of data from the steady-shear flow test, the critical overlap (c*), the entanglement (c(e)) and the gel (c(g)) concentrations of the cellulose solution at 25 degrees C were determined, respectively, to be 0.10 wt.-%, 0.53 wt.-% and 2.50 wt.-%, in accordance with the results of storage modulus (G') versus c by dynamic test. Moreover, the Cox-Merz deviation at relatively low concentrations was in good agreement with the micro-gel particles in dilute regime. As the cellulose concentration increased, a homogeneous 3-dimensional network formed in the cellulose solution in the concentrated regime, and further increasing of the concentration led to micro-phase separation as determined by the time-temperature superposition (tTS). So far, this complex cellulose solution has been successfully described by the concentration regime theory for the first time, and the relatively molecular morphologies in each regime have been determined, providing useful information for the applications of the cellulose solution systems. PMID:19039777

  19. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. PMID:26572341

  20. TECHNICAL NOTE: Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-11-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d31, values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity.

  1. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.

    PubMed

    Fang, Ju; Kawano, Shin; Tajima, Kenji; Kondo, Tetsuo

    2015-10-12

    Bacterial cellulose pellicle produced by Gluconacetobacter xylinus (G. xylinus) is one of the best biobased materials having a unique supernetwork structure with remarkable physiochemical properties for a wide range of medical and tissue-engineering applications. It is still necessary to modify them to obtain materials suitable for biomedical use with satisfactory mechanical strength, biodegradability, and bioactivity. The aim of this research was to develop a gene-transformation route for the production of bacterial cellulose/Curdlan (β-1,3-glucan) nanocomposites by separate but simultaneous in vivo synthesis of cellulose and Curdlan. Modification of the cellulose-nanofiber-producing system of G. xylinus enabled Curdlan to be synthesized simultaneously with cellulose nanofibers in vivo, resulting in biopreparation of nanocomposites. The obtained Curdlan/cellulose composites were characterized, and their properties were compared with those of normal bacterial cellulose pellicles, indicating that Curdlan mixed with the cellulose nanofibers at the nanoscale without disruption of the nanofiber network structure in the pellicle. PMID:26360299

  2. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    NASA Astrophysics Data System (ADS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-11-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H2SO4, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  3. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    SciTech Connect

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  4. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering.

    PubMed

    Kim, Minseong; Kim, GeunHyung

    2015-11-01

    Micro/nanofibrous structures have been applied widely in various tissue-engineering applications because the topological structures are similar to the extracellular matrix (ECM), which encourages a high degree of cell adhesion and growth. However, it has been difficult to produce a three-dimensional (3D) fibrous structure using controllable macro-pores. Recently, cellulose has been considered a high-potential natural-origin biomaterial, but its use in 3D biomedical structures has been limited due to its narrow processing window. Here, we suggest a new 3D cellulose scaffold consisting of multi-layered struts made of submicron-sized entangled fibers that were fabricated using an electrohydrodynamic direct jet (EHDJ) process that is spin-printing. By optimizing processing conditions (electric field strength, cellulose feeding rate, and distance between nozzle and target), we can achieve a multi-layered cellulose structure consisting of the cylindrically entangled cellulose fibers. To compare the properties of the fabricated 3D cellulose structure, we used a PCL fibrous scaffold, which has a similar fibrous morphology and pore geometry, as a control. The physical and in vitro biocompatibilities of both fibrous scaffolds were assessed using human dermal fibroblasts, and the cellulose structure showed higher cell adhesion and metabolic activities compared with the control. These results suggest the EHDJ process to be an effective fabricating tool for tissue engineering and the cellulose scaffold has high potential as a tissue regenerative material.

  5. Conception d'un circuit d'etouffement pour photodiodes a avalanche en mode geiger pour integration heterogene 3d

    NASA Astrophysics Data System (ADS)

    Boisvert, Alexandre

    Le Groupe de Recherche en Appareillage Medical de Sherbrooke (GRAMS) travaille actuellement sur un programme de recherche portant sur des photodiodes a avalanche mono-photoniques (PAMP) operees en mode Geiger en vue d'une application a la tomographie d'emission par positrons (TEP). Pour operer dans ce mode; la PAMP, ou SPAD selon l'acronyme anglais (Single Photon Avalanche Diode), requiert un circuit d'etouffement (CE) pour, d'une part, arreter l'avalanche pouvant causer sa destruction et, d'autre part. la reinitialiser en mode d'attente d'un nouveau photon. Le role de ce CE comprend egalement une electronique de communication vers les etages de traitement avance de signaux. La performance temporelle optimale du CE est realisee lorsqu'il est juxtapose a la PAMP. Cependant, cela entraine une reduction de la surface photosensible ; un element crucial en imagerie. L'integration 3D, a base d'interconnexions verticales, offre une solution elegante et performante a cette problematique par l'empilement de circuits integres possedant differentes fonctions (PAMP, CE et traitement avance de signaux). Dans l'approche proposee, des circuits d'etouffement de 50 pm x 50 pm realises sur une technologie CMOS 130 mn 3D Tezzaron, contenant chacun 112 transistors, sont matrices afin de correspondre a une matrice de PAMP localisee sur une couche electronique superieure. Chaque circuit d'etouffement possede une gigue temporelle de 7,47 ps RMS selon des simulations faites avec le logiciel Cadence. Le CE a la flexibilite d'ajuster les temps d'etouffement et de recharge pour la PAMP tout en presentant une faible consommation de puissance (~ 0,33 mW a 33 Mcps). La conception du PAMP necessite de supporter des tensions superieures aux 3,3 V de la technologie. Pour repondre a ce probleme, des transistors a drain etendu (DEMOS) ont ete realises. En raison de retards de production par Ies fabricants, les circuits n'ont pu etre testes physiquement par des mesures. Les resultats de ce memoire

  6. Production of Bacterial Cellulose from Alternate Feedstocks

    SciTech Connect

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  7. Production of bacterial cellulose from alternate feedstocks

    SciTech Connect

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  8. Lung biodurability and free radical production of cellulose nanomaterials

    PubMed Central

    Stefaniak, Aleksandr B.; Seehra, Mohindar S.; Fix, Natalie R.; Leonard, Stephen S.

    2015-01-01

    The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (xCR) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in xCR and D in SUF was observed. In acidic PSF, a slight increase in xCR with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H2O2, radicals were observed; the CNCs and a CNF generated significantly more ●OH radicals than the CMC (p<0.05). The ●OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ●OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose. PMID:25265049

  9. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  10. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products. PMID:22482733

  11. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  12. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  13. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  14. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  15. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively.

  16. Plutonium Immobilization Program cold pour tests

    SciTech Connect

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-07-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  17. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides.

    PubMed

    Fang, Wenwen; Arola, Suvi; Malho, Jani-Markus; Kontturi, Eero; Linder, Markus B; Laaksonen, Päivi

    2016-04-11

    Native cellulose nanocrystals (CNCs) are valuable high quality materials with potential for many applications including the manufacture of high performance materials. In this work, a relatively effortless procedure was introduced for the production of CNCs, which gives a nearly 100% yield of crystalline cellulose. However, the processing of the native CNCs is hindered by the difficulty in dispersing them in water due to the absence of surface charges. To overcome these difficulties, we have developed a one-step procedure for dispersion and functionalization of CNCs with tailored cellulose binding proteins. The process is also applicable for polysaccharides. The tailored cellulose binding proteins are very efficient for the dispersion of CNCs due to the selective interaction with cellulose, and only small fraction of proteins (5-10 wt %, corresponds to about 3 μmol g(-1)) could stabilize the CNC suspension. Xyloglucan (XG) enhanced the CNC dispersion above a fraction of 10 wt %. For CNC suspension dispersed with carboxylmethyl cellulose (CMC) we observed the most long-lasting stability, up to 1 month. The cellulose binding proteins could not only enhance the dispersion of the CNCs, but also functionalize the surface. This we demonstrated by attaching gold nanoparticles (GNPs) to the proteins, thus, forming a monolayer of GNPs on the CNC surface. Cryo transmission electron microscopy (Cryo-TEM) imaging confirmed the attachment of the GNPs to CNC solution conditions. PMID:26907991

  18. Investigation and characterization of oxidized cellulose and cellulose nanofiber films

    NASA Astrophysics Data System (ADS)

    Yang, Han

    Over the last two decades, a large amount of research has focused on natural cellulose fibers, since they are "green" and renewable raw materials. Recently, nanomaterials science has attracted wide attention due to the large surface area and unique properties of nanoparticles. Cellulose certainly is becoming an important material in nanomaterials science, with the increasing demand of environmentally friendly materials. In this work, a novel method of preparing cellulose nanofibers (CNF) is being presented. This method contains up to three oxidation steps: periodate, chlorite and TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation. The first two oxidation steps are investigated in the first part of this work. Cellulose pulp was oxidized to various extents by a two step-oxidation with sodium periodate, followed by sodium chlorite. The oxidized products can be separated into three different fractions. The mass ratio and charge content of each fraction were determined. The morphology, size distribution and crystallinity index of each fraction were measured by AFM, DLS and XRD, respectively. In the second part of this work, CNF were prepared and modified under various conditions, including (1) the introduction of various amounts of aldehyde groups onto CNF by periodate oxidation; (2) the carboxyl groups in sodium form on CNF were converted to acid form by treated with an acid type ion-exchange resin; (3) CNF were cross-linked in two different ways by employing adipic dihydrazide (ADH) as cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide (EDC) as carboxyl-activating agent. Films were fabricated with these modified CNF suspensions by vacuum filtration. The optical, mechanical and thermo-stability properties of these films were investigated by UV-visible spectrometry, tensile test and thermogravimetric analysis (TGA). Water vapor transmission rates (WVTR) and water contact angle (WCA) of these films were also studied.

  19. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility.

    PubMed

    Alam, Md Mehebub; Mandal, Dipankar

    2016-01-27

    A flexible hybrid piezoelectric generator (HPG) based on native cellulose microfiber (NCMF) and polydimethylsiloxane (PDMS) with multi wall carbon nanotubes (MWCNTs) as conducting filler is presented where the further chemical treatment of the cellulose and traditional electrical poling steps for piezoelectric voltage generation is avoided. It delivers a high electrical throughput that is an open circuit voltage of ∼30 V and power density ∼9.0 μW/cm(3) under repeated hand punching. We demonstrate to power up various portable electronic units by HPG. Because cellulose is a biocompatible material, suggesting that HPG may have greater potential in biomedical applications such as implantable power source in human body.

  20. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-01

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification. PMID:27301535

  1. Cellobiohydrolase Hydrolyzes Crystalline Cellulose on Hydrophobic Faces*

    PubMed Central

    Liu, Yu-San; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Haas, Thomas; Ding, Shi-You

    2011-01-01

    Biodegradation of plant biomass is a slow process in nature, and hydrolysis of cellulose is also widely considered to be a rate-limiting step in the proposed industrial process of converting lignocellulosic materials to biofuels. It is generally known that a team of enzymes including endo- and exocellulases as well as cellobiases are required to act synergistically to hydrolyze cellulose to glucose. The detailed molecular mechanisms of these enzymes have yet to be convincingly elucidated. In this report, atomic force microscopy (AFM) is used to image in real-time the structural changes in Valonia cellulose crystals acted upon by the exocellulase cellobiohydrolase I (CBH I) from Trichoderma reesei. Under AFM, single enzyme molecules could be observed binding only to one face of the cellulose crystal, apparently the hydrophobic face. The surface roughness of cellulose began increasing after adding CBH I, and the overall size of cellulose crystals decreased during an 11-h period. Interestingly, this size reduction apparently occurred only in the width of the crystal, whereas the height remained relatively constant. In addition, the measured cross-section shape of cellulose crystal changed from asymmetric to nearly symmetric. These observed changes brought about by CBH I action may constitute the first direct visualization supporting the idea that the exocellulase selectively hydrolyzes the hydrophobic faces of cellulose. The limited accessibility of the hydrophobic faces in native cellulose may contribute significantly to the rate-limiting slowness of cellulose hydrolysis. PMID:21282110

  2. Biodegradation of cellulose acetate by Neisseria sicca.

    PubMed

    Sakai, K; Yamauchi, T; Nakasu, F; Ohe, T

    1996-10-01

    Bacteria capable of assimilating cellulose acetate, strains SB and SC, were isolated from soil on a medium containing cellulose acetate as a carbon source, and identified as Neisseria sicca. Both strains degraded cellulose acetate membrane filters (degree of substitution, DS, mixture of 2.8 and 2.0) and textiles (DS, 2.34) in a medium containing cellulose acetate (DS, 2.34) or its oligomer, but were not able to degrade these materials in a medium containing cellobiose octaacetate. Biodegradation of cellulose acetate (DS, 1.81 and 2.34) on the basis of biochemical oxygen demand reached 51 and 40% in the culture of N. sicca SB and 60 and 45% in the culture of N. sicca SC within 20 days. A decrease in the acetyl content of degraded cellulose acetate films and powder was confirmed by infrared and nuclear magnetic resonance analyses. After 10-day cultivation of N. sicca SB and SC, the number-average molecular weight of residual cellulose acetate decreased by 9 and 5%, respectively. Activities of enzymes that released acetic acid and produced reducing sugars from cellulose acetate were mainly present in the culture supernatant. Reactivity of enzymes for cellulose acetate (DS, 1.81) was higher than that for cellulose acetate (DS, 2.34).

  3. Cellulose degradation by oxidative enzymes

    PubMed Central

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2012-01-01

    Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future. PMID:24688656

  4. Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial

    NASA Astrophysics Data System (ADS)

    Nandgaonkar, Avinav Ghanashyam

    Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after

  5. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    PubMed

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-01

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications.

  6. Effect of a triazole fungicide on the cellulose decomposition by the soil microflora.

    PubMed

    Munier-Lamy, C; Borde, O

    2000-10-01

    The effect of flutriafol on the cellulose decomposition was studied in the laboratory as a dose-response experiment using a trade marked formulation. Cellulose degradation rates were determined by the weight loss from cellulose filter disks buried in soil samples and by the CO2 evolved during batch incubation experiments. To amounts recommended for field applications and ten-fold these dosages, flutriafol did not affect the cellulose decomposition ability of the soil-microflora. Highest dosages provoked an initial inhibitory effect, followed by a stimulation in cellulolytic activity. Possible reasons for the dose-response relationship were changes in the soil microflora in favour of bacteria, indicating the importance of the persistence and repeated applications of flutriafol.

  7. Effect of a triazole fungicide on the cellulose decomposition by the soil microflora.

    PubMed

    Munier-Lamy, C; Borde, O

    2000-10-01

    The effect of flutriafol on the cellulose decomposition was studied in the laboratory as a dose-response experiment using a trade marked formulation. Cellulose degradation rates were determined by the weight loss from cellulose filter disks buried in soil samples and by the CO2 evolved during batch incubation experiments. To amounts recommended for field applications and ten-fold these dosages, flutriafol did not affect the cellulose decomposition ability of the soil-microflora. Highest dosages provoked an initial inhibitory effect, followed by a stimulation in cellulolytic activity. Possible reasons for the dose-response relationship were changes in the soil microflora in favour of bacteria, indicating the importance of the persistence and repeated applications of flutriafol. PMID:10879820

  8. Nano zinc oxide-sodium alginate antibacterial cellulose fibres.

    PubMed

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Seo, Jongchul

    2016-01-01

    In the present study, antibacterial cellulose fibres were successfully fabricated by a simple and cost-effective procedure by utilizing nano zinc oxide. The possible nano zinc oxide was successfully synthesized by precipitation technique and then impregnated effectively over cellulose fibres through sodium alginate matrix. XRD analysis revealed the 'rod-like' shape alignment of zinc oxide with an interplanar d-spacing of 0.246nm corresponding to the (101) planes of the hexagonal wurtzite structure. TEM analysis confirmed the nano dimension of the synthesized zinc oxide nanoparticles. The presence of nano zinc oxide over cellulose fibres was evident from the SEM-EDS experiments. FTIR and TGA studies exhibited their effective bonding interaction. The tensile stress-strain curves data indicated the feasibility of the fabricated fibres for longer duration utility without any significant damage or breakage. The antibacterial studies against Escherichia coli revealed the excellent bacterial devastation property. Further, it was observed that when all the parameters remained constant, the variation of sodium alginate concentration showed impact in devastating the E. coli. In overall, the fabricated nano zinc oxide-sodium alginate cellulose fibres can be effectively utilized as antibacterial fibres for biomedical applications.

  9. Preparation of reactive fibre interfaces using multifunctional cellulose derivatives.

    PubMed

    Vega, Beatriz; Wondraczek, Holger; Bretschneider, Leonore; Näreoja, Tuomas; Fardim, Pedro; Heinze, Thomas

    2015-11-01

    Cellulose fibres have poor reactivity and limited potential for surface engineering with advanced chemical functionalization in water. In this work, cellulose fibres were decorated with azide functions by charge-directed self-assembly of a novel water-soluble multifunctional cellulose derivative yielding reactive fibres. Propargylamine and 1-ethynylpyrene were utilized as a proof of concept that alkyne molecules may react with the azide functions of the reactive fibres via copper(I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAc) reaction in mild conditions. Chemical characterization of the fibres was carried out using classical techniques such as Raman-, fluorescence-, and UV-vis spectroscopy. Among other techniques, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray spectroscopy (XPS), two-photon microscopy (TPM), and inductively coupled plasma mass spectrometry (ICP-MS) were useful tools for additional characterization of the fibres decorated with amino- or photoactive groups. The information gathered in this work might contribute to the basis for the preparation of reactive cellulose-based interfaces with potential application in CuAAc reactions.

  10. Nano zinc oxide-sodium alginate antibacterial cellulose fibres.

    PubMed

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Seo, Jongchul

    2016-01-01

    In the present study, antibacterial cellulose fibres were successfully fabricated by a simple and cost-effective procedure by utilizing nano zinc oxide. The possible nano zinc oxide was successfully synthesized by precipitation technique and then impregnated effectively over cellulose fibres through sodium alginate matrix. XRD analysis revealed the 'rod-like' shape alignment of zinc oxide with an interplanar d-spacing of 0.246nm corresponding to the (101) planes of the hexagonal wurtzite structure. TEM analysis confirmed the nano dimension of the synthesized zinc oxide nanoparticles. The presence of nano zinc oxide over cellulose fibres was evident from the SEM-EDS experiments. FTIR and TGA studies exhibited their effective bonding interaction. The tensile stress-strain curves data indicated the feasibility of the fabricated fibres for longer duration utility without any significant damage or breakage. The antibacterial studies against Escherichia coli revealed the excellent bacterial devastation property. Further, it was observed that when all the parameters remained constant, the variation of sodium alginate concentration showed impact in devastating the E. coli. In overall, the fabricated nano zinc oxide-sodium alginate cellulose fibres can be effectively utilized as antibacterial fibres for biomedical applications. PMID:26453887

  11. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  12. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  13. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. PMID:26076611

  14. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  15. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  16. FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 STATION INTO THREE VERTICAL MOLDS SUBMERGED IN A WATER-FILLED TANK BELOW THE CASTING FLOOR. THE CASTING CREW'S JOBS DURING THIS PHASE OF THE OPERATION INCLUDE REGULATING THE POURING RATE AND MONITORING THE VALVE RODS THAT CONTROL THE WATER SPRAYS ON THE MOLDS. DIFFERENT ALLOYS REQUIRE SPECIFIC POURING SPEEDS AND WATER PRESSURES. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  17. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  18. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    PubMed

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  19. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    PubMed

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose.

  20. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance. PMID:27519472

  1. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance.

  2. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    PubMed

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc. PMID:27261730

  3. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    PubMed

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc.

  4. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.

    PubMed

    Ruan, Dong; Zhang, Lina; Zhou, Jinping; Jin, Huiming; Chen, Hui

    2004-12-15

    Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.

  5. Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion.

    PubMed

    Zhang, Zhenxin; Sadakane, Masahiro; Hiyoshi, Norihito; Yoshida, Akihiro; Hara, Michikazu; Ueda, Wataru

    2016-08-22

    The application of nanocatalysis based on metal oxides for biomass conversion is of considerable interest in fundamental research and practical applications. New acidic transition-metal oxide molecular wires were synthesized for the conversion of cellulosic biomass. The ultrafine molecular wires were constructed by repeating (NH4 )2 [XW6 O21 ] (X=Te or Se) along the length, exhibiting diameters of only 1.2 nm. The nanowires dispersed in water and were observed using high-angle annular dark-field scanning transmission electron microscopy. Acid sites were created by calcination without collapse of the molecular wire structure. The acidic molecular wire exhibited high activity and stability and promoted the hydrolysis of the glycosidic bond. Various biomasses including cellulose were able to be converted to hexoses as main products. PMID:27482857

  6. Controlling the structure and rheology of TEMPO-oxidized cellulose in zinc chloride aqueous suspensions for fabricating advanced nanopaper

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Zhang, Xin; Hu, Liangbing; Briber, Robert; Wang, Howard; Zhong, Linxin

    Due to its abundance, low-cost, biocompatibility and renewability, cellulose has become an attractive candidate as a functional material for various advanced applications. A key to novel applications is the control of the structure and rheology of suspensions of fibrous cellulose. Among many different approaches of preparing cellulose suspensions, zinc chloride addition to aqueous suspensions is regarded an effective practice. In this study, effects of ZnCl2 concentration on TEMPO-oxidized cellulose (TOC) nanofiber suspensions have been investigated. Highly-transparent cellulose nanofiber suspension can be rapidly obtained by dissolving TOC in 65 wt.% zinc chloride aqueous solutions at room temperature, whereas a transparent zinc ion cross-linked TOC gel could be obtained with zinc chloride concentration as low as 10 wt. %. The structural and rheological characteristics of TOC/ZnCl2 suspensions have been measured to correlate to the performance of thetransparent and flexible nanocellulose paper subsequently produced via vacuum filtration or wet-casting processes.

  7. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.

    PubMed

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  8. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy; Lai, Hsin -Chih

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  9. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  10. Application de la diffraction des rayons X in situ à haute température pour l'identification d'une nouvelle phase lors de l'oxydation à 900circC de l'acier 304

    NASA Astrophysics Data System (ADS)

    Riffard, F.; Buscail, H.; Caudron, E.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.

    2004-11-01

    Une nouvelle interprétation du comportement atypique couramment appelé "breakaway" observé lors de l'oxydation à haute température d'alliages chromino-formeurs est proposée grâce à l'utilisation de la diffraction des rayons X in situ à haute température. L'acier chromino-formeur AISI 304 doit établir une couche d'oxyde superficielle généralement dense et majoritairement, constituée de chromine, dont la vitesse de croissance est lente, afin d'assurer sa protection contre la corrosion à haute température. Cette faible vitesse de croissance de la couche d'oxyde est effectivement observée à 1000circC. Elle serait favorisée par l'établissement d'une couche de chromine induite par la présence d'une sous-couche continue de silice à l'interface interne. Cette dernière limiterait la diffusion du fer. Le phénomène du "breakaway" est observé à la température de 900circC après 40 heures d'oxydation. Ce phénomène serait lié à la croissance initiale d'oxydes contenant du fer. L'oxyde Fe{7}SiO{10, }a été identifié{ }pour la première fois grâce à la technique de diffraction des rayons X in situ à haute température. Cet oxyde semble piéger le silicium dans la couche d'oxyde, empêchant son accumulation à l'interface interne et la formation d'une couche continue de silice.

  11. The case for cellulose production on Mars

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1989-01-01

    From examining the consequences of not requiring that all wastes from life support be recycled back to the food plants, it is concluded that cellulose production on Mars could be an important input for many nonmetabolic material requirements on Mars. The fluxes of carbon in cellulose production would probably exceed those in food production, and therefore settlements on Mars could utilize cellulose farms in building a Mars infrastructure.

  12. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  13. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.

    PubMed

    Lee, Koon-Yang; Tammelin, Tekla; Schulfter, Kerstin; Kiiskinen, Harri; Samela, Juha; Bismarck, Alexander

    2012-08-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, measured to be 71% for BC as compared to NFC of 41%. Nanocellulose papers were prepared from BC and NFC. Both papers possessed similar tensile moduli and strengths of 12 GPa and 110 MPa, respectively. Nanocomposites were manufactured by impregnating the nanocellulose paper with an epoxy resin using vacuum assisted resin infusion. The cellulose reinforced epoxy nanocomposites had a stiffness and strength of approximately ∼8 GPa and ∼100 MPa at an equivalent fiber volume fraction of 60 vol.-%. In terms of the reinforcing ability of NFC and BC in a polymer matrix, no significant difference between NFC and BC was observed. PMID:22839594

  14. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  15. Cellulose/polyvinyl alcohol-based hydrogels for reconfigurable lens

    NASA Astrophysics Data System (ADS)

    Jayaramudu, T.; Ko, Hyun-U.; Gao, Xiaoyuan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    Electroactive hydrogels are attractive for soft robotics and reconfigurable lens applications. Here we describe the design and fabrication of cellulose-poly vinyl alcohol based hydrogels. The fabricated hydrogels were confirmed by Fourier transformer spectroscopy, swelling studies, thermal analysis, surface morphology of fabricated hydrogel was study by using scanning electron microscopy. The effect of poly vinyl alcohol concentration on the optical and electrical behavior of hydrogels was studied.

  16. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  17. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  18. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    PubMed

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  19. Production process of a new cellulosic fiber with antimicrobial properties.

    PubMed

    Zikeli, Stefan

    2006-01-01

    The Lyocell process (system: cellulose-water-N-methylmorpholine oxide) of Zimmer AG offers special advantages for the production of cellulose fibers. The process excels by dissolving the most diverse cellulose types as these are optimally adjusted to the process by applying different pretreatment methods. Based on this stable process, Zimmer AG's objective is to impart to the Lyocell fiber additional value to improve quality of life and thus to tap new markets for the product. Thanks to the specific incorporation of seaweed, the process allows to produce cellulose Lyocell fibers with additional and new features. They are activated in a further step - by specific charging with metal ions - in order to obtain antibacterial properties. The favorable textile properties of fibers produced by the Lyocell process are not adversely affected by the incorporation of seaweed material or by activation to obtain an antibacterial fiber so that current textile products can be made from the fibers thus produced. The antibacterial effect is achieved by metal ion activation of the Lyocell fibers with incorporated seaweed, which contrasts with the antibacterial fibers known so far. Antibacterial fibers produced by conventional methods are in part only surface finished with antibacterially active chemicals or else they are produced by incorporating organic substances with antibacterial and fungicidal effects. Being made from cellulose, the antibacterial Lyocell fiber Sea Cell Active as the basis for quality textiles exhibits a special wear comfort compared to synthetic fibers with antibacterial properties and effects. This justifies the conclusion that the Zimmer Lyocell process provides genuine value added and that it is a springboard for further applications. PMID:16766884

  20. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  1. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    NASA Astrophysics Data System (ADS)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  2. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  3. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-01

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor

  4. Microtubules and cellulose biosynthesis: the emergence of new players.

    PubMed

    Li, Shundai; Lei, Lei; Yingling, Yaroslava G; Gu, Ying

    2015-12-01

    Microtubules determine the orientation of newly formed cellulose microfibrils in expanding cells. There are many hypotheses regarding how the information is transduced across the plasma membrane from microtubules to cellulose microfibrils. However, the molecular mechanisms underlying the co-alignment between microtubules and cellulose microfibrils were not revealed until the recent discovery of cellulose synthase interacting (CSI) proteins. Characterization of CSIs and additional cellulose synthase-associated proteins will greatly advance the knowledge of how cellulose microfibrils are organized.

  5. Pyrolytic sugars from cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  6. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    SciTech Connect

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.; Zhang, Xiao

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement of CrI of cellulose and may be applicable to other types of cellulose polymorphs.

  7. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  9. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems.

  10. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  11. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  12. [Audiometry in the cellulose industry].

    PubMed

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers. PMID:7720969

  13. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.

    PubMed

    Saarikoski, Eve; Rissanen, Marja; Seppälä, Jukka

    2015-03-30

    Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with microfibrillated cellulose (MFC) in order to find the threshold in which MFC fibers form a percolation network within the dissolved cellulose solution and in order to improve the properties of regenerated cellulose films. In the aqueous state, correlations between the rheological properties of dissolved cellulose/MFC blend suspensions and MFC fiber concentrations were investigated and rationalized. In addition, rheological properties of diluted MFC suspensions were characterized and a correlation with NaOH concentration was found, thus partly explaining the flow properties of dissolved cellulose/MFC blend suspensions. Finally, based on results from Dynamic Mechanical Analysis (DMA), MFC addition had strengthening/plasticizing effect on regenerated cellulose films if low concentrations of MFC, below the percolation threshold (5.5-6 wt%, corresponding to 0.16-0.18 wt% of MFC in the blend suspensions), were used.

  14. Diffraction from nonperiodic models of cellulose crystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose I' coordinates, and were subjected to various combinations of energy minimization and molecular dynamics (M...

  15. Idealized powder diffraction patterns for cellulose polymorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  16. Enzymatic degradation of (ligno)cellulose.

    PubMed

    Bornscheuer, Uwe; Buchholz, Klaus; Seibel, Jürgen

    2014-10-01

    Glycoside-degrading enzymes play a dominant role in the biochemical conversion of cellulosic biomass into low-price biofuels and high-value-added chemicals. New insight into protein functions and substrate structures, the kinetics of recognition, and degradation events has resulted in a substantial improvement of our understanding of cellulose degradation. PMID:25136976

  17. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  18. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis.

  19. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  20. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis. PMID:26590309

  1. Salmonella promotes virulence by repressing cellulose production.

    PubMed

    Pontes, Mauricio H; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A

    2015-04-21

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission.

  2. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cellulose ether containing propylene glycol groups attached by an ether linkage which contains, on an... viscosity of 145 centipoises for 10 percent by weight aqueous solution at 25 °C. (2) A cellulose ether containing propylene glycol groups attached by an ether linkage having a hydroxypropoxy (OC3H6OH) content...

  3. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cellulose ether containing propylene glycol groups attached by an ether linkage which contains, on an... viscosity of 145 centipoises for 10 percent by weight aqueous solution at 25 °C. (2) A cellulose ether containing propylene glycol groups attached by an ether linkage having a hydroxypropoxy (OC3H6OH) content...

  4. Synthesis of Cellulose Acetate from Cotton Byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton burr and cottonseed hull are relatively inexpensive cotton byproducts. In an effort to derive greater value out of these natural renewable materials, we have succeeded in converting part of them into cellulose acetate without prior chemical breakdown or physical separation of cellulose, ligni...

  5. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  6. Salmonella promotes virulence by repressing cellulose production

    PubMed Central

    Pontes, Mauricio H.; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A.

    2015-01-01

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission. PMID:25848006

  7. Salmonella promotes virulence by repressing cellulose production.

    PubMed

    Pontes, Mauricio H; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A

    2015-04-21

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission. PMID:25848006

  8. Cellulose (delta)18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants.

    PubMed

    Kahmen, Ansgar; Sachse, Dirk; Arndt, Stefan K; Tu, Kevin P; Farrington, Heraldo; Vitousek, Peter M; Dawson, Todd E

    2011-02-01

    Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ(18)O, of precipitation is associated with environmental conditions, cellulose δ(18)O should be as well. However, plant physiological models using δ(18)O suggest that cellulose δ(18)O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ(18)O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T(air)) have on cellulose δ(18)O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ(18)O values. Our results revealed that e(a) and T(air) equally influence cellulose δ(18)O values and that distinguishing which of these factors dominates the δ(18)O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T(air) on the δ(18)O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ(18)O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ(18)O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences.

  9. Reactor optimization for enzymatic hydrolysis of cellulose

    SciTech Connect

    Lee, Y.H.; Gharpuray, M.M.; Fan, L.T.

    1982-01-01

    Enzymatic hydrolysis of cellulose furnishes sugar which can be subsequently fermented to ethanol. The production of such sugar at relatively low cost is essential for commercially viable production of ethanol. Many processes have been developed for converting cellulosic materials to sugar, and their economic feasibility has been analyzed; however, relatively little has been done to optimize such processes. A comprehensive mechanistic kinetic model for enzymatic degradation was established previously; it takes into account the structure of cellulose, mode of action of celluloytic enzyme, and mode of interaction between the enzyme and the cellulosic substrate. In the present work this model has been applied to the optimal design of cellulose hydrloysis reactors. Both batch and continously stirred reactors have been considered for this purpose. The fractional contributions of various cost parameters to the production cost have been estimated. The sensitivity of sugar cost to the important cost parameters, such as raw material and enzyme costs, have been examined. 8 figures, 7 tables.

  10. A novel method for preparing microfibrillated cellulose from bamboo fibers

    NASA Astrophysics Data System (ADS)

    Dat Nguyen, Huu; Thanh Thuy Mai, Thi; Bich Nguyen, Ngoc; Duy Dang, Thanh; Loan Phung Le, My; Dang, Tan Tai; Tran, Van Man

    2013-03-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A & J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase.

  11. Preparation and characterization of cellulose/hydrous niobium oxide hybrid.

    PubMed

    Maschio, Leandro José; Pereira, Paulo Henrique Fernandes; Da Silva, Maria Lucia Caetano Pinto

    2012-07-01

    A composite of cellulose extracted from bagasse with Nb2O5·nH2O in three different proportions (16.67, 37.5 and 50.0 wt%) was prepared using the co-precipitation method. The materials were characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). TG data obtained show that the presence of inorganic material influenced slightly the stability of the hybrid material. The precipitation of 16.67 wt.% of oxide was sufficient to inhibit the combustion peaks present in the DSC curve of cellulose. This work will help find new applications for these materials.

  12. Oxidised regenerated cellulose: an effective emergency haemostatic in burns surgery.

    PubMed

    Hazarika, E Z

    1985-07-01

    A 26-year-old man with 40% full-thickness burns was treated by excision and split-skin grafting on the 7th post-burn day. He developed bleeding 1 hour post-operatively which persisted despite the use of pressure dressings, elevation of the limbs, the administration of fresh frozen plasma, platelet-rich plasma, calcium, whole blood and cryoprecipitate respectively over a period of 11 hours. The bleeding was finally controlled under general anaesthesia by clot removal, bipolar electro-coagulation of miniscule oozing points, replacement of the meshed skin graft and the application of a layer of oxidised regenerated cellulose over the grafted area. The properties and uses of oxidised regenerated cellulose are outlined. PMID:3893594

  13. Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation.

    PubMed

    de Araújo Júnior, Adalberto M; Braido, Guilherme; Saska, Sybele; Barud, Hernane S; Franchi, Leonardo P; Assunção, Rosana M N; Scarel-Caminaga, Raquel M; Capote, Ticiana S O; Messaddeq, Younès; Ribeiro, Sidney J L

    2016-01-20

    Regenerated cellulose scaffolds (RCS) may be used as alloplastic materials for tissue repair. In this work, the RCS were obtained by viscose process and characterized by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TG). In vitro enzymatic degradation assay and toxicological assays were also evaluated. The physicochemical characterizations revealed the formation of a porous material with distinct thermal profile and crystallinity compared to pristine cellulose pulp. Enzymatic degradation assay revealed that lysozyme showed a mildest catalytic action when compared to cellulase, Tricoderma reesei (Tr). Nevertheless, both enzymes were efficient for degrading the RCS. RCS did not show cytotoxicity, mutagenic or genotoxic effects. The systematically characterization of this work suggests that RCS presented distinct features that make it a viable material for future studies related to the development of scaffolds for biological applications.

  14. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules.

    PubMed

    Liakos, Ioannis L; D'autilia, Francesca; Garzoni, Alice; Bonferoni, Cristina; Scarpellini, Alice; Brunetti, Virgilio; Carzino, Riccardo; Bianchini, Paolo; Pompa, Pier Paolo; Athanassiou, Athanassia

    2016-08-30

    Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus. PMID:26827919

  15. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules.

    PubMed

    Liakos, Ioannis L; D'autilia, Francesca; Garzoni, Alice; Bonferoni, Cristina; Scarpellini, Alice; Brunetti, Virgilio; Carzino, Riccardo; Bianchini, Paolo; Pompa, Pier Paolo; Athanassiou, Athanassia

    2016-08-30

    Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus.

  16. Oxidised regenerated cellulose: an effective emergency haemostatic in burns surgery.

    PubMed

    Hazarika, E Z

    1985-07-01

    A 26-year-old man with 40% full-thickness burns was treated by excision and split-skin grafting on the 7th post-burn day. He developed bleeding 1 hour post-operatively which persisted despite the use of pressure dressings, elevation of the limbs, the administration of fresh frozen plasma, platelet-rich plasma, calcium, whole blood and cryoprecipitate respectively over a period of 11 hours. The bleeding was finally controlled under general anaesthesia by clot removal, bipolar electro-coagulation of miniscule oozing points, replacement of the meshed skin graft and the application of a layer of oxidised regenerated cellulose over the grafted area. The properties and uses of oxidised regenerated cellulose are outlined.

  17. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis.

    PubMed

    Kim, In Jung; Nam, Ki Hyun; Yun, Eun Ju; Kim, Sooah; Youn, Hak Jin; Lee, Hee Jin; Choi, In-Geol; Kim, Kyoung Heon

    2015-10-01

    Auxiliary activity family 9 (AA9, formerly known as glycoside hydrolase family 61 or polysaccharide monooxygenase) is a group of fungal proteins that were recently found to have a significant synergism with cellulase in cellulose hydrolysis via the oxidative cleavage of glycosidic bonds of cellulose chains. In this study, we report the active expression of a recombinant fungal AA9 from Chaetomium globosum (CgAA9) in a bacterial host, Escherichia coli, and the optimization of its synergistic activity in cellulose hydrolysis by using cellulase. The recombinant CgAA9 (0.9 mg/g cellulose) exhibited 1.7-fold synergism in the hydrolysis of Avicel when incubated with 0.9 filter paper units of Celluclast 1.5 L/g cellulose. The first study of the active expression of AA9 using a bacterial host and its synergistic optimization could be useful for the industrial application of AA9 for the saccharification of lignocellulose.

  18. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    SciTech Connect

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  19. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  20. Functionalized bacterial cellulose derivatives and nanocomposites.

    PubMed

    Hu, Weili; Chen, Shiyan; Yang, Jingxuan; Li, Zhe; Wang, Huaping

    2014-01-30

    Bacterial cellulose (BC) is a fascinating and renewable natural nanomaterial characterized by favorable properties such as remarkable mechanical properties, porosity, water absorbency, moldability, biodegradability and excellent biological affinity. Intensive research and exploration in the past few decades on BC nanomaterials mainly focused on their biosynthetic process to achieve the low-cost preparation and application in medical, food, advanced acoustic diaphragms, and other fields. These investigations have led to the emergence of more diverse potential applications exploiting the functionality of BC nanomaterials. This review gives a summary of construction strategies including biosynthetic modification, chemical modification, and different in situ and ex situ patterns of functionalization for the preparation of advanced BC-based functional nanomaterials. The major studies being directed toward elaborate designs of highly functionalized material systems for many-faceted prospective applications. Simple biosynthetic or chemical modification on BC surface can improve its compatibility with different matrix and expand its utilization in nano-related applications. Moreover, based on the construction strategies of functional nanomaterial system, different guest substrates including small molecules, inorganic nanoparticles or nanowires, and polymers can be incorporated onto the surfaces of BC nanofibers to prepare various functional nanocomposites with outstanding properties, or significantly improved physicochemical, catalytic, optoelectronic, as well as magnetic properties. We focus on the preparation methods, formation mechanisms, and unique performances of the different BC derivatives or BC-based nanocomposites. The special applications of the advanced BC-based functional nanomaterials, such as sensors, photocatalytic nanomaterials, optoelectronic devices, and magnetically responsive membranes are also critically and comprehensively reviewed. PMID:24299873

  1. Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose

    DOE PAGES

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-01-29

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive

  2. Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose

    PubMed Central

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-01-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal/mol. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called `finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and

  3. Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility

    SciTech Connect

    Wang, W.; Chen, X.; Tucker, M.; Himmel, M. E.; Johnson, D. K.

    2012-01-01

    The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw in the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.

  4. Antibacterial paperboard packaging using microfibrillated cellulose.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Manship, Brigitte; Bras, Julien

    2015-09-01

    The industry and consumers are focusing more and more on the development of biodegradable and lightweight food-packaging materials, which could better preserve the quality of the food and improve its shelf-life. In an attempt to meet these requirements, this study presents a novel bio-substrate able to contain active bio-molecules for future food-packaging applications. Based on a paperboard substrate, the development of an antibacterial bio-packaging material is, therein, achieved using a chlorhexidine digluconate (CHX) solution as a model of an antibacterial molecule, mixed with microfibrillated cellulose (MFC) and used as coating onto paperboard samples. AFM and FE-SEM analyses were performed to underline the nanoporous MFC network able to trap and to progressively release the CHX molecules. The release study of CHX was conducted in an aqueous medium and showed a lower proportion (20 %) of CHX released when using MFC. This led to the constant release of low amounts of CHX over 40 h. Antibacterial tests were carried out to assess the preservation of the antibacterial activity of the samples after the release studies. Samples remained active against Bacillus subtilis, with better results being obtained when MFC was used. The preservation of the quality of a model food was finally evaluated paving the way for future promising applications in the food packaging industry.

  5. Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes.

    PubMed

    Ibrahim, Maha M; Koschella, Andreas; Kadry, Ghada; Heinze, Thomas

    2013-06-01

    Cellulose was isolated from rice straw and converted to carboxymethyl cellulose (CMC). Both polymers were crosslinked with poly(vinyl alcholo) (PVA). The physical properties of the resulting membranes were characterized by FT-IR, TGA, DSC and SEM. The cellulose and CMC were first prepared from bleached rice straw pulp. The infrared spectroscopy of the resulting polymer membranes indicated a decrease in the absorbance of the OH group at 3300-3400 cm(-1), which is due to bond formation with either the cellulose or CMC with the PVA. The thermal stability of PVA/cellulose and PVA/CMC membranes was lower than PVA membrane. The surface of the resulting polymer membranes showed smooth surface in case of the PVA/CMC membrane and rough surface in case of the PVA/cellulose membrane. Desalination test, using 0.2% NaCl, showed that pure PVA membranes had no effect while membranes containing either cellulose or CMC as filler were able to decrease the content of the NaCl from the solution by 25% and 15%, respectively. Transport properties, including water and chloroform vapor were studied. The moisture transport was reduced by the presence of both cellulose and CMC. Moreover, the membranes containing cellulose and CMC showed significantly reduced flux compared to the pure PVA. The water sorption, solubility and soaking period at different pH solutions were also studied and showed that the presence of both cellulose and CMC influences the properties.

  6. Cellulose production and cellulose synthase gene detection in acetic acid bacteria.

    PubMed

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-02-01

    The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose.

  7. APPARATUS FOR MELTING AND POURING METAL

    DOEpatents

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  8. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion.

    PubMed

    Vaidya, Alankar A; Gaugler, Marc; Smith, Dawn A

    2016-01-20

    A large volume of wood waste is produced in timber processing industry which traditionally used in low value applications. Here, value addition to the wood waste (Sander dust) and cellulose, hemicellulose isolated thereof by functionalisation using cyclic anhydrides in a solvent-free and green reactive extrusion process is reported. The effect of extrusion temperature, catalyst and different weight ratios of Sander dust (SD):succinic anhydride (SA) on the esterification reaction is evaluated. The esterified products were characterised by the acid value, degree of substitution (DS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solid state (13)C NMR and thermo-gravimetric analysis (TGA). Under optimum extrusion conditions, mixed esters are formed, with highest acid value obtained for succinylation of cellulose (0.122 g/g at DS of 0.350) which is two times higher compared to succinylated SD (0.059 g/g at a weight gain of 0.452) and hemicellulose (0.043 g/g at DS of 0.290). The reactivity trend for individual anhydride was: (1) SA-Cellulose>SD>hemicellulose; (2) maleic anhydride (MA)-SD>hemicellulose>cellulose and (3) dodecenyl succinic anhydride (DDSA)-SD ≈ cellulose ≫ hemicellulose. The pendant free carboxyl groups generated through functionalisation of wood waste, cellulose and hemicellulose without the presence of polymeric carriers will allow more tailored or targeted modification of wood-plastic composites.

  9. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion.

    PubMed

    Vaidya, Alankar A; Gaugler, Marc; Smith, Dawn A

    2016-01-20

    A large volume of wood waste is produced in timber processing industry which traditionally used in low value applications. Here, value addition to the wood waste (Sander dust) and cellulose, hemicellulose isolated thereof by functionalisation using cyclic anhydrides in a solvent-free and green reactive extrusion process is reported. The effect of extrusion temperature, catalyst and different weight ratios of Sander dust (SD):succinic anhydride (SA) on the esterification reaction is evaluated. The esterified products were characterised by the acid value, degree of substitution (DS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solid state (13)C NMR and thermo-gravimetric analysis (TGA). Under optimum extrusion conditions, mixed esters are formed, with highest acid value obtained for succinylation of cellulose (0.122 g/g at DS of 0.350) which is two times higher compared to succinylated SD (0.059 g/g at a weight gain of 0.452) and hemicellulose (0.043 g/g at DS of 0.290). The reactivity trend for individual anhydride was: (1) SA-Cellulose>SD>hemicellulose; (2) maleic anhydride (MA)-SD>hemicellulose>cellulose and (3) dodecenyl succinic anhydride (DDSA)-SD ≈ cellulose ≫ hemicellulose. The pendant free carboxyl groups generated through functionalisation of wood waste, cellulose and hemicellulose without the presence of polymeric carriers will allow more tailored or targeted modification of wood-plastic composites. PMID:26572467

  10. Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose.

    PubMed

    Strydom, Schalk J; Otto, Daniel P; Liebenberg, Wilna; Lvov, Yuri M; de Villiers, Melgardt M

    2011-02-14

    Microcrystalline cellulose is a commonly used direct compression tablet diluent and binder. It is derived from purified α-cellulose in an environmentally unfriendly process that involves mineral acid catalysed hydrolysis. In this study Kraft softwood fibers was nanocoated using a layer-by-layer self-assembling process. Powder flow and compactibility results showed that the application of nano-thin polymer layers on the fibers turned non-flowing, non-compacting cellulose into powders that can be used in the direct compression of tablets. The powder flow properties and tableting indices of compacts compressed from these nanocoated microfibers were similar or better than that of directly compactible microcrystalline cellulose powders. Cellulose microfibers coated with four PSS/PVP bilayers had the best compaction properties while still producing tablets that were able to absorb water and disintegrate and did not retard the dissolution of a model drug acetaminophen. The advantages of nanocoating rather than traditional pharmaceutical coating are that it add less than 1% to the weight of the fibers and allows control of the molecular properties of the surface and the thickness of the coat to within a few nanometers. This process is potentially friendlier to the environment because of the type and quantity of materials used. Also, it does not involve acid-catalyzed hydrolysis and neutralization of depolymerized cellulose.

  11. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.

    PubMed

    Cakar, Fatih; Ozer, Işılay; Aytekin, A Özhan; Sahin, Fikrettin

    2014-06-15

    Bacterial cellulose (BC) has unique properties such as structural, functional, physical and chemical. The mass production of BC for industrial application has recently become attractive to produce more economical and high productive cellulose. In this study, to improve the productivity of bacterial cellulose (BC), BC production by Gluconacetobacter xylinus FC01 was investigated in molasses medium with static semi-continuous operation mode. Cell dry weight, polysaccharide, sugar and cellulose concentrations were monitored and cellulose was characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The highest cellulose yield (1.637 g/L) was obtained in SCP50-7d, which molasses of 1/2 ratio for 7 days by static semi-continuous operation mode. The results show that BC can be highly produced by G. xylinus in molasses with static semi-continuous process than batch process. We claimed that low-cost medium with semi-continuous operation mode in static culture is a good candidate for industrial scale BC productions.

  12. Recycling of cellulosic fibers by enzymatic process.

    PubMed

    Shojaei, K M; Dadashian, F; Montazer, M

    2012-02-01

    In this research, enzymatic treatment as an environmental friendly process has been used for recycling process of old cellulosic wastes such as cotton, viscose, and lyocell. Cellulase hydrolyses cellulosic chains and shortens cellulosic fibers. This study investigates to detect the optimum enzyme concentration and time of treatments for suitable changes of length and weight loss. The main purposes of this article are shortening of cellulosic fibers and evaluating of enzymatic treatment in different kind of cellulosic fibers. According to the data of experiments, with the increase of enzyme concentration and the treatment time, the length and weight loss percentage of the cellulosic fibers has been decreased. The length and weight loss percentage of treated viscose is more than that of lyocell and cotton fibers. Optimized condition, reaction time, and enzyme concentration have been determined by mean length of treated cellulosic samples. Suitable longitudinal distribution of fiber for papermaking industries is in the range of 0 to 4 mm. Optimum enzyme concentration and treatment time for recycling cotton, lyocell, and viscose fibers are 2% and 48 h for cotton and lyocell and 0.5% and 48 h for viscose, respectively. According to the data of experiment, the length of treated fibers is appropriate for its usage as a raw material in papermaking industries.

  13. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  14. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    PubMed

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  15. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels.

    PubMed

    Gallego, R; Arteaga, J F; Valencia, C; Franco, J M

    2013-10-15

    The -NCO-functionalization of methyl cellulose with HMDI and its application to chemically gel the castor oil is explored in this work by analyzing the influence of functionalization degree on the rheological and thermogravimetric behavior of resulting chemical oleogels. With this aim, different methyl cellulose chemical modifications were achieved by limiting the proportion of HMDI and, subsequently, oleogels were obtained by dispersing these polymers in castor oil and promoting the reaction between those biopolymers and the hydroxyl groups located in the ricinoleic fatty acid chain. -NCO-functionalized methyl cellulose-based oleogels were characterized from themogravimetric and rheological points of view. Suitable thermal resistance and rheological characteristics were found in order to propose these oleogels as promising bio-based alternatives to traditional lubricating greases based on non-renewable resources. In general, -NCO-functionalized methyl cellulose thermally decomposed in three main steps whereas resulting oleogels thermal decomposition takes place in one main single stage which comprises the thermal degradation of both the polymer and the castor oil. Temperature range for thermal degradation is broadened when using highly -NCO-functionalized methyl cellulose. A cross-linked viscoelastic gel was obtained with methyl cellulose functionalized in a relatively low degree (around 6% -NCO molar content). The rheological properties of highly functionalized methyl cellulose-based oleogels evolve during several months of aging, but mainly during the first week, due to the progress of the reaction between -NCO functional groups and castor oil -OH groups. SAOS functions analyzed and oleogel relative elasticity increase with the functionalization degree. Oleogel linear viscoelastic response is also extremely dependent on NCO-functionalized methyl cellulose concentration.

  16. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    PubMed

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  17. A two step method for the preparation of carbamate cross-linked cellulose films using an ionic liquid and their water retention properties.

    PubMed

    Amarasekara, Ananda S; Hasan, Muhammad A; Ha, Uyen

    2016-12-10

    Carbamate cross-linked cellulose films can be prepared in a two step method using cellulose dissolved in 1-n-butyl-3-methylimidazolium chloride ionic liquid. The new technique involves casting the film from cellulose ionic liquid solution onto a glass surface and application of alkyl/aryl diisocyanate in dry dimethylsulfoxide solution onto the cellulose - ionic liquid coating on glass and allowing the cross-linking reaction to occur on the pre-formed cellulose coating. The carbamate cross-linked cellulose films formed were characterized by FT-IR, and TG-DTA. The water retention values of the films are shown to decrease with the increase in hydrophobicity of the alky/aryl group linker in the carbamate bridges. PMID:27577890

  18. A two step method for the preparation of carbamate cross-linked cellulose films using an ionic liquid and their water retention properties.

    PubMed

    Amarasekara, Ananda S; Hasan, Muhammad A; Ha, Uyen

    2016-12-10

    Carbamate cross-linked cellulose films can be prepared in a two step method using cellulose dissolved in 1-n-butyl-3-methylimidazolium chloride ionic liquid. The new technique involves casting the film from cellulose ionic liquid solution onto a glass surface and application of alkyl/aryl diisocyanate in dry dimethylsulfoxide solution onto the cellulose - ionic liquid coating on glass and allowing the cross-linking reaction to occur on the pre-formed cellulose coating. The carbamate cross-linked cellulose films formed were characterized by FT-IR, and TG-DTA. The water retention values of the films are shown to decrease with the increase in hydrophobicity of the alky/aryl group linker in the carbamate bridges.

  19. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in accordance with the following prescribed conditions. (a) The additive is a cellulose ether having the...

  20. Conversion of cotton byproducts to mixed cellulose esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton byproducts, such as cotton burr and cottonseed hull, can be used as low-cost feedstock for the production of specialty chemicals. The conversion of these cellulosic byproducts into mixed cellulose esters, e.g., cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB), was stud...