Science.gov

Sample records for cellulose-specific molecular probes

  1. Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes.

    PubMed

    Porter, Stephanie E; Donohoe, Bryon S; Beery, Kyle E; Xu, Qi; Ding, Shi-You; Vinzant, Todd B; Abbas, Charles A; Himmel, Michael E

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  2. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    SciTech Connect

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  3. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  4. Techniques for molecular imaging probe design.

    PubMed

    Reynolds, Fred; Kelly, Kimberly A

    2011-12-01

    Molecular imaging allows clinicians to visualize disease-specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology--all essential to progress in molecular imaging probe development. In this review, we discuss target selection, screening techniques, and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents.

  5. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  6. Chemomechanics with Molecular Force Probes

    DTIC Science & Technology

    2010-03-30

    Prescribed by ANSI Std Z39-18 quantified by pressure, and its effect on the reaction rate is governed by the reaction’s volume of acti- vation, ΔV‡ [8...into chemomechanical coupling. Covalent bond rearrange- ments involve large energy changes, making them particularly attractive as the basis of novel...scales related, from the macroscopic force that accounts for large -scale dis- tortion in material in response to an external load down to molecular

  7. Using molecular rotors to probe gelation.

    PubMed

    Raeburn, Jaclyn; Chen, Lin; Awhida, Salmah; Deller, Robert C; Vatish, Manu; Gibson, Matthew I; Adams, Dave J

    2015-05-14

    A series of fluorescent probes, including a number of molecular rotors, have been used to follow the self-assembly of dipeptide-based low molecular weight gelators. We show that these probes can be used to gain an insight into the assembly process. Thioflavin T, a commonly used stain for β-sheets, appears to act as a molecular rotor in these gelling systems, with the fluorescence data closely matching that of other rotors. The molecular rotor was incorporated into an assay system with glucose oxidase to enable glucose-concentration specific gelation and hence generating a fluorescent output. Applying this system to urine from patients with various levels of glycosuria (a symptom of diabetes), it was found to provide excellent correlation with different clinical assessments of diabetes. This demonstrates a new concept in gelation-linked biosensing for a real clinical problem.

  8. Protein-based tumor molecular imaging probes

    PubMed Central

    Lin, Xin; Xie, Jin

    2013-01-01

    Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging. PMID:20232092

  9. Molecular imaging probe development: a chemistry perspective

    PubMed Central

    Nolting, Donald D; Nickels, Michael L; Guo, Ning; Pham, Wellington

    2012-01-01

    Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed. PMID:22943038

  10. Probing the molecular determinants of fluorinase specificity.

    PubMed

    Yeo, W L; Chew, X; Smith, D J; Chan, K P; Sun, H; Zhao, H; Lim, Y H; Ang, E L

    2017-02-23

    Molecular determinants of FlA1 fluorinase specificity were probed using 5'-chloro-5'-deoxyadenosine (5'-ClDA) analogs as substrates and FlA1 active site mutants. Modifications at F213 or A279 residues are beneficial towards these modified substrates, including 5'-chloro-5'-deoxy-2-ethynyladenosine, ClDEA (>10-fold activity improvement), and conferred novel activity towards substrates not readily accepted by wild-type FlA1.

  11. A quantum spin-probe molecular microscope

    PubMed Central

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L.C.L.

    2016-01-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy. PMID:27725630

  12. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  13. A quantum spin-probe molecular microscope.

    PubMed

    Perunicic, V S; Hill, C D; Hall, L T; Hollenberg, L C L

    2016-10-11

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  14. Probing adhesion forces at the molecular scale

    SciTech Connect

    Thomas, R.C.; Houston, J.E.; Michalske, T.A.

    1996-12-31

    Measurements of adhesion forces at the molecular scale, such as those discussed here, are necessary to understand macroscopic boundary-layer behavior such as adhesion, friction, wear, lubrication, and many other important phenomena. The authors` recent interfacial force microscopy (IFM) studies have provided detailed information about the mechanical response of both self-assembled monolayer (SAM) films and the underlying substrates. In addition, they recently demonstrated that the IFM is useful for studying the chemical nature of such films. In this talk, the authors discuss a new method for studying surface interactions and chemical reactions using the IFM. To quantitatively measure the work of adhesion and bond energies between two organic thin films, they modify both a Au substrate and a Au probe with self-assembling organomercaptan molecules having either the same or different end groups (-CH{sub 3}, -NH{sub 2}, and -COOH), and then analyze the force-versus-displacement curves (force profiles) that result from the approach to contact of the two surfaces. Their results show that the magnitude of the adhesive forces measured between methyl-methyl interactions are in excellent agreement with van der Waals calculations using Lifshitz theory and previous experimentally determined values. Moreover, the measured peak adhesive forces scale as expected for van der Waals, hydrogen-bonding, and acid-base interactions.

  15. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  16. Magnetomotive molecular probes for targeted contrast enhancement and therapy

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-03-01

    The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

  17. Molecular Probe Fluorescence Monitoring of Polymerization

    NASA Technical Reports Server (NTRS)

    Bunton, Patrick

    2002-01-01

    This project investigated the feasibility of using fluorescence spectroscopy to determine viscosity of polymer/monomer in support of Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS). This project will attempt to measure gradient induced flow at a miscible interface during and / or after in-flight polymerization of dodecyl acrylate (lauryl acrylate). Concentration and temperature gradients will be intentionally introduced during polymerization and the resultant fluid flow determined by Particle Imaging Velocimetry (PIV). This report describes an investigation of the feasibility of using fluorescence of a probe molecule to monitor viscosity and/or concentration during and after polymerization. The probe used was pyrene which has been shown to be sensitive to its local environment in methyl methacrylate.

  18. Molecular modulated cysteine-selective fluorescent probe.

    PubMed

    Jung, Hyo Sung; Pradhan, Tuhin; Han, Ji Hye; Heo, Kyung Jun; Lee, Joung Hae; Kang, Chulhun; Kim, Jong Seung

    2012-11-01

    We have synthesized a series of coumarins (1-3) that can emit fluorescence in a turn-on manner through a Michael-type reaction with thiol-containing compounds. The only difference among the coumarins is the position of a carboxyl group on its benzene ring moiety near the double-bond conjugated coumarin. Their selectivity for Cys, GSH, and Hcy as well as the associated fluorogenic mechanism were illustrated by fluorescence spectroscopy, DFT calculations, and kinetic studies. All isomers prefer Cys over GSH in the reaction from 48.6 (probe 3) to 111-fold (probe 1) as demonstrated in a second order kinetics. The high selectivity of probe 1 to Cys might be achieved since the ortho carboxyl group on its benzene ring prefers a less negatively charged nucleophile. During intracellular Cys detection using 1, a possible interference by a large amount of GSH in the HepG2 cells was evaluated. The cells were treated with l-buthionine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase, providing an experimental condition where the cells could not synthesize GSH from Cys or other species. Then, the fluorescence intensity of 1 in HepG2 cells under BSO-H(2)O(2) treatment was strongly enhanced by N-acetylcysteine (NAC), a precursor of Cys, implicating that the fluorescence signal from the cells is mainly associated with changes in intracellular [Cys] rather than that in intracellular [GSH].

  19. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    DOE PAGES

    Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; ...

    2015-05-08

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  1. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    PubMed Central

    Chen, Haobin; Yuan, Zhen; Wu, Changfeng

    2015-01-01

    Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT), a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development. PMID:26609534

  2. Instrumentation and probes for molecular and cellular imaging.

    PubMed

    Lecchi, M; Ottobrini, L; Martelli, C; Del Sole, A; Lucignani, G

    2007-06-01

    Molecular and cellular imaging is a branch of biomedical sciences that combines the use of imaging instrumentation and biotechnology to characterize molecular and cellular processes in living organisms in normal and pathologic conditions. The two merging areas of research behind molecular and cellular imaging are detection technology, i.e. scanners and imaging devices, and development of tracers, contrast agents and reporter probes that make imaging with scanners and devices possible. Several in vivo imaging instruments currently used in human studies, such as computer tomography, ultrasound, magnetic resonance, positron emission tomography and single photon emission computed tomography, have been rescaled for small animal studies, while other methods initially used for in vitro evaluation, such as bioluminescence and fluorescence, have been refined for in vivo imaging. Conventional imaging relies on the use of non specific contrast agents and classical probes; however, newly developed targeted contrast agents and activable ''smart'' imaging probes for so-called ''targeted imaging'' have demonstrated high specificity and high signal to noise ratio in small animal studies. This review focuses on basic recent findings in the technical aspects of molecular and cellular imaging modalities (equipment, targeted probe and contrast agents and applied combinations of instrumentation and probe) with particular attention to the choice of the future: the multimodal imaging approach.

  3. Diffusion of molecular probes and proteins in hydrogels

    NASA Astrophysics Data System (ADS)

    Raccis, Riccardo; Roskamp, Robert; Brunsen, Annette; Menges, Bernhard; Jonas, Ulrich; Knoll, Wolfgang; Fytas, George

    2009-03-01

    We employ fluorescence correlation spectroscopy to study the diffusion of molecular probes (Cy5) and dye-tagged proteins (Cy5-AntiMouse, hydrodynamic radius 10nm and Alexa488-Streptavidin, 4nm) in surface-attached poly-N-isopropylacrylamide (PNIPAAm) and dextran based hydrogel layers. The diffusion process depends on the crosslinking density and the presence of electrostatic and steric interactions. The protein penetration into the hydrogel layer occurs close to the isoelectric point but the local probe concentration and diffusion rate diminish with increasing penetration depth. Mesh size characterization of the hydrogels is inferred from the diffusivity and the concentration profile of fluorescent probes with different size, with the molecular free dye diffusing deeper into the gel.

  4. Advanced Molecular Probes for Sequence-Specific DNA Recognition

    NASA Astrophysics Data System (ADS)

    Bertucci, Alessandro; Manicardi, Alex; Corradini, Roberto

    DNA detection can be achieved using the Watson-Crick base pairing with oligonucleotides or oligonucleotide analogs, followed by generation of a physical or chemical signal coupled with a transducer device. The nature of the probe is an essential feature which determines the performances of the sensing device. Many synthetic processes are presently available for "molecular engineering" of DNA probes, enabling label-free and PCR-free detection to be performed. Furthermore, many DNA analogs with improved performances are available and are under development; locked nucleic acids (LNA), peptide nucleic acids (PNA) and their analogs, morpholino oligonucleotides (MO) and other modified probes have shown improved properties of affinity and selectivity in target recognition compared to those of simple DNA probes. The performances of these probes in sensing devices, and the requirements for detection of unamplified DNA will be discussed in this chapter. Chemistry and architectures for conjugation of probes to reporter units, surfaces and nanostructures will also be discussed. Examples of probes used in ultrasensitive detection of unamplified DNA are listed.

  5. Detection of toxoplasma gondii with a DNA molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Sun, Bo; Zheng, Guo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma gondii is a microscopic parasite that may infect humans, so there is an increasing concern on the early detection of latent Toxoplasma gondii infection in recent years. We currently report a rapid and sensitive method for Toxoplasma gondii based on molecular beacon (MB) probe. The probe based on fluorescence resonance energy transfer (FRET) with a stem-loop DNA oligonucleotide was labeled with CdTe/ZnS quantum dots (energy donor) at 5' end and BHQ-2 (energy acceptor) at 3' end, respectively. The probe was synthesized in PBS buffer at pH 8.2, room temperature for 24 h. Then target DNA was injected under the condition of 37°C, hybridization for 2 h, in Tris-HCl buffer. The data from fluorescence spectrum (FS) showed that ca 65% of emitted fluorescence was quenched, and about 50% recovery of fluorescence intensity was observed after adding target DNA, which indicated that the target DNA was successfully detected by MB probe. The detecting limitation was determined as ca 5 nM. Moreover, specificity of the probe was investigated by adding target DNA with one-base-pair mismatch, the low fluorescence recovery indicated the high specificity. The results showed that the current sensing probe will be a useful and convenient tool in Toxoplasma gondii early detection.

  6. Probing (macro)molecular transport through cell walls.

    PubMed

    Kilcher, Giona; Delneri, Daniela; Duckham, Craig; Tirelli, Nicola

    2008-01-01

    We here report a study on the passive permeability of hydrophobic probes through the cell wall of Saccharomyces cerevisiae. In this study we have prepared a series of fluorescent probes with similar chemical composition and molecular weight ranging from a few hundreds to a few thousands of g mol(-1). Their permeation into the cell body exhibits a clear MW cut-off and the underlying mechanism is governed by the permeation of individual molecules rather than aggregates. We also show that it is possible to reversibly alter the cell wall permeation properties without compromising the essence of its structure, by modifying the polarity/dielectric constant of the wall through solvent exchange.

  7. Engineering imaging probes and molecular machines for nanomedicine.

    PubMed

    Tong, Sheng; Cradick, Thomas J; Ma, Yan; Dai, Zhifei; Bao, Gang

    2012-10-01

    Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarriers and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of functional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carriers for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imaging probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nanomedicine approaches to clinical applications are discussed.

  8. Molecular Probes in Marine Ecology: Concepts, Techniques and Applications.

    DTIC Science & Technology

    1991-08-16

    bacterial Woody Hastings: bioluminescence . 20 Wed. Paul Dunlap: The lux genes in bacteria : organization, structure, and expression. 21 Thurs. Chuck...probes for microbial identification. Ken Nealson: Taxonomy physiology and distribution of marine bioluminescent bacteria . 10 Tues. Ann Bucklin: Allozymic...cuponsored with the microbiology course, the first of these being on bioluminescence and symbiosis on July 7, and the second on molecular approaches to

  9. Probing ultrafast molecular dynamics in O2 using XUV/IR pump-probe studies

    NASA Astrophysics Data System (ADS)

    Ray, D.; Sturm, F. P.; Wright, T. W.; Ranitovic, P.; Shivaram, N. H.; Bocharova, I.; Belkacem, A.; Weber, Th.

    2015-05-01

    We investigate the molecular dynamics via different dissociative and autoionizing pathways in molecular oxygen using a pump-probe scheme with ultrashort extreme ultraviolet (XUV) laser pulses. Our primary focus is to study the molecular dynamics in the superexcited Rydberg states in a time-resolved manner. The O2 molecules are pumped by 20.2 eV and 23.1 eV XUV pulses (13th and 15th harmonics). Probing the relaxation dynamics with an infrared (IR) pulse at very long delays (100s of fs) enables us to measure the lifetimes of these Rydberg states. We also observe an enhancement and suppression of vibrational levels of the O2+ion due to the presence of IR. The high flux XUV pulses used for this experiment are generated in an Ar gas by IR pulses from our state-of-the-art 30 mJ, 50 Hz laser system. The pulses are overlapped with the supersonic jet in our Momentum Imaging for TimE Resolved Studies (MISTERS) setup. The cold target in our setup, combined with a very tight focussing geometry and a 3D momentum detection capability gives a high kinetic energy resolution. Molecular dynamics in other polyatomic molecules are also under investigation. Chemical Sciences Division, Lawrence Berkeley National Laboratory.

  10. Aptamers: versatile molecular recognition probes for cancer detection

    PubMed Central

    Sun, Hongguang; Tan, Weihong; Zu, Youli

    2015-01-01

    In the past two decades, aptamers have emerged as a novel class of molecular recognition probes comprising uniquely-folded short RNA or single-stranded DNA oligonucleotides that bind to their cognate targets with high specificity and affinity. Aptamers, often referred to as “chemical antibodies”, possess several highly desirable features for clinical use. They can be chemically synthesized and are easily conjugated to a wide range of reporters for different applications, and are able to rapidly penetrate tissues. These advantages significantly enhance their clinical applicability, and render them excellent alternatives to antibody-based probes in cancer diagnostics and therapeutics. Aptamer probes based on fluorescence, colorimetry, magnetism, electrochemistry, and in conjunction with nanomaterials (e.g., nanoparticles, quantum dots, single-walled carbon nanotubes, and magnetic nanoparticles) have provided novel ultrasensitive cancer diagnostic strategies and assays. Furthermore, promising aptamer targeted-multimodal tumor imaging probes have been recently developed in conjunction with fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). The capabilities of the aptamer-based platforms described herein underscore the great potential they hold for the future of cancer detection. In this review, we highlight the most prominent recent developments in this rapidly advancing field. PMID:26618445

  11. A Pan-GTPase Inhibitor as a Molecular Probe.

    PubMed

    Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O; Romero, Elsa; Simpson, Denise S; Schroeder, Chad E; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A

    2015-01-01

    Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.

  12. Detection of Toxoplasma gondii with a DNA molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Zhou, Cun; Xu, Shichao; Yang, Juan; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Sun, Shuqing; Feng, Teilin; Zi, Yan; Liang, Chu; Luo, Hao

    2009-07-01

    Toxoplasma gondii is a kind of microscopic parasite that may infect humans, and there are increasing concerns on the early detection of latent Toxoplasma gondii infection in recent years. This research highlights a new type of molecular beacon (MB) fluorescent probe for Toxoplasma DNA testing. We combined high-efficiency fluorescent inorganic core-shell quantum dots-CdTe/ZnS (as fluorescent energy donor) and BHQ-2 (energy acceptor) to the single-strand DNA of Toxoplasma gondii, and a molecular beacon sensing system based on fluorescence resonance energy transfer (FRET) was achieved. Core-shell quantum dots CdTe/ZnS was firstly prepared in aqueous solution, and the influencing factor of its fluorescent properties, including CdTe/Na2S/Zn(CH3COO)2 (v/v), dependence of reaction time, temperature, and pH, is investigated systematically. The synthesized quantum dots and molecular beacon were characterized by transmission electron microscopy (TEM), ultraviolet-visible spectrophotometer (UV-vis), fluorescent spectrophotometer (FS), respectively. The TEM results showed that CdTe/ZnS core-shell quantum dots is ~11nm in size, and the quantum dots is water-soluble well. The sensing ability of target DNA of assembled MB was investigated, and results showed that the target Toxoplasma gonddi DNA can be successfully detected by measuring the change of fluorescence intensity. The results showed that the current sensing probe will be a useful and convenient tool in Toxoplasma gondii early detection.

  13. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  14. Probing single nanometer-scale pores with polymeric molecular rulers

    NASA Astrophysics Data System (ADS)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  15. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  16. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    SciTech Connect

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ). To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.

  17. E × B probe measurements in molecular and electronegative plasmas.

    PubMed

    Renaud, D; Gerst, D; Mazouffre, S; Aanesland, A

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F(-) and SF6(-) negative ions in compliance with computer simulations.

  18. E × B probe measurements in molecular and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Renaud, D.; Gerst, D.; Mazouffre, S.; Aanesland, A.

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F- and SF 6- negative ions in compliance with computer simulations.

  19. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  20. Near-infrared dyes for molecular probes and imaging

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Kim, Jun Seok; Crow, Sidney

    2009-02-01

    Near-Infrared (NIR) fluorescence has been used both as an analytical tool as molecular probes and in in vitro or in vivo imaging of individual cells and organs. The NIR region (700-1100 nm) is ideal with regard to these applications due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. NIR dyes are also useful in studying binding characteristics of large biomolecules, such as proteins. Throughout these studies, different NIR dyes have been evaluated to determine factors that control binding to biomolecules, including serum albumins. Hydrophobic character of NIR dyes were increased by introducing alkyl and aryl groups, and hydrophilic moieties e.g., polyethylene glycols (PEG) were used to increase aqueous solubility. Recently, our research group introduced bis-cyanines as innovative NIR probes. Depending on their microenvironment, bis-cyanines can exist as an intramolecular dimer with the two cyanines either in a stacked form, or in a linear conformation in which the two subunits do not interact with each other. In this intramolecular H-aggregate, the chromophore has a low extinction coefficient and low fluorescence quantum yield. Upon addition of biomolecules, the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. Introduction of specific moieties into the NIR dye molecules allows for the development of physiological molecular probes to detect pH, metal ions and other parameters. Examples of these applications include imaging and biomolecule characterizations. Water soluble dyes are expected to be excellent candidates for both in vitro and in vivo imaging of cells and organs.

  1. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  2. Toxoplasma gondii DNA detection with a magnetic molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

  3. PVD prepared molecular glass resists for scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Neuber, Christian; Schmidt, Hans-Werner; Strohriegl, Peter; Wagner, Daniel; Krohn, Felix; Schedl, Andreas; Bonanni, Simon; Holzner, Felix; Rawlings, Colin; Dürig, Urs; Knoll, Armin W.

    2016-03-01

    In the presented work solvent-free film preparation from molecular glass resists, the evaluation of the patterning performance using thermal scanning probe lithography (tSPL) and an efficient etch transfer process are demonstrated. As the presented materials have a high tendency to crystallize and thus form crystalline films of bad quality when processed by solution casting, two component mixtures prepared by coevaporation were investigated. Stable amorphous films were obtained by selecting compatible material pairs for the coevaporation. One optimized material pair is based on trissubstituted, twisted resist materials with a distinct difference in molecular design. Here a high resolution tSPL prepared pattern of 18 nm half pitch in a 10 nm thick film is demonstrated. A further optimization is reported for "small" cubic silsequioxane molecules. Again single component films show independent to applied film preparation techniques bad film forming properties due to the high crystallinity of the symmetric cubic silsequioxane molecules. But coevaporation of the phenyl substituted octaphenylsilsequioxane combined with the fully aromatic 2,2',7,7'-tetraphenyl-9,9'-spirobi[fluorene] results in stable amorphous thin films. tSPL investigations demonstrate the patternability by writing high resolution line features of 20 nm half pitch. An important advantage of such a silicon rich resist material is that it can be directly converted to SiO2, yielding to a patterned hardmask of SiO2. This proof of principle is demonstrated and an efficient pattern transfer of 60 nm half pitch line into the underlying HM8006 is reported.

  4. Probing Molecular Organization and Electronic Dynamics at Buried Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Roberts, Sean

    2015-03-01

    Organic semiconductors are a promising class of materials due to their ability to meld the charge transport capabilities of semiconductors with many of the processing advantages of plastics. In thin film organic devices, interfacial charge transfer often comprises a crucial step in device operation. As molecular materials, the density of states within organic semiconductors often reflect their intermolecular organization. Truncation of the bulk structure of an organic semiconductor at an interface with another material can lead to substantial changes in the density of states near the interface that can significantly impact rates for interfacial charge and energy transfer. Here, we will present the results of experiments that utilize electronic sum frequency generation (ESFG) to probe buried interfaces in these materials. Within the electric dipole approximation, ESFG is only sensitive to regions of a sample that experience a breakage of symmetry, which occurs naturally at material interfaces. Through modeling of signals measured for thin organic films using a transfer matrix-based formalism, signals from buried interfaces between two materials can be isolated and used to uncover the interfacial density of states.

  5. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  6. A hyperpolarized choline molecular probe for monitoring acetylcholine synthesis.

    PubMed

    Allouche-Arnon, Hyla; Gamliel, Ayelet; Barzilay, Claudia M; Nalbandian, Ruppen; Gomori, J Moshe; Karlsson, Magnus; Lerche, Mathilde H; Katz-Brull, Rachel

    2011-01-01

    Choline as a reporter molecule has been investigated by in vivo magnetic resonance for almost three decades. Accumulation of choline metabolites (mainly the phosphorylated forms) had been observed in malignancy in preclinical models, ex-vivo, in vivo and in patients. The combined choline metabolite signal appears in (1) H-MRS of the brain and its relative intensity had been used as a diagnostic factor in various conditions. The advent of spin hyperpolarization methods for in vivo use has raised interest in the ability to follow the physiological metabolism of choline into acetylcholine in the brain. Here we present a stable-isotope labeled choline analog, [1,1,2,2-D(4) ,2-(13) C]choline chloride, that is suitable for this purpose. In this analog, the (13) C position showed 24% polarization in the liquid state, following DNP hyperpolarization. This nucleus also showed a long T(1) (35 s) at 11.8 T and 25 °C, which is a prerequisite for hyperpolarized studies. The chemical shift of this (13) C position differentiates choline and acetylcholine from each other and from the other water-soluble choline metabolites, namely phosphocholine and betaine. Enzymatic studies using an acetyltransferase enzyme showed the synthesis of the deuterated-acetylcholine form at thermal equilibrium conditions and in a hyperpolarized state. Analysis using a comprehensive model showed that the T(1) of the formed hyperpolarized [1,1,2,2-D(4) ,2-(13) C]acetylcholine was 34 s at 14.1 T and 37 °C. We conclude that [1,1,2,2-D(4) ,2-(13) C]choline chloride is a promising new molecular probe for hyperpolarized metabolic studies and discuss the factors related to its possible use in vivo.

  7. Stability Mechanisms of a Thermophilic Laccase Probed by Molecular Dynamics

    PubMed Central

    Christensen, Niels J.; Kepp, Kasper P.

    2013-01-01

    Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å) and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation. Approaching Topt (∼350 K) from 300 K, this change correlated with a beginning “unzipping” of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive) at 400 K, suggesting a general salt stabilization effect. In contrast, F− (but not Cl−) specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F− intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes. PMID:23658618

  8. Use of Sloppy Molecular Beacon Probes for Identification of Mycobacterial Species ▿ †

    PubMed Central

    El-Hajj, Hiyam H.; Marras, Salvatore A. E.; Tyagi, Sanjay; Shashkina, Elena; Kamboj, Mini; Kiehn, Timothy E.; Glickman, Michael S.; Kramer, Fred Russell; Alland, David

    2009-01-01

    We report here the use of novel “sloppy” molecular beacon probes in homogeneous PCR screening assays in which thermal denaturation of the resulting probe-amplicon hybrids provides a characteristic set of amplicon melting temperature (Tm) values that identify which species is present in a sample. Sloppy molecular beacons possess relatively long probe sequences, enabling them to form hybrids with amplicons from many different species despite the presence of mismatched base pairs. By using four sloppy molecular beacons, each possessing a different probe sequence and each labeled with a differently colored fluorophore, four different Tm values can be determined simultaneously. We tested this technique with 27 different species of mycobacteria and found that each species generates a unique, highly reproducible signature that is unaffected by the initial bacterial DNA concentration. Utilizing this general paradigm, screening assays can be designed for the identification of a wide range of species. PMID:19171684

  9. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    SciTech Connect

    Deng, Mingsen; Ye, Gui; Jiang, Jun; Cai, Shaohong; Sun, Guangyu

    2015-01-15

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  10. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    PubMed

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI.

  11. Near-infrared Molecular Probes for In Vivo Imaging

    PubMed Central

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-01-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo because of the low absorption of biological molecules in this region. This Unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications. PMID:22470154

  12. Probing molecular junctions using surface plasmon resonance spectroscopy.

    PubMed

    Shimizu, Ken T; Pala, Ragip A; Fabbri, Jason D; Brongersma, Mark L; Melosh, Nicholas A

    2006-12-01

    The optical absorption spectra of nanometer-thick organic films and molecular monolayers sandwiched between two metal contacts have been measured successfully using surface plasmon resonance spectroscopy (SPRS). The electric field within metal-insulator (organic)-metal (MIM) cross-bar junctions created by surface plasmon-polaritons excited on the metal surface allows sensitive measurement of molecular optical properties. Specifically, this spectroscopic technique extracts the real and imaginary indices of the organic layer for each wavelength of interest. The SPRS sensitivity was calculated for several device architectures, metals, and layer thicknesses to optimize the organic film absorptivity measurements. Distinct optical absorption features were clearly observed for R6G layers as thin as a single molecular monolayer between two metal electrodes. This method also enables dynamic measurement of molecular conformation inside metallic junctions, as shown by following the optical switching of a thin spiropyran/polymer film upon exposure to UV light. Finally, optical and electrical measurements can be made simultaneously to study the effect of electrical bias and current on molecular conformation, which may have significant impact in areas such as molecular and organic electronics.

  13. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  14. NanoCluster Beacon - A New Molecular Probe for Homogeneous Detection of Nucleic Acid Targets

    DTIC Science & Technology

    2011-02-01

    requires only a single preparation step (i.e. nanocluster formation on NC probes), but because there is no need to remove excess silver ions or...Oligonucleotide-templated nanoclusters consisting of a few atoms of silver (DNA/Ag NCs) have been made into a new molecular probe that “lights up...upon target DNA binding, termed a NanoCluster Beacon (NCB). We discovered that interactions between silver nanoclusters and a proximal, guanine- rich

  15. Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays.

    PubMed

    Kodali, Anil K; Llora, Xavier; Bhargava, Rohit

    2010-08-03

    An outstanding challenge in biomedical sciences is to devise a palette of molecular probes that can enable simultaneous and quantitative imaging of tens to hundreds of species down to ultralow concentrations. Addressing this need using surface-enhanced Raman scattering-based probes is potentially possible. Here, we theorize a rational design and optimization strategy to obtain reproducible probes using nanospheres with alternating metal and reporter-filled dielectric layers. The isolation of reporter molecules from metal surfaces suppresses chemical enhancement, and consequently signal enhancements are determined by electromagnetic effects alone. This strategy synergistically couples interstitial surface plasmons and permits the use of almost any molecule as a reporter by eliminating the need for surface attachment. Genetic algorithms are employed to optimize the layer dimensions to provide controllable enhancements exceeding 11 orders of magnitude and of single molecule sensitivity for nonresonant and resonant reporters, respectively. The strategy also provides several other opportunities, including a facile route to tuning the response of these structures to be spectrally flat and localization of the enhancement within a specific volume inside or outside the probe. The spectrally uniform enhancement for multiple excitation wavelengths and for different shifts enables generalized probes, whereas enhancement tuning permits a large dynamic range by suppression of enhancements from outside the probe. Combined, these theoretical calculations open the door for a set of reproducible and robust probes with controlled sensitivity for molecular sensing over a concentration range of over 20 orders of magnitude.

  16. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Medical Research and Materiel Command, Fort Detrick, Maryland #Department of Cell Biology and Biochemistry , U.S. Army Medical Research Institute of...Molecular dynamics of n- alkanes ," J. Comput. Phys., vol. 23, pp. 327-341, 1977. [24] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M

  17. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  18. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT

    PubMed Central

    Kirmizialtin, Serdal; Hennelly, Scott P.; Schug, Alexander; Onuchic, Jose N.; Sanbonmatsu, Karissa Y.

    2016-01-01

    Integration and calibration of molecular dynamics simulations with experimental data remains a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2’-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the forcefield according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations. PMID:25726467

  19. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    NASA Astrophysics Data System (ADS)

    Sivasayan Kajen, Rasanayagam; Chandrasekhar, Natarajan; Feng, Xinliang; Müllen, Klaus; Su, Haibin

    2011-10-01

    We demonstrate the information on molecular vibrational modes via the second derivative (d2IB/dV2) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d2IB/dV2 spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  20. Probing molecular choreography through single-molecule biochemistry.

    PubMed

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  1. Ultrafast X-ray Auger probing of photoexcited molecular dynamics

    DOE PAGES

    McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...

    2014-06-23

    Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less

  2. Frequency modulated spectroscopy as a probe of molecular collision dynamics.

    PubMed

    Alagappan, Azhagammai; Costen, Matthew L; McKendrick, Kenneth G

    2006-04-01

    We describe the application of frequency modulated spectroscopy (FMS) with an external cavity tuneable diode laser to the study of the scalar and vector properties of inelastic collisions. CN X(2)Sigma(+) radicals are produced by polarized photodissociation of ICN at 266 nm, with a sharp velocity and rotational angular momentum distribution. The collisional evolution of the distribution is observed via sub-Doppler FMS on the A(2)Pi-X(2)Sigma(+) (2,0) band. He, Ar, N(2), O(2) and CO(2) were studied as collider gases. Doppler profiles were acquired in different experimental geometries of photolysis and probe laser propagation and polarization, and on different spectroscopic branches. These were combined to give composite Doppler profiles from which the speed distributions and specific speed-dependent vector correlations could be determined. The angular scattering dynamics with species other than He are found to be very similar, dominated by backward scattering which accompanies transfer of energy between rotation and translation. The kinematics of collisions with He are not conducive to the determination of differential scattering and angular momentum polarization correlations. Angular momentum correlations show interesting differences between reactive and non-reactive colliders. We propose that this reflects differences in the potential energy surfaces, in particular, the nature and depth of attractive potential wells.

  3. Ultrafast X-ray Auger probing of photoexcited molecular dynamics

    SciTech Connect

    McFarland, B. K.; Farrell, J. P.; Miyabe, S.; Tarantelli, F.; Aguilar, A.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Castagna, J. C.; Coffee, R. N.; Cryan, J. P.; Fang, L.; Feifel, R.; Gaffney, K. J.; Glownia, J. M.; Martinez, T. J.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrović, V. S.; Schorb, S.; Schultz, Th.; Spector, L. S.; Swiggers, M.; Tenney, I.; Wang, S.; White, J. L.; White, W.; Gühr, M.

    2014-06-23

    Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.

  4. Co-Encapsulating the Fusogenic Peptide INF7 and Molecular Imaging Probes in Liposomes Increases Intracellular Signal and Probe Retention

    PubMed Central

    Martin, Erik W.; Li, Changqing; Lu, Wuyuan; Kao, Joseph P. Y.

    2015-01-01

    Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular

  5. Fiber-optic Raman sensing of cell proliferation probes and molecular vibrations: Brain-imaging perspective

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, Lyubov V.; Fedotov, Il'ya V.; Ivashkina, Olga I.; Zots, Marina A.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-09-01

    Optical fibers are employed to sense fingerprint molecular vibrations in ex vivo experiments on the whole brain and detect cell proliferation probes in a model study on a quantitatively controlled solution. A specifically adapted spectral filtering procedure is shown to allow the Raman signal from molecular vibrations of interest to be discriminated against the background from the fiber, allowing a highly sensitive Raman detection of the recently demonstrated EdU (5-ethynyl-2'-deoxyuridine) labels of DNA synthesis in cells.

  6. Probing the molecular connectivity of water confined in polymer hydrogels

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Venuti, V.; Mele, A.; Punta, C.; Melone, L.; Crupi, V.; Majolino, D.; Trotta, F.; D'Amico, F.; Gessini, A.; Masciovecchio, C.

    2015-01-01

    The molecular connectivity and the extent of hydrogen-bond patterns of water molecules confined in the polymer hydrogels, namely, cyclodextrin nanosponge hydrogels, are here investigated by using vibrational spectroscopy experiments. The proposed spectroscopic method exploits the combined analysis of the vibrational spectra of polymers hydrated with water and deuterated water, which allows us to separate and selectively investigate the temperature-evolution of the HOH bending mode of engaged water molecules and of the vibrational modes assigned to specific chemical groups of the polymer matrix involved in the physical interactions with water. As main results, we find a strong experimental evidence of a liquid-like behaviour of water molecules confined in the nano-cavities of hydrogel and we observe a characteristic destructuring effect on the hydrogen-bonds network of confined water induced by thermal motion. More interestingly, the extent of this temperature-disruptive effect is found to be selectively triggered by the cross-linking degree of the hydrogel matrix. These results give a more clear picture of the molecular mechanism of water confinement in the pores of nanosponge hydrogel and open the possibility to exploit the spectroscopic method here proposed as investigating tools for water-retaining soft materials.

  7. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions.

    PubMed

    Carol, Priya; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2007-03-05

    The detection and imaging of Zn2+ in biological samples are of paramount interest owing to the role of this cation in physiological functions. This is possible only with molecular probes that specifically bind to Zn2+ and result in changes in emission properties. A "turn-on" emission or shift in the emission color upon binding to Zn2+ should be ideal for in vivo imaging. In this context, ratiometric and near-IR probes are of particular interest. Therefore, in the area of chemosensors or molecular probes, the design of fluorophores that allow ratiometric sensing or imaging in the near-IR region is attracting the attention of chemists. The purpose of this Focus Review is to highlight recent developments in this area and stress the importance of further research for future applications.

  8. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  9. Optical signaling in biofluids: a nondenaturing photostable molecular probe for serum albumins.

    PubMed

    Dey, Gourab; Gaur, Pankaj; Giri, Rajanish; Ghosh, Subrata

    2016-01-31

    The systematic investigation of the interaction of a new class of molecular materials with proteins through structure-optical signaling relationship studies has led to the development of efficient fluorescent probes that can detect and quantify serum albumins in biofluids without causing any denaturation.

  10. Photoexcited State Molecular Structures in Solution Studied by Pump-Probe XAFS

    NASA Astrophysics Data System (ADS)

    Chen, Lin

    2002-03-01

    The photoexcitation causes displacement of electron densities within or among molecules, which consequently leads to nuclear movements. Such nuclear displacements often occur in transient states with short lifetimes. Knowing transient molecular structures during photochemical reactions is important for understanding fundamental aspects of solar energy conversion and storage. Fast x-ray techniques provide direct probes for these transient structures. Using x-ray pulses from the Advanced Photon Source at Argonne, a laser pulse pump, x-ray pulse probe XAFS technique has been developed to capture transient molecular structures in disordered media with nanosecond time resolution. We have carried out several pump-probe XAFS measurements on 1)identifying a transient molecular structure of the photodissociation product of nickel-tetraphenylporphyrin with piperidine axial ligands (NiTPP-L2); 2)determination of the MLCT state structure of Bis(2,9-dimethyl-1,10-phenanthroline) Copper(I) [Cu(I)(dmp)2]+, and 3) triplet state molecular structures of metalloporphyrins. These studies not only prove the feasibility of the technique, but also gain structural information that otherwise will not be available. Future studies include probing transient structures in electron donor-acceptor complexes and optical polarization selected XAFS (OPS-XAFS) using the same technique with a 100-ps time resolution. This work is supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, under contract W-31-109-Eng-38.

  11. Target-protecting dumbbell molecular probe against exonucleases digestion for sensitive detection of ATP and streptavidin.

    PubMed

    Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2016-09-15

    In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design.

  12. Probing the chemistry of molecular heterojunctions using thermoelectricity.

    PubMed

    Baheti, Kanhayalal; Malen, Jonathan A; Doak, Peter; Reddy, Pramod; Jang, Sung-Yeon; Tilley, T Don; Majumdar, Arun; Segalman, Rachel A

    2008-02-01

    Thermopower measurements offer an alternative transport measurement that can characterize the dominant transport orbital and is independent of the number of molecules in the junction. This method is now used to explore the effect of chemical structure on the electronic structure and charge transport. We interrogate junctions, using a modified scanning tunneling microscope break junction technique, where: (i) the 1,4-benzenedithiol (BDT) molecule has been modified by the addition of electron-withdrawing or -donating groups such as fluorine, chlorine, and methyl on the benzene ring; and (ii) the thiol end groups on BDT have been replaced by the cyanide end groups. Cyanide end groups were found to radically change transport relative to BDT such that transport is dominated by the lowest unoccupied molecular orbital in 1,4-benzenedicyanide, while substituents on BDT generated small and predictable changes in transmission.

  13. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    NASA Astrophysics Data System (ADS)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  14. Protein conformation and molecular order probed by second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Vanzi, Francesco; Sacconi, Leonardo; Cicchi, Riccardo; Pavone, Francesco S.

    2012-06-01

    Second-harmonic-generation (SHG) microscopy has emerged as a powerful tool to image unstained living tissues and probe their molecular and supramolecular organization. In this article, we review the physical basis of SHG, highlighting how coherent summation of second-harmonic response leads to the sensitivity of polarized SHG to the three-dimensional distribution of emitters within the focal volume. Based on the physical description of the process, we examine experimental applications for probing the molecular organization within a tissue and its alterations in response to different biomedically relevant conditions. We also describe the approach for obtaining information on molecular conformation based on SHG polarization anisotropy measurements and its application to the study of myosin conformation in different physiological states of muscle. The capability of coupling the advantages of nonlinear microscopy (micrometer-scale resolution in deep tissue) with tools for probing molecular structure in vivo renders SHG microscopy an extremely powerful tool for the advancement of biomedical optics, with particular regard to novel technologies for molecular diagnostic in vivo.

  15. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    SciTech Connect

    Kilgour, Michael; Segal, Dvira

    2015-07-14

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, k{sub B}T/ϵ{sub B} > 1/25, with ϵ{sub B} as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  16. Spin-probe ESR and molecular modeling studies on calcium carbonate dispersions in overbased detergent additives.

    PubMed

    Montanari, Luciano; Frigerio, Francesco

    2010-08-15

    Oil-soluble calcium carbonate colloids are used as detergent additives in lubricating oils. They are colloidal dispersions of calcium carbonate particles stabilized by different surfactants; in this study alkyl-aryl-sulfonates and sulfurized alkyl-phenates, widely used in the synthesis of these additives, are considered. The physical properties of surfactant layers surrounding the surfaces of calcium carbonate particles were analyzed by using some nitroxide spin-probes (stable free radicals) and observing the corresponding ESR spectra. The spin-probe molecules contain polar groups which tend to tether them to the carbonate particle polar surface. They can reach these surfaces only if the surfactant layers are not very compact, hence the relative amounts of spin-probe molecules accessing carbonate surfaces are an index of the compactness of surfactant core. ESR signals of spin-probe molecules dissolved in oil or "locked" near the carbonate surfaces are different because of the different molecular mobility. Through deconvolution of the ESR spectra, the fraction of spin-probes penetrating surfactant shells have been calculated, and differences were observed according to the surfactant molecular structures. Moreover, by using specially labeled spin-probes based on stearic acids, functionalized at different separations from the carboxylic acid group, it was possible to interrogate the molecular physical behavior of surfactant shells at different distances from carbonate surfaces. Molecular modeling was applied to generate some three-dimensional micellar models of the colloidal stabilizations of the stabilized carbonate particles with different molecular structures of the surfactant. The diffusion of spin-probe molecules into the surfactant shells were studied by applying a starting force to push the molecules towards the carbonate surfaces and then observing the ensuing behavior. The simulations are in accordance with the ESR data and show that the geometrical

  17. Probing C84-embedded Si Substrate Using Scanning Probe Microscopy and Molecular Dynamics.

    PubMed

    Ho, Mon-Shu; Huang, Chih-Pong; Tsai, Jyun-Hwei; Chou, Che-Fu; Lee, Wen-Jay

    2016-09-28

    This paper reports an array-designed C84-embedded Si substrate fabricated using a controlled self-assembly method in an ultra-high vacuum chamber. The characteristics of the C84-embedded Si surface, such as atomic resolution topography, local electronic density of states, band gap energy, field emission properties, nanomechanical stiffness, and surface magnetism, were examined using a variety of surface analysis techniques under ultra, high vacuum (UHV) conditions as well as in an atmospheric system. Experimental results demonstrate the high uniformity of the C84-embedded Si surface fabricated using a controlled self-assembly nanotechnology mechanism, represents an important development in the application of field emission display (FED), optoelectronic device fabrication, MEMS cutting tools, and in efforts to find a suitable replacement for carbide semiconductors. Molecular dynamics (MD) method with semi-empirical potential can be used to study the nanoindentation of C84-embedded Si substrate. A detailed description for performing MD simulation is presented here. Details for a comprehensive study on mechanical analysis of MD simulation such as indentation force, Young's modulus, surface stiffness, atomic stress, and atomic strain are included. The atomic stress and von-Mises strain distributions of the indentation model can be calculated to monitor deformation mechanism with time evaluation in atomistic level.

  18. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    PubMed Central

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  19. Probing Molecular Docking in a Charged Model Binding Site

    PubMed Central

    Brenk, Ruth; Vetter, Stefan W.; Boyce, Sarah E.; Goodin, David B.; Shoichet, Brian K.

    2011-01-01

    A model binding site was used to investigate charge–charge interactions in molecular docking. This simple site, a small (180 Å3) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre”ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20 μM and 60 μM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the “naked” site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions

  20. New hairpin-structured DNA probes: alternatives to classical molecular beacons

    NASA Astrophysics Data System (ADS)

    Friedrich, Achim; Habl, Gregor; Sauer, Markus; Wolfrum, Jürgen; Hoheisel, Jörg; Marmé, Nicole; Knemeyer, Jens-Peter

    2007-02-01

    In this article we report on two different classes of self-quenching hairpin-structured DNA probes that can be used as alternatives to Molecular Beacons. Compared to other hairpin-structured DNA probes, the so-called smart probes are labeled with only one extrinsic dye. The fluorescence of this dye is efficiently quenched by intrinsic guanine bases via a photo-induced electron transfer reaction in the closed hairpin. After hybridization to a target DNA, the distance between dye and the guanines is enlarged and the fluorescence is restored. The working mechanism of the second class of hairpin DNA probes is similar, but the probe oligonucleotide is labeled at both ends with an identical chromophore and thus the fluorescence of the closed hairpin is reduced due to formation of non-fluorescent dye dimers. Both types of probes are appropriate for the identification of single nucleotide polymorphisms and in combination with confocal single-molecule spectroscopy sensitivities in the picomolar range can be achieved.

  1. Bayesian hierarchical structured variable selection methods with application to molecular inversion probe studies in breast cancer

    PubMed Central

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Mallick, Bani K.; Manyam, Ganiraju C.; Thompson, Patricia A.; Bondy, Melissa L.; Do, Kim-Anh

    2015-01-01

    Summary The analysis of alterations that may occur in nature when segments of chromosomes are copied (known as copy number alterations) has been a focus of research to identify genetic markers of cancer. One high-throughput technique recently adopted is the use of molecular inversion probes (MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional copy number profiles that can be used to ascertain probe-specific copy number alterations in correlative studies with patient outcomes to guide risk stratification and future treatment. We propose a novel Bayesian variable selection method, the hierarchical structured variable selection (HSVS) method, which accounts for the natural gene and probe-within-gene architecture to identify important genes and probes associated with clinically relevant outcomes. We propose the HSVS model for grouped variable selection, where simultaneous selection of both groups and within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution for group selection and group-specific Bayesian lasso hierarchies for variable selection within groups. We provide methods for accounting for serial correlations within groups that incorporate Bayesian fused lasso methods for within-group selection. Through simulations we establish that our method results in lower model errors than other methods when a natural grouping structure exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and probes that are significantly associated with clinically relevant subtypes of breast cancer. PMID:25705056

  2. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.

    PubMed

    Pu, Kanyi; Shuhendler, Adam J; Jokerst, Jesse V; Mei, Jianguo; Gambhir, Sanjiv S; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes.

  3. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice

    NASA Astrophysics Data System (ADS)

    Pu, Kanyi; Shuhendler, Adam J.; Jokerst, Jesse V.; Mei, Jianguo; Gambhir, Sanjiv S.; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes.

  4. A robust molecular probe for Ångstrom-scale analytics in liquids

    PubMed Central

    Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike

    2016-01-01

    Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157

  5. A robust molecular probe for Ångstrom-scale analytics in liquids.

    PubMed

    Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike

    2016-08-12

    Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum-solid interface often at a few Kelvin, but is not a notion immediately associated with liquid-solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60-metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions.

  6. Molecular hybridization with DNA-probes as a laboratory diagnostic test for influenza viruses.

    PubMed

    Pljusnin, A Z; Rozhkova, S A; Nolandt, O V; Bryantseva, E A; Kuznetsov, O K; Noskov, F S

    1987-01-01

    The possibilities of using DNA-copies of different influenza A virus genes cloned with recombinant bacterial plasmids for the detection of virus-specific RNA by molecular dot-hybridization were analyzed. High specificity of RNA identification has been demonstrated and it has been shown expedient to use DNA-probes with high-conservative virus genes (polymerase, nucleoprotein, or matrix) for the detection of influenza A virus subtypes (H1N1, H2N2, H3N2) and probes with corresponding hemagglutinin genes for the differentiation of the subtypes H3N2 and H1N1. The results of nasopharyngeal specimens testing proved the effectiveness of molecular dot-hybridization in epidemiological studies of influenza outbreaks, especially of mixed etiology.

  7. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    SciTech Connect

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  8. Fluorescence microscopy studies of a peripheral-benzodiazepine-receptor-targeted molecular probe for brain tumor imaging

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Vernier, P. Thomas; Manning, H. Charles; Salemi, Sarah; Li, Aimin; Craft, Cheryl M.; Gundersen, Martin A.; Bornhop, Darryl J.

    2003-10-01

    This study investigates the potential of a new multi-modal lanthanide chelate complex for specifically targeting brain tumor cells. We report here results from ongoing studies of up-take, sub-cellular localization and binding specificity of this new molecular imaging probe. Fluorescence microscopy investigations in living rat C6 glioma tumor cells demonstrate that the new imaging agent has affinity for glioma cells and binds to mitochondria.

  9. Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles.

    PubMed

    Zimmermann, Eva; Seifert, Udo

    2015-02-01

    Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.

  10. Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation.

    PubMed

    Meyer, Gerhard; Gross, Leo; Mohn, Fabian; Repp, Jascha

    2012-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) of single atoms and molecules on ultrathin insulating films have led to a wealth of novel observations and insights. Based on the reduced electronic coupling to the metallic substrate, these techniques allow the charge state of individual atoms to be controlled, orbitals of individual molecules to be imaged and metal-molecule complexes to be built up. Near-contact AFM adds the unique capabilities of imaging and probing the chemical structure of single molecules with atomic resolution. With the help of atomic/molecular manipulation techniques, chemical binding processes and molecular switches can be studied in detail.

  11. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale

    NASA Astrophysics Data System (ADS)

    Neidel, Ch.; Klei, J.; Yang, C.-H.; Rouzée, A.; Vrakking, M. J. J.; Klünder, K.; Miranda, M.; Arnold, C. L.; Fordell, T.; L'Huillier, A.; Gisselbrecht, M.; Johnsson, P.; Dinh, M. P.; Suraud, E.; Reinhard, P.-G.; Despré, V.; Marques, M. A. L.; Lépine, F.

    2013-07-01

    Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized neutral molecules (N2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.

  12. Probing vacuum-induced coherence via magneto-optical rotation in molecular systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Deb, Bimalendu; Dasgupta, Shubhrangshu

    2016-05-01

    Vacuum-induced coherence (VIC) arises due to the quantum interference between the spontaneous emission pathways from the degenerate excited states to a common ground state. The stringent requirement for the VIC to occur is the nonorthogonality of the transition dipole matrix elements. Unlike atoms, molecules are the promising systems for exploration of VIC, as it is possible to identify the non-orthogonal transitions due to the coupling of the rotation of molecular axis with molecular electronic angular momentum. Usually, the possible signatures of VIC are obtained by manipulating the absorption of the probe field. In this paper, we show how the dispersion of the probe field can be manipulated to obtain a measurable signature of VIC. Precisely speaking, we explore a way to probe VIC in molecules by observing its influence on magneto-optical rotation (MOR). We show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases. Such a large MOR angle may be used as a tool for optical magnetometry to detect weak magnetic field with large measurement sensitivity.

  13. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces.

    PubMed

    Evans, E; Ritchie, K; Merkel, R

    1995-06-01

    Adhesion and cytoskeletal structure are intimately related in biological cell function. Even with the vast amount of biological and biochemical data that exist, little is known at the molecular level about physical mechanisms involved in attachments between cells or about consequences of adhesion on the material structure. To expose physical actions at soft biological interfaces, we have combined an ultrasensitive transducer and reflection interference microscopy to image submicroscopic displacements of probe contact with a test surface under minuscule forces. The transducer is a cell-size membrane capsule pressurized by micropipette suction where displacement normal to the membrane under tension is proportional to the applied force. Pressure control of the tension tunes the sensitivity in operation over four orders of magnitude through a range of force from 0.01 pN up to the strength of covalent bonds (approximately 1000 pN)! As the surface probe, a microscopic bead is biochemically glued to the transducer with a densely-bound ligand that is indifferent to the test surface. Movements of the probe under applied force are resolved down to an accuracy of approximately 5 nm from the interference fringe pattern created by light reflected from the bead. With this arrangement, we show that local mechanical compliance of a cell surface can be measured at a displacement resolution set by structural fluctuations. When desired, a second ligand is bound sparsely to the probe for focal adhesion to specific receptors in the test surface. We demonstrate that monitoring fluctuations in probe position at low transducer stiffness enhances detection of molecular adhesion and activation of cytoskeletal structure. Subsequent loading of an attachment tests mechanical response of the receptor-substrate linkage throughout the force-driven process of detachment.

  14. A new near-infrared absorption and fluorescent probe based on bombesin for molecular imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh; Zhai, Huifang; Smith, Charles; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy; Volkert, Wynn; Ma, Lixin; Yu, Ping

    2009-02-01

    We have developed a series of new dye bombesin conjugates for site-specific absorption and fluorescence imaging of human prostate and breast cancers. Bombesin (BBN), an amphibian analog to the endogenous ligand, binds to the gastrin releasing peptide (GRP) receptors with high specificity and affinity. Previously, we developed an Alexa Fluor 680-GGG-BBN peptide conjugate which demonstrated high binding affinity and specificity for breast cancer cells in the in vitro and in vivo tests (Ref: Ma et al., Molecular Imaging, vol. 6, no. 3, 2007: 171-180). This probe can not be used as an absorption probe in near-infrared imaging because its absorption peak is in the visible wavelength range. In addition, site specific longer wavelength fluorescent probe is desired for in vivo molecular imaging because long wavelength photons penetrate deeper into tissue. The new absorption and fluorescent probe we developed is based on the last eight-residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), and labeled with AlexaFluor750 through a chemical linker, beta-alanine. The new probe, Alexa Fluor 750-BetaAla-BBN(7-14)NH2, exhibits optimal pharmacokinetics for specific targeting and optical imaging of the GRP receptor over-expressing cancer cells. Absorption spectrum has been measured and showed absorption peaks at 690nm, 720nm and 735nm. Fluorescent band is located at 755nm. In vitro and in vivo investigations have demonstrated the effectiveness of the new conjugates to specifically target human cancer cells overexpressing GRP receptors and tumor xenografts in severely compromised immunodeficient mouse model.

  15. Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer.

    PubMed

    Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo

    2017-05-01

    The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe3O4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.

  16. Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.

    PubMed

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D

    2012-11-26

    We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times

  17. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution

    PubMed Central

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H. A.; Vogel, Martin

    2016-01-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  18. Charge carrier mobility in organic molecular materials probed by electromagnetic waves.

    PubMed

    Seki, Shu; Saeki, Akinori; Sakurai, Tsuneaki; Sakamaki, Daisuke

    2014-06-21

    Charge carrier mobility is an essential parameter providing control over the performance of semiconductor devices fabricated using a variety of organic molecular materials. Recent design strategies toward molecular materials have been directed at the substitution of amorphous silicon-based semiconductors; accordingly, numerous measurement techniques have been designed and developed to probe the electronic conducting nature of organic materials bearing extremely wide structural variations in comparison with inorganic and/or metal-oxide semiconductor materials. The present perspective highlights the evaluation methodologies of charge carrier mobility in organic materials, as well as the merits and demerits of techniques examining the feasibility of organic molecules, crystals, and supramolecular assemblies in semiconductor applications. Beyond the simple substitution of amorphous silicon, we have attempted to address in this perspective the systematic use of measurement techniques for future development of organic molecular semiconductors.

  19. Probing electron-phonon excitations in molecular junctions by quantum interference

    PubMed Central

    Bessis, C.; Della Rocca, M. L.; Barraud, C.; Martin, P.; Lacroix, J. C.; Markussen, T.; Lafarge, P.

    2016-01-01

    Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction’s conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green’s functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices. PMID:26864735

  20. Nonadiabatic molecular alignment of linear molecules probed by strong-field ionization yields of photoelectrons

    NASA Astrophysics Data System (ADS)

    Kaya, G.; Kaya, N.; Strohaber, J.; Hart, N. A.; Kolomenskii, A. A.; Schuessler, H. A.

    2016-12-01

    The dynamics of rotational wave packets of laser-aligned linear molecules were studied with femtosecond laser-driven strong-field ionization (SFI). The dynamics were observed as a function of the delay between a femtosecond probe pulse and a linearly polarized aligning pump pulse. The induced nonadiabatic molecular alignment was directly monitored by the total SFI yield. The measured revival signatures were compared to the calculated degree of molecular alignment taking into account the effects of electronic structure and symmetry of the molecules. By fitting the calculated alignment parameter to the measured experimental data, we also determined the molecular rotational constants of N2, CO, O2, and C2H2 gas molecules.

  1. Probing the Physical Conditions of Dense Molecular Gas in ULIRGs with LVG modelling

    NASA Astrophysics Data System (ADS)

    Leonidaki, Ioanna; Zhang, Zhi-Yu; Greve, Thomas; Xilouris, Manolis

    2015-08-01

    The gas-rich content of Ultra Luminous Infrared Galaxies (ULIRGs) constitutes a great laboratory in characterising the physical processes occuring in molecular gas and hence probing star formation properties. In particular, molecules with large dipole moments such as CS, HCN, HCO+, which are the fuel of star formation, can reveal the physical/excitation conditions of molecular gas phases in galaxies. For that reason, we compiled the aforementioned dense gas tracers in a sample of local (U)LIRGs in order to investigate the physical properties of the gas while at the same time put constrains on their excitation conditions. The sample in use consists of 26 galaxies all observed within the framework of the Herschel Comprehensive (U)LIRG Emission Survey (HerCULES). For all galaxies, we compiled our ground-based spectral line observations as well as all available data from the literature. Using Large Velocity Gradient (LVG) radiative transfer models in these spectral lines and in a wide parameter space [n(H2), Tkin, Nmol], and combining multiple molecules and multiple excitation components, it is possible to break the degeneracy between different parameters and to probe molecular gas physical conditions ranging from the cold and low-density average states in giant molecular clouds all the way up to the state of the gas found only near their star-forming regions. We then analyse the best LVG solution ranges to match the observed SLEDs (using more than one excitation components where necessary) in order to disentangle different molecular gas phases and possibly different molecular gas heating mechanisms.

  2. Evaluation of alpha-tubulin as an antigenic and molecular probe to detect Giardia lamblia.

    PubMed

    Kim, Juri; Shin, Myeong Heon; Song, Kyoung-Ju; Park, Soon-Jung

    2009-09-01

    The alpha/beta-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant alpha-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of alpha-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the alpha-tubulin gene from G. lamblia. PCR-RFLP analysis of this alpha-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B. The results indicate that alpha-tubulin can be used as a molecular probe to detect G. lamblia.

  3. Micro-CT molecular imaging of tumor angiogenesis using a magnetite nano-cluster probe.

    PubMed

    Liu, Ping; Li, Jing; Zhang, Chunfu; Xu, Lisa X

    2013-06-01

    Due to its high resolution, micro-CT is desirable for molecular imaging of tumor angiogenesis. However, the sensitivity of micro-CT to contrast agents is relatively low. Therefore, the purpose of this study is to develop high micro-CT sensitive molecular imaging probes for direct visualization and dynamic monitoring of tumor angiogenesis. To this end, Arg-Gly-Asp (RGD) peptides conjugated magnetite nano clusters (RGD-MNCs) were developed by assembling individual magnetite nano particles into clusters with amphiphilic (maleimide) methoxypoly(ethylene glycol)-b-poly(lactic acid) ((Mal)mPEG-PLA) copolymer and subsequently encoding RGD peptides onto the clusters for specific targeting alpha(v)beta3 integrin. The hydrodynamic size of RGD-MNCs was about 85 nm. To test its specificity, alpha(v)beta3 positive cells (H1299) were incubated with magnetite nano clusters (MNCs), RGD-MNCs or RGD-MNCs competition with free RGD peptides. Prussian Blue staining and inductively coupled plasma optical emission spectrometer (ICP-OES) measurements indicated that the cell uptake of RGD-MNCs was significantly more than that of MNCs, which could be inhibited by free RGD peptides. For detection of tumor angiogenesis, mice bearing H1299 tumors were injected intravenously with RGD-MNCs at the dose of 400 micro mol Fe/kg. Tumor angiogenic hot spots as well as individual angiogenic vessels could be clearly manifested by micro-CT imaging 12 h post injection, which was dynamically monitored with the extension of probe circulation time. Subsequent histological studies of tumor tissues verified that RGD-MNCs registered tumor angiogenic vessels. Our study demonstrated that RGD-MNC probes fabricated in this study could be used to effectively target alpha(v)beta3 integrin. Using high resolution micro-CT in combination with the probes, tumor angiogenesis could be studied dynamically.

  4. Potential charge transfer probe induced conformational changes of model plasma protein human serum albumin: Spectroscopic, molecular docking, and molecular dynamics simulation study.

    PubMed

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Guchhait, Nikhil

    2012-10-01

    The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.

  5. Slow molecular motion of different spin probes in a model glycerol—water matrix studied by double modulation ESR

    NASA Astrophysics Data System (ADS)

    Valić, S.; Rakvin, B.; Veksli, Z.; Pečar, S.

    1992-11-01

    The slow molecular motion of several deuterated and undeuterated spin probes differing in size and shape, embedded in a model glycerol—water matrix, have been studied by double-modulated electron spin resonance (DMESR). The DMESR spectra as a function of temperature reveal two motional regions. From the experimental linewidths of both deuterated and undeuterated spin probes in the lower temperature region and simulated data based on the variation of T1 relaxation, two different dynamics of the -CH 3 groups attached to piperidine ring were resolved. Our results indicate that the onset of the whole spin probe motion depends on the type of probe and the matrix density.

  6. Core-Hole Molecular Frame X-Ray Photoelectron Angular Distributions as Molecular Geometry Probes

    NASA Astrophysics Data System (ADS)

    Trevisan, Cynthia; Williams, Joshua; Menssen, Adrian; Weber, Thorsten; Rescigno, Thomas; McCurdy, Clyde; Landers, Allen

    2014-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) and tetrafluoromethane (CF4) in an effort to understand the origin of the imaging effect by which the molecular frame photoelectron angular distributions (MFPADs) for removing an electron from a 1s orbital effectively image the geometry of a class of molecules. At low energies, our calculations predict the same imaging effect in X2H6 previously found in CH4, H2O and NH3. By contrast, in experiment and calculations CF4 displays an anti-imaging effect, whereby the electron ejected by core photoionization has the tendency to avoid molecular bonds, if averaged over directions of polarization of the incident X-ray beam. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  7. Introduction: feature issue on optical molecular probes, imaging, and drug delivery.

    PubMed

    Campagnola, Paul; French, Paul M W; Georgakoudi, Irene; Mycek, Mary-Ann

    2014-02-01

    The editors introduce the Biomedical Optics Express feature issue "Optical Molecular Probes, Imaging, and Drug Delivery," which is associated with a Topical Meeting of the same name held at the 2013 Optical Society of America (OSA) Optics in the Life Sciences Congress in Waikoloa Beach, Hawaii, April 14-18, 2013. The international meeting focused on the convergence of optical physics, photonics technology, nanoscience, and photochemistry with drug discovery and clinical medicine. Papers in this feature issue are representative of meeting topics, including advances in microscopy, nanotechnology, and optics in cancer research.

  8. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    PubMed

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  9. NGC 7027: Probing the kinematics and excitation conditions of the warm molecular gas

    NASA Astrophysics Data System (ADS)

    Santander-García, Miguel; Bujarrabal, Valentín; Alcolea, Javier

    2012-08-01

    Tracking the mass-loss history of planetary nebulae (PNe) by means of molecular emission lines (mainly mm and sub-mm ranges) is fundamental to gain insight into the mechanism of nebular shaping. This is particularly important in cases such as NGC 7027, where most of the nebula is constituted by molecular gas (85% of a total of 1.4 M⊙, see Fong et al. 2001). To this aim, Herschel/HIFI provides an invaluable tool to probe warm molecular gas (~50-1000 K). It produces 1-D, high resolution spectra of the whole nebula (convolved with the telescope beam) in high-excitation molecular transitions (e.g. CO J=6-5, 10-9 and 16-15). Although the morphological information is therefore lost, the kinematics and the excitation conditions can be studied with unprecedented detail (see (see Bujarrabal et al. 2011).). We have developed a code, shapemol, which, used along the existing SHAPE software (Steffen et al. 2010), implements spatiokinematical modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. The high quality of the data, together with this code, have allowed us to study, for the first time, the kinematics and excitation conditions of the warm gas of a PN with such a high-excitation.

  10. Molecular Frame Photoemission: Probe of the Photoionization Dynamics for Molecules in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Dowek, D.; Picard, Y. J.; Billaud, P.; Elkharrat, C.; Houver, J. C.

    2009-04-01

    Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the I(χ, θe, varphie) MFPADs, where χ is the orientation of the molecular axis with respect to the light quantization axis and (θe, varphie) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarized light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hν = 19 eV, where direct PI is the only channel opened, and hν = 32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.

  11. Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species

    SciTech Connect

    Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G.

    1993-12-01

    Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

  12. Probing the molecular hydrogen fraction in diffuse molecular clouds with observations of HCl+

    NASA Astrophysics Data System (ADS)

    Neufeld, David

    Using the GREAT instrument, we will observe the Doublet Pi 3/2 J = 5/2 - 3/2 transitions of the H-37Cl+ and (where not already observed in Cycle 4) the H-35Cl+ molecular ions at 1.442 and 1.444 THz, in absorption, toward the bright continuum sources Sgr B2 (M), W31C (G10.6-0.4), W49N, and W51. The observations will yield robust estimates of the HCl+ column densities in diffuse clouds lying along the sight-lines to those sources. Because HCl+ reacts rapidly and exothermically with H2 to yield H2Cl+, the abundance ratio HCl+/H2Cl+ is sensitive to the H2 abundance in the interstellar gas; combining the HCl+ measurements with ones already available for H2Cl+ will thus permit independent estimates of the molecular hydrogen fraction along the proposed sight-lines. This proposal follows up on a successful detection of HCl+ obtained in a pilot program performed in Cycle 4.

  13. Molecular engineering of two-photon fluorescent probes for bioimaging applications.

    PubMed

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-22

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  14. Molecular dynamics in rod-like liquid crystals probed by muon spin resonance spectroscopy.

    PubMed

    McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil; Stoykov, Alexey

    2011-08-04

    Muoniated spin probes were produced by the addition of muonium (Mu) to two rod-like liquid crystals: N-(4-methoxybenzylidene)-4'-n-butylaniline (MBBA) and cholesteryl nonanoate (CN). Avoided level crossing muon spin resonance spectroscopy was used to characterize the muoniated spin probes and to probe dynamics at the molecular level. In MBBA Mu adds predominantly to the carbon of the bridging imine group and the muon and methylene proton hyperfine coupling constants (hfccs) of the resulting radical shift in the nematic phase due to the dipolar hyperfine coupling, the ordering of the molecules along the applied magnetic field and fluctuations about the local director. The amplitude of these fluctuations in in the nematic phase of MBBA is determined from the temperature dependence of the methylene proton hfcc. Mu adds to the double bond of the steroidal ring system of CN and the temperature dependence of the Δ(1) line width provides information about the amplitude of the fluctuations about the local director in the chiral nematic phase and the slow isotropic reorientation in the isotropic phase.

  15. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  16. C3H2 observations as a diagnostic probe for molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  17. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  18. NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing

    NASA Astrophysics Data System (ADS)

    Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.

    2016-04-01

    Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.

  19. A low molecular weight artificial RNA of unique size with multiple probe target regions

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  20. Real-time observation of DNA repair: 2-aminopurine as a molecular probe

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopal; Butcher, Christina E.; Oh, Dennis H.

    2008-02-01

    Triplex forming oligos (TFOs) that target psoralen photoadducts to specific DNA sequences have generated interest as a potential agent in gene therapy. TFOs also offer an opportunity to study the mechanism of DNA repair in detail. In an effort to understand the mechanism of DNA repair at a specific DNA sequence in real-time, we have designed a plasmid containing a psoralen reaction site adjacent to a TFO binding site corresponding to a sequence within the human interstitial collagenase gene. Two 2-aminopurine residues incorporated into the purine-rich strand of the TFO binding site and located within six nucleotides of the psoralen reaction site serve as molecular probes for excision repair events involving the psoralen photoadducts on that DNA strand. In duplex DNA, the 2-aminopurine fluorescence is quenched. However, upon thermal or formamide-induced denaturation of duplex DNA to single stranded DNA, the 2-aminopurine fluorescence increases by eight fold. These results suggest that monitoring 2-aminopurine fluorescence from plasmids damaged by psoralen TFOs may be a method for measuring excision of single-stranded damaged DNA from the plasmid in cells. A fluorescence-based molecular probe to the plasmid may significantly simplify the real-time observation of DNA repair in both populations of cells as well as single cells.

  1. Study of fluorescence quenching in aluminum-doped ceria nanoparticles: potential molecular probe for dissolved oxygen.

    PubMed

    Shehata, N; Meehan, K; Leber, D

    2013-05-01

    This work investigates a novel usage of aluminum-doped ceria nanoparticles (ADC-NPs), as the molecular probe in optical fluorescence quenching for sensing the dissolved oxygen (DO). Cerium oxide (ceria) nanoparticles can be considered one of the most unique nanomaterials that are being studied today due to the diffusion and reactivity of oxygen vacancies in ceria, which contributes to its high oxygen storage capability. Aluminum can be considered a promising dopant to increase the oxygen ionic conductivity in ceria nanoparticles which can improve the sensitivity of ceria nanoparticles to DO. The fluorescence intensity of ADC-NPs, synthesized via chemical precipitation, is found to have a strong inverse relationship with the DO concentration in aqueous solutions. Stern-Volmer constant of ADC-NPs at room temperature is determined to be 454.6 M(-1), which indicates that ADC-NPs have a promising sensitivity to dissolved oxygen, compared to many presently used fluorophores. In addition, Stern-Volmer constant is found to have a relatively small dependence on temperature between 25 °C to 50 °C, which shows excellent thermal stability of ADC-NPs sensitivity. Our work suggests that ADC-NPs, at 6 nm, are the smallest diameter DO molecular probes between the currently used optical DO sensors composed of different nanostructures. This investigation can improve the performance of fluorescence-quenching DO sensors for industrial and environmental applications.

  2. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  3. Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu.

    PubMed

    Burden-Gulley, Susan M; Qutaish, Mohammed Q; Sullivant, Kristin E; Tan, Mingqian; Craig, Sonya E L; Basilion, James P; Lu, Zheng-Rong; Wilson, David L; Brady-Kalnay, Susann M

    2013-04-01

    Detection of an extracellular cleaved fragment of a cell-cell adhesion molecule represents a new paradigm in molecular recognition and imaging of tumors. We previously demonstrated that probes that recognize the cleaved extracellular domain of receptor protein tyrosine phosphatase mu (PTPmu) label human glioblastoma brain tumor sections and the main tumor mass of intracranial xenograft gliomas. In this article, we examine whether one of these probes, SBK2, can label dispersed glioma cells that are no longer connected to the main tumor mass. Live mice with highly dispersive glioma tumors were injected intravenously with the fluorescent PTPmu probe to test the ability of the probe to label the dispersive glioma cells in vivo. Analysis was performed using a unique three-dimensional (3D) cryo-imaging technique to reveal highly migratory and invasive glioma cell dispersal within the brain and the extent of colabeling by the PTPmu probe. The PTPmu probe labeled the main tumor site and dispersed cells up to 3.5 mm away. The cryo-images of tumors labeled with the PTPmu probe provide a novel, high-resolution view of molecular tumor recognition, with excellent 3D detail regarding the pathways of tumor cell migration. Our data demonstrate that the PTPmu probe recognizes distant tumor cells even in parts of the brain where the blood-brain barrier is likely intact. The PTPmu probe has potential translational significance for recognizing tumor cells to facilitate molecular imaging, a more complete tumor resection and to serve as a molecular targeting agent to deliver chemotherapeutics to the main tumor mass and distant dispersive tumor cells.

  4. [Research on the Tomato Metacaspase Protein Interactions with Ca2+ by Spectroscopy and Molecular Probe].

    PubMed

    Wen, Shuai; Ma, Ying-xuan; Wu, Kun-sheng; Cui, Jin-tian; Luo, Yun-bo; Qu, Gui-qin

    2015-06-01

    Metacaspases are cysteine-dependent proteases found in protozoa, fungi and plants and are distantly related to metazoan caspases. Most of MCPs activation are the calcium dependent, but the mechanisms are still unknown. Based on the techniques of CD spectroscopy, fluorescence spectroscopy, and Terbium Stains-all probe, we selected three purified recombinant proteins from key residues mutated in tomato metacaspase (LeMCA1), including conserved catalytic site (C139A) mutant, N-sequenced cleaved site (K223G) mutant and the predicted Ca2+ binding sites (D116A/D117A) mutant, to explore the interaction mechanism of LeMCA1 and Ca2+. CD spectroscopy and Stains-all probe results suggested that the intense binding does not exist between LeMCA1 and Ca2+ as well as Ca2+ has little effect on the secondary structure of LeMCA1. However, fluorescence spectroscopy and Tb3+ probe results showed that Ca(2+)-induced the changes occur in the tertiary structure of LeMCA1, which contributes to the activation of zymogen. In addition, predicted Ca2+ binding residues, Asp-116 and Asp117, are the key sites resporisible for the Ca2+ interaction with LeMCA1, and the loss of these two residues resulted in decreased interaction. Our data firstly provided insight on the mechanism of the interaction between Ca2+ and recombinant purified Solanaceae type II metacaspase by spectroscopy and molecular probe techniques. Combined the results we got before from sequence-alignment and sites-mutation, the key residues Asp-116 and Asp117 affect the Ca(2+)-induced the changes of LeMCA1 tertiary structure. Our data provided information for the further biochemical and crystal assays of LeMCA1.

  5. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Qi, Yifei; Qiao, Ruirui; Hou, Yi; Chan, Kaying; Li, Ziqian; Huang, Jiayi; Jing, Lihong; Du, Jun; Gao, Mingyuan

    2016-06-01

    Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation.Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual

  6. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.

    PubMed

    Manjare, Sudesh T; Kim, Youngsam; Churchill, David G

    2014-10-21

    As scientists in recent decades have discovered, selenium is an important trace element in life. The element is now known to play an important role in biology as an enzymatic antioxidant. In this case, it sits at the active site and converts biological hydrogen peroxides to water. Mimicking this reaction, chemists have synthesized several organoselenium compounds that undergo redox transformations. As such, these types of compounds are important in the future of both medicinal and materials chemistry. One main challenge for organochalcogen chemists has been to synthesize molecular probes that are soluble in water where a selenium or tellurium center can best modify electronics of the molecule based on a chemical oxidation or reduction event. In this Account, we discuss chemists' recent efforts to create chalcogen-based chemosensors through synthetic means and current photophysical understanding. Our work has focused on small chromophoric or fluorophoric molecules, in which we incorporate discrete organochalcogen atoms (e.g., R-Se-R, R-Te-R) in predesigned sites. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively oxidize compounds and to study the level of analyte selectivity by way of their optical responses. All the reports we discussed here deal with well-defined and small synthetic molecular systems. With a large number of reports published over the last few years, many have notably originated from the laboratory of K. Han (P. R. China). This growing body of research has given chemists new ideas for the previously untenable reversible reactive oxygen species detection. While reversibility of the probe is technically important from the stand-point of the chalcogen center, facile regenerability of the probe using a secondary analyte to recover the initial probe is a very promising avenue. This is because (bio)chalcogen chemistry is extremely rich and bioinspired and continues to yield important developments across many

  7. Novel molecular beacon DNA probes for protein-nucleic acid interaction studies

    NASA Astrophysics Data System (ADS)

    Li, Jianwei J.; Perlette, John; Fang, Xiaohong; Kelley, Shannon; Tan, Weihong

    2000-03-01

    We report a novel approach to study protein-nucleic acid interactions by using molecular beacons (MBs). Molecular beacons are hairpin-shaped DNA oligonucleotide probes labeled with a fluorophore and a quencher, and can report the presence of target DNA/RNA sequences. MBs can also report the existence of single-stranded DNA binding proteins (SSB) through non-sequence specific binding. The interaction between SSB and MB has resulted in significant fluorescence restoration of the MB. The fluorescence enhancement brought by SSB and by complementary DNA is very comparable. The molar ratio of the binding between SSB and the molecular beacon is 1:1 with a binding constant of 2 X 107 M-1. Using the MB-SSB binding, we are able to determine SSB at 2 X 10-10 M with a conventional spectrometer. We have also applied MB DNA probes for the analysis of an enzyme lactic dehydrogenase (LDH), and for the investigation of its binding properties with ssDNA. The biding process between MB and different isoenzymes of LDH has been studied. We also show that there are significant differences in MB binding affinity to different proteins, which will enable selective binding studies of a variety of proteins. This new approach is potentially useful for protein-DNA/RNA interaction studies that require high sensitivity, speed and convenience. The results also open the possibility of using easily obtainable, custom designed, modified DNA molecules for studies of drug interactions and targeting. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has the signal transduction mechanism built within the molecule, and can thus be used for quick protein assay development and for real-time measurements.

  8. Multiscale diffusion of a molecular probe in a crowded environment: a concept

    NASA Astrophysics Data System (ADS)

    Currie, Megan; Thao, Chang; Timerman, Randi; Welty, Robb; Berry, Brenden; Sheets, Erin D.; Heikal, Ahmed A.

    2015-08-01

    Living cells are crowded with macromolecules and organelles. Yet, it is not fully understood how macromolecular crowding affects the myriad of biochemical reactions, transport and the structural stability of biomolecules that are essential to cellular function and survival. These molecular processes, with or without electrostatic interactions, in living cells are therefore expected to be distinct from those carried out in test tube in dilute solutions where excluded volumes are absent. Thus there is an urgent need to understand the macromolecular crowding effects on cellular and molecular biophysics towards quantitative cell biology. In this report, we investigated how biomimetic crowding affects both the rotational and translation diffusion of a small probe (rhodamine green, RhG). For biomimetic crowding agents, we used Ficoll-70 (synthetic polymer), bovine serum albumin and ovalbumin (proteins) at various concentrations in a buffer at room temperature. As a control, we carried out similar measurements on glycerolenriched buffer as an environment with homogeneous viscosity as a function of glycerol concentration. The corresponding bulk viscosity was measured independently to test the validity of the Stokes-Einstein model of a diffusing species undergoing a random walk. For rotational diffusion (ps-ns time scale), we used time-resolved anisotropy measurements to examine potential binding of RhG as a function of the crowding agents (surface structure and size). For translational diffusion (μs-s time scale), we used fluorescence correlation spectroscopy for single-molecule fluctuation analysis. Our results allow us to examine the diffusion model of a molecular probe in crowded environments as a function of concentration, length scale, homogeneous versus heterogeneous viscosity, size and surface structures. These biomimetic crowding studies, using non-invasive fluorescence spectroscopy methods, represent an important step towards understanding cellular biophysics and

  9. Probing molecular adsorption and mechanics at the atomic scale: The Nanocar family of molecules

    NASA Astrophysics Data System (ADS)

    Osgood, Andrew J.

    Molecular machines, typically thought to be only the fanciful imaginings of speculative fiction, have taken great strides in recent years towards real-world viability and usefulness. Under variable temperature scanning tunneling microscopy, (STM) one family of these nascent devices is characterized with atomic resolution, and probed and manipulated with sub-angstrom precision, adding to the growing body of knowledge of how molecular devices behave and react at nanometer scales. Evidence of temperature-dependent rolling of wheel-like fullerene constituents on the Nanocar is discussed in light of newly developed image analysis techniques. Additionally, charge-transfer mediated behavior at step edges, both static and dynamic, is investigated on a Au(111) surface for a more complete understanding of translation and surface diffusion. Molecular flexibility is thought to aid in this three-dimensional atomic-step-crossing diffusion, and is explored and discussed across many species in the Nanocar family of molecules. In all, many similar molecules have been characterized and explored via STM with an eye towards their dynamic capabilities and surface behaviors, in the hopes that future, more complex versions can build on the nascent knowledge base beginning to be established here.

  10. Molecular Cooling as a Probe of Star Formation: Spitzer Looking Forward to Herschel

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Maret, Sebastien; Yuan, Yuan; Sonnentrucker, Paule; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We explore here the question of how cloud physics can be more directly probed when one observes the majority of cooling emissions from molecular gas. For this purpose we use results from a recent Spitzer Space Telescope study of the young cluster of embedded objects in NGC1333. For this study we mapped the emission from eight pure H2 rotational lines, from S(0) to S(7). The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and can be used to more directly ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for cores disruption. Given the recent launch of Herschel and the upcoming operational lifetime of SOFIA we discuss how studies of molecular cooling can take a step beyond understanding thermal balance to exploring the origin, receipt, and transfer of energy in atomic and molecular gas in a wide range of physical situations.

  11. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  12. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas.

    PubMed

    Aouani, Heykel; Šípová, Hana; Rahmani, Mohsen; Navarro-Cia, Miguel; Hegnerová, Kateřina; Homola, Jiří; Hong, Minghui; Maier, Stefan A

    2013-01-22

    Optical antennas represent an enabling technology for enhancing the detection of molecular vibrational signatures at low concentrations and probing the chemical composition of a sample in order to identify target molecules. However, efficiently detecting different vibrational modes to determine the presence (or the absence) of a molecular species requires a multispectral interrogation in a window of several micrometers, as many molecules present informative fingerprint spectra in the mid-infrared between 2.5 and 10 μm. As most nanoantennas exhibit a narrow-band response because of their dipolar nature, they are not suitable for such applications. Here, we propose the use of multifrequency optical antennas designed for operating with a bandwidth of several octaves. We demonstrate that surface-enhanced infrared absorption gains in the order of 10(5) can be easily obtained in a spectral window of 3 μm with attomolar concentrations of molecules, providing new opportunities for ultrasensitive broadband detection of molecular species via vibrational spectroscopy techniques.

  13. Proposed experimental probes of chemical reaction molecular dynamics in solution: ICN photodissociation

    NASA Astrophysics Data System (ADS)

    Benjamin, I.; Wilson, Kent R.

    1989-04-01

    Knowledge of how translational and rotational motions are influenced by the solvent during the course of a photodissociation ``half-collision'' reaction in solution is of interest in itself and can also help our understanding of how thermally activated reactions take place in solution by means of fluctuations in translational and rotational motion. With this goal, the molecular dynamics of the photodissociation of the triatomic molecule ICN are compared in the gas phase and in Xe solution. The time evolution of the trajectories (particularly with respect to interfragment distance and CN orientation) and of the energy partitioning (particularly into fragment translational recoil and into rotation of the CN) are displayed. Two types of solution experiments are proposed and simulated, both closely related to recent gas phase studies by Dantus, Rosker, and Zewail. These experiments are designed to probe the detailed dynamics of chemical reactions in solution during the time period the reaction is in progress, in particular to reveal the dramatic effects of the solvent on translational motions and energies. Both are pump-probe experiments in which the first photon dissociates the ICN and the second induces fluorescence in the CN fragment. In the first type of experiment, which is particularly sensitive to fragment translational motion, the fluorescence intensity is measured as a function of photon energy and of time delay. In the second type of experiment, which is particularly sensitive to fragment rotation, in addition the angle between the polarizations of the pump and probe photons is varied. In the calculations presented here, the effect of the absorption of the photodissociation photon is treated using the classical Frank-Condon principle. The coupling between the assumed two upper electronic surfaces is taken into account semiclassically using a generalization to the condensed phase of the classical electron model of Miller and Meyer, which was applied to ICN

  14. Probing the permeability of polyelectrolyte multilayer capsules via a molecular beacon approach.

    PubMed

    Angelatos, Alexandra S; Johnston, Angus P R; Wang, Yajun; Caruso, Frank

    2007-04-10

    Application of polyelectrolyte multilayer (PEM) capsules as vehicles for the controlled delivery of substances, such as drugs, genes, pesticides, cosmetics, and foodstuffs, requires a sound understanding of the permeability of the capsules. We report the results of a detailed investigation into probing capsule permeability via a molecular beacon (MB) approach. This method involves preparing MB-functionalized bimodal mesoporous silica (BMSMB) particles, encapsulating the BMSMB particles within the PEM film to be probed, and then incubating the encapsulated BMSMB particles with DNA target sequences of different lengths. Permeation of the DNA targets through the capsule shell causes the immobilized MBs to open due to hybridization of the DNA targets with the complementary loop region of the MBs, resulting in an increase in the MB fluorescence. The assay conditions (BMSMB particle concentration, MB loading within the BMS particles, DNA target concentration, DNA target size, pH, sodium chloride concentration) where the MB-DNA sensing process is effective were first examined. The permeability of DNA through poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) multilayer films, with and without a poly(ethyleneimine) (PEI) precursor layer, was then investigated. The permeation of the DNA targets decreases considerably as the thickness of the PEM film encapsulating the BMSMB particles increases. Furthermore, the presence of a PEI precursor layer gives rise to less permeable PSS/PAH multilayers. The diffusion coefficients calculated for the DNA targets through the PEM capsules range from 10-19 to 10-18 m2 s-1. This investigation demonstrates that the MB approach to measuring permeability is an important new tool for the characterization of PEM capsules and is expected to be applicable for probing the permeability of other systems, such as membranes, liposomes, and emulsions.

  15. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties

    NASA Astrophysics Data System (ADS)

    Kasireddy, Chandana; Ellis, Jonathan M.; Bann, James G.; Mitchell-Koch, Katie R.

    2017-02-01

    Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.

  16. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography

    NASA Astrophysics Data System (ADS)

    Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.

    2013-07-01

    Going "beyond the CMOS information-processing era," taking advantage of quantum effects occurring at sub-10-nm level, requires novel device concepts and associated fabrication technologies able to produce promising features at acceptable cost levels. Herein, the challenge affecting the lithographic technologies comprises the marriage of down-scaling the device-relevant feature size towards single-nanometer resolution with a simultaneous increase of the throughput capabilities. Mix-and-match lithographic strategies are one promising path to break through this trade-off. Proof-of-concept combining electron beam lithography (EBL) with the outstanding capabilities of closed-loop electric field current-controlled scanning probe nanolithography (SPL) is demonstrated. This combination, whereby also extreme ultraviolet lithography (EUVL) is possible instead of EBL, enables more: improved patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) beyond the state of the art, allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension levels with scanning probe microscopy-based pattern overlay alignment capability. Moreover, we are able to modify the EBL (EUVL) pattern even after the development step. The ultra-high resolution mix-and-match lithography experiments are performed on the molecular glass resist calixarene using a Gaussian e-beam lithography system operating at 10 keV and a home-developed SPL setup.

  17. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels

    PubMed Central

    Sugimoto, Shinya; Arita-Morioka, Ken-ichi; Mizunoe, Yoshimitsu; Yamanaka, Kunitoshi; Ogura, Teru

    2015-01-01

    The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides preferentially over pyrimidine oligoribonucleotides and oligodeoxyribonucleotides. This property enabled quantitative real-time monitoring of poly(A) synthesis and phosphorolysis by polyribonucleotide phosphorylase in vitro. Cellular analyses, in combination with genetic approaches and the transcription-inhibitor rifampicin treatment, demonstrated that ThT mainly stained mRNA in actively dividing Escherichia coli cells. ThT also facilitated mRNA metabolism profiling at the single-cell level in diverse bacteria. Furthermore, ThT can also be used to visualise transitions between non-persister and persister cell states, a phenomenon of isogenic subpopulations of antibiotic-sensitive bacteria that acquire tolerance to multiple antibiotics due to stochastically induced dormant states. Collectively, these results suggest that probing mRNA dynamics with ThT is a broadly applicable approach ranging from the molecular level to the single-cell level. PMID:25883145

  18. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  19. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties

    PubMed Central

    Kasireddy, Chandana; Ellis, Jonathan M.; Bann, James G.; Mitchell-Koch, Katie R.

    2017-01-01

    Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine. PMID:28198426

  20. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    PubMed Central

    Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well. PMID:28144513

  1. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania.

    PubMed

    Prauzner-Bechcicki, Jakub S; Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania-sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania-sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  2. PALS: A unique probe for the molecular organisation of biopolymer matrices

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Alam, M. A.

    2013-06-01

    This short review aims to illustrate the versatility of Positron Annihilation Lifetime Spectroscopy (PALS) when utilized for the characterization of biopolymers (e.g.: starch, fractionated maltooligomers, gelatin and cellulose derivatives) commonly used for the formulation of pharmaceutical encapsulants. By showing examples from a number of recent PALS studies, we illustrate that this technique can be used to probe the changes in thermodynamic state and molecular packing for a wide range of biopolymer matrices as a function of temperature, matrix composition and water content. This provides a basis for establishing composition-structure-property relationships for these materials, which would eventually enable the rational control of their macroscopic properties and the design of optimal encapsulating matrices and intelligent drug delivery systems.

  3. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances

    PubMed Central

    Suzuki, Yoshio; Yokoyama, Kenji

    2015-01-01

    This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660

  4. Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques

    PubMed Central

    Rayavarapu, Raja Gopal; Petersen, Wilma; Ungureanu, Constantin; Post, Janine N.; van Leeuwen, Ton G.; Manohar, Srirang

    2007-01-01

    We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed. PMID:18354723

  5. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity.

    PubMed

    Johansen, Lisa M; DeWald, Lisa Evans; Shoemaker, Charles J; Hoffstrom, Benjamin G; Lear-Rooney, Calli M; Stossel, Andrea; Nelson, Elizabeth; Delos, Sue E; Simmons, James A; Grenier, Jill M; Pierce, Laura T; Pajouhesh, Hassan; Lehár, Joseph; Hensley, Lisa E; Glass, Pamela J; White, Judith M; Olinger, Gene G

    2015-06-03

    Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.

  6. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  7. Characterization of TCP-1 probes for molecular imaging of colon cancer.

    PubMed

    Liu, Zhonglin; Gray, Brian D; Barber, Christy; Bernas, Michael; Cai, Minying; Furenlid, Lars R; Rouse, Andrew; Patel, Charmi; Banerjee, Bhaskar; Liang, Rongguang; Gmitro, Arthur F; Witte, Marlys H; Pak, Koon Y; Woolfenden, James M

    2016-10-10

    Molecular probes capable of detecting colorectal cancer (CRC) are needed for early CRC diagnosis. The objective of this study was to characterize c[CTPSPFSHC]OH (TCP-1), a small peptide derived from phage display selection, for targeting human CRC xenografts using technetium-99m ((99m)Tc)-labeled TCP-1 and fluorescent cyanine-7 (Cy7)-labeled form of the peptide (Cy7-TCP-1). (99m)Tc-TCP-1 was generated by modifying TCP-1 with succinimidyl-6-hydrazino-nicotinamide (S-HYNIC) followed by radiolabeling. In vitro saturation binding experiments were performed for (99m)Tc-TCP-1 in human HCT116 colon cancer cells. SCID mice with human HCT116 cancer xenografts were imaged with (99m)Tc-TCP-1 or control peptide using a small-animal SPECT imager: Group I (n=5) received no blockade; Group II (n=5) received a blocking dose of non-radiolabeled TCP-1. Group III (n=5) were imaged with (99m)Tc-labeled control peptide (inactive peptide). SCID mice with human PC3 prostate cancer xenografts (Group IV, n=5) were also imaged with (99m)Tc-TCP-1. Eight additional SCID mice bearing HCT116 xenografts in dorsal skinfold window chambers (DSWC) were imaged by direct positron imaging of (18)F-fluorodeoxyglucose ((18)F-FDG) and fluorescence microscopy of Cy7-TCP-1. In vitro(99m)Tc-HYNIC-TCP-1 binding assays on HCT 116 cells indicated a mean Kd of 3.04±0.52nM. In cancer xenografts, (99m)Tc-TCP-1 radioactivity (%ID/g) was 1.01±0.15 in the absence of blockade and was reduced to 0.26±0.04 (P<0.01) with blockade. No radioactive uptake was observed in the PC3 tumors with (99m)Tc-TCP-1 or HCT116 tumors with inactive peptide. Cy7-TCP-1 activity localized not only in metabolically active tumors, as defined by (18)F-FDG imaging, but also in peritumoral microvasculature. In conclusion, TCP-1 probes may have a distinct targeting mechanism with high selectivity for CRC and tumor-associated vasculature. Molecular imaging with TCP-1 probes appears promising to detect malignant colorectal lesions.

  8. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  9. Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe.

    PubMed

    Zeng, Xiaodan; Zhang, Xiaoling; Yang, Wen; Jia, Hongying; Li, Yamin

    2012-05-01

    An aptamer-molecular beacon (MB) multiple fluorescent probe for adenosine triphosphate (ATP) assay is proposed in this article. The ATP aptamer was used as a molecular recognition part, and an oligonucleotide (short strand, SS) partially complementary with the aptamer and an MB was used as the other part. In the presence of ATP, the aptamer bound with it, accompanied by the hybridization of MB and SS and the fluorescence recovering. Wherever there is only very weak fluorescence can be measured in the absence of ATP. Based on the relationship of recovering fluorescence and the concentration of ATP, a method for quantifying ATP has been developed. The fluorescence intensity was proportional to the concentration of ATP in the range of 10 to 500 nM with a detection limit of 0.1 nM. Moreover, this method was able to detect ATP with high selectivity in the presence of guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP). This method is proved to be simple with high sensitivity, selectivity, and specificity.

  10. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    SciTech Connect

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.

  11. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study.

    PubMed

    Buitink, J; Hemminga, M A; Hoekstra, F A

    1999-06-01

    The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars.

  12. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    PubMed Central

    Stefan, Christopher P.; Koehler, Jeffrey W.; Minogue, Timothy D.

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  13. Isolation of molecular probes associated with the chromosome 15 instability in the Prader-Willi syndrome.

    PubMed Central

    Donlon, T A; Lalande, M; Wyman, A; Bruns, G; Latt, S A

    1986-01-01

    Flow cytometry and recombinant DNA techniques have been used to obtain reagents for a molecular analysis of the Prader-Willi syndrome (PWS). HindIII total-digest libraries were prepared in lambda phage Charon 21A from flow-sorted inverted duplicated no. 15 human chromosomes and propagated on recombination-proficient (LE392) and recBC-, sbcB- (DB1257) bacteria. Twelve distinct chromosome 15-specific probes have been isolated. Eight localized to the region 15q11----13. Four of these eight sublocalized to band 15q11.2 and are shown to be deleted in DNA of one of two patients examined with the PWS. Heteroduplex analysis of two of these clones, which grew on DB1257 but not on LE392, revealed stem-loop structures in the inserts, indicative of inverted, repeated DNA elements. Such DNA repeats might account for some of the cloning instability of DNA segments from proximal 15q. Analysis of the genetic and physical instability associated with the repeated sequences we have isolated from band 15q11.2 may elucidate the molecular basis for the instability of this chromosomal region in patients with the PWS or other diseases associated with chromosomal abnormalities in the proximal long arm of human chromosome 15. Images PMID:3012567

  14. Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics

    PubMed Central

    Smith, Bryan A.; Smith, Bradley D.

    2012-01-01

    Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging. PMID:22989049

  15. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study.

    PubMed Central

    Buitink, J; Hemminga, M A; Hoekstra, F A

    1999-01-01

    The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars. PMID:10354457

  16. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  17. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals.

    PubMed

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L

    2011-09-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).

  18. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals

    PubMed Central

    Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.

    2012-01-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237

  19. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples.

    PubMed

    Divya, Kizhumuri P; Sreejith, Sivaramapanicker; Balakrishna, Bugga; Jayamurthy, Purushothaman; Anees, Palappuravan; Ajayaghosh, Ayyappanpillai

    2010-09-07

    A Zn(2+)-specific molecular probe 3 was developed for the selective detection of CN(-) under aqueous conditions. The fluorescent Zn(2+) complex of 3 upon CN(-) addition generates a bright blue fluorescence that allows the detection of the latter and is useful for the screening of natural products with and without endogenous cyanide content.

  20. Molecular cloning of verrucosidin-producing Penicillium polonicum genes by differential screening to obtain a DNA probe.

    PubMed

    Aranda, E; Rodríguez, M; Benito, M J; Asensio, M A; Córdoba, J J

    2002-06-05

    A differential molecular screening procedure was developed to obtain DNA clones enriched for verrucosidin-related genes that could be used as DNA probes to detect verrucosidin-producing Penicillium polonicum. Permissive and nonpermissive conditions for verrucosidin production were selected to obtain differentiated poly (A)+ RNA for the cloning strategy. P. polonicum yielded the highest amount of verrucosidin when cultured in malt extract broth at 25 degrees C without shaking. These conditions were selected as verrucosidin permissive conditions. When shaking was applied to the verrucosidin permissive conditions, verrucosidin was not detected. Approximately 5000 transformants were obtained for the library of DNA fragments from verrucosidin-producing P. polonicum and hybridized with cDNA probes obtained from poly (A)+ RNA of permissive and nonpermissive conditions. A total of 120 clones hybridized only with the permissive cDNA probes. From these, eight representative DNA inserts selected on the basis of size and labelled with fluorescein-dUTP were assayed as DNA probes in the second differential screening by Northern hybridization. Probe SVr1 gave a strong hybridization signal selectively with poly (A)+ RNAs from high verrucosidin production. When this probe was assayed by dot blot hybridization with DNA of different moulds species, hybridization was detected only with DNA from the verrucosidin-producing strain. The strategy used in this work has proved to be useful to detect unknown genes related to mycotoxins. In addition, the DNA probe obtained should be considered for the detection of verrucosidin-producing moulds.

  1. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    SciTech Connect

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  2. Two-Dimensional Analysis of Cross-Junctional Molecular Interaction by Force Probes.

    PubMed

    Ju, Lining; Chen, Yunfeng; Rushdi, Muaz Nik; Chen, Wei; Zhu, Cheng

    2017-01-01

    Upon engagement with a specific ligand, a cell surface receptor transduces intracellular signals to activate various cellular functions. This chapter describes a set of biomechanical methods for analyzing the characteristics of cross-junctional receptor-ligand interactions at the surface of living cells. These methods combine the characterization of kinetics of receptor-ligand binding with real-time imaging of intracellular calcium fluxes, which allow researchers to assess how the signal initiated from single receptor-ligand engagement is transduced across the cell membrane. A major application of these methods is the analysis of antigen recognition by triggering of the T cell receptor (TCR). Three related methods are described in this chapter: (1) the micropipette adhesion assay, (2) the biomembrane force probe (BFP) assay, and (3) combining BFP with fluorescence microscopy (fBFP). In all cases, an ultrasoft human red blood cell (RBC) is used as an ultrasensitive mechanical force probe. The micropipette assay detects binding events visually. The BFP uses a high-speed camera and real-time image tracking techniques to measure mechanical variables on a single molecular bond with up to ~1 pN (10(-12) Newton), ~3 nm (10(-9) m), and ~0.5 ms (10(-3) s) in force, spatial, and temporal resolution, respectively. As an upgrade to the BFP, the fBFP simultaneously images binding-triggered intracellular calcium signals on a single live cell. These technologies can be widely used to study other membrane receptor-ligand interactions and signaling under mechanical regulation.

  3. Library Synthesis, Screening, and Discovery of Modified Zinc(II)-Bis(dipicolylamine) Probe for Enhanced Molecular Imaging of Cell Death

    PubMed Central

    2015-01-01

    Zinc(II)-bis(dipicolylamine) (Zn-BDPA) coordination complexes selectively target the surfaces of dead and dying mammalian cells, and they have promise as molecular probes for imaging cell death. A necessary step toward eventual clinical imaging applications is the development of next-generation Zn-BDPA complexes with enhanced affinity for the cell death membrane biomarker, phosphatidylserine (PS). This study employed an iterative cycle of library synthesis and screening, using a novel rapid equilibrium dialysis assay, to discover a modified Zn-BDPA structure with high and selective affinity for vesicles containing PS. The lead structure was converted into a deep-red fluorescent probe and its targeting and imaging performance was compared with an unmodified control Zn-BDPA probe. The evaluation process included a series of FRET-based vesicle titration studies, cell microscopy experiments, and rat tumor biodistribution measurements. In all cases, the modified probe exhibited comparatively higher affinity and selectivity for the target membranes of dead and dying cells. The results show that this next-generation deep-red fluorescent Zn-BDPA probe is well suited for preclinical molecular imaging of cell death in cell cultures and animal models. Furthermore, it should be possible to substitute the deep-red fluorophore with alternative reporter groups that enable clinically useful, deep-tissue imaging modalities, such as MRI and nuclear imaging. PMID:24575875

  4. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes

    PubMed Central

    Jayasekara, M.P. Suresh; Costanzi, Stefano

    2012-01-01

    There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y1–14Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y3, P2y5, P2y7–10) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y12–14 subtypes couple via Gαi to inhibit adenylate cyclase, while the remaining subtypes couple through Gαq to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5′-mono- and dinucleotides and nucleoside-5′-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y12R are already widely used as antithrombotics). PMID:23336097

  5. A Flexible Nanoarray Approach for the Assembly and Probing of Molecular Complexes

    PubMed Central

    Krasnoslobodtsev, Alexey V.; Zhang, Yuliang; Viazovkina, Ekaterina; Gall, Alexander; Bertagni, Chad; Lyubchenko, Yuri L.

    2015-01-01

    Immobilization is a key step involved in probing molecular interactions using single-molecule force spectroscopy methods, including atomic force microscopy (AFM). To our knowledge, we describe a novel approach termed flexible nanoarray (FNA) in which the interaction between the two internally immobilized amyloid β peptides is measured by pulling of the tether. The FNA tether was synthesized with nonnucleotide phosphoramidite monomers using the DNA synthesis chemistry. The two anchoring points for immobilization of the peptides inside the tether were incorporated at defined distances between them and from the ends of the polymer. Decamers of amyloid β peptide capable of dimer formation were selected as a test system. The formation of the peptide dimers was verified by AFM force spectroscopy by pulling the tether at the ends. In these experiments, the thiolated end of the FNA tether was covalently immobilized on the AFM substrate functionalized with maleimide. The other end of the FNA tether was functionalized with biotin to form a noncovalent link with the streptavidin functionalized AFM tip during the approach stage. The dimers’ rupture fingerprint was unambiguously identified on the force curves by its position and the force value. The FNA design allowed reversible experiments in which the monomers were allowed to associate after the rupture of the dimers by performing the approach stage before the rupture of the biotin-streptavidin link. This suggests that the FNA technique is capable of analyzing multiple intermolecular interactions in the same molecular complex. The computational analysis showed that the tethered peptides assemble into the same dimer structure as that formed by nontethered peptides, suggesting that the FNA tether has the necessary flexibility to enable assembly of the dimer even during the course of the force spectroscopy experiment. PMID:25954890

  6. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers

    PubMed Central

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Schering, Alexander; Hafezi-Moghadam, Ali

    2010-01-01

    The need remains great for early diagnosis of diseases. The special structure of the eye provides a unique opportunity for noninvasive light-based imaging of fundus vasculature. To detect endothelial injury at the early and reversible stage of adhesion molecule up-regulation, we generated novel imaging agents that target two distinct types of endothelial molecules, a mediator of rolling, P-selectin, and one that mediates firm adhesion, ICAM-1. Interactions of these double-conjugated fluorescent microspheres (MSs) in retinal or choroidal microvasculature were visualized in live animals by scanning laser ophthalmoscopy. The new imaging agents showed significantly higher sensitivity for detection of endothelial injury than singly conjugated MSs (rPSGL-1- or α-ICAM-1-conjugated), both in terms of rolling (P<0.01) and firm adhesion (P<0.01). The rolling flux of α-ICAM-1-conjugated MSs did not differ in EIU animals, whereas double-conjugated MSs showed significantly higher rolling flux (P<0.01), revealing that ICAM-1 in vivo supports rolling, once MS interaction with the endothelium is initiated. Double-conjugated MSs specifically detected firmly adhering leukocytes (P<0.01), allowing in vivo quantification of immune response. Antiinflammatory treatment with dexamethasone led to reduced leukocyte accumulation (P<0.01) as well as MS interaction (P<0.01), which suggests that treatment success and resolution of inflammation is quantitatively reflected with this molecular imaging approach. This work introduces novel imaging agents for noninvasive detection of endothelial injury in vivo. Our approach may be developed further to diagnose human disease at a much earlier stage than currently possible.—Sun, D., Nakao, S., Xie, F., Zandi, S., Schering, A., Hafezi-Moghadam, A. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers. PMID:20103715

  7. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues.

    PubMed

    Zhou, Liyi; Zhang, Xiaobing; Wang, Qianqian; Lv, Yifan; Mao, Guojiang; Luo, Aili; Wu, Yongxiang; Wu, Yuan; Zhang, Jing; Tan, Weihong

    2014-07-16

    In contrast to one-photon microscopy, two-photon probe-based fluorescent imaging can provide improved three-dimensional spatial localization and increased imaging depth. Consequently, it has become one of the most attractive techniques for studying biological events in living cells and tissues. However, the quantitation of these probes is primarily based on single-emission intensity change, which tends to be affected by a variety of environmental factors. Ratiometric probes, on the other hand, can eliminate these interferences by the built-in correction of the dual emission bands, resulting in a more favorable system for imaging living cells and tissues. Herein, for the first time, we adopted a through-bond energy transfer (TBET) strategy to design and synthesize a small molecular ratiometric two-photon fluorescent probe for imaging living cells and tissues in real time. Specifically, a two-photon fluorophore (D-π-A-structured naphthalene derivative) and a rhodamine B fluorophore are directly connected by electronically conjugated bond to form a TBET probe, or Np-Rh, which shows a target-modulated ratiometric two-photon fluorescence response with highly efficient energy transfer (93.7%) and two well-resolved emission peaks separated by 100 nm. This novel probe was then applied for two-photon imaging of living cells and tissues and showed high ratiometric imaging resolution and deep-tissue imaging depth of 180 μm, thus demonstrating its practical application in biological systems.

  8. Determination of bismuth in pharmaceutical products using phosphoric acid as molecular probe by resonance light scattering.

    PubMed

    Yun, Yanru; Cui, Fengling; Geng, Shaoguang; Jin, Jianhua

    2012-01-01

    A novel method for the sensitive determination of bismuth(III) in pharmaceutical products using phosphoric acid as a molecular probe by resonance light scattering (RLS) is discussed. In 0.5 mol/L phosphoric acid (H3 PO4) medium, bismuth(III) reacted with PO4 (3-) to form an ion association compound, which resulted in the significant enhancement of RLS intensity and the appearance of the corresponding RLS spectral characteristics. The maximum scattering peak of the system existed at 364 nm. Under optimal conditions, there was linear relationship between the relative intensity of RLS and concentration of bismuth(III) in the range of 0.06-10.0 µg/mL for the system. A low detection limit for bismuth(III) of 3.22 ng/mL was achieved. The relative standard deviations (RSD) for the determination of 0.40 and 0.80 µg/mL bismuth(III) were 2.1% and 1.1%, respectively, for five determinations. Based on this fact, a simple, rapid, and sensitive method was developed for the determination of bismuth(III) at nanogram level by RLS technique with a common spectrofluorimeter. This analytical system was successfully applied to determine the trace amounts of bismuth(III) in pharmaceutical products, which was in good agreement with the results obtained by atomic absorption spectrometry (AAS).

  9. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  10. Preparation and Characterization of a Magnetic and Optical Dual-Modality Molecular Probe

    PubMed Central

    Bumb, A; Regino, C A S; Perkins, M R; Bernardo, M; Ogawa, M; Fugger, L; Choyke, P L; Dobson, P J; Brechbiel, M W

    2010-01-01

    Multi-modality imaging probes combine the advantages of individual imaging techniques to yield highly detailed anatomic and molecular information in living organisms. Herein, we report the synthesis and characterization of a dual-modality nanoprobe that couples the magnetic properties of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with the near infrared fluorescence of Cy5.5. The fluorophore is encapsulated in a biocompatible shell of silica surrounding the iron oxide core for a final diameter of ~17 nm. This silica-coated iron oxide nanoparticle (SCION) has been analyzed by transmission electron microscopy, dynamic light scattering, and superconducting quantum interference device (SQUID). The particle demonstrates a strong negative surface charge and maintains colloidal stability in the physiological pH range. Magnetic hysteresis analysis confirms superparamagnetic properties that could be manipulated for thermotherapy. The viability of primary human monocytes, T cells, and B cells incubated with particle has been examined in vitro. In vivo analysis of agent leakage into subcutaneous A431 tumors in mice was also conducted. This particle has been designed for diagnostic application with magnetic resonance and fluorescence imaging, and has future potential to serve as a heat-sensitive targeted drug delivery platform. PMID:20368682

  11. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    PubMed

    Lau, Han Yih; Palanisamy, Ramkumar; Trau, Matt; Botella, Jose R

    2014-01-01

    Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  12. Molecular analysis of 53 fragile X families with the probe StB12.3

    SciTech Connect

    Puissant, H.; Malinge, M.C.; Larget-Piet, A.; Larget-Piet, L.; Martin, D.; Chauveau, P.; Odent, S.; Lemarec, B.; Plessis, G.; Parent, Ph.

    1994-12-01

    Fifty-three pedigrees with the fragile X syndrome have been studied for amplification of the CGG repeat sequence adjacent to the CpG island in the FMR1 gene. Probe StB12.3 allowed direct detection of affected males, carrier females, normal transmitting males, as well as prenatal diagnosis. Comparison of our molecular data with our previous linkage data from 38 families indicates the effectiveness of direct DNA analysis. A total of 325 individuals were studied and no new mutation was found. All daughters of males with a premutation had a premutation. When the mother had a full mutation no children had a premutation. In premutated mothers, the size of the premutation seems to be a determining factor for the transition to the full mutation. All affected males had a full mutation or mosaicism and only 42% of the females with a full mutation were mentally impaired. Analysis of large families over 3 generations illustrated clearly the Sherman paradox. Furthermore, the analysis of these families is in reasonable agreement with the multiallelic model of Morton and Macpherson. Mosaic cases in the offspring of the mothers with a full mutation suggest a maternal germinal mosaicism. Then an abnormal methylation and a somatic heterogeneity established in very early steps of embryogenesis could explain these cases. 17 refs.

  13. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  14. Using vibrational branching ratios to probe shape resonances in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert; Das, Aloke; Poliakoff, Erwin; Bozek, John

    2009-05-01

    The measurement of vibrational branching ratios in molecular photoionization can be used as a probe of the nature of resonant states, since such states are often sensitive to the geometry of the molecule. Recent computed results for BF3 and C6F6 will be presented. In C6F6, we consider the excitation of the two symmetric stretching modes in the photoionization leading to the C ^3B2u state of the ion. Two prominent shape resonances at photon energies between 18 and 20 eV respond quite differently to the excitation of the symmetric ring-breathing mode and to the symmetric C-F stretching mode. In BF3, the excitation of both the symmetric stretching and the degenerate asymmetric stretching modes are considered in the photoionization leading to the E ^2A1' state of the ion. The symmetric stretching mode shows a relatively weak resonant enhancement in the branching ratio, whereas the asymmetric stretching mode has a much more prominent feature.

  15. Molecular Inversion Probes for targeted resequencing in non-model organisms

    PubMed Central

    Niedzicka, M.; Fijarczyk, A.; Dudek, K.; Stuglik, M.; Babik, W.

    2016-01-01

    Applications that require resequencing of hundreds or thousands of predefined genomic regions in numerous samples are common in studies of non-model organisms. However few approaches at the scale intermediate between multiplex PCR and sequence capture methods are available. Here we explored the utility of Molecular Inversion Probes (MIPs) for the medium-scale targeted resequencing in a non-model system. Markers targeting 112 bp of exonic sequence were designed from transcriptome of Lissotriton newts. We assessed performance of 248 MIP markers in a sample of 85 individuals. Among the 234 (94.4%) successfully amplified markers 80% had median coverage within one order of magnitude, indicating relatively uniform performance; coverage uniformity across individuals was also high. In the analysis of polymorphism and segregation within family, 77% of 248 tested MIPs were confirmed as single copy Mendelian markers. Genotyping concordance assessed using replicate samples exceeded 99%. MIP markers for targeted resequencing have a number of advantages: high specificity, high multiplexing level, low sample requirement, straightforward laboratory protocol, no need for preparation of genomic libraries and no ascertainment bias. We conclude that MIP markers provide an effective solution for resequencing targets of tens or hundreds of kb in any organism and in a large number of samples. PMID:27046329

  16. Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes

    PubMed Central

    2015-01-01

    We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011

  17. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin.

    PubMed

    Ren, Xiaohui; Chen, Ligang

    2015-02-15

    A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cyphenothrin. The MIP-coated QDs were characterized by fluorescence spectrophotometer, Fourier transform infrared spectroscopy, transmission electron microscope, dynamic light scattering and X-ray powder diffraction. The fluorescence of the coated QDs is quenched on loading the MIP with cyphenothrin, and the effect is much stronger for the MIP than for the non-imprinted polymer, which indicates the MIP could as a recognition template composite. This method can detect down to 9.0 nmol L(-1) of cyphenothrin in water, and a linear relationship has been obtained covering the concentration range of 0.1-80.0 μmol L(-1). The method has been used in the determination of cyphenothrin in water samples and gave recoveries in the range from 88.5% to 97.1% with relative standard deviations in the range of 3.1-6.2%. The present study provides a new and general strategy to fabricate inorganic-organic MIP-coated QDs with highly selective recognition ability in aqueous media and is desirable for chemical probe application.

  18. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

    NASA Astrophysics Data System (ADS)

    Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.

    2014-11-01

    Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

  19. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    NASA Astrophysics Data System (ADS)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  20. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe.

    PubMed

    Chiang, Chi-lun; Xu, Chen; Han, Zhumin; Ho, W

    2014-05-23

    The arrangement of atoms and bonds in a molecule influences its physical and chemical properties. The scanning tunneling microscope can provide electronic and vibrational signatures of single molecules. However, these signatures do not relate simply to the molecular structure and bonding. We constructed an inelastic tunneling probe based on the scanning tunneling microscope to sense the local potential energy landscape of an adsorbed molecule with a carbon monoxide (CO)-terminated tip. The skeletal structure and bonding of the molecule are revealed from imaging the spatial variations of a CO vibration as the CO-terminated tip probes the core of the interactions between adjacent atoms. An application of the inelastic tunneling probe reveals the sharing of hydrogen atoms among multiple centers in intramolecular and extramolecular bonding.

  1. Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7- and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future.

    PubMed

    Mertz, Leslie

    2013-01-01

    Molecular imaging is one of the hot-button areas within medical imaging. This technology employs imaging techniques in concert with molecular probes, or biomarkers, that together noninvasively spy on cellular function and molecular processes. In some cases, this technology may be able to detect the very earliest stages of diseases and eliminate them on the spot. This paper discusses how miniaturized microscopes, microbubbles, 7T and 15T scanners, diffusion-tensor MRI and other molecular imaging technologies are pushing molecular imaging into the future.

  2. Immobilization of ɛ-polylysine onto the probe surface for molecular adsorption type endotoxin detection system

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Tsuji, Akihito; Nishishita, Naoki; Hirano, Yoshiaki

    2007-04-01

    adsorption reaction between ɛ-polylysine and endotoxin. ɛ-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ɛ-polylysine is used as the barrier filter for endotoxin removal. Therefore, it is expected that the endotoxin be adsorbed to the immobilized ɛ-polylysine onto the probe. As the result of this reaction, the mass of the probe is increased, and endotoxin can be detected by using of Quartz Crystal Microbalance (QCM). In our previous research, we have already acquired the proteins immobilization technique onto Au and Si surface. In this report, the proposal of molecular adsorption type endotoxin detection system, and the immobilization of ɛ-polylysine onto the probe are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ɛ-polylysine immobilization, and the adsorptive activity of immobilized ɛ-polylysine is measured by XPS and AFM. The purpose of this study is to bring about the realization of "Real-time endotoxin detection system".

  3. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    PubMed

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  4. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    PubMed Central

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  5. Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy

    PubMed Central

    Oh, Gyungseok; Yoo, Su Woong; Jung, Yebin; Ryu, Yeon-Mi; Park, Youngrong; Kim, Sang-Yeob; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon

    2014-01-01

    Intravital imaging has provided molecular, cellular and anatomical insight into the study of tumor. Early detection and treatment of gastrointestinal (GI) diseases can be enhanced with specific molecular markers and endoscopic imaging modalities. We present a wide-field multi-channel fluorescence endoscope to screen GI tract for colon cancer using multiple molecular probes targeting matrix metalloproteinases (MMP) conjugated with quantum dots (QD) in AOM/DSS mouse model. MMP9 and MMP14 antibody (Ab)-QD conjugates demonstrate specific binding to colonic adenoma. The average target-to-background (T/B) ratios are 2.10 ± 0.28 and 1.78 ± 0.18 for MMP14 Ab-QD and MMP9 Ab-QD, respectively. The overlap between the two molecular probes is 67.7 ± 8.4%. The presence of false negative indicates that even more number of targeting could increase the sensitivity of overall detection given heterogeneous molecular expression in tumors. Our approach indicates potential for the screening of small or flat lesions that are precancerous. PMID:24877024

  6. Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy.

    PubMed

    Oh, Gyungseok; Yoo, Su Woong; Jung, Yebin; Ryu, Yeon-Mi; Park, Youngrong; Kim, Sang-Yeob; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon

    2014-05-01

    Intravital imaging has provided molecular, cellular and anatomical insight into the study of tumor. Early detection and treatment of gastrointestinal (GI) diseases can be enhanced with specific molecular markers and endoscopic imaging modalities. We present a wide-field multi-channel fluorescence endoscope to screen GI tract for colon cancer using multiple molecular probes targeting matrix metalloproteinases (MMP) conjugated with quantum dots (QD) in AOM/DSS mouse model. MMP9 and MMP14 antibody (Ab)-QD conjugates demonstrate specific binding to colonic adenoma. The average target-to-background (T/B) ratios are 2.10 ± 0.28 and 1.78 ± 0.18 for MMP14 Ab-QD and MMP9 Ab-QD, respectively. The overlap between the two molecular probes is 67.7 ± 8.4%. The presence of false negative indicates that even more number of targeting could increase the sensitivity of overall detection given heterogeneous molecular expression in tumors. Our approach indicates potential for the screening of small or flat lesions that are precancerous.

  7. Functional molecular lumino-materials to probe serum albumins: solid phase selective staining through noncovalent fluorescent labeling.

    PubMed

    Dey, Gourab; Gupta, Abhishek; Mukherjee, Trinetra; Gaur, Pankaj; Chaudhary, Abhishek; Mukhopadhyay, Subhra Kanti; Nandi, Chayan K; Ghosh, Subrata

    2014-07-09

    Selective staining of human serum albumin protein in gel electrophoresis over wide range of other protein(s) is extremely important because it contains more than 60% volume of serum fluid in human body. Given the nonexistence of suitable dye materials for selective staining of serum albumins in gel electrophoresis, we report a new class of easy synthesizable and low molecular weight staining agents based on 3-amino-N-alkyl-carbazole scaffold for selective staining of serum albumins in solid phase. A detailed structure-efficiency relationship (SER) study enabled us to develop two such potent functional molecular probes which stain both human and bovine serum albumin selectively in gel electrophoresis in the presence of other proteins and enzymes. The present gel staining process was found to be very simple and less time-consuming as compared to the conventional coomassie blue staining which in turn makes these probes a new class of serum albumin-specific staining materials in proteome research. Moreover, these molecular lumino-materials can detect serum albumins at subnanomolar level in the presence of broad spectrum of other proteins/enzymes in aqueous buffer (99.9% water, pH = 7.3) keeping the protein secondary structure intact. Our experimental and the docking simulation results show that these probes bind preferentially at 'binding site I' of both the serum proteins.

  8. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA.

    PubMed

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  9. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  10. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    SciTech Connect

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  11. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    SciTech Connect

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  12. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    PubMed Central

    Greulich-Bode, Karin M; Wang, Mei; Rhein, Andreas P; Weier, Jingly F; Weier, Heinz-Ulli G

    2008-01-01

    Background Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100 kb, careful probe selection and characterization are of paramount importance. Results We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific ~6 kb plasmid onto an unusually small, ~55 kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-κB2 locus. Conclusion The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements. PMID:19108707

  13. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes.

    PubMed

    Chen, Quan; Pinon, Delia I; Miller, Laurence J; Dong, Maoqing

    2009-12-04

    The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg(131)-Lys(136) segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu(133) by radiochemical sequencing. Similarly, nearby residue Glu(125) within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members.

  14. Chemical Probes for Molecular Imaging and Detection of Hydrogen Sulfide and Reactive Sulfur Species in Biological Systems

    PubMed Central

    2014-01-01

    Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploit the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems. PMID:25474627

  15. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  16. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces

  17. Built-in fields in nanodimensional organic ferroelectric-semiconductor heterostructures: The principal role of molecular probes

    NASA Astrophysics Data System (ADS)

    Lazarev, V. V.; Blinov, L. M.; Yudin, S. G.; Palto, S. P.

    2014-10-01

    The external and internal (built-in) macroscopic fields in a nanodimensional heterostructure consisting of organic ferroelectric and organic semiconductor layers between transparent (indium tin oxide) and semitransparent (aluminum) electrodes have been studied. The fields were measured using optical probe molecules in both the semiconductor layer (copper phthalocyanine, CuPc, with intrinsic specific features of the absorption spectrum) and the ferroelectric layer (poly(vinylidene fluoride)-trifluoroethylene copolymer) in which a molecular probe was introduced as a dopant (palladium tetraphenylporphyrin) possessing a characteristic spectrum. Local fields were measured using electroabsorption, followed by a recalculation in the macroscopic fields. It is established that the amplitude and direction of a macroscopic built-in field in the semiconductor can be controlled by changing the polarization of the heterostructure using pulses of external voltage applied to the heterostructure. This effect can be useful for increasing the efficiency of organic converters of solar radiation energy into electricity.

  18. Molecular probe dynamics and free volume in organic glass-formers and their relationships to structural relaxation: 1-propanol

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Švajdlenková, H.; Šauša, O.; Lukešová, M.; Ehlers, D.; Michl, M.; Lunkenheimer, P.; Loidl, A.

    2016-01-01

    A joint study of the rotational dynamics and free volume in amorphous 1-propanol (1-PrOH) as a prototypical monohydroxy alcohol by electron spin resonance (ESR) or positron annihilation lifetime spectroscopy (PALS), respectively, is reported. The dynamic parameters of the molecular spin probe 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the annihilation ones of the atomic ortho-positronium (o-Ps) probe as a function of temperature are compared. A number of coincidences between various effects in the ESR and PALS responses at the corresponding characteristic ESR and PALS temperatures were found suggesting a common origin of the underlying dynamic processes that were identified using viscosity (VISC) in terms of the two-order parameter (TOP) model and broadband dielectric spectroscopy (BDS) data.

  19. Probing molecular pathways for DNA orientational trapping, unzipping and translocation in nanopores by using a tunable overhang sensor

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tian, Kai; Hunter, Lehr L.; Ritzo, Brandon; Gu, Li-Qun

    2014-09-01

    Nanopores provide a unique single-molecule platform for genetic and epigenetic detection. The target nucleic acids can be accurately analyzed by characterizing their specific electric fingerprints or signatures in the nanopore. Here we report a series of novel nanopore signatures generated by target nucleic acids that are hybridized with a probe. A length-tunable overhang appended to the probe functions as a sensor to specifically modulate the nanopore current profile. The resulting signatures can reveal multiple mechanisms for the orientational trapping, unzipping, escaping and translocation of nucleic acids in the nanopore. This universal approach can be used to program various molecular movement pathways, elucidate their kinetics, and enhance the sensitivity and specificity of the nanopore sensor for nucleic acid detection.Nanopores provide a unique single-molecule platform for genetic and epigenetic detection. The target nucleic acids can be accurately analyzed by characterizing their specific electric fingerprints or signatures in the nanopore. Here we report a series of novel nanopore signatures generated by target nucleic acids that are hybridized with a probe. A length-tunable overhang appended to the probe functions as a sensor to specifically modulate the nanopore current profile. The resulting signatures can reveal multiple mechanisms for the orientational trapping, unzipping, escaping and translocation of nucleic acids in the nanopore. This universal approach can be used to program various molecular movement pathways, elucidate their kinetics, and enhance the sensitivity and specificity of the nanopore sensor for nucleic acid detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03195d

  20. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.

    PubMed

    Dufrêne, Y F; Boonaert, C J; Gerin, P A; Asther, M; Rouxhet, P G

    1999-09-01

    Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.

  1. Molecular dynamics simulations and Kelvin probe force microscopy to study of cholesterol-induced electrostatic nanodomains in complex lipid mixtures

    NASA Astrophysics Data System (ADS)

    Drolle, E.; Bennett, W. F. D.; Hammond, K.; Lyman, E.; Karttunen, M.; Leonenko, Z.

    The molecular arrangement of lipids and proteins within biomembranes and monolayers gives rise to complex film morphologies as well as regions of distinct electrical surface potential, topographical and electrostatic nanoscale domains. To probe these nanodomains in soft matter is a challenging task both experimentally and theoretically. This work addresses the effects of cholesterol, lipid composition, lipid charge, and lipid phase on the monolayer structure and the electrical surface potential distribution. Atomic Force Microscopy (AFM) was used to resolve topographical nanodomains and Kelvin Probe Force Microscopy (KPFM) to resolve electrical surface potential of these nanodomains in lipid monolayers. Model monolayers composed of dipalmitoylphosphatidylcholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(3-lysyl(1-glycerol))] (DOPG), sphingomyelin, and cholesterol were studied. It is shown that cholesterol changes nanoscale domain formation, affecting both topography and electrical surface potential. The molecular basis for differences in electrical surface potential was addressed with atomistic molecular dynamics (MD). MD simulations qualitatively match the experimental results, with 100s of mV difference in electrostatic potential between liquid-disordered bilayer (Ld, less cholesterol and lower chain order) and a liquid-ordered bilayer (Lo, more cholesterol and higher chain order). Importantly, the difference in electrostatic properties between Lo and Ld phases suggests a new mechanism by which membrane composition couples to membrane function.

  2. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    PubMed Central

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    2017-01-01

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry. PMID:28191484

  3. Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation.

    PubMed

    Withana, Nimali P; Saito, Toshinobu; Ma, Xiaowei; Garland, Megan; Liu, Changhao; Kosuge, Hisanori; Amsallem, Myriam; Verdoes, Martijn; Ofori, Leslie O; Fischbein, Michael; Arakawa, Mamoru; Cheng, Zhen; McConnell, Michael V; Bogyo, Matthew

    2016-10-01

    Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations.

  4. Detection of conformational changes in immunoglobulin G using isothermal titration calorimetry with low-molecular-weight probes.

    PubMed

    Rispens, Theo; Lakemond, Catriona M M; Derksen, Ninotska I L; Aalberse, Rob C

    2008-09-15

    Proteins for therapeutic use may contain small amounts of partially misfolded monomeric precursors to postproduction aggregation. To detect these misfolded proteins in the presence of an excess of properly folded protein, fluorescent probes such as 8-anilino-1-naphthalene sulfonate (ANS) are commonly used. We investigated the possibility of using isothermal titration calorimetry (ITC) to improve the detection of this type of conformational change using hydrophobic probes. As a case study, conformational changes in human polyclonal immunoglobulin G (IgG) were monitored by measuring the enthalpies of binding of ANS using ITC. Results were compared with those using fluorescence spectroscopy. IgG heated at 63 degrees C was used as a model system for "damaged" IgG. Heat-treated IgG can be detected already at levels below 5% with both ITC and fluorescence. However, ITC allows a much wider molar probe-to-protein ratio to be sampled. In particular, using reverse titration experiments (allowing high probe-to-protein ratios not available to fluorescence spectroscopy), an increase in the number of binding sites with a K(d)>10 mM was observed for heat-treated IgG, reflecting subtle changes in structure. Both ITC and fluorescence spectroscopy showed low background signals for native IgG. The nature of the background signals was not clear from the fluorescence measurements. However, further analysis of the ITC background signals shows that a fraction (8%) binds ANS with a dissociation constant of approximately 0.2 mM. Measurements were also carried out at pH 4.5. Precipitation of IgG was induced by ANS at concentrations above 0.5 mM, interfering with the ITC measurements. Instead, with the nonfluorescent probes 4-amino-1-naphthalene sulfonate and 1-naphthalene sulfonate, no precipitation is observed. These probes yield differences in the enthalpies of binding to heated and nonheated IgG similar to ANS. The data illustrate that ITC with low-molecular-weight probes is a versatile

  5. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  6. Molecular probes for the detection and identification of ichthyotoxic marine microalgae of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta).

    PubMed

    Dittami, Simon M; Riisberg, Ingvild; Edvardsen, Bente

    2013-10-01

    Phytoflagellates of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta) form blooms in marine coastal waters in northern Europe, Japan, and New Zealand that at times cause fish kills with severe losses for the aquaculture industry. The aim of this study was to develop molecular probes for the detection and identification of Pseudochattonella at the genus and species level. A variety of probes were developed and applied to either dot blot hybridization, (q)PCR, or microarray format. In the dot blot hybridization assay, five different oligonucleotide probes targeting the small subunit (SSU) rDNA were tested against DNA from 18 microalgal strains and shown to be specific to the genus Pseudochattonella. A genus-specific PCR assay was developed by identifying an appropriate primer pair in the SSU-internal transcribed spacer 1 (ITS1) rDNA region. Its specificity was tested by screening against both target and non-target strains, and the assay was used to confirm the presence or absence of Pseudochattonella species in environmental samples. In order to distinguish between the two species of the genus, two PCR primer pairs each biased towards one of the species were designed in the large subunit (LSU) rDNA D1 domain and used for quantitative real-time PCR. Five selected probes (three SSU and two LSU rDNA) were adapted for the use on microarrays and included on a prototype multi-species microarray for the detection of harmful algae ( http://www.midtal.com ). Finally, microarrays and qPCR were used for the monthly monitoring of a sampling site in outer Oslofjorden during a 1-year period. Members of Pseudochattonella are difficult to identify by light microscopy in Lugol's preserved samples, and the two species Pseudochattonella verruculosa and Pseudochattonella farcimen can be morphologically distinguished only by transmission electron microscopy. The molecular probes designed in this study will be a valuable asset to microscopical detection methods in the monitoring

  7. Turbulence in molecular clouds - A new diagnostic tool to probe their origin

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Battaglia, A.

    1985-01-01

    A method is presented to uncover the instability responsible for the type of turbulence observed in molecular clouds and the value of the physical parameters of the 'placental medium' from which turbulence originated. The method utilizes the observational relation between velocities and sizes of molecular clouds, together with a recent model for large-scale turbulence (constructed by Canuto and Goldman, 1985).

  8. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods.

  9. Probing the Spatial Organization of Molecular Complexes Using Triple-Pair-Correlation

    PubMed Central

    Yin, Yandong; Rothenberg, Eli

    2016-01-01

    Super-resolution microscopy coupled with multiplexing techniques can resolve specific spatial arrangements of different components within molecular complexes. However, reliable quantification and analysis of such specific organization is extremely problematic because it is frequently obstructed by random co-localization incidents between crowded molecular species and the intrinsic heterogeneity of molecular complexes. To address this, we present a Triple-Pair-Correlation (TPC) analysis approach for unbiased interpretation of the spatial organization of molecular assemblies in crowded three-color super-resolution (SR) images. We validate this approach using simulated data, as well as SR images of DNA replication foci in human cells. This demonstrates the applicability of TPC in deciphering the specific spatial organization of molecular complexes hidden in dense multi-color super-resolution images. PMID:27545293

  10. Design, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug.

    PubMed

    Franke-Whittle, Ingrid H; O'Shea, Michael G; Leonard, Graham J; Sly, Lindsay I

    2005-07-01

    Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of "squashed" whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.

  11. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging

    PubMed Central

    Dai, Yunpeng; Yin, Jipeng; Huang, Yu; Chen, Xueli; Wang, Guodong; Liu, Yajun; Zhang, Xianghan; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2016-01-01

    We quantified molecular specificity of Cy5.5-GX1 in vivo with dynamic fluorescence imaging to better understand its kinetic properties. According to whether or not free GX1 was injected and when it was injected, twelve of BGC-823 xenografted mice were randomly divided into three groups and underwent a 60 minute dynamic fluorescence scanning. Combined with a principal-component analysis, the binding potential (Bp) of the probe was determined by both Logan graphical analysis with reference tissue model (GARTM) and Lammertsma simplified reference tissue model (SRTM). The sum of the pharmacokinetic rate constants (SKRC) was quantified by the Gurfinkel exponential model (GEXPM). Cy5.5-GX1 specifically targeted tumor both in vitro and in vivo. We obtained similar quantification results of Bp (GARTM Bp = 0.582 ± 0.2655, SRTM Bp = 0.618 ± 0.2923), and obtained a good linear relation between the Bp value and the SKRC value. Our results indicate that the SKRC value is more suitable for an early-stage kinetic data analysis, and the Bp value depicts kinetic characteristics under the equilibrium state. Dynamic fluorescence imaging in conjunction with various kinetic models are optimal tools to quantify molecular specificity of the Cy5.5-GX1 probe in vivo. PMID:27446643

  12. Lithium naphthalocyanine as a new molecular radical probe for electron paramagnetic resonance oximetry

    NASA Astrophysics Data System (ADS)

    Manivannan, Ayyakkannu; Yanagi, Hisao; Ilangovan, Govindasamy; Kuppusamy, Periannan

    2001-08-01

    A new lithium naphthalocyanine dye aggregate [Li 2Nc][LiNc] is reported as a potential electron paramagnetic resonance (EPR) oximetry probe for accurate measurement of oxygen concentration in biological systems. The Li 2Nc is diamagnetic; however, the LiNc molecule has an unpaired electron and hence is paramagnetic. The aggregate shows a strong and single line EPR signal that is non-saturating at normal EPR power levels. An oxygen-dependent peak-to-peak EPR spectral width ranging from 0.51 G (at pO 2: 0 mmHg) to 26.2 G (at pO 2: 760 mmHg) has been observed. The application of this probe has been demonstrated in the measurement of arterial and venous oxygen tensions in a rat.

  13. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.

  14. Specific Recognition and Detection of MRSA Based on Molecular Probes Comprised of Lytic Phage and Antibody

    DTIC Science & Technology

    2011-03-29

    For this purpose we use a newly isolated Saureus bacteriophage with a wide spectrum of hosts (including MRSA strains) together with monoclonal...with two parallel channels. One channel will have a Saureus bacteriophage monolayer as a sensor probe, while the sensor of another channel will be...covered with PBP 2a specific antibodies. Consequently, one channel will identify Saureus bacteria, while another one will be sensitive to the

  15. Molecular Probes for Imaging the Sigma-2 Receptor: In Vitro and In Vivo Imaging Studies.

    PubMed

    Zeng, Chenbo; McDonald, Elizabeth S; Mach, Robert H

    2017-02-08

    The sigma-2 (σ2) receptor has been validated as a biomarker of the proliferative status of solid tumors. Therefore, radiotracers having a high affinity and high selectivity for σ2 receptors have the potential to assess the proliferative status of human tumors using noninvasive imaging techniques such as Positron Emission Tomography (PET). Since the σ2 receptor has not been cloned, the current knowledge of this receptor has relied on receptor binding studies with the radiolabeled probes and investigation of the effects of the σ2 receptor ligands on tumor cells. The development of the σ2 selective fluorescent probes has proven to be useful for studying subcellular localization and biological functions of the σ2 receptor, for revealing pharmacological properties of the σ2 receptor ligands, and for imaging cell proliferation. Preliminary clinical imaging studies with [(18)F]ISO-1, a σ2 receptor probe, have shown promising results in cancer patients. However, the full utility of imaging the σ2 receptor status of solid tumors in the diagnosis and prediction of cancer therapeutic response will rely on elucidation of the functional role of this protein in normal and tumor cell biology.

  16. Freezing of Molecular Motions Probed by Cryogenic Magic Angle Spinning NMR.

    PubMed

    Concistrè, Maria; Carignani, Elisa; Borsacchi, Silvia; Johannessen, Ole G; Mennucci, Benedetta; Yang, Yifeng; Geppi, Marco; Levitt, Malcolm H

    2014-02-06

    Cryogenic magic angle spinning makes it possible to obtain the NMR spectra of solids at temperatures low enough to freeze out most molecular motions. We have applied cryogenic magic angle spinning NMR to a crystalline small-molecule solid (ibuprofen sodium salt), which displays a variety of molecular dynamics. Magic angle (13)C NMR spectra are shown for a wide range of temperatures, including in the cryogenic regime down to 20 K. The hydrophobic and hydrophilic regions of the molecular structure display different behavior in the cryogenic regime, with the hydrophilic region remaining well-structured, while the hydrophobic region exhibits a broad frozen conformational distribution.

  17. How does the molecular linker in dynamic force spectroscopy affect probing molecular interactions at the single-molecule level?

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Aizawa, Kota; Hanyu, Tatsuya; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-08-01

    Dynamic force spectroscopy (DFS) based on atomic force microscopy, which enables us to obtain information on the interaction potential between molecules such as antigen-antibody complexes at the single-molecule level, is a key technique for advancing molecular science and technology. However, to ensure the reliability of DFS measurement, its basic mechanism must be well understood. We examined the effect of the molecular linker used to fix the target molecule to the atomic force microscope cantilever, i.e., the force direction during measurement, for the first time, which has not been discussed until now despite its importance. The effect on the lifetime and barrier position, which can be obtained by DFS, was found to be ˜10 and ˜50%, respectively, confirming the high potential of DFS.

  18. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Rauwerdink, Adam M.; Weaver, John B.

    2010-01-01

    Molecular binding is important in many venues including antibody binding for diagnostic and therapeutic agents and pharmaceutical function. We demonstrate that a method of measuring nanoparticle Brownian motion, termed magnetic spectroscopy of nanoparticle Brownian motion (MSB), can be used to monitor molecular binding and the bound fraction. It is plausible that MSB can be used to measure binding in vivo because the same signal has been used to image nanoparticles in nanogram quantities in vivo.

  19. High Resolution PET Imaging Probe for the Detection, Molecular Characterization, and Treatment Monitoring of Prostate cancer

    DTIC Science & Technology

    2011-07-01

    Nuclear Instruments and Methods in Physics Research A 0168-9002/$ - see front matter & 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.nima...direction along the ring axis is called down-to-up, and the ring plane is spanned by a back-to- front and a left-to-right axes. The probe was placed in the...ring, displaced for 12 cm in back-to- front direction and centrally in all other directions. To estimate sensi- tivity, a barrel ofwaterwith elliptical

  20. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling.

    PubMed

    Zhang, Jing; Zhuang, Shulin; Tong, Changlun; Liu, Weiping

    2013-07-31

    Triazole fungicides, one category of broad-spectrum fungicides, are widely applied in agriculture and medicine. The extensive use leads to many residues and casts potential detrimental effects on aquatic ecosystems and human health. After exposure of the human body, triazole fungicides may penetrate into the bloodstream and interact with plasma proteins. Whether they could have an impact on the structure and function of proteins is still poorly understood. By using multispectroscopic techniques and molecular modeling, the interaction of several typical triazole fungicides with human serum albumin (HSA), the major plasma protein, was investigated. The steady-state and time-resolved fluorescence spectra manifested that static type, due to complex formation, was the dominant mechanism for fluorescence quenching. Structurally related binding modes speculated by thermodynamic parameters agreed with the prediction of molecular modeling. For triadimefon, hydrogen bonding with Arg-218 and Arg-222 played an important role, whereas for imazalil, myclobutanil, and penconazole, the binding process was mainly contributed by hydrophobic and electrostatic interactions. Via alterations in three-dimensional fluorescence and circular dichroism spectral properties, it was concluded that triazoles could induce slight conformational and some microenvironmental changes of HSA. It is anticipated that these data can provide some information for possible toxicity risk of triazole fungicides to human health and be helpful in reinforcing the supervision of food safety.

  1. Probing structure-nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study.

    PubMed

    Teklebrhan, Robel B; Ge, Lingling; Bhattacharjee, Subir; Xu, Zhenghe; Sjöblom, Johan

    2012-05-24

    Four synthetic perylene bisimide-based polyaromatic (PA) surfactants with a structural or functional group difference in their attached hydrophilic/hydrophobic substituent side chains were used to probe structure-nanoaggregation relations in organic media by molecular dynamics simulations and dynamic light scattering. The results from the simulated radial distribution functions and light scattering experiments indicate that variation in the structure of side chains and polarity of functional groups leads to significant variations in molecular association, dynamics of molecular nanoaggregation and structure of nanoaggregates. The aggregates of PA surfactant molecules grow to much larger sizes in heptane than in toluene. The aromatic solvent is shown to hinder molecular association by weakening π-π stacking, demonstrating the control of molecular aggregation by tuning solvent properties. In aliphatic solvent, the aggregates formed from PA surfactants of aliphatic alkyl groups and phenylalanine derivatives as a side chain usually have a higher solvent accessible surface area to accessible volume ratio (SASA:AV) than that of tryptophan derivatives in their side chains. PA surfactants with an aliphatic functional group in both side chains does not form polyaromatic π-π stacking (T-stacking) due to its strong steric hindrance in both solvents. Depending on the nature of the side chains attached, various stacking distributions, aggregation sizes, and SASA:AV ratios were obtained. In PA surfactant nanoaggregates, all of the solvent molecules were found to be excluded from the interstices of the stacked polyaromatic cores, regardless of whether the solvent molecules are aliphatic or aromatic. Although the change in the structure of side chain substituent in polyaromatic surfactants has a negligible impact on their self-diffusivity, it can strongly influence their intermolecular interactions, leading to different aggregate diffusion coefficients.

  2. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study.

    PubMed

    do Canto, António M T M; Robalo, João R; Santos, Patrícia D; Carvalho, Alfredo J Palace; Ramalho, J P Prates; Loura, Luís M S

    2016-11-01

    Fluorescence spectroscopy and microscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in these membranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3-4Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using them as membrane reporters.

  3. Ultrafast laser-probing spectroscopy for studying molecular structure of protein aggregates.

    PubMed

    Jung, Huihun; Szwejkowski, Chester J; Pena-Francesch, Abdon; Tomko, John A; Allen, Benjamin; Özdemir, Şahin Kaya; Hopkins, Patrick; Demirel, Melik C

    2017-03-09

    We report the development of a new technique to screen protein aggregation based on laser-probing spectroscopy with sub-picosecond resolution. Protein aggregation is an important topic for materials science, fundamental biology as well as clinical studies in neurodegenerative diseases and translation studies in biomaterials engineering. However, techniques to study protein aggregation and assembly are limited to infrared spectroscopy, fluorescent assays, immunostaining, or functional assays among others. Here, we report a new technique to characterize protein structure-property relationship based on ultrafast laser-probing spectroscopy. First, we show theoretically that the temperature dependence of the refractive index of a protein is correlated to its crystallinity. Then, we performed time-domain thermo-transmission experiments on purified semi-crystalline proteins, both native and recombinant (i.e., silk and squid ring teeth), and also on intact E. coli cells bearing overexpressed recombinant protein. Our results demonstrate, for the first time, relative quantification of crystallinity in real time for protein aggregates. Our approach can potentially be used for screening an ultra-large number of proteins in vivo. Using this technique, we could answer many fundamental questions in structural protein research, such as the underlying sequence-structure relationship for protein assembly and aggregation.

  4. Spitzer spectral line mapping of interstellar shock waves: probing the physics and chemistry of shocked molecular clouds

    NASA Astrophysics Data System (ADS)

    Neufeld, David; Banhidi, Zita; Bergin, Ted; Giannini, Teresa; Guesten, Rolf; Kaufman, Michael; Liseau, Rene; Melnick, Gary; Nisini, Brunella; Philipp, Sabine; Tolls, Volker

    2007-05-01

    We propose to carry out a comprehensive, spectroscopic imaging study of interstellar shock waves in molecular clouds, in which the IRS instrument will be used to obtain spectral line maps with complete wavelength coverage over the 5.2 to 37 micron spectral region and at the highest spectral resolution achievable with IRS. By observing, in their entirety, five protostellar outflows with diverse properties, and two shocked molecular clumps within the supernova remnant IC433, we will probe the physics and chemistry of interstellar shock waves in a wide variety of environments. All the sources that we propose to observe are also be targeted for spectroscopic observations in Guaranteed Time Key Projects of the Herschel Space Observatory, providing an important synergy between the mid-IR spectroscopy that is possible with Spitzer and the far-IR and submillimeter spectroscopy to be carried out by Herschel. The wavelength range covered by Spitzer/IRS provides access to 15 fine structure transitions of NeII, NeIII, SiII, PII, SI, SII, ClII, FeII, and FeIII; the S(0) through S(7) pure rotational lines of molecular hydrogen; the R(3) and R(4) transitions hydrogen deuteride (HD); several rotational transitions of water vapor; and the 6.2, 7.7, 8.6 and 11.3 micron PAH emission bands; all which have been detected in one or more sources that we have observed previously. Analysis of the resultant data will provide a wealth of information that will constitute an important legacy to interstellar medium science, probing - among other things - (1) the H2 ortho-to-para ratio, a valuable probe of the thermal history of the gas; (2) the HD abundance, from which the gas-phase D/H ratio can be determined ; (3) the water abundance, a key parameter that determines thermal balance in the shocked material; (4) the relative distribution of gas that has been heated by fast dissociative shocks and by slower non-dissociative shocks.

  5. Probes of turbulent driving mechanisms in molecular clouds from fluctuations in synchrotron intensity

    NASA Astrophysics Data System (ADS)

    Herron, C. A.; Federrath, C.; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Burkhart, Blakesley

    2017-04-01

    Previous studies have shown that star formation depends on the driving of molecular cloud turbulence, and differences in the driving can produce an order of magnitude difference in the star formation rate. The turbulent driving is characterized by the parameter ζ, with ζ = 0 for compressive, curl-free driving (e.g. accretion or supernova explosions), and ζ = 1 for solenoidal, divergence-free driving (e.g. Galactic shear). Here we develop a new method to measure ζ from observations of synchrotron emission from molecular clouds. We calculate statistics of mock synchrotron intensity images produced from magnetohydrodynamic simulations of molecular clouds, in which the driving was controlled to produce different values of ζ. We find that the mean and standard deviation of the log-normalized synchrotron intensity are sensitive to ζ, for values of ζ between 0 (curl-free driving) and 0.5 (naturally mixed driving). We quantify the dependence of zeta on the direction of the magnetic field relative to the line of sight. We provide best-fitting formulae for ζ in terms of the log-normalized mean and standard deviation of synchrotron intensity, with which ζ can be determined for molecular clouds that have similar Alfvénic Mach number to our simulations. These formulae are independent of the sonic Mach number. Signal-to-noise ratios larger than 5, and angular resolutions smaller than 5 per cent of the cloud diameter, are required to apply these formulae. Although there are no firm detections of synchrotron emission from molecular clouds, by combining Green Bank Telescope and Very Large Array observations it should be possible to detect synchrotron emission from molecular clouds, thereby constraining the value of ζ.

  6. Tracing few-femtosecond photodissociation dynamics on molecular oxygen with a single-color pump-probe scheme in the VUV

    NASA Astrophysics Data System (ADS)

    Schepp, Oliver; Baumann, Arne; Rompotis, Dimitrios; Gebert, Thomas; Azima, Armin; Wieland, Marek; Drescher, Markus

    2016-09-01

    Molecular wave-packet dynamics in oxygen are studied in the time domain, using a single-color VUV-pump-VUV-probe scheme. 17-fs VUV pulses, centered at 161 nm are generated via high-order harmonic generation driven by an intense 800-nm pulse leading to VUV pulse energies that reach 1.1 μ J per pulse. An all-reflective interferometric pump-probe scheme is used for studying the delay dependence of the molecular oxygen ion signal with simultaneous nonresonant photoionization of krypton as a precise timing-reference. Access to the excited dissociative state lifetime is provided by the resulting delay-dependent O2 + signal, ultimately limited by the molecular ionization window. The ability to use a two-photon VUV probe provides the delay-dependent detection of O+ as an additional observable, extending the dissociation observation window.

  7. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    PubMed Central

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron transport through single-molecule junctions formed by a single octanethiol molecule bonded by the thiol anchoring group to a gold electrode and linked to a carbon tip by the methyl group. We observe the presence of conductance plateaus during the stretching of the molecular bridge, which is the signature of the formation of a molecular junction. PMID:22587692

  8. Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study.

    PubMed

    Palermo, Vincenzo; Palma, Matteo; Tomović, Zeljko; Watson, Mark D; Friedlein, Rainer; Müllen, Klaus; Samorì, Paolo

    2005-11-11

    We report a Kelvin-probe force microscopy (KPFM) investigation on the structural and electronic properties of different submicron-scale supramolecular architectures of a synthetic nanographene, including extended layers, percolated networks and broken patterns grown from solutions at surfaces. This study made it possible to determine the local work function (WF) of the different pi-conjugated nanostructures adsorbed on mica with a resolution below 10 nm and 0.05 eV. It revealed that the WF strongly depends on the local molecular order at the surface, in particular on the delocalization of electrons in the pi-states, on the molecular orientation at surfaces, on the molecular packing density, on the presence of defects in the film and on the different conformations of the aliphatic peripheral chains that might cover the conjugated core. These results were confirmed by comparing the KPFM-estimated local WF of layers supported on mica, where the molecules are preferentially packed edge-on on the substrate, with the ultraviolet photoelectron spectroscopy microscopically measured WF of layers adsorbed on graphite, where the molecules should tend to assemble face-on at the surface. It appears that local WF studies are of paramount importance for understanding the electronic properties of active organic nanostructures, being therefore fundamental for the building of high-performance organic electronic devices, including field-effect transistors, light-emitting diodes and solar cells.

  9. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    SciTech Connect

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  10. Genetic engineered molecular imaging probes for applications in cell therapy: emphasis on MRI approach

    PubMed Central

    Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS

    2016-01-01

    Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183

  11. A probe to study the toxic interaction of tartrazine with bovine hemoglobin at the molecular level.

    PubMed

    Li, Yating; Wei, Haoran; Liu, Rutao

    2014-03-01

    Tartrazine is an artificial azo dye commonly used in food products, but tartrazine in the environment is potentially harmful. The toxic interaction between tartrazine and bovine hemoglobin (BHb) was investigated using fluorescence, synchronous fluorescence, UV-vis absorption, circular dichroism (CD) and molecular modeling techniques under simulated physiological conditions. The fluorescence data showed that tartrazine can bind with BHb to form a complex. The binding process was a spontaneous molecular interaction, in which van der Waals' forces and hydrogen bonds played major roles. Molecular docking results showed that the hydrogen bonds exist between the oxygen atoms at position 31 of tartrazine and the nitrogen atom NZ7 on Lys99, and also between the oxygen atoms at position 15 of tartrazine and the nitrogen atom NZ7 on Lys104, Lys105. The results of UV-vis and CD spectra revealed that tartrazine led to conformational changes in BHb, including loosening of the skeleton structure and decreasing α helix in the secondary structure. The synchronous fluorescence experiment revealed that tartrazine binds into the hemoglobin central cavity, and this was verified using a molecular modeling study.

  12. Franck—Condon breakdown as a probe of continuum coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung Cheun; Poliakoff, E. D.

    1992-03-01

    We have measured vibrational branching ratios for 4σ -1 photoionization of CO in order to characterize continuum channel coupling. The results indicate that the shape resonance in the 5σ→ɛσ channel influences vibrational branching ratios of the 4σ -1 channel via continuum coupling, and the data illustrate how continuum channel coupling affects molecular photoionization dynamics.

  13. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems

    PubMed Central

    Sample, Vedangi; Mehta, Sohum; Zhang, Jin

    2014-01-01

    ABSTRACT In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction. PMID:24634506

  14. Targeted next generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    DTIC Science & Technology

    2016-07-06

    detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing...results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant...multiple downstream molecular assays for the detection of targeted genetic regions. TR-16-130 DISTRIBUTION STATEMENT A: Approved for public release

  15. Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike

    2016-11-08

    Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively (13)C-labeled choline with (29)Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like (1)H-(13)C CP-REDOR (rotational-echo double resonance), (1)H-(13)C HETCOR (heteronuclear correlation), and (1)H-(29)Si-(1)H double CP are employed to determine spatial parameters. The measurement of (29)Si-(13)C internuclear distances for selectively (13)C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.

  16. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    PubMed

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2016-12-29

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H2O2) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  17. Probing the evolution of molecular cloud structure. II. From chaos to confinement

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Beuther, H.; Banerjee, R.; Federrath, C.; Henning, T.

    2011-06-01

    We present an analysis of the large-scale molecular cloud structure and of the stability of clumpy structures in nearby molecular clouds. In our recent work, we identified a structural transition in molecular clouds by studying the probability distributions of their gas column densities. In this paper, we further examine the nature of this transition. The transition takes place at the visual extinction of A_V^tail = 2{-4} mag, or equivalently, at Σtail ≈ 40-80 M⊙ pc-2. The clumps identified above this limit have wide ranges of masses and sizes, but a remarkably constant mean volume density of overline{n ≈ 10^3} cm-3. This is 5-10 times higher than the density of the medium surrounding the clumps. By examining the stability of the clumps, we show that they are gravitationally unbound entities, and that the external pressure from the parental molecular cloud is a significant source of confining pressure for them. Then, the structural transition at A_V^tail may be linked to a transition between this population and the surrounding medium. The star-formation rates in the clouds correlate strongly with the total mass in the clumps, i.e., with the mass above A_V^tail, and drops abruptly below that threshold. These results imply that the formation of pressure-confined clumps introduces a prerequisite for star formation. Furthermore, they give a physically motivated explanation for the recently reported relation between the star-formation rates and the amount of dense material in molecular clouds. Likewise, they give rise to a natural threshold for star formation at A_V^tail.

  18. Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging.

    PubMed

    Zhang, Chunfu; Xie, Xuan; Liang, Sheng; Li, Mingli; Liu, Yajie; Gu, Hongchen

    2012-08-01

    Sensitive molecular imaging and detection of tumors or their supporting neovascularity require high-avidity, target-specific probes, which produce robust signal amplification compatible with a sensitive high-resolution imaging modality. In this context, we fabricated a high magnetic resonance (MR)-sensitive magnetite nanocluster (MNC) probe specific for tumor angiogenesis by assembly of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with (Mal)mPEG-PLA copolymer into cluster and subsequent encoding c(RGDyC) peptide on the cluster (RGD-MNC) for detection of nascent tumors. We found that RGD-MNC is highly sensitive (r(2) = 464.94 s(-1)mM(-1)) and specific for αvβ3-positive cells. Both nascent (35 ± 6.6 mm(3)) and large tumors (256 ± 22.3 mm(3)) can be registered by RGD-MNC and detected by MR imaging (MRI), with the nascent tumors demonstrating more pronounced MR contrast. Immunohistochemical studies revealed that MR signal decrease was closely correlated with histological characteristics of tumors (microvessel density and αvβ3 expression levels) at different growth stages.

  19. Use of molecular probes to assess geographic distribution of Pfiesteria species.

    PubMed

    Rublee, P A; Kempton, J W; Schaefer, E F; Allen, C; Harris, J; Oldach, D W; Bowers, H; Tengs, T; Burkholder, J M; Glasgow, H B

    2001-10-01

    We have developed multiple polymerase chain reaction (PCR)-based methods for the detection of Pfiesteria sp. in cultures and environmental samples. More than 2,100 water and sediment samples from estuarine sites of the U.S. Atlantic and gulf coasts were assayed for the presence of Pfiesteria piscicida Steidinger & Burkholder and Pfiesteria shumwayae Glasgow & Burkholder by PCR probing of extracted DNA. Positive results were found in about 3% of samples derived from routine monitoring of coastal waters and about 8% of sediments. The geographic range of both species was the same, ranging from New York to Texas. Pfiesteria spp. are likely common and generally benign inhabitants of coastal areas, but their presence maintains a potential for fish and human health problems.

  20. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy.

    PubMed

    Aguilar, Carlos A; Haight, Richard; Mavrokefalos, Anastassios; Korgel, Brian A; Chen, Shaochen

    2009-10-27

    ZnO nanowires (NWs) are emerging as key elements for new lasing, photovoltaic and sensing applications but elucidation of their fundamental electronic properties has been hampered by a dearth of characterization tools capable of probing single nanowires. Herein, ZnO NWs were synthesized in solution and integrated into a low energy photoelectron spectroscopy system, where quantitative optical measurements of the NW work function and Fermi level location within the band gap were collected. Next, the NWs were decorated with several dipolar self-assembled monolayers (SAMs) and control over the electronic properties is demonstrated, yielding a completely tunable hybrid electronic material. Using this new metrology approach, a host of other extraordinary interfacial phenomena could be explored on nanowires such as spatial dopant profiling or heterostructures.

  1. Molecular probing of TNF: From identification of therapeutic target to guidance of therapy in inflammatory diseases.

    PubMed

    Chu, Cong-Qiu

    2016-09-12

    Therapy by blocking tumor necrosis factor (TNF) activity is highly efficacious and profoundly changed the paradigm of several inflammatory diseases. However, a significant proportion of patients with inflammatory diseases do not respond to TNF inhibitors (TNFi). Prediction of therapeutic response is required for TNFi therapy. Isotope labeled anti-TNF antibodies or TNF receptor have been investigated to localize TNF production at inflammatory tissue in animal models and in patients with inflammatory diseases. The in vivo detection of TNF has been associated with treatment response. Recently, fluorophore labeled anti-TNF antibody in combination with confocal laser endomicroscopy in patients with Crohn's disease yielded more accurate and quantitative in vivo detection of TNF in the diseased mucosa. More importantly, this method demonstrated high therapeutic predication value. Fluorophore labeled TNF binding aptamers in combination with modern imaging technology offers additional tools for in vivo TNF probing.

  2. Design and synthesis of molecular probes for the determination of the target of the anthelmintic drug praziquantel.

    PubMed

    Sharma, Lalit Kumar; Cupit, Pauline M; Goronga, Tino; Webb, Thomas R; Cunningham, Charles

    2014-06-01

    Schistosomiasis is a highly prevalent neglected tropical disease caused by blood-dwelling helminths of the genus Schistosoma. Praziquantel (PZQ) is the only drug available widely for the treatment of this disease and is administered in racemic form, even though only the (R)-isomer has significant anthelmintic activity. Progress towards the development of a second generation of anthelmintics is hampered by a lack of understanding of the mechanism of action of PZQ. In this Letter, we report an efficient protocol for the small-scale separation of enantiomers of 2 (hydrolyzed PZQ) using supercritical fluid chromatography (SFC). The enantiopure 2 was then used to develop several molecular probes, which can potentially be used to help identify the protein target of PZQ and study its mode of action.

  3. The identification, characterization and optimization of small molecule probes of cysteine proteases: experiences of the Penn Center for Molecular Discovery with cathepsin B and cathepsin L.

    PubMed

    Huryn, Donna M; Smith, Amos B

    2009-01-01

    During the pilot phase of the NIH Molecular Library Screening Network, the Penn Center for Molecular Discovery focused on a series of projects aimed at high throughput screening and the development of probes of a variety of protease targets. This review provides our medicinal chemistry experience with two such targets--cathepsin B and cathepsin L. We describe our approach for hit validation, characterization and triage that led to a critical understanding of the nature of hits from the cathepsin B project. In addition, we detail our experience at hit identification and optimization that led to the development of a novel thiocarbazate probe of cathepsin L.

  4. Molecular requirements for inhibition of the chemokine receptor CCR8 – probe-dependent allosteric interactions

    PubMed Central

    Rummel, PC; Arfelt, KN; Baumann, L; Jenkins, TJ; Thiele, S; Lüttichau, HR; Johnsen, A; Pease, J; Ghosh, S; Kolbeck, R; Rosenkilde, MM

    2012-01-01

    BACKGROUND AND PURPOSE Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative structural probes. EXPERIMENTAL APPROACH The compounds were tested as inverse agonists and as antagonists against CCL1-induced activity in Gαi signalling and chemotaxis. Furthermore, they were assessed by heterologous competition binding against two radiolabelled receptor ligands: the endogenous agonist CCL1 and the virus-encoded antagonist MC148. KEY RESULTS All compounds were highly potent inverse agonists with EC50 values from 1.7 to 23 nM. Their potencies as antagonists were more widely spread (EC50 values from 5.9 to 1572 nM). Some compounds were balanced antagonists/inverse agonists whereas others were predominantly inverse agonists with >100-fold lower potency as antagonists. A correspondingly broad range of affinities, which followed the antagonist potencies, was disclosed by competition with [125I]-CCL1 (Ki 3.4–842 nM), whereas the affinities measured against [125I]-MC148 were less widely spread (Ki 0.37–27 nM), and matched the inverse agonist potencies. CONCLUSION AND IMPLICATIONS Despite highly potent and direct effects as inverse agonists, competition-binding experiments against radiolabelled agonist and tests for antagonism revealed a probe-dependent allosteric effect of these compounds. Thus, minor chemical changes affected the ability to modify chemokine binding and action, and divided the compounds into two groups: predominantly inverse agonists and balanced antagonists/inverse agonists. These studies have important implications for the design of new inverse agonists with or without antagonist properties. PMID:22708643

  5. Deuteration of a molecular probe for DNP hyperpolarization--a new approach and validation for choline chloride.

    PubMed

    Allouche-Arnon, Hyla; Lerche, Mathilde H; Karlsson, Magnus; Lenkinski, Robert E; Katz-Brull, Rachel

    2011-01-01

    The promising dynamic nuclear polarization (DNP) for hyperpolarized (13)C-MRI/MRS of real-time metabolism in vivo is challenged by the limited number of agents with the required physical and biological properties. The physical requirement of a liquid-state T(1) of tens of seconds is mostly found for (13)C-carbons in small molecules that have no direct protons attached, i.e. carbonyl, carboxyl and certain quaternary carbons. Unfortunately, such carbon positions do not exist in a large number of metabolic agents, and chemical shift dispersion often limits detection of their chemical evolution. We have previously shown that direct deuteration of protonated carbon positions significantly prolongs the (13)C T(1) in the liquid state and provides potential (13)C-labeled agents with differential chemical shift with respect to metabolism. The Choline Molecular Probe [1,1,2,2-D(4), 2-(13)C]choline chloride (CMP2) has recently been introduced as a means of studying choline metabolism in a hyperpolarized state. Here, the biophysical properties of CMP2 were characterized and compared with those of [1-(13)C]pyruvate to evaluate the impact of molecular probe deuteration. The CMP2 solid-state polarization build-up time constant (30 min) and polarization level (24%) were comparable to those of [1-(13)C]pyruvate. Both compounds' liquid state T(1) increased with temperature. The high-field T(1) of CMP2 compared favorably with [1-(13)C]pyruvate. Thus, a deuterated agent demonstrated physical properties comparable to a hyperpolarized compound of already proven value, whereas both showed chemical shift dispersion that allowed monitoring of their metabolism. It is expected that the use of deuterated carbon-13 positions as reporting hyperpolarized nuclei will substantially expand the library of agents for DNP-MR.

  6. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    PubMed

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  7. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    SciTech Connect

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.

  8. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    DOE PAGES

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; ...

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in themore » microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.« less

  9. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    PubMed Central

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-01-01

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane. PMID:26831599

  10. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-01

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.

  11. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  12. Fluorescent Resonance Energy Transfer: A Tool for Probing Molecular Cell-Biomaterial Interactions in Three Dimensions

    PubMed Central

    Huebsch, Nathaniel D.; Mooney, David J.

    2007-01-01

    The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, a molecular fluorescence technique, Fluorescence Resonance Energy Transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications. PMID:17270268

  13. Molecular adsorbates as probes of the local properties of doped graphene

    PubMed Central

    Pham, Van Dong; Joucken, Frédéric; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Sporken, Robert; Santos, Maria Cristina dos; Lagoute, Jérôme

    2016-01-01

    Graphene-based sensors are among the most promising of graphene’s applications. The ability to signal the presence of molecular species adsorbed on this atomically thin substrate has been explored from electric measurements to light scattering. Here we show that the adsorbed molecules can be used to sense graphene properties. The interaction of porphyrin molecules with nitrogen-doped graphene has been investigated using scanning tunneling microscopy and ab initio calculations. Molecular manipulation was used to reveal the surface below the adsorbed molecules allowing to achieve an atomic-scale measure of the interaction of molecules with doped graphene. The adsorbate’s frontier electronic states are downshifted in energy as the molecule approaches the doping site, with largest effect when the molecule sits over the nitrogen dopant. Theoretical calculations showed that, due to graphene’s high polarizability, the adsorption of porphyrin induces a charge rearrangement on the substrate similar to the image charges on a metal. This charge polarization is enhanced around nitrogen site, leading to an increased interaction of molecules with their image charges on graphene. Consequently, the molecular states are stabilized and shift to lower energies. These findings reveal the local variation of polarizability induced by nitrogen dopant opening new routes towards the electronic tuning of graphene. PMID:27097555

  14. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.

    PubMed

    Hartenfeller, Markus; Eberle, Martin; Meier, Peter; Nieto-Oberhuber, Cristina; Altmann, Karl-Heinz; Schneider, Gisbert; Jacoby, Edgar; Renner, Steffen

    2012-05-25

    In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery.

  15. Design and synthesis of tricyclic JAK3 inhibitors with picomolar affinities as novel molecular probes.

    PubMed

    Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke; Laufer, Stefan A

    2014-02-01

    The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3-methyl-1,6-dihydrodipyrrolo[2,3-b:2',3'-d]pyridine scaffold was designed based on the tofacitinib-JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first-time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.

  16. Probing the interface between semiconducting nanocrystals and molecular metal chalcogenide surface ligands: insights from first principles

    NASA Astrophysics Data System (ADS)

    Scalise, Emilio; Wippermann, Stefan; Galli, Giulia; Talapin, Dmitri

    Colloidal nanocrystals (NCs) are emerging as cost-effective materials offering exciting prospects for solar energy conversion, light emission and electronic applications. Recent experimental advances demonstrate the synthesis of fully inorganic nanocrystal solids from chemical solution processing. The properties of the NC-solids are heavily determined by the NCs surface and their interactions with the host matrix. However, information on the atomistic structure of such composites is hard to obtain, due to the complexity of the synthesis conditions and the unavailability of robust experimental techniques to probe nanointerfaces at the microscopic level. Here we present a systematic theoretical study of the interaction between InAs and InP NCs with Sn2S64- ligands. Employing a grand canonical ab initio thermodynamic approach we investigate the relative stability of a multitude of configurations possibly realized at the NC-ligand interface. Our study highlights the importance of different structural details and their strong impact on the resulting composite's properties. We show that to obtain a detailed understanding of experimental data it is necessary to take into account complex interfacial structures beyond simplified NC-ligand model interfaces. S. W. acknowledges BMBF NanoMatFutur Grant No. 13N12972. G.G. acknowledges DOE-BES for funding part of this work.

  17. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    PubMed

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers.

  18. Probing a Structural Model of the Nuclear Pore Complex Channel through Molecular Dynamics

    PubMed Central

    Miao, Lingling; Schulten, Klaus

    2010-01-01

    Abstract The central pore of a nuclear pore complex (NPC) is filled with unstructured proteins that contain many FG-repeats separated by hydrophilic regions. An example of such protein is nsp1. By simulating an array of nsp1 segments, we identified, in an earlier study, a spontaneously formed brushlike structure that promises to explain selective transport in the NPC channel. Here we report four (350,000 atom, 200 ns) simulations probing this structure via its interaction with transport receptor NTF2 as well as with an inert protein. NTF2 dimers are observed to gradually enter the brush, but the inert protein is not. Both NTF2 and the inert protein are found to bind to FG-repeats, but binding periods lasted more briefly for the inert protein. A simulation also investigated the behavior of a brush made of mutant nsp1 that is known to be less effective in NPC-selective transport, finding that this brush does not attract NTF2. PMID:20409487

  19. Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians

    PubMed Central

    Hartikainen, Hanna; Ashford, Oliver S; Berney, Cédric; Okamura, Beth; Feist, Stephen W; Baker-Austin, Craig; Stentiford, Grant D; Bass, David

    2014-01-01

    Haplosporidians are rhizarian parasites of mostly marine invertebrates. They include the causative agents of diseases of commercially important molluscs, including MSX disease in oysters. Despite their importance for food security, their diversity and distributions are poorly known. We used a combination of group-specific PCR primers to probe environmental DNA samples from planktonic and benthic environments in Europe, South Africa and Panama. This revealed several highly distinct novel clades, novel lineages within known clades and seasonal (spring vs autumn) and habitat-related (brackish vs littoral) variation in assemblage composition. High frequencies of haplosporidian lineages in the water column provide the first evidence for life cycles involving planktonic hosts, host-free stages or both. The general absence of haplosporidian lineages from all large online sequence data sets emphasises the importance of lineage-specific approaches for studying these highly divergent and diverse lineages. Combined with host-based field surveys, environmental sampling for pathogens will enhance future detection of known and novel pathogens and the assessment of disease risk. PMID:23966100

  20. Solution Phase Molecular Dynamics Probed with Synchrotron Hard X-rays

    NASA Astrophysics Data System (ADS)

    March, Anne; Doumy, Gilles; Kanter, Elliot; Southworth, Stephen; Young, Linda; Nemeth, Zoltan; Vankó, Gyorgy; Assefa, Tadesse; Gawelda, Wojciech

    2013-05-01

    The ability to measure short-lived transient states during a chemical reaction is key to understanding many important processes such as oxygen binding in hemeproteins and electron transport in photosynthesis. Time resolved hard x-ray spectroscopies, which are based on laser-pump/x-ray-probe methods, are a unique tool because unlike UV-VIS techniques they are element specific and can provide electronic and structural information with atomic resolution in the vicinity of a particular atom or ion. These characteristics make them particularly powerful for studying molecules in complex environments such as solutions. Using a MHz, picosecond, high average power laser system implemented at Sector 7ID-D of the Advanced Photon Source we have been developing time resolved x-ray emission techniques to track the evolution of photoexcited molecules in solution. We will present recent studies which include the ligand substitution reaction and hydrated electron formation in the coordination complex ferrocyanide Fe(CN)64-. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division and the Advanced Photon Source by the Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  1. Molecular probes of phylogeny and biogeography in toads of the widespread genus Bufo.

    PubMed

    Maxson, L R

    1984-07-01

    Genetic relationships among 25 species of Central and South American Bufo and among representative North, Central, and South American, Asian, and African Bufo were probed, using the quantitative immunological technique of microcomplement fixation (MC'F) which indicated a clear separation of North, Central, and South American lineages of Bufo. The South American lineage likely diverged from the Central and North American lineages in the Eocene; the latter two lineages diverged later, probably in the mid-Oligocene. Some species groups of South American toads, defined on the basis of traditional morphological studies, are genetically quite similar within groups, whereas others are genetically divergent. The amount of albumin evolution does not appear to parallel the amount of karyotypic, morphological, ecological, or behavioral evolution documented. Comparisons suggest that the African lineages separated from the American and Asian lineages in the late Cretaceous, corresponding to the time of the final separation of Gondwanaland, the southern supercontinent including the modern continents of South America, Africa, Australia, Antarctica, and India. The Asian lineages diverged from the lineage giving rise to all of the American species in the early Paleocene.

  2. Probing molecular frame photoelectron angular distributions via high-order harmonic generation from aligned molecules

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Jin, Cheng; Le, Anh-Thu; Lucchese, R. R.

    2012-10-01

    We analyse the theory of single photoionization (PI) and high-order harmonic generation (HHG) by intense lasers from aligned molecules. We show that molecular-frame photoelectron angular distributions can be extracted from these measurements. We also show that, under favourable conditions, the phase of PI transition dipole matrix elements can be extracted from the HHG spectra. Furthermore, by varying the polarization axis of the HHG generating laser with respect to the polarization axis of the aligning laser, it is possible to extract angle-dependent tunnelling ionization rates for different subshells of the molecules.

  3. Kinematics and properties of the central molecular zone as probed with [C ii

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Morris, M. R.; Goldsmith, P. F.; Pineda, J. L.

    2017-03-01

    Context. The Galactic central molecular zone (CMZ) is a region containing massive and dense molecular clouds, with dynamics driven by a variety of energy sources including a massive black hole. It is thus the nearest template for understanding physical processes in extragalactic nuclei. The CMZ's neutral interstellar gas has been mapped spectrally in many neutral atomic and molecular gas tracers, but the ionized and CO-dark H2 regions are less well traced spectroscopically. Aims: We identify features of the UV irradiated neutral gas, photon dominated regions (PDRs) and CO-dark H2, and highly ionized gas in the CMZ as traced by the fine structure line of C+ at 158 μm, [C ii], and characterize their properties. Methods: We observed the [C ii] 158 μm fine structure line with high spectral resolution using Herschel HIFI with two perpendicular on-the-fly strip scans, along l = -0.8° to +0.8° and b = -0.8° to +0.8°, both centered on (l, b) = (0°, 0°). We analyze the spatial-velocity distribution of the [C ii] data, compare them to those of [C i] and CO, and to dust continuum maps, in order to determine the properties and distribution of the ionized and neutral gas and its dynamics within the CMZ. Results: The longitude- and latitude-velocity maps of [C ii] trace portions of the orbiting open gas streams of dense molecular clouds, the cloud G0.253+0.016, also known as the Brick, the arched filaments, the ionized gas within several pc of Sgr A and Sgr B2, and the warm dust bubble. We use the [C ii] data to determine the physical and dynamical properties of these CMZ features. Conclusions: The bright far-IR 158 μm C+ line, [C ii], when observed with high spatial and spectral resolution, traces a wide range of emission features in the CMZ. The [C ii] emission arises primarily from dense PDRs and highly ionized gas, and is an important tracer of the kinematics and physical conditions of this gas.

  4. Evaluating Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers.

    PubMed

    Smith, Michael J P; Cameron, Neil R; Mosely, Jackie A

    2012-10-07

    Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry has facilitated the ionisation of oligomers from low molecular weight synthetic polymers, poly(ethylene glycol) (PEG: M(n) = 1430) and poly(styrene) (PS: M(n) = 1770), directly from solids, providing a fast and efficient method of identification. Ion source conditions were evaluated and it was found that the key instrument parameter was the ion source desolvation temperature which, when set to 600 °C was sufficient to vapourise the heavier oligomers for ionisation. PS, a non-polar polymer that is very challenging to analyse by MALDI or ESI without the aid of metal salts to promote cationisation, was ionised promptly by ASAP resulting in the production of radical cations. A small degree of in-source dissociation could be eliminated by control of the instrument ion source voltages. The fragmentation observed through in-source dissociation could be duplicated in a controlled manner through Collision-Induced Dissociation (CID) of the radical cations. PEG, which preferentially ionises through adduction with alkali metal cations in MALDI and ESI, was observed as a protonated molecular ion by ASAP. In-source dissociation could not be eliminated entirely and the fragmentation observed resulted from cleavage of the C-C and C-O backbone bonds, as opposed to only C-O bond cleavage observed from tandem mass spectrometry.

  5. Pushing the Limits of a Molecular Mechanics Force Field To Probe Weak CH···π Interactions in Proteins.

    PubMed

    Barman, Arghya; Batiste, Bruce; Hamelberg, Donald

    2015-04-14

    The relationship among biomolecular structure, dynamics, and function is far from being understood, and the role of subtle, weak interactions in stabilizing different conformational states is even less well-known. The cumulative effect of these interactions has broad implications for biomolecular stability and recognition and determines the equilibrium distribution of the ensemble of conformations that are critical for function. Here, we accurately capture the stabilizing effects of weak CH···π interaction using an empirical molecular mechanics force field in excellent agreement with experiments. We show that the side chain of flanking C-terminal aromatic residues preferentially stabilize the cis isomer of the peptidyl-prolyl bond of the protein backbone through this weak interaction. Cis-trans isomerization of peptidyl-prolyl protein bond plays a pivotal role in many cellular processes, including signal transduction, substrate recognition, and many diseases. Although the cis isomer is relatively less stable than the trans isomer, aromatic side chains of neighboring residues can play a significant role in stabilizing the cis relative to the trans isomer. We carry out extensive regular and accelerated molecular dynamics simulations and establish an approach to simulate the pH profile of the cis/trans ratio in order to probe the stabilizing role of the CH···π interaction. The results agree very well with NMR experiments, provide detailed atomistic description of this crucial biomolecular interaction, and underscore the importance of weak stabilizing interactions in protein function.

  6. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets.

    PubMed

    Bünermann, Oliver; Kornilov, Oleg; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2012-12-07

    The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 ± 0.2 eV, Rydberg atoms in n = 3 and n = 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n = 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n = 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He(2) (+) and He(3) (+) ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n = 3 Rydberg atoms.

  7. Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

    PubMed

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E

    2013-10-15

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.

  8. Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis.

    PubMed

    Amarie, Sergiu; Standfuss, Jörg; Barros, Tiago; Kühlbrandt, Werner; Dreuw, Andreas; Wachtveitl, Josef

    2007-04-05

    Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car*+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car*+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio*+) band at 909 nm and the Zea*+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car*+ signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.

  9. Probing irradiation induced DNA damage mechanisms using excited state Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Markwick, Phineus R. L.; Doltsinis, Nikos L.; Schlitter, Jürgen

    2007-01-01

    Photoinduced proton transfer in the Watson-Crick guanine (G)-cytosine (C) base pair has been studied using Car-Parrinello molecular dynamics (CP-MD). A flexible mechanical constraint acting on all three hydrogen bonds in an unbiased fashion has been devised to explore the free energy profile along the proton transfer coordinate. The lowest barrier has been found for proton transfer from G to C along the central hydrogen bond. The resulting charge transfer excited state lies energetically close to the electronic ground state suggesting the possibility of efficient radiationless decay. It is found that dynamic, finite temperature fluctuations significantly reduce the energy gap between the ground and excited states for this charge transfer product, promoting the internal conversion process. A detailed analysis of the internal degrees of freedom reveals that the energy gap is considerably reduced by out-of-plane molecular vibrations, in particular. Consequently, it appears that considering only the minimum energy path provides an upper-bound estimate of the associated energy gap compared to the full-dimension dynamical reaction coordinate. Furthermore, the first CP-MD simulations of the G-C base pair in liquid water are presented, and the effects of solvation on its electronic structure are analyzed.

  10. Using dSTORM to probe the molecular architecture of filopodia

    NASA Astrophysics Data System (ADS)

    Ahmed, Sohail; Chou, Amy; Sem, K. P.; Thankiah, Sudaharan; Wright, Graham; Lim, John; Hariharan, Srivats

    2014-03-01

    IRSp53 is a Cdc42 effector and a member of the Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain family which can induce negative membrane curvature. IRSp53 generates filopodia by coupling membrane protrusion (I-BAR domain) with actin dynamics through its SH3 domain binding partners. Dynamin 1 (Dyn1), a large GTPase associated with endocytosis, is a novel interacting partner of IRSp53 that localises to filopodia. Using rapid time-lapse TIRF microscopy we have shown that Dyn1 localized to a subcellular region just behind Mena at the leading edge, or in filopodial tip complexes when co-expressed with IRSp53. Dyn1-GFP was strongly localized in the filopodial shaft during the early phase of elongation, after which it moved rearward, suggestive of a role in early filopodia assembly. Mena and Eps8, accumulate at the tip complex in sequence and are involved in filopodial extension and retraction, respectively (Chou at al, 2014 submitted). Here we describe the use of dSTORM to investigate the molecular architecture of filopodia and in particular the size of the F-actin bundle in these structures. The data suggest that direct Stochastic Optical Reconstruction Microscopy (dSTORM) in combination with other techniques will allow the molecular architecture of

  11. Probing irradiation induced DNA damage mechanisms using excited state Car-Parrinello molecular dynamics.

    PubMed

    Markwick, Phineus R L; Doltsinis, Nikos L; Schlitter, Jürgen

    2007-01-28

    Photoinduced proton transfer in the Watson-Crick guanine (G)-cytosine (C) base pair has been studied using Car-Parrinello molecular dynamics (CP-MD). A flexible mechanical constraint acting on all three hydrogen bonds in an unbiased fashion has been devised to explore the free energy profile along the proton transfer coordinate. The lowest barrier has been found for proton transfer from G to C along the central hydrogen bond. The resulting charge transfer excited state lies energetically close to the electronic ground state suggesting the possibility of efficient radiationless decay. It is found that dynamic, finite temperature fluctuations significantly reduce the energy gap between the ground and excited states for this charge transfer product, promoting the internal conversion process. A detailed analysis of the internal degrees of freedom reveals that the energy gap is considerably reduced by out-of-plane molecular vibrations, in particular. Consequently, it appears that considering only the minimum energy path provides an upper-bound estimate of the associated energy gap compared to the full-dimension dynamical reaction coordinate. Furthermore, the first CP-MD simulations of the G-C base pair in liquid water are presented, and the effects of solvation on its electronic structure are analyzed.

  12. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes?

    PubMed

    Rimkus, Gabriella; Bremer-Streck, Sibylle; Grüttner, Cordula; Kaiser, Werner Alois; Hilger, Ingrid

    2011-01-01

    Targeted magnetic resonance contrast agents (e.g. iron oxide nanoparticles) have the potential to become highly selective imaging tools. In this context, quantification of the coupled amount of protein is essential for the design of antibody- or antibody fragment-conjugated nanoparticles. Nevertheless, the presence of magnetic iron oxide nanoparticles is still an unsolved problem for this task. The aim of the present work was to clarify whether proteins can be reliably quantified directly in the presence of magnetic iron oxide nanoparticles without the use of fluorescence or radioactivity. Protein quantification via Bradford was not influenced by the presence of magnetic iron oxide nanoparticles (0-17.2 mmol Fe l(-1) ). Instead, bicinchoninic acid based assay was, indeed, distinctly affected by the presence of nanoparticle-iron in suspension (0.1-17.2 mmol Fe l(-1) ), although the influence was linear. This observation allowed for adequate mathematical corrections with known iron content of a given nanoparticle. The applicability of our approach was demonstrated by the determination of bovine serum albumin (BSA) content coupled to dextrane-coated magnetic nanoparticles, which was found with the QuantiPro Bicinchoninic acid assay to be of 1.5 ± 0.2 µg BSA per 1 mg nanoparticle. Both Bradford and bicinchoninic acid assay protein assays allow for direct quantification of proteins in the presence of iron oxide containing magnetic nanoparticles, without the need for the introduction of radioactivity or fluorescence modules. Thus in future it should be possible to make more precise estimations about the coupled protein amount in high-affinity targeted MRI probes for the identification of specific molecules in living organisms, an aspect which is lacking in corresponding works published so far. Additionally, the present protein coupling procedures can be drastically improved by our proposed protein quantification method.

  13. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  14. Probing the structure and function of biopolymer-carbon nanotube hybrids with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, Robert R.

    2009-12-01

    Nanoscience deals with the characterization and manipulation of matter on the atomic/molecular size scale in order to deepen our understanding of condensed matter and develop revolutionary technology. Meeting the demands of the rapidly advancing nanotechnological frontier requires novel, multifunctional nanoscale materials. Among the most promising nanomaterials to fulfill this need are biopolymer-carbon nanotube hybrids (Bio-CNT). Bio-CNT consists of a single-walled carbon nanotube (CNT) coated with a self-assembled layer of biopolymers such as DNA or protein. Experiments have demonstrated that these nanomaterials possess a wide range of technologically useful properties with applications in nanoelectronics, medicine, homeland security, environmental safety and microbiology. However, a fundamental understanding of the self-assembly mechanics, structure and energetics of Bio-CNT is lacking. The objective of this thesis is to address this deficiency through molecular dynamics (MD) simulation, which provides an atomic-scale window into the behavior of this unique nanomaterial. MD shows that Bio-CNT composed of single-stranded DNA (ssDNA) self-assembles via the formation of high affinity contacts between DNA bases and the CNT sidewall. Calculation of the base-CNT binding free energy by thermodynamic integration reveals that these contacts result from the attractive pi--pi stacking interaction. Binding affinities follow the trend G > A > T > C. MD reveals that long ssDNA sequences are driven into a helical wrapping about CNT with a sub-10 nm pitch by electrostatic and torsional interactions in the backbone. A large-scale replica exchange molecular dynamics simulation reveals that ssDNA-CNT hybrids are disordered. At room temperature, ssDNA can reside in several low-energy conformations that contain a sequence-specific arrangement of bases detached from CNT surface. MD demonstrates that protein-CNT hybrids composed of the Coxsackie-adenovirus receptor are biologically

  15. Probing the molecular structures of plasma-damaged and surface-repaired low-k dielectrics.

    PubMed

    Zhang, Xiaoxian; Myers, John N; Lin, Qinghuang; Bielefeld, Jeffery D; Chen, Zhan

    2015-10-21

    Fully understanding the effect and the molecular mechanisms of plasma damage and silylation repair on low dielectric constant (low-k) materials is essential to the design of low-k dielectrics with defined properties and the integration of low-k dielectrics into advanced interconnects of modern electronics. Here, analytical techniques including sum frequency generation vibrational spectroscopy (SFG), Fourier transform infrared spectroscopy (FTIR), contact angle goniometry (CA) and X-ray photoelectron spectroscopy (XPS) have been employed to provide a comprehensive characterization of the surface and bulk structure changes of poly(methyl)silsesquioxane (PMSQ) low-k thin films before and after O2 plasma treatment and silylation repair. O2 plasma treatment altered drastically both the molecular structures and water structures at the surfaces of the PMSQ film while no bulk structural change was detected. For example, ∼34% Si-CH3 groups were removed from the PMSQ surface, and the Si-CH3 groups at the film surface tilted toward the surface after the O2 plasma treatment. The oxidation by the O2 plasma made the PMSQ film surface more hydrophilic and thus enhanced the water adsorption at the film surface. Both strongly and weakly hydrogen bonded water were detected at the plasma-damaged film surface during exposure to water with the former being the dominate component. It is postulated that this enhancement of both chemisorbed and physisorbed water after the O2 plasma treatment leads to the degradation of low-k properties and reliability. The degradation of the PMSQ low-k film can be recovered by repairing the plasma-damaged surface using a silylation reaction. The silylation method, however, cannot fully recover the plasma induced damage at the PMSQ film surface as evidenced by the existence of hydrophilic groups, including C-O/C[double bond, length as m-dash]O and residual Si-OH groups. This work provides a molecular level picture on the surface structural changes of low

  16. Accelerating ab initio Molecular Dynamics and Probing the Weak Dispersive Forces in Dense Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Sorella, Sandro

    2017-01-01

    We propose an ab initio molecular dynamics method, capable of dramatically reducing the autocorrelation time required for the simulation of classical and quantum particles at finite temperatures. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix S . Here, we apply this technique to both Lennard-Jones models, to demonstrate the accuracy and speeding-up of the sampling, and within a quantum Monte Carlo based wave function approach, for determining the phase diagram of high-pressure hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in a few hundred steps even close to the liquid-liquid phase transition (LLT). Within our approach, we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressure when the long range dispersive forces are taken into account.

  17. The rotation of NO3- as a probe of molecular ion - water interactions

    NASA Astrophysics Data System (ADS)

    Thøgersen, J.; Nielsen, J. B.; Knak Jensen, S.; Keiding, S. R.; Odelius, M.; Ogden, T.; Réhault, J.; Helbing, J.

    2013-03-01

    The hydration dynamics of aqueous nitrate, NO3-(aq), is studied by 2D-IR spectroscopy, UV-IR- and UV-UV transient absorption spectroscopy. The experimental results are compared to Car-Parinello molecular dynamics (MD) simulations. The 2D-IR measurements and MD simulations of the non-degenerate asymmetric stretch vibrations of nitrate reveal an intermodal energy exchange occurring on a 0.2 ps time scale related to hydrogen bond fluctuations. The transient absorption measurements find that the nitrate ions rotate in 2 ps. The MD simulations indicate that the ion rotation is associated with the formation of new hydrogen bonds. The 2 ps rotation time thus indicates that the hydration shell of aqueous nitrate is rather labile.

  18. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  19. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation.

    PubMed

    Bian, Xue-Bin; Bandrauk, André D

    2014-11-07

    Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H(2)(+), D(2)(+), is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses. Compared to fixed-nuclei approximations, the intensity of MHOHG is much higher due to the dependence of enhanced ionization on the internuclear distance. The width and symmetry of the spectrum of each harmonic in MHOHG encode rich information on the dissociation process of molecules at the rising and falling parts of the laser pulses, which can be used to retrieve the nuclear dynamics. Isotope effects are studied to confirm the FM mechanism.

  20. Circularly Polarized X Rays: Another Probe of Ultrafast Molecular Decay Dynamics

    SciTech Connect

    Travnikova, Oksana; Lindblad, Andreas; Nicolas, Christophe; Soederstroem, Johan; Kimberg, Victor; Miron, Catalin; Liu Jicai; Gel'mukhanov, Faris

    2010-12-03

    Dissociative nuclear motion in core-excited molecular states leads to a splitting of the fragment Auger lines: the Auger-Doppler effect. We present here for the first time experimental evidence for an Auger-Doppler effect following F1s{yields}a{sub 1g}* inner-shell excitation by circularly polarized x rays in SF{sub 6}. In spite of a uniform distribution of the dissociating S-F bonds near the polarization plane of the light, the intersection between the subpopulation of molecules selected by the core excitation with the cone of dissociation induces a strong anisotropy in the distribution of the S-F bonds that contributes to the scattering profile measured in the polarization plane.

  1. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  2. Probing the importance of lipid diversity in cell membranes via molecular simulation.

    PubMed

    Khakbaz, Pouyan; Klauda, Jeffery B

    2015-11-01

    Lipid membranes in prokaryotes and eukaryotes have a wide array of lipids that are necessary for proper membrane structure and function. In this paper, an introduction to lipid diversity in biology and a mini-review on how molecular simulations have been used to model biological membranes (primarily limited to one to three lipid types in most simulation-based models) is provided, which motivates the use of all-atom molecular dynamics (MD) simulations to study the effect of lipid diversity on properties of realistic membrane models of prokaryotes and eukaryotes. As an example, cytoplasmic membrane models of Escherichia coli were developed at different stages of the colony growth cycle (early-log, mid-log, stationary and overnight). The main difference between lipid compositions at each stage was the concentration of a cyclopropane-containing moiety on the sn-2 lipid acyl chain (cyC17:0). Triplicate MD simulations for each stage were run for 300 ns to study the influence of lipid diversity on the surface area per lipid, area compressibility modulus, deuterium order parameters, and electron density profiles. The overnight stage (also known as the death stage) had the highest average surface area per lipid, highest rigidity, and lowest bilayer thickness compare to other stages of E. coli cytoplasmic membrane. Although bilayer thickness did depend on the growth stage, the changes between these were small suggesting that the hydrophobic core of transmembrane proteins fit well with the membrane in all growth stages. Although it is still common practise in MD simulations of membrane proteins to use simple one- or two-component membranes, it can be important to use diverse lipid model membranes when membrane protein structure and function are influenced by changes in lipid membrane composition.

  3. Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking.

    PubMed

    Worachartcheewan, Apilak; Suvannang, Naravut; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2014-01-01

    This study investigated the quantitative structure-activity relationship (QSAR) of imidazole derivatives of 4,7-disubstituted coumarins as inhibitors of aromatase, a potential therapeutic protein target for the treatment of breast cancer. Herein, a series of 3,7- and 4,7-disubstituted coumarin derivatives (1-34) with R1 and R2 substituents bearing aromatase inhibitory activity were modeled as a function of molecular and quantum chemical descriptors derived from low-energy conformer geometrically optimized at B3LYP/6-31G(d) level of theory. Insights on origins of aromatase inhibitory activity was afforded by the computed set of 7 descriptors comprising of F10[N-O], Inflammat-50, Psychotic-80, H-047, BELe1, B10[C-O] and MAXDP. Such significant descriptors were used for QSAR model construction and results indicated that model 4 afforded the best statistical performance. Good predictive performance were achieved as verified from the internal (comprising the training and the leave-one-out cross-validation (LOO-CV) sets) and external sets affording the following statistical parameters: R (2) Tr = 0.9576 and RMSETr = 0.0958 for the training set; Q (2) CV = 0.9239 and RMSECV = 0.1304 for the LOO-CV set as well as Q (2) Ext = 0.7268 and RMSEExt = 0.2927 for the external set. Significant descriptors showed correlation with functional substituents, particularly, R1 in governing high potency as aromatase inhibitor. Molecular docking calculations suggest that key residues interacting with the coumarins were predominantly lipophilic or non-polar while a few were polar and positively-charged. Findings illuminated herein serve as the impetus that can be used to rationally guide the design of new aromatase inhibitors.

  4. Lipidic Carbo-benzenes: Molecular Probes of Magnetic Anisotropy and Stacking Properties of α-Graphyne.

    PubMed

    Zhu, Chongwei; Rives, Arnaud; Duhayon, Carine; Maraval, Valérie; Chauvin, Remi

    2017-01-20

    Solubilization of the C18 fundamental circuit of α-graphyne has been envisaged by decoration with aliphatic chains R = n-CnH2n+1. The synthesis and characterization of p-dialkyl-tetraphenyl-carbo-benzenes (n = 2, 8, 14, 20) are thus presented and compared to the monoalkyl series produced concomitantly. In both series, a dramatic enhancement of solubility in organic solvents (CH2Cl2, CHCl3) is observed for n ≥ 8, and in the dialkyl series, the melting-decomposition temperature of the solid products is shown to decrease linearly from 208 °C for n = 2 to 149 °C for n = 20. Fluoroalkyl analogues with R = n-C8H4F13 are also described. The products display classical UV-vis electronic spectra of carbo-benzenes in solution (λmax = 445.5 ± 1 nm, ε ≈ 200 000 L·mol(-1)·cm(-1)). They are also characterized by UV-vis absorption in the solid state, which is found to be correlated with the color and crystal packing. The methylene groups of R provide an experimental probe of the magnetic anisotropy and aromaticity of the C18 ring through the progressive NMR shielding of the (1)H nuclei from ca. 4.70 to 1.25 ppm going away from the border of the ring (as far as 8 Å away). All alkyl-carbo-benzenes were also found to be highly crystalline. Seven of them have been characterized by X-ray diffraction analysis and the C18 columnar packing compared in a systematic manner. Crystals of the diethyl and bistetradecyl derivatives, containing no solvent molecule, provided the first examples of direct π-stacking of carbo-benzene rings, with inter-ring distances very close to calculated interlayer distances in AB and ABC α-graphityne (3.255 and 3.206 Å vs 3.266 and 3.201 Å, respectively).

  5. High sensitivity of diamond resonant microcantilevers for direct detection in liquids as probed by molecular electrostatic surface interactions.

    PubMed

    Bongrain, Alexandre; Agnès, Charles; Rousseau, Lionel; Scorsone, Emmanuel; Arnault, Jean-Charles; Ruffinatto, Sébastien; Omnès, Franck; Mailley, Pascal; Lissorgues, Gaëlle; Bergonzo, Philippe

    2011-10-04

    Resonant microcantilevers have demonstrated that they can play an important role in the detection of chemical and biological agents. Molecular interactions with target species on the mechanical microtransducers surface generally induce a change of the beam's bending stiffness, resulting in a shift of the resonance frequency. In most biochemical sensor applications, cantilevers must operate in liquid, even though damping deteriorates the vibrational performances of the transducers. Here we focus on diamond-based microcantilevers since their transducing properties surpass those of other materials. In fact, among a wide range of remarkable features, diamond possesses exceptional mechanical properties enabling the fabrication of cantilever beams with higher resonant frequencies and Q-factors than when made from other conventional materials. Therefore, they appear as one of the top-ranked materials for designing cantilevers operating in liquid media. In this study, we evaluate the resonator sensitivity performances of our diamond microcantilevers using grafted carboxylated alkyl chains as a tool to investigate the subtle changes of surface stiffness as induced by electrostatic interactions. Here, caproic acid was immobilized on the hydrogen-terminated surface of resonant polycrystalline diamond cantilevers using a novel one-step grafting technique that could be also adapted to several other functionalizations. By varying the pH of the solution one could tune the -COO(-)/-COOH ratio of carboxylic acid moieties immobilized on the surface, thus enabling fine variations of the surface stress. We were able to probe the cantilevers resonance frequency evolution and correlate it with the ratio of -COO(-)/-COOH terminations on the functionalized diamond surface and consequently the evolution of the electrostatic potential over the cantilever surface. The approach successfully enabled one to probe variations in cantilevers bending stiffness from several tens to hundreds of

  6. Probing ion-molecule structure and dynamics in isolated molecular clusters and proteins

    NASA Astrophysics Data System (ADS)

    Abate, Yohannes

    Ion-molecule interactions in isolated molecular clusters and proteins are studied in this work using experimental and theoretical methods. Photodissociation spectroscopy and chemical dynamics of several metal ion-molecule clusters are studied. The experimental tool used for these studies is an Angular Reflectron Time Of Flight Mass Spectrometer (ARTOFMS). The experimental work is supported by ab initio electronic structure calculations on the Gaussian and GAMESS platforms. This work also describes a computational study of the interaction of protonated histidine with other aromatic residues in proteins. We have studied the photodissociation spectroscopy of weakly bound Zn +(H2O) and Zn+(D2O) bimolecular complexes. We assign two molecular absorption bands in the near UV correlating to Zn+ (4s-4p)-metal centered transitions, and identify vibrational progressions associated with both intermolecular and intramolecular vibrational modes of the cluster. Partially resolved rotational structure is consistent with a C2 V equilibrium complex geometry. The photodissociation spectroscopy and chemical dynamics of Zn +-formaldehyde and Zn+-acetaldehyde clusters are investigated in the near UV spectral range. The work is also supported by ab initio electronic structure calculations to study the ground-state bonding and interactions in the low-lying doublet excited states. We identify absorption bands corresponding to photoinduced charge transfer, Zn+(4s-4p)-based transitions, and aldehyde-based excitations. We propose a reaction mechanism for the reactive dissociation that proceeds via H-atom abstraction on the charge-transfer surface. This work shows important differences with results from earlier experiments on Mg+- and Ca+-aldehyde complexes despite the similar valence character for these metal ions. In the study of Mg+-acetic acid we observe three distinct absorption bands, two red-shifted and one blue-shifted from the Mg +(3s ← 3p) resonance at 280 nm (35714 cm-1). We

  7. Hydrogen-bonding molecular ruler surfactants as probes of specific solvation at liquid/liquid interfaces.

    PubMed

    Siler, A Renee; Brindza, Michael R; Walker, Robert A

    2009-10-01

    Resonance-enhanced, second harmonic generation (SHG) is used to measure the electronic structure of solutes sensitive to specific solvation adsorbed to liquid/liquid and liquid/solid interfaces. Here, specific solvation refers to solvent-solute interactions that are directional and localized. N-methyl-p-methoxyaniline (NMMA) is a solute whose first allowed electronic transition wavelength remains almost constant (approximately 315 nm) in non-hydrogen-bonding solvents regardless of solvent polarity. However, in hydrogen-bond-accepting solvents such as dimethylsulfoxide, NMMA's absorbance shifts to longer wavelengths (320 nm), whereas in hydrogen-bond-donating solvents (e.g., water), the absorbance shifts to shorter wavelengths (approximately 300 nm). SHG experiments show that at alkane/silica interfaces, surface silanol groups serve as moderately strong hydrogen-bond donors as evidenced by NMMA's absorbance of 307 nm. At the carbon tetrachloride/water interface, NMMA absorbance also shifts to slightly shorter wavelengths (298 nm) implying that water molecules at this liquid/liquid interface are donating strong hydrogen bonds to the adsorbed NMMA solutes. In contrast, experiments using newly developed molecular ruler surfactants with NMMA as a model hydrophobic solute and a hydrophilic, cationic headgroup imply that, as NMMA migrates across an aqueous/alkane interface, it carries with it water that functions as a hydrogen-bond-accepting partner.

  8. Probing self assembly in biological mixed colloids by SANS, deuteration and molecular manipulation

    SciTech Connect

    Hjelm, R.P.; Thiyagarajan, P.; Hoffman, A.; Alkan-Onyuksel, H.

    1994-12-31

    Small-angle neutron scattering was used to obtain information on the form and molecular arrangement of particles in mixed colloids of bile salts with phosphatidylcholine, and bile salts with monoolein. Both types of systems showed the same general characteristics. The particle form was highly dependent on total lipid concentration. At the highest concentrations the particles were globular mixed micelles with an overall size of 50{Angstrom}. As the concentration was reduced the mixed micelles elongated, becoming rodlike with diameter about 50{Angstrom}. The rods had a radial core-shell structure in which the phosphatidylcholine or monoolein fatty tails were arranged radially to form the core with the headgroups pointing outward to form the shell. The bile salts were at the interface between the shell and core with the hydrophilic parts facing outward as part of the shell. The lengths of the rods increased and became more polydispersed with dilution. At sufficiently low concentrations the mixed micelles transformed into single bilayer vesicles. These results give insight on the physiological function of bile and on the rules governing the self assembly of bile particles in the hepatic duct and the small intestine.

  9. MOLECULAR CLOUDS AS A PROBE OF COSMIC-RAY ACCELERATION IN A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Tanaka, Shuta J.; Takahara, Fumio

    2009-12-20

    We study cosmic-ray acceleration in a supernova remnant (SNR) and the escape from it. We model nonthermal particle and photon spectra for the hidden SNR in the open cluster Westerlund 2, and the old-age mixed-morphology SNR W 28. We assume that the SNR shock propagates in a low-density cavity, which is created and heated through the activities of the progenitor stars and/or previous supernova explosions. We indicate that the diffusion coefficient for cosmic rays around the SNRs is less than approx1% of that away from them. We compare our predictions with the gamma-ray spectra of molecular clouds illuminated by the cosmic rays (Fermi and H.E.S.S.). We found that the spectral indices of the particles are approx2.3. This may be because the particles were accelerated at the end of the Sedov phase, and because energy-dependent escape and propagation of particles did not much affect the spectrum.

  10. VCD spectroscopy as a novel probe for chirality transfer in molecular interactions.

    PubMed

    Sadlej, Joanna; Dobrowolski, Jan Cz; Rode, Joanna E

    2010-05-01

    Most of the research in contemporary physical chemistry is devoted to the development of methods that extend our understanding, interpretation, and capacity to predict structural properties and dynamic behavior of molecules. The optical and magnetic spectroscopies, as well as diffraction techniques, are the principal methods for studying properties of molecules, biomolecules, and biopolymers of which the vast majority are chiral. On the other hand, information on molecular configuration can be obtained mainly from optical spectroscopies because other well-established spectroscopic techniques used for structural investigations, such as crystallographic, ESR, and NMR methods, do not allow for registration of signals from an individual conformer owing to intrinsic slow response to structural changes. This is the reason why the optical spectroscopy methods, based on natural chiroptical phenomena, have become so important and their renaissance in the last decade is noticed. Vibrational circular dichroism (VCD) spectroscopy is one such chiroptical technique that sheds new light on many important phenomena studied intensively. We provide an overview of recent theoretical predictions and innovative VCD observations of chirality transfer (called by other authors "induced chirality") from a chiral molecule to an achiral one as a result of hydrogen bond interactions between them. In this tutorial review we search for answers as to whether we can obtain further information about intermolecular interactions using the VCD technique. In our opinion this technique has opened new horizons for both understanding and monitoring intermolecular interactions and it could be used as a relatively new and powerful physicochemical method.

  11. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    {mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values of 0.92 ± 0.01, 0.78 ± 0.06 and 0.78 ± 0.05, respectively. Furthermore, Y-scrambling was applied to evaluate the possibility of chance correlation of the predictive model. Subsequently, a thorough analysis of the substructure fingerprint count was conducted to provide informative insights on the inhibitory activity of AChE inhibitors. Moreover, Kennard–Stone sampling of the actives were applied to select 30 diverse compounds for further molecular docking studies in order to gain structural insights on the origin of AChE inhibition. Site-moiety mapping of compounds from the diversity set revealed three binding anchors encompassing both hydrogen bonding and van der Waals interaction. Molecular docking revealed that compounds 13, 5 and 28 exhibited the lowest binding energies of −12.2, −12.0 and −12.0 kcal/mol, respectively, against human AChE, which is modulated by hydrogen bonding, π–π stacking and hydrophobic interaction inside the binding pocket. These information may be used as guidelines for the design of novel and robust AChE inhibitors. PMID:27602288

  12. Probing molecular conformations in momentum space: The case of n-pentane

    NASA Astrophysics Data System (ADS)

    Knippenberg, S.; Huang, Y. R.; Hajgató, B.; François, J.-P.; Deng, J. K.; Deleuze, M. S.

    2007-11-01

    A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200eV+electron binding energy) and at azimuthal angles ranging from 0° to 10° in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green's function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys. 116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche (tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.

  13. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-01-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region around the tropopause (TP) by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (m(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analysed samples consisted of air from the lowermost stratosphere (LMS). These show that m(H2) does not vary appreciably with O3-derived height above the thermal TP, whereas δD does increase with height. The isotope enrichment is caused by competing H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (CH4) and nitrous oxide (N2O), as a result of the relatively long lifetimes of these three species. The correlations are described by δ D [‰]=-0.35 · m(CH4)[ppb]+768 and δD [‰]=-1.90 · m(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in m(H2), but δD is up to 15‰ lower in the July, August and September monsoon samples. This δD lowering is correlated with m(CH4) increase. The significant correlation with m(CH4) and the absence of a perceptible m(H2) increase that accompanies the δD lowering indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high m(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples collected close to airports

  14. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-05-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (χ(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS). These show that χ(H2) does not vary appreciably with O3-derived height above the thermal tropopause (TP), whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4)) and nitrous oxide (χ(N2O)), as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=-0.35 · χ(CH4)[ppb]+768 and δD[‰]=-1.90· χ(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2), but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4) increase in these samples. The significant correlation with χ(CH4) and the absence of a perceptible χ(H2) increase that accompanies the δD decrease indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high χ(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples

  15. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis.

    PubMed

    Pawar, Suma K; Jaldappagari, Seetharamappa

    2017-02-24

    In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.

  16. Electronic and molecular properties of an adsorbed protein monolayer probed by two-color sum-frequency generation spectroscopy.

    PubMed

    Dreesen, L; Humbert, C; Sartenaer, Y; Caudano, Y; Volcke, C; Mani, A A; Peremans, A; Thiry, P A; Hanique, S; Frère, J-M

    2004-08-17

    Two-color sum-frequency generation spectroscopy (2C-SFG) is used to probe the molecular and electronic properties of an adsorbed layer of the green fluorescent protein mutant 2 (GFPmut2) on a platinum (111) substrate. First, the spectroscopic measurements, performed under different polarization combinations, and atomic force microscopy (AFM) show that the GFPmut2 proteins form a fairly ordered monolayer on the platinum surface. Next, the nonlinear spectroscopic data provide evidence of particular coupling phenomena between the GFPmut2 vibrational and electronic properties. This is revealed by the occurrence of two doubly resonant sum-frequency generation processes for molecules having both their Raman and infrared transition moments in a direction perpendicular to the sample plane. Finally, our 2C-SFG analysis reveals two electronic transitions corresponding to the absorption and fluorescence energy levels which are related to two different GFPmut2 conformations: the B (anionic) and I forms, respectively. Their observation and wavelength positions attest the keeping of the GFPmut2 electronic properties upon adsorption on the metallic surface.

  17. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N-hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  18. Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation.

    PubMed Central

    Yan, E C; Eisenthal, K B

    2000-01-01

    The effect of cholesterol on the molecular transport of an organic cation, malachite green (MG), across large unilamellar dioleolyphosphatidylglycerol (DOPG) liposome bilayers with 0-50 mol% cholesterol was studied by second harmonic generation (SHG). Because SHG is a surface-specific technique, it requires no labeled molecule, quencher, or shifting agent to distinguish the location of the solute molecules. An additional important feature of SHG is that it is sensitive only to the probe molecules bound to the liposome, whereas other methods can only differentiate between molecules that are outside and those inside the liposome. The transport kinetics of MG across the liposome bilayers was observed in real time, and the results show that cholesterol retards the rate of transport of MG across liposome bilayers. The rate was found to decrease by six times for 50 mol% cholesterol content compared with cholesterol-free liposomes. This demonstrates the applicability of SHG to investigation of the effect of liposome composition on the transport kinetics across the liposome bilayers. PMID:10920021

  19. Molecular dynamics force probe simulations of antibody/antigen unbinding: entropic control and nonadditivity of unbinding forces.

    PubMed Central

    Heymann, B; Grubmüller, H

    2001-01-01

    Unbinding of a spin-labeled dinitrophenyl (DNP) hapten from the monoclonal antibody AN02 F(ab) fragment has been studied by force probe molecular dynamics (FPMD) simulations. In our nanosecond simulations, unbinding was enforced by pulling the hapten molecule out of the binding pocket. Detailed inspection of the FPMD trajectories revealed a large heterogeneity of enforced unbinding pathways and a correspondingly large flexibility of the binding pocket region, which exhibited induced fit motions. Principal component analyses were used to estimate the resulting entropic contribution of approximately 6 kcal/mol to the AN02/DNP-hapten bond. This large contribution may explain the surprisingly large effect on binding kinetics found for mutation sites that are not directly involved in binding. We propose that such "entropic control" optimizes the binding kinetics of antibodies. Additional FPMD simulations of two point mutants in the light chain, Y33F and I96K, provided further support for a large flexibility of the binding pocket. Unbinding forces were found to be unchanged for these two mutants. Structural analysis of the FPMD simulations suggests that, in contrast to free energies of unbinding, the effect of mutations on unbinding forces is generally nonadditive. PMID:11509346

  20. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  1. Systematic discovery of molecular probes targeting multiple non-orthosteric and spatially distinct sites in the botulinum neurotoxin subtype A (BoNT/A).

    PubMed

    Dadgar, Saedeh; Floriano, Wely B

    2015-06-01

    The development of molecular probes targeting proteins has traditionally relied on labeling compounds already known to bind to the protein of interest. These known ligands bind to orthosteric or allosteric sites in their target protein as a way to control their activity. Binding pockets other than known orthosteric or allosteric sites may exist that are large enough to accommodate a ligand without significantly disrupting protein activity. Such sites may provide opportunities to discriminate between subtypes or other closely related proteins, since they are under less evolutionary pressure to be conserved. The Protein Scanning with Virtual Ligand Screening (PSVLS) approach was previously used to identify a novel inhibitor and a fluorescent probe against the catalytic site of the botulinum neurotoxin subtype A (BoNT/A). PSVLS screens compound databases against multiple sites within a target protein, and the results for all the sites probed against BoNT/A, not only the catalytic site, are available online. Here, we analyze the PSVLS data for multiple sites in order to identify molecular probes with affinity for binding pockets other than the catalytic site of BoNT/A. BoNT/A is a large protein with a light (LC) and a heavy (HC) chain that can be assayed separately. We used scintillation proximity assay (SPA) to test experimentally 5 probe candidates predicted computationally to have affinity for different non-orthosteric binding regions within the HC and LC, and one compound predicted not to have affinity for either domain. The binding profiles obtained experimentally confirmed the targeting of multiple and spatially distinct pockets within BoNT/A. Moreover, inhibition assay results indicate that some of these probes do not significantly interfere with the catalytic activity of BoNT/A.

  2. Molecular screening test in familial forms of cerebral cavernous malformation: the impact of the Multiplex Ligation-dependent Probe Amplification approach.

    PubMed

    Penco, Silvana; Ratti, Rachele; Bianchi, Elena; Citterio, Alberto; Patrosso, Maria Cristina; Marocchi, Alessandro; Tassi, Laura; La Camera, Alessandro; Collice, Massimo

    2009-05-01

    Object The purpose of this study was to underline the effectiveness of molecular analysis in cerebral cavernous angioma, with special attention to the familial forms. Methods Multiplex Ligation-dependent Probe Amplification analysis integrates the consecutive sequence analysis of the 3 genes (Krit1/CCM1, MGC4607/CCM2, and PDCD10/CCM3) known to be responsible for cerebral cavernous malformation lesions. Results The Multiplex Ligation-dependent Probe Amplification analysis revealed a new mutation, a heterozygous exon 9/10 deletion of Krit1, in the proband and in all affected family members. Conclusions The identification of the molecular defect allows physicians to screen family members at risk and to identify affected individuals before the onset of clinical symptoms caused by the presence of lesions.

  3. Water participation in molecular recognition and protein-ligand association: Probing the drug binding site "Sudlow I" in human serum albumin

    NASA Astrophysics Data System (ADS)

    Al-Lawatia, Najla; Steinbrecher, Thomas; Abou-Zied, Osama K.

    2012-03-01

    Human serum albumin (HSA) plays an important role in the transport and disposition of endogenous and exogenous ligands present in blood. Its capacity to reversibly bind a large variety of drugs results in its prevailing role in drug pharmacokinetics and pharmacodynamics. In this work, we used 7-hydroxyquinoline (7HQ) as a probe to study the binding nature of one of the major drug binding sites of HSA (Sudlow I) and to reveal the local environment around the probe in the binding site. The interaction between 7HQ and HSA at a physiological pH of 7.2 was investigated using steady-state and lifetime spectroscopic measurements, molecular docking and molecular dynamics (MD) simulations methods. The fluorescence results indicate a selective interaction between 7HQ and the Trp214 residue. The reduction in both the intensity and lifetime of the Trp214 fluorescence upon probe binding indicates the dominant role of static quenching. Molecular docking and MD simulations show that 7HQ binds in Sudlow site I close to Trp214, confirming the experimental results, and pinpoint the dominant role of hydrophobic interaction in the binding site. Electrostatic interactions were also found to be important in which two water molecules form strong hydrogen bonds with the polar groups of 7HQ. Detection of water in the binding site agrees with the absorption and fluorescence results that show the formation of a zwitterion tautomer of 7HQ. The unique spectral signatures of 7HQ in water make this molecule a potential probe for detecting the presence of water in nanocavities of proteins. Interaction of 7HQ with water in the binding site shows that water molecules can be crucial for molecular recognition and association in protein binding sites.

  4. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6.

    PubMed

    Kozikowski, Alan P; Tapadar, Subhasish; Luchini, Doris N; Kim, Ki Hwan; Billadeau, Daniel D

    2008-08-14

    A series of hydroxamate based HDAC inhibitors containing a phenylisoxazole as the CAP group has been synthesized using nitrile oxide cycloaddition chemistry. An HDAC6 selective inhibitor having a potency of approximately 2 picomolar was identified. Some of the compounds were examined for their ability to block pancreatic cancer cell growth and found to be about 10-fold more potent than SAHA. This research provides valuable, new molecular probes for use in exploring HDAC biology.

  5. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes

    SciTech Connect

    Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt

    2009-01-15

    Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

  6. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  7. Development of Molecular Probes Based on Iron Oxide Nanoparticles for in Vivo Magnetic Resonance/Photoacoustic Dual Imaging of Target Molecules in Tumors.

    PubMed

    Sano, Kohei

    2017-01-01

    Molecular imaging probes that enable seamless diagnoses of tumors in the preoperative and intraoperative stages could lead to surgical resection of tumors based on highly accurate diagnoses. Because iron oxide nanoparticles (IONPs) have high proton relaxivity and high molar extinction coefficients suitable for magnetic resonance imaging (MRI) and photoacoustic imaging, respectively, we planned to develop molecular imaging probes applicable to the pre- (MRI) and intraoperative (photoacoustic imaging) stages. Human epidermal growth factor receptor 2 (EGFR2; HER2) was selected as a target molecule, and we designed IONPs (20, 50, and 100 nm) conjugated with anti-HER2 moieties [whole IgG (trastuzumab), single-chain fragment variable (scFv), and peptide] for HER2-targeted tumor imaging. Among the probes tested, scFv-conjugated IONPs (scFv-IONPs) (20 nm) exhibited the highest binding affinity to HER2 (Kd=0.01 nM). An in vivo biodistribution study using (111)In-labeled probes demonstrated that more scFv-IONPs (20 nm) accumulated in HER2-positive than in HER2-negative tumors, suggesting that the uptake of scFv-IONPs is HER2 specific. The scFv-IONPs (20 nm) showed high proton relaxivity and a probe concentration-dependent photoacoustic signal. In vivo MR/photoacoustic imaging studies using scFv-IONPs (20 nm) facilitated HER2-specific visualization of tumors. Furthermore, an iron-staining study demonstrated that the uptake of scFv-IONPs was notable only in HER2-positive tumors. These results suggest that scFv-IONPs (20 nm) may be useful for MR/photoacoustic dual imaging, which could achieve seamless diagnoses in the preoperative and intraoperative stages.

  8. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.

    PubMed

    Miller, Laurence J; Chen, Quan; Lam, Polo C-H; Pinon, Delia I; Sexton, Patrick M; Abagyan, Ruben; Dong, Maoqing

    2011-05-06

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.

  9. A Novel 99mTc-Labeled Molecular Probe for Tumor Angiogenesis Imaging in Hepatoma Xenografts Model: A Pilot Study

    PubMed Central

    Zhao, Qian; Yan, Ping; Wang, Rong Fu; Zhang, Chun Li; Li, Ling; Yin, Lei

    2013-01-01

    Introduction Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis. Methods The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored. Results The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821. Conclusion 99mTc-RRL can

  10. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept.

    PubMed

    Calzada, Victoria; Moreno, María; Newton, Jessica; González, Joel; Fernández, Marcelo; Gambini, Juan Pablo; Ibarra, Manuel; Chabalgoity, Alejandro; Deutscher, Susan; Quinn, Thomas; Cabral, Pablo; Cerecetto, Hugo

    2017-02-01

    Aptamers are single-stranded oligonucleotides that recognize molecular targets with high affinity and specificity. Aptamer that selectively bind to the protein tyrosine kinase-7 (PTK7) receptor, overexpressed on many cancers, has been labelled as probes for molecular imaging of cancer. Two new PTK7-targeting aptamer probes were developed by coupling frameworks from the fluorescent dye AlexaFluor647 or the 6-hydrazinonicotinamide (HYNIC) chelator-labelled to (99m)Tc. The derivatizations via a 5'-aminohexyl terminal linker were done at room temperature and under mild buffer conditions. Physicochemical and biological controls for both imaging agents were performed verifying the integrity of the aptamer-conjugates by HPLC. Recognition of melanoma (B16F1) and lymphoma (A20) mouse cell lines by the aptamer was studied using cell binding, flow cytometry and confocal microscopy. Finally, in vivo imaging studies in tumour-bearing mice were performed. The new probes were able to bind to melanoma and lymphoma cell lines in vitro, the in vivo imaging in tumour-bearing mice showed different uptake behaviours showing for the fluorescent conjugate good uptake by B cell lymphoma while the radiolabelled conjugate did not display tumour uptake due to its high extravascular distribution, and both showed rapid clearance properties in tumour-bearing mice.

  11. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes.

    PubMed

    Liu, Yajie; Yang, Yi; Zhang, Chunfu

    2013-01-01

    Angiogenesis is an essential step for the growth and spread of malignant tumors. Accurate detection and quantification of tumor angiogenesis is important for early diagnosis of cancers as well as post therapy assessment of antiangiogenic drugs. The cell adhesion molecule integrin αvβ3 is a specific marker of angiogenesis, which is highly expressed on activated and proliferating endothelial cells, but generally not on quiescent endothelial cells. Therefore, in recent years, many different approaches have been developed for imaging αvβ3 expression, for the detection and characterization of tumor angiogenesis. The present review provides an overview of the current status of magnetic resonance molecular imaging of integrin αvβ3, including the new development of high sensitive contrast agents and strategies for improving the specificity of targeting probes and the biological effects of imaging probes on αvβ3 positive cells.

  12. Molecular cytogenetic analysis of Inv Dup(15) chromosomes, using probes specific for the Pradar-Willi/Angelman syndrome region: Clinical implications

    SciTech Connect

    Leana-Cox, J. ); Jenkins, L. ); Palmer, C.G.; Plattner, R. ); Sheppard, L. ); Flejter, W.L. ); Zackowski, J. ); Tsien, F. ); Schwartz, S. )

    1994-05-01

    Twenty-seven cases of inverted duplications of chromosome 15 (inv dup[15]) were investigated by FISH with two DNA probes specific for the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region on proximal 15q. Sixteen of the marker chromosomes displayed two copies of each probe, while in the remaining 11 markers no hybridization was observed. A significant association was found between the presence of this region and an abnormal phenotype (P<.01). This is the largest study to date of inv dup(15) chromosomes, that uses molecular cytogenetic methods and is the first to report a significant association between the presence of a specific chromosomal region in such markers and an abnormal phenotype. 30 refs., 1 fig., 4 tabs.

  13. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

    PubMed

    Liu, Chunyan; Gao, Zhenyu; Zeng, Jianfeng; Hou, Yi; Fang, Fang; Li, Yilin; Qiao, Ruirui; Shen, Lin; Lei, Hao; Yang, Wensheng; Gao, Mingyuan

    2013-08-27

    Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.

  14. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site.

    PubMed

    Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2016-12-01

    Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the Km changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed.

  15. Premutation for the Martin-Bell syndrome analyzed in a large Sardinian family: III. Molecular analysis with the StB12.3 probe

    SciTech Connect

    Grasso, M.; Perroni, L.; Dagna-Bricarelli, F.

    1996-08-09

    This report complements a series of clinical, cytogenetical, and psychological studies previously reported on a large Sardinian pedigree segregating for premutations and full mutations associated with the Martin-Bell syndrome (MBS). Using the StB12.3 probe, we report now the molecular classification of all of the critical members of the pedigree. These molecular findings are evaluated against the variable phenotypic manifestations of the disease in the course of a six-generation segregation of an MBS premutation allegedly present in a common female progenitor of 14 MBS male patients and 9 female MBS heterozygotes seen in the last two generations. The nature and stepwise progression of MBS-premutations toward the fully manifested Martin-Bell syndrome and the possibility of reverse mutational events toward the normal allele are discussed with respect to the application of the presently available diagnostic tools in genetic counseling. 12 refs., 1 fig.

  16. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-07-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.

  17. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis.

    PubMed

    Prakash, Priyanka; Hancock, John F; Gorfe, Alemayehu A

    2015-05-01

    We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.

  18. Binding hotspots on K-Ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis

    PubMed Central

    Prakash, Priyanka; Hancock, John F.; Gorfe, Alemayehu A.

    2015-01-01

    We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in non-pocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu. PMID:25740554

  19. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing.

    PubMed

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-06-09

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (R(I) = (I(p)/I(f))) between the phosphorescence (I(p)) and fluorescence (I(f)) intensities showed excellent oxygen responses; the ratio of R(I) under degassed and aerated conditions ( R(I)(0) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the R(I)) value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2.

  20. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe.

    PubMed

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-01-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CB2R in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CB2R-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CB2R. To synthesize the CB2R-targeted probe (NIR760-Q), a conjugable CB2R ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CB2R positive cancers and elucidating the role of CB2R in the regulation of disease progression.

  1. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing

    PubMed Central

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-01-01

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (RI=(Ip/If)) between the phosphorescence (Ip) and fluorescence (If) intensities showed excellent oxygen responses; the ratio of RI under degassed and aerated conditions (RI0/RI) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the RI value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2. PMID:26066988

  2. The molecular underpinnings of a solute-pump/solvent-probe spectroscopy: the theory of polarizability response spectra and an application to preferential solvation.

    PubMed

    Sun, Xiang; Stratt, Richard M

    2012-05-14

    Recent ultrafast experiments on liquids have made clear that it is possible to go beyond light scattering techniques such as optical Kerr spectroscopy that look at the dynamics of a liquid as a whole. It is now possible to measure something far more conceptually manageable: how that liquid dynamics (and that light scattering) can be modified by electronically exciting a solute. Resonant-pump polarizability-response spectra (RP-PORS) in particular, seem to show that different solvents respond in noticeably distinct ways to such solute perturbations. This paper is a theoretical attempt at understanding the kinds of molecular information that can be revealed by experiments of this sort. After developing the general classical statistical mechanical linear response theory for these spectra, we show that the experimentally interesting limit of long solute-pump/solvent-probe delays corresponds to measuring the differences in 4-wave-mixing spectra between solutions with equilibrated ground- and excited-state solutes-meaning that the spectra are essentially probes of how changing liquid structure affects intermolecular liquid vibrations and librations. We examine the spectra in this limit for the special case of an atomic solute dissolved in an atomic-liquid mixture, a preferential solvation problem, and show that, as with the experimental spectra, different solvents can lead to spectra with different magnitudes and even different signs. Our molecular-level analysis of these results points out that solvents can also differ in how local a portion of the solvent dynamics is accessed by this spectroscopy.

  3. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    PubMed

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.

  4. Excited state molecular structure determination in disordered media using laser pump/x-ray probe time-domain x-ray absorption spectroscopy.

    SciTech Connect

    Chen, L. X.; Chemistry

    2003-01-01

    Advances in X-ray technologies provide opportunities for solving structures of photoexcited state molecules with short lifetimes. Using X-ray pulses from a modern synchrotron source, the structure of a metal-to-ligand-charge-transfer (MLCT) excited state of CuI(dmp)2+ (dmp 1/4 2,9-dimethyl-1,10-phenanthroline) was investigated by laser pump/X-ray probe X-ray absorption fine structure (LPXP-XAFS) in fluid solution at room temperature on a nanosecond time scale. The experimental requirements for such pump-probe XAFS are described in terms of technical challenges: (1) conversion of optimal excited state population, (2) synchronization of the pump laser pulse and probe Xray pulse, and (3) timing of the detection. Using a laser pump pulse for the photoexcitation, a photoluminescent MLCT excited state of CuI(dmp)2(BArF), (dmp 1/4 2,9-dimethyl-1,10-phenanthroline), BArF 1/4 tetrakis(3,5-bis(trifluoromethylphenyl)borate) with a lifetime of 98{+-}5 ns was created. Probing the structure of this state at its optimal concentration using an X-ray pulse cluster with a total duration of 14.2 ns revealed that (1) a Cu{sup II} center was generated via a whole charge transfer; (2) the copper in the MLCT state bound an additional ligand to form a penta-coordinate complex with a likely trigonal bipyramidal geometry; and (3) the average Cu-N bond length increases in the MLCT excited state by 0.07 . In contrast to previously reported literature, the photoluminescence of this pentacoordinate MLCT state was not quenched upon ligation with the fifth ligand. On the basis of experimental results, we propose that the absorptive and emissive states have distinct geometries. The results represent X-ray characterization of a molecular excited state in fluid solution on a nanosecond time scale.

  5. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library.

    PubMed

    Fernández-Pinero, J; Gallardo, C; Elizalde, M; Robles, A; Gómez, C; Bishop, R; Heath, L; Couacy-Hymann, E; Fasina, F O; Pelayo, V; Soler, A; Arias, M

    2013-02-01

    A highly sensitive and specific real-time PCR method was developed for the reliable and rapid detection of African swine fever virus (ASFV). The method uses a commercial Universal Probe Library (UPL) probe combined with a specifically designed primer set to amplify an ASFV DNA fragment within the VP72 coding genome region. The detection range of the optimized UPL PCR technique was confirmed by analysis of a large panel (n = 46) of ASFV isolates, belonging to 19 of the 22 viral p72 genotypes described. No amplification signal was observed when closely clinically related viruses, such as classical swine fever, or other porcine pathogens were tested by this assay. The detection limit of the UPL PCR method was established below 18 DNA copies. Validation experiments using an extensive collection of field porcine and tick samples (n = 260), coming from Eastern and Western African regions affected by ASF, demonstrated that the UPL PCR technique was able to detect over 10% more positive samples than the real-time TaqMan PCR test recommended in the OIE manual, confirming its superior diagnostic sensitivity. Clinical material collected during experimental infections with different ASFV p72 genotypes was useful for assuring both the capacity of the UPL PCR for an early viral DNA detection and the competence of the technique to be applied in any ASF diagnostic target sample. The reliability and robustness of the UPL PCR was finally verified with a panel of ASFV-infected clinical samples which was repeatedly tested at different times. Additionally, an internal control PCR assay was also developed and standardized using UPL probes within the endogenous β-actin gene. Finally, the complete study offers a new validated real-time PCR technique, by means of a standardized commercial probe, providing a simple, rapid and affordable test, which is ready for application in the routine diagnosis of ASF.

  6. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    PubMed

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.

  7. Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe.

    PubMed

    Zhou, Zhan; Wang, Qianming; Zhang, Cheng Cheng; Gao, Jinwei

    2016-04-25

    In this research, a novel terbium-based luminescent hybrid inorganic/organic probe was designed and synthesized. Mesoporous silica nanospheres dispersed in water were used as the appropriate host for the covalently linked lanthanide-containing organic structures. The lanthanide structure was linked to a sulfonate ester unit, which, in the presence of biothiols, was cleaved to result in terbium emission. The hybrid probe exhibited the capabilities of quantitative determination and detection limits for biothiols were presented (36.8 nM for Cys, 32.5 nM for GSH, and 34.7 nM for Hcy). Evaluation of luminescence changes in cell culture demonstrated that this smart probe is cell membrane permeable and selectively lights up in the presence of cysteine and glutathione in human embryonic kidney cells and human lung adenocarcinoma cells. This variation in the presence of biothiols can be controlled by the treatment with N-methylmaleimide. The narrow line-like bands and long-lived excited states of this terbium luminescent sensor allows the discrimination of scattering signals and interfering fluorescence derived from biological tissues.

  8. Optical probes for molecular-guided surgery: Using photomedicine to prevent recurrence in the surgical bed (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spring, Bryan Q.; Sears, R. Bryan; Zheng, Lei Z.; Mai, Zhiming; Watanabe, Reika; Villa, Elizabeth; Hasan, Tayyaba

    2016-03-01

    Residual tumor deposits missed by conventional treatments frequently seed local and distal recurrence utilizing a network of molecular signaling mechanisms. Beyond providing contrast for molecular-guided surgery, this talk will highlight new concepts in phototherapy to address residual cancer cells in danger zones of recurrence, including selective treatment of microscopic disease using molecular-targeted, activatable immunoconjugates, and photo-initiated release of multikinase inhibitors that suppress multiple modes of tumor escape using optically active nanoparticles. These new approaches support an expanded role for the use of light in fluorescence-guided surgery—for phototherapy and for focused drug release to maximize tumor debulking with suppression of disease recurrence.

  9. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag+ electrospray ionization mass spectrometry.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2004-01-01

    This work explores the possibility of Ag+ electrospray ionization mass spectrometry (ESI-MS) to determine the molecular weight distributions of non-boiling petroleum fractions. Information about the molecular weight distributions is needed for fundamental studies on the nature of heavy crude oils and bitumens and for the development of novel recovery and processing methods. The method does not depend on thermal processes for the introduction of the fractions into the gas phase of the mass spectrometer, which is a considerable advantage over most other ionization methods. The Ag+ electrospray mass spectra of the fractions analyzed by using a toluene/methanol/cyclohexane (60:28:12%) solvent system display bimodal distributions in the ranges m/z approximately 300 to approximately 3000 and m/z 3000 to approximately 20,000. The abundances of the high molecular weight peak distributions can be reduced by in-source collisional activation experiments. Comparisons with the results obtained for model heteroatom-containing compounds (molecular weight < 600 Da) and high molecular weight polystyrene standards (up to one million Da) indicate that the majority of the structures in the saturate, naphthenoaromatic and polar aromatic fractions, and a significant portion of the asphaltenes, are small molecules. However, a considerable portion of the asphaltenes and some portion of the other fractions contain high molecular weight structures bound by covalent or strong non-covalent bonds. The results obtained by the Ag+ ESI method in this study for the saturate, aromatic, and polar fractions in a bitumen are in qualitative agreement with published molecular weight average results obtained for Cold Lake bitumen fractions analyzed by conventional gel permeation chromatography and field desorption mass spectrometry. Further work is needed to study the nature of the bonds and the interactions of the molecules in the asphaltene fractions by Ag+ ESI-MS.

  10. An in vivo molecular imaging probe (18)F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation.

    PubMed

    Wang, Ming-Wei; Wang, Fang; Zheng, Yu-Jia; Zhang, Ying-Jian; Zhang, Yong-Ping; Zhao, Qing; Shen, Clifton Kwang-Fu; Wang, Yue; Sun, Shu-Han

    2013-02-01

    There is an increasing need to develop non-invasive molecular imaging strategies for visualizing and quantifying apoptosis status of diseases (especially for cancer) for diagnosis and monitoring treatment response. Since externalization of phosphatidylserine (PS) is one of the early molecular events during apoptosis, Annexin B1 (AnxB1), a member of Annexins family with high affinity toward the head group of PS, could be a potential positron emission tomography (PET) imaging probe for imaging cell death process after labeled by positron-emitting nuclides, such as (18)F. In the present study, we investigated a novel PET probe, (18)F-labeled Annexin B1 ((18)F-AnxB1), for apoptosis imaging. (18)F-AnxB1 was prepared reliably by conjugating AnxB1 with a (18)F-tag, N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB), in a radiolabeling yield of about 20 % within 40 min. The in vitro binding of (18)F-AnxB1 with apoptotic cells induced by anti-Fas antibody showed twofold increase compared to those without treatment, confirmed by flow cytometric analysis with AnxV-FITC/PI staining. Stability tests demonstrated (18)F-AnxB1 was rather stable in vitro and in vivo without degradation. The serial (18)F-AnxB1 PET/CT scans in healthy rats outlined its biodistribution and pharmacokinetics, indicating a rapid renal clearance and predominant accumulation into kidney and bladder at 2 h p.i. (18)F-AnxB1 PET/CT imaging was successfully applied to visualize in vivo apoptosis sites in tumor induced by chemotherapy and in kidney simulated by ischemia-reperfusion injury. The high-contrast images were obtained at 2 h p.i. to delineate apoptotic tumor. Apoptotic region could be still identified by (18)F-AnxB1 PET 4 h p.i., despite the high probe retention in kidneys. In summary, we have developed (18)F-AnxB1 as a PS-specific PET probe for the apoptosis detection and quantification which could have broad applications from disease diagnosis to treatment monitoring, especially in the cases of

  11. Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-On Fluorescent Probe

    PubMed Central

    Au-Yeung, Ho Yu; Chan, Jefferson; Chantarojsiri, Teera; Chang, Christopher J.

    2013-01-01

    Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe2+ pools in aqueous solution and in living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C–O bond cleavage reaction to achieve a selective turn-on response to Fe2+ over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe2+ detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development. PMID:24063668

  12. A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer's disease.

    PubMed

    Park, Kwang-Su; Seo, Yujin; Kim, Mi Kyoung; Kim, Kyungdo; Kim, Yun Kyung; Choo, Hyunah; Chong, Youhoon

    2015-12-14

    In recent years, there has been growing interest in the near-infrared (NIR) fluorescence imaging of tau fibrils for the early diagnosis of Alzheimer's disease (AD). In order to develop a curcumin-based NIR fluorescent probe for tau fibrils, structural modification of the curcumin scaffold was attempted by combining the following rationales: the curcumin derivative should preserve its binding affinity to tau fibrils, and, upon binding to tau fibrils, the probe should show favorable fluorescence properties. To meet these requirements, we designed a novel curcumin scaffold with various aromatic substituents. Among the series, the curcumin derivative with a (4-dimethylamino-2,6-dimethoxy)phenyl moiety showed a significant change in its fluorescence properties (22.9-fold increase in quantum yield; Kd, 0.77 μM; λem, 620 nm; Φ, 0.32) after binding to tau fibrils. In addition, fluorescence imaging of tau-green fluorescent protein-transfected SHSY-5Y cells with confirmed that detected tau fibrils in live cells.

  13. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites

    PubMed Central

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-01-01

    18F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules. PMID:26582591

  14. Collective dynamics of a photosynthetic protein probed by neutron spin-echo spectroscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dellerue, S.; Petrescu, A.; Smith, J. C.; Longeville, S.; Bellissent-Funel, M.-C.

    2000-03-01

    We have studied the collective dynamics of an hydrated soluble protein, the C-phycocyanin by using neutron spin-echo spectroscopy. Molecular dynamics simulations, performed with the same system, showed that the main dynamic contribution comes from backbone and side-chain motions. Both the experimental and spectra exhibit a dynamic relaxation with a characteristic time of about 10 ps.

  15. Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic and cichoric acid.

    PubMed

    Baskaran, Sarath Kumar; Goswami, Nabajyoti; Selvaraj, Sudhagar; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2012-08-27

    Protein tyrosine phosphatase 1B (PTP1B), a major negative regulator of the insulin and leptin signaling pathway, is a potential target for therapeutic intervention against diabetes and obesity. The recent discovery of an allosteric site in PTP1B has created an alternate strategy in the development of PTP1B targeted therapy. The current study investigates the molecular interactions between the allosteric site of PTP1B with two caffeoyl derivatives, chlorogenic acid (CGA) and cichoric acid (CHA), using computational strategies. Molecular docking analysis with CGA and CHA at the allosteric site of PTP1B were performed and the resulting protein-ligand complexes used for molecular dynamics simulation studies for a time scale of 10 ns. Results show stable binding of CGA and CHA at the allosteric site of PTP1B. The flexibility of the WPD loop was observed to be constrained by CGA and CHA in the open (inactive), providing molecular mechanism of allosteric inhibition. The allosteric inhibition of CGA and CHA of PTP1B was shown to be favorable due to no restriction by the α-7 helix in the binding of CGA and CHA at the allosteric binding site. In conclusion, our results exhibit an inhibitory pattern of CGA and CHA against PTP1B through potent binding at the allosteric site.

  16. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles.

    PubMed

    Xu, Xiaoli; Zhou, Guoliang; Li, Huixiang; Liu, Qian; Zhang, Song; Kong, Jilie

    2009-04-15

    A sensitive molecularly imprinted electrochemical sensor was created for selective detection of a tricyclic antidepressant imipramine by combination of Au nanoparticles (Au-NPs) with a thin molecularly imprinted film. The sensor was fabricated onto the indium tin oxide (ITO) electrode via stepwise modification of Au-NPs by self-assembly and a thin film of molecularly imprinted polymers (MIPs) via sol-gel technology. It was observed that the molecularly imprinted film displayed excellent selectivity towards the target molecule imipramine. Meanwhile, the introduced Au-NPs exhibited noticeable catalytic activities towards imipramine oxidation, which remarkably enhanced the sensitivity of the imprinted film. Due to such combination, the as-prepared sensor responded quickly to imipramine, within only 1 min of incubation. The differential voltammetric anodic peak current was linear to the logarithm of imipramine concentration in the range from 5.0x10(-6) to 1.0x10(-3) mol L(-1), and the detection limits obtained was 1.0x10(-9) mol L(-1). This method proposed was successfully applied to the determination of imipramine in drug tablets, and proven to be reliable compared with conventional UV method. These results reveal that such a sensor fulfills the selectivity, sensitivity, speed and simplicity requirements for imipramine detection, and provides possibilities of clinical application in physiological fluids.

  17. A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe.

    PubMed

    Wen, Guiqing; Liang, Xiaojing; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-11-15

    In pH 7.4 Na2HPO4-NaH2PO4 buffer solution containing the peptide probes for human chorionic gonadotropin (hCG), silver nanoparticles (AgNPs) were aggregated to big AgNPs clusters that exhibited very weak catalytic effect on the gold nanoparticle reaction of H2O2-HAuCl4. When hCG was present in the peptide probe solution, the AgNPs did not aggregate and it had strong catalytic effect on the gold nanoparticle reaction with a strong resonance Rayleigh scattering (RRS) peak at 370nm and a strong surface enhanced Raman scattering (SERS) peak at 1615cm(-1) in the presence of molecular probe of Victoria blue 4R (VB4R). With the increase of the hCG concentration, the catalysis enhanced due to the nanocatalyst of AgNPs increasing, and the RRS intensity increased at 370nm. The increased RRS intensity was linear to the hCG concentration in 0.05-10ng/mL, with a linear regression equation of ΔI370nm=409.8C +294. And the SERS intensity at 1615cm(-1) increased linearly with the hCG concentration in the range of 0.05-20ng/mL, with a linear regression equation of ΔI1615cm-1=142C+134. Based on this, two new methods of nanocatalytic SERS and RRS were proposed for the determination of trace hCG.

  18. Simultaneous electrochemical immunoassay using graphene-Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes.

    PubMed

    Wang, De; Gan, Ning; Zhang, Huairong; Li, Tianhua; Qiao, Li; Cao, Yuting; Su, Xiurong; Jiang, Shan

    2015-03-15

    A novel electrochemical multiplexed immunoassay was designed for simultaneous determination of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) using recombinant apoferritin-encoded metallic nanoparticles (rApo-M) as labels and dual-template magnetic molecularly imprinted polymers (MMIPs) as capture probes. The labels were prepared by loading recombinant apoferritin (r-Apo) and separately immobilize primary antibodies (anti-AFP and anti-CEA) via Au nanoparticles of in site growth on graphene (G). The capture probes were synthesized by self-polymerization of dopamine (DA) on the Fe3O4 nanoparticles (Fe3O4 NPs) and using AFP and CEA as the template proteins, which were used to enrich the targets simultaneously. After a sandwich-type immunoreaction, the labels were captured to the surface of MMIPs. The subsequent electrochemical stripping analysis of the metal components from the immunocomplex provide a means for quantification of targets based on the peak currents of Cd and Pb. Experimental results showed the immunoassay enabled the simultaneous determination of AFP and CEA in a single run with wide dynamic ranges of 0.001-5ngmL(-1). And the detection limits of AFP and CEA were 0.3 and 0.35pgmL(-1) (S/N=3), respectively. These results suggested that the proposed multiplexed immunoassay would be applied for clinical screening of other biomarkers.

  19. A simple and cost-effective molecular diagnostic system and DNA probes synthesized by light emitting diode photolithography

    NASA Astrophysics Data System (ADS)

    Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol

    2014-09-01

    This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.

  20. Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy.

    PubMed

    Razzell-Hollis, Joseph; Thiburce, Quentin; Tsoi, Wing C; Kim, Ji-Seon

    2016-11-16

    Organic electronic devices invariably involve transfer of charge carriers between the organic layer and at least one metal electrode, and they are sensitive to the local properties of the organic film at those interfaces. Here, we demonstrate a new approach for using an advanced technique called surface-enhanced raman spectroscopy (SERS) to quantitatively probe interfacial properties relevant to charge injection/extraction. Exploiting the evanescent electric field generated by a ∼7 nm thick layer of evaporated silver, Raman scattering from nearby molecules is enhanced by factors of 10-1000× and limited by a distance dependence with a measured decay length of only 7.6 nm. When applied to the study of an all-polymer 1:1 blend of P3HT and F8TBT used in organic solar cells, we find that the as-cast film is morphologically suited to charge extraction in inverted devices, with a top (anode) interface very rich in hole-transporting P3HT (74.5%) and a bottom (cathode) interface slightly rich in electron-transporting F8TBT (55%). While conventional, uninverted P3HT:F8TBT devices are reported to perform poorly compared to inverted devices, their efficiency can be improved by thermal annealing but only after evaporation of a metallic top electrode. This is explained by changes in composition at the top interface: annealing prior to silver evaporation leads to a greater P3HT concentration at the top interface to 83.3%, exaggerating the original distribution that favored inverted devices, while postevaporation annealing increases the concentration of F8TBT at the top interface to 34.8%, aiding the extraction of electrons in a conventional device. By nondestructively probing buried interfaces, SERS is a powerful tool for understanding the performance of organic electronic devices.

  1. Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid

    SciTech Connect

    Cicero, G; Grossman, J; Galli, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

  2. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    PubMed

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  3. Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy.

    PubMed

    Baldwin, Andrew J; Walsh, Patrick; Hansen, D Flemming; Hilton, Gillian R; Benesch, Justin L P; Sharpe, Simon; Kay, Lewis E

    2012-09-19

    Solution- and solid-state nuclear magnetic resonance (NMR) spectroscopy are highly complementary techniques for studying supra-molecular structure. Here they are employed for investigating the molecular chaperone αB-crystallin, a polydisperse ensemble of between 10 and 40 identical subunits with an average molecular mass of approximately 600 kDa. An IxI motif in the C-terminal region of each of the subunits is thought to play a critical role in regulating the size distribution of oligomers and in controlling the kinetics of subunit exchange between them. Previously published solid-state NMR and X-ray results are consistent with a bound IxI conformation, while solution NMR studies provide strong support for a highly dynamic state. Here we demonstrate through FROSTY (freezing rotational diffusion of protein solutions at low temperature and high viscosity) MAS (magic angle spinning) NMR that both populations are present at low temperatures (<0 °C), while at higher temperatures only the mobile state is observed. Solution NMR relaxation dispersion experiments performed under physiologically relevant conditions establish that the motif interchanges between flexible (highly populated) and bound (sparsely populated) states. This work emphasizes the importance of using multiple methods in studies of supra-molecules, especially for highly dynamic ensembles where sample conditions can potentially affect the conformational properties observed.

  4. Dynamics of glass-forming liquids. X. Dielectric relaxation of 3-bromopentane as molecular probes in 3-methylpentane.

    PubMed

    Huang, Wei; Shahriari, Shervin; Richert, Ranko

    2005-10-22

    The glass-forming liquids 3-bromopentane (3BP) and 3-methylpentane (3MP) are readily miscible across the entire composition range, although their polarities differ considerably. As noted by Berberian [J. Non-Cryst. Solids 131-133, 48 (1991)], the nearly matching molar volumes makes this binary system appear ideal for probe-sensitized measurements. We have performed a dielectric study of these mixtures in the range of 3BP mole fractions x from 2 x 10(-4) to 0.75. In the limit of low concentrations, x<0.5%, the dielectric loss peak of 3BP is slower by a factor of 2.5 relative to that of 3MP. Additionally, the relaxation behavior of the guest is more exponential than that of the host liquid. We interpret the distinct dynamics of the guest as a result of temporal averaging over the heterogeneous host dynamics, with the exchange time being near the longest structural time constant of the system.

  5. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2011-05-03

    BphI, a pyruvate-specific class II aldolase found in the polychlorinated biphenyls (PCBs) degradation pathway, catalyzes the reversible C-C bond cleavage of (4S)-hydroxy-2-oxoacids to form pyruvate and an aldehyde. Mutations were introduced into bphI to probe the contribution of active site residues to substrate recognition and catalysis. In contrast to the wild-type enzyme that has similar specificities for acetaldehyde and propionaldehyde, the L87A variant exhibited a 40-fold preference for propionaldehyde over acetaldehyde. The specificity constant of the L89A variant in the aldol addition reaction using pentaldehyde is increased ∼50-fold, making it more catalytically efficient for pentaldehyde utilization compared to the wild-type utilization of the natural substrate, acetaldehyde. Replacement of Tyr-290 with phenylalanine or serine resulted in a loss of stereochemical control as the variants were able to utilize substrates with both R and S configurations at C4 with similar kinetic parameters. Aldol cleavage and pyruvate α-proton exchange activity were undetectable in the R16A variant, supporting the role of Arg-16 in stabilizing a pyruvate enolate intermediate. The pH dependence of the enzyme is consistent with a single deprotonation by a catalytic base with pK(a) values of approximately 7. In H20A and H20S variants, pH profiles show the dependence of enzyme activity on hydroxide concentration. On the basis of these results, a catalytic mechanism is proposed.

  6. Flow Sorting and Molecular Cytogenetic Identification of Individual Chromosomes of Dasypyrum villosum L. (H. villosa) by a Single DNA Probe

    PubMed Central

    Grosso, Valentina; Farina, Anna; Gennaro, Andrea; Giorgi, Debora; Lucretti, Sergio

    2012-01-01

    Dasypyrum villosum (L.) Candargy (sin. Haynaldia villosa) is an annual wild diploid grass species (2n = 2x = 14; genome VV) belonging to the Poaceae family, which is considered to be an important source of biotic and abiotic stress resistance genes for wheat breeding. Enhanced characterization of D. villosum chromosomes can facilitate exploitation of its gene pool and its use in wheat breeding programs. Here we present the cytogenetic identification of D. villosum chromosomes on slide by fluorescent in situ hybridization (FISH), with the GAA simple sequence repeat (SSR) as a probe. We also describe the isolation and the flow cytometric analysis of D. villosum chromosomes in suspension, resulting in a distinguished flow karyotype. Chromosomes were flow sorted into three fractions, according their DNA content, one of which was composed of a single type of chromosome, namely 6 V, sorted with over 85% purity. Chromosome 6 V is known to carry genes to code for important resistance and seed storage characteristics, and its isolation represents a new source of genetic traits and specific markers useful for wheat improvement. PMID:23185561

  7. Effect of Thermal Gradients Created by Electromagnetic Fields on Cell-Membrane Electroporation Probed by Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Song, J.; Garner, A. L.; Joshi, R. P.

    2017-02-01

    The use of nanosecond-duration-pulsed voltages with high-intensity electric fields (˜100 kV /cm ) is a promising development with many biomedical applications. Electroporation occurs in this regime, and has been attributed to the high fields. However, here we focus on temperature gradients. Our numerical simulations based on molecular dynamics predict the formation of nanopores and water nanowires, but only in the presence of a temperature gradient. Our results suggest a far greater role of temperature gradients in enhancing biophysical responses, including possible neural stimulation by infrared lasers.

  8. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    PubMed

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated

  9. Rotational spectrum of the molecular ion NH{sup +} as a probe for {alpha} and m{sub e}/m{sub p} variation

    SciTech Connect

    Beloy, K.; Borschevsky, A.; Hauser, A. W.; Schwerdtfeger, P.; Kozlov, M. G.; Flambaum, V. V.

    2011-06-15

    We identify the molecular ion NH{sup +} as a potential candidate for probing variations in the fine-structure constant {alpha} and electron-to-proton mass ratio {mu}. NH{sup +} has an anomalously low-lying excited {sup 4}{Sigma}{sup -} state, being only a few hundred cm{sup -1} above the ground {sup 2}{Pi} state. Being a light molecule, this proximity is such that rotational levels of the respective states are highly intermixed for low angular momenta. We find that several low-frequency transitions within the collective rotational spectrum experience enhanced sensitivity to {alpha} and {mu} variation. This is attributable to the close proximity of the {sup 2}{Pi} and {sup 4}{Sigma}{sup -} states, as well as the ensuing strong spin-orbit coupling between them. Suggestions that NH{sup +} may exist in interstellar space and recent predictions that trapped-ion precision spectroscopy will be adaptable to molecular ions make NH{sup +} a promising system for future astrophysical and laboratory studies of {alpha} and {mu} variation.

  10. Combining cryogenic fiber optic probes with commercial spectrofluorimeters for the synchronous fluorescence Shpol'skii spectroscopy of high molecular weight polycyclic aromatic hydrocarbons.

    PubMed

    Moore, Anthony F T; Barbosa, Fernando; Campiglia, Andres D

    2014-01-01

    Cryogenic fiber optic probes are combined for the first time with a commercial spectrofluorometer for Shpol'skii spectroscopy measurements at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. Accurate and reproducible acquisition of fluorescence spectra and signal intensities is demonstrated with three well known Shpol'skii systems, namely, anthracene/heptane, pyrene/hexane, and benzo[a]pyrene/octane. The ability to adjust the excitation and emission bandpass of the spectrofluorimeter to reach both site-resolution and analytically valuable signal-to-noise ratios was illustrated with benzo[a]pyrene in n-octane. The analytical potential of 4.2 K synchronous fluorescence Shpol'skii spectroscopy for the analysis of high molecular weight-polycyclic aromatic hydrocarbons was then explored for the first time. The judicious optimization of wavelength offsets permitted the successful determination of dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and naphtho[2,3-a]pyrene without previous chromatographic separation from a soil extract with complex matrix composition. The simplicity of the experimental procedure, the competitive analytical figures of merit, and the selectivity of analysis turn 4.2 K synchronous fluorescence Shpol'skii spectroscopy into a valuable alternative for screening isomers of high molecular weight polycyclic aromatic hydrocarbons in environmental samples.

  11. Intra-molecular G-quadruplex structure generated by DNA-templated click chemistry: "turn-on" fluorescent probe for copper ions.

    PubMed

    Shen, Qinpeng; Zhou, Lifen; Yuan, Yijia; Huang, Yan; Xiang, Binbin; Chen, Chunyan; Nie, Zhou; Yao, Shouzhuo

    2014-05-15

    A novel homogenous fluorescent sensor for signal-on detection of Cu(2+) has been developed based on intra-molecular G-quadruplex formed by DNA-templated click reaction and crystal violet (CV) as label-free signal reporter. The clickable DNA probe consists of two G-rich strands (A and B) bearing azide and alkyne group, respectively, and a template strand (C) locating two proximate reactants by pairing with A and B. The sequences of A and B are derived from asymmetric split of the G-quadruplex sequence (TTAGGG)4. In the presence of Cu(2+), the whole G-quadruplex sequence A-B is generated by chemical ligation of A and B via copper ion-catalyzed alkyne-azide cycloaddition, then released from template by toehold strand displacement, and consequently forming a stable intra-molecular G-quadruplex, which binds with CV to generate a strong fluorescent signal. Oppositely, weak fluorescence was obtained without Cu(2+) because of unstable intermolecular G-quadruplex formed by A and B and lack of lateral loop connection. Therefore, the Cu(2+) can be sensitively and specifically detected by the fluorescence of the CV-stained G-quadruplex with a low detection limit of 65nM and a linear range of 0.1-3µM. This method rationally integrated the DNA-templated synthesis and G-quadruplex structure-switch, presenting a simple and promising approach for biosensor development.

  12. Insulinotropic toxins as molecular probes for analysis of glucagon-like peptide-1 receptor-mediated signal transduction in pancreatic β-cells

    PubMed Central

    Holz, George G.; Leech, Colin A.; Habener, Joel F.

    2010-01-01

    Cholera toxin, pertussis toxin, mastoparan, maitotoxin, and α-latrotoxin are complex protein or polyether-based toxins of bacterial, insect, or phytoplankton origin that act with high potency at the endocrine pancreas to stimulate secretion of insulin from β-cells located in the islets of Langerhans. The remarkable insulinotropic properties of these toxins have attracted considerable attention by virtue of their use as selective molecular probes for analyses of β-cell stimulus-secretion coupling. Targets of the toxins include heptahelical cell surface receptors, GTP-binding proteins, ion channels, Ca2+ stores, and the exocytotic secretory apparatus. Here we review the value of insulinotropic toxins from the perspective of their established use in the study of signal transduction pathways activated by the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). Our analysis of one insulinotropic toxin (α-latrotoxin) leads us to conclude that there exists a process of molecular mimicry whereby the ‘lock and key’analogy inherent to hormone-receptor interactions is reproduced by a toxin related in structure to GLP-1. PMID:11086221

  13. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis.

    PubMed

    Song, Wenting; Quan, Peng; Li, Shanshan; Liu, Chao; Lv, Siji; Zhao, Yongshan; Fang, Liang

    2016-04-10

    In patches, a drug must release from patches prior to its percutaneous absorption. Chemical enhancers have been used for several decades, but their roles in drug release from patches are poorly understood. In this work, the roles of chemical enhancers in bisoprolol tartrate (BSP-T) release from patches were probed in vitro and in vivo. More importantly, an innovative mechanism insight of chemical enhancers in drug release process was provided at molecular level. FT-IR spectroscopy and molecular modeling were employed to investigate the influence of chemical enhancers on drug-adhesive interaction. The results showed chemical enhancers like Span 80, which had a strong ability forming hydrogen bonds, could decrease drug-adhesive interaction leading to the release of drug from adhesive of patches. Thermal analysis was conducted to research the influence of chemical enhancers on the thermodynamic properties of patch system. It showed that chemical enhancers promoted the formation of free volume of adhesive, which facilitated drug release process. By contrast, the influence on the thermodynamic properties of BSP-T was less effective in influencing BSP-T release process. In conclusion, chemical enhancers played an important role in facilitating BSP-T release from the adhesive DURO-TAK® 87-2287 of patches by decreasing drug-adhesive interaction and promoting the formation of free volume of adhesive. This work may be an important step in understanding the important roles of chemical enhancers in drug release process.

  14. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    PubMed Central

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Abstract. Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy. PMID:25473883

  15. NMR and DFT study on media effects on proton transfer in hydrogen bonding: concept of molecular probe with an application to ionic and super-polar liquids.

    PubMed

    Balevicius, Vytautas; Gdaniec, Zofia; Aidas, Kestutis

    2009-10-14

    Media effects of ionic and super-polar liquids on the state of H-bonding were studied by NMR and DFT methods. The proton sharing (positioning) in the H-bond was monitored following the chemical shifts of picolinic acid N-oxide (PANO) used as the molecular probe. The relationships between PANO 1H and 13C chemical shifts and proton position in the O-H...O bridge were calibrated using traditional organic solvents and other H-bond complexes of pyridine N-oxide with acids to increase the H-bond strength. A reliable parameter for H-bond monitoring was proposed. The state of the H-bond in ionic liquid media is largely governed by the dielectric properties of the bulk media. A drastic fall-out of PANO/[BuMePyr][TfO] from the general dielectric scheme built using solvents with increasing dielectric constant (from chloroform to water and culminating with formamide) was observed. On a molecular level this effect indicates that the ionic liquid [BuMePyr][TfO] can act on H-bonded systems as a stimulant of proton transfer. In 'super-polar' media (formamide) the intramolecular H-bond system converts into an intermolecular one forming a neutral H-bond complex of PANO with the formamide molecule.

  16. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    NASA Astrophysics Data System (ADS)

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-12-01

    Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.

  17. Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch.

    PubMed

    Ling, Pinghua; Lei, Jianping; Ju, Huangxian

    2015-09-15

    An electrochemical DNA sensor was developed based on the electrocatalysis of porphyrinic metal-organic framework (MOF) and triple-helix molecular switch for signal transduction. The streptavidin functionalized zirconium-porphyrin MOF (PCN-222@SA) was prepared as signal nanoprobe via covalent method and demonstrated high electrocatalysis for O2 reduction. Due to the large steric effect, the designed nanoprobe was blocked for the interaction with the biotin labeled triple-helix immobilized on the surface of glassy carbon electrode. In the presence of target DNA, the assistant DNA in triple-helix will hybridize with target DNA, resulting in the disassembly of triple-helix molecular. Consequently, the end biotin away from the electrode was ''activated'' for easy access to the signal nanoprobe, PCN-222@SA, on the basis of biotin-streptavidin biorecognition. The introduction of signal nanoprobe to a sensor surface led to a significantly amplified electrocatalytic current towards oxygen reduction. Integrating with DNA recycling amplification of Exonuclease III, the sensitivity of the biosensor was improved significantly with detection limit of 0.29 fM. Moreover, the present method has been successfully applied to detect DNA in complex serum matrix. This porphyrinic MOF-based strategy has promising application in the determination of various analytes for signal transduction and has great potential in bioassays.

  18. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    SciTech Connect

    Blank, David Andrew

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  19. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  20. Spatially resolved variations of the IMF mass normalization in early-type galaxies as probed by molecular gas kinematics

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; McDermid, Richard M.

    2017-01-01

    We here present the first spatially resolved study of the initial mass function (IMF) in external galaxies derived using a dynamical tracer of the mass-to-light ratio (M/L). We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine M/L gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar IMF mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalizations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalization and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future, larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.

  1. Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo.

    PubMed

    Zhang, Zongren; Fan, Jinda; Cheney, Philip P; Berezin, Mikhail Y; Edwards, W Barry; Akers, Walter J; Shen, Duanwen; Liang, Kexian; Culver, Joseph P; Achilefu, Samuel

    2009-01-01

    We have developed a generic approach to determine enzyme activities in vitro and monitor their functional status in vivo. Specifically, a method to generate donor (CbOH)-acceptor (Me2NCp) near-infrared (NIR) fluorescent dye pairs for preparing enzyme activatable molecular systems were developed based on the structural template of heptamethine cyanine dyes. Using caspase-3 as a model enzyme, we prepared two new caspase-3 sensitive compounds with high fluorescence quenching efficiency: Me2NCp-DEVD-K(CbOH)-OH (4) and AcGK(Me2NCp)-DEVD-APK(CbOH)-NH2 (5). The mechanism of quenching was based on combined effects of direct (classical) and reverse fluorescence resonance energy transfer (FRET). Caspase-3 cleavage of the scissile DEVD amide bond regenerated the NIR fluorescence of both donor and acceptor dyes. While both compounds were cleaved by caspase-3, substrate 5 was cleaved more readily than 4, yielding k(cat) and K(M), values of 1.02 +/- 0.06 s(-1) and 15 +/- 3 microM, respectively. Treatment of A549 tumor cells with paclitaxel resulted in > 2-fold increase in the fluorescence intensity by NIR confocal microscopy, suggesting the activation of pro-caspase-3 to caspase-3. A similar trend was observed in a mouse model, where the fluorescence intensity was nearly twice the value in caspase-3-rich tissue relative to the control. These results demonstrate the use of the same NIR activatable molecular systems for monitoring the activities of enzymes across a wide spatial scale ranging from in vitro kinetics measurements to in cellulo and in vivo localization of caspase-3 activation. The NIR activatable molecular probes provide an effective strategy to screen new drugs in vitro and monitor treatment response in living organisms.

  2. Simultaneously probing two ultrafast condensed-phase molecular symmetry breaking events by two-dimensional infrared spectroscopy.

    PubMed

    Yang, Fan; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2013-08-05

    In condensed phases, a highly symmetric gas-phase molecule lowers its symmetry under perturbation of the solvent, which is vital to a variety of structural chemistry related processes. However, the dynamical aspects of solvent-mediated symmetry-breaking events remain largely unknown. Herein, direct evidence for two types of solvent-mediated symmetry-breaking events that coexist on the picosecond timescale in a highly symmetric anion, namely, hexacyanocobaltate, is presented: 1) an equilibrium symmetry-breaking event in which a solvent-bound species having lowered symmetry undergoes a population exchange reaction with the symmetry-retaining species; 2) a dynamic symmetry-breaking event that is composed of many dynamic population-exchange reactions under fluctuating solvent interactions. Ultrafast two-dimensional infrared spectroscopy is used to simultaneously observe and dynamically characterize these two events. This work opens a new window into molecular symmetry and structural dynamics under equilibrium and non-equilibrium conditions.

  3. Probing the energy landscape of alanine dipeptide and decalanine using temperature as a tunable parameter in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Bhattacharya, S.

    2016-10-01

    We perform several molecular dynamics (MD) calculations of solvated alanine dipeptide and decalanine in vacuum with temperature as a tunable parameter and in the process, generate Markov state models (MSMs) at each temperature. An interesting observation that the kinetic rates appear to obey the Arrhenius rate law allows us to predict the dynamics of alanine dipeptide at 300 K at the microsecond timescales using the nanoseconds long high temperature calculations without actually performing MD simulations at 300 K. We conclude that the energy landscape of alanine dipeptide contains superbasins deeper than kBT and determine the energy barriers associated with the moves from the Arrhenius rate expression. Similar insights regarding the energy landscape associated with folding/unfolding pathways of a deca-alanine molecule are obtained using kinetic rates calculated at different temperatures.

  4. Molecular recognition of curcumin (Indian Ayurvedic medicine) by the supramolecular probe, p-t-butyl calix(8)arene

    NASA Astrophysics Data System (ADS)

    Meenakshi, C.; Jayabal, P.; Ramakrishnan, V.

    2014-06-01

    The thermodynamic property of the host-guest complexes formed between the curcumin, component of Indian Ayurvedic medicine turmeric, a drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene has been used as a host molecule and curcumin as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(8)arene with curcumin. The stochiometry of the host-guest complexes formed and the binding constant were determined. An interesting 1:1 and 4:1 stochiometric host-guest complexes were formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed.

  5. Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology.

    PubMed

    Herrmann, Andreas

    2009-08-21

    In analogy to evolution in biological processes, "molecular evolution", based on the reversible formation of imines, has successfully been explored for drug discovery, receptor design and as a controlled-release vehicle. Multicomponent systems composed of amines and carbonyl compounds generate structural diversity by reversible reaction of the different components to form equilibrated dynamic mixtures or combinatorial libraries (DCLs). Under thermodynamic control and in the presence of an external factor which influences the equilibrium, these systems evolve by selective adaptation to the changing external conditions. This concept allows the casting of biologically or catalytically active substrates and the molding of receptors from DCLs which are composed of smaller non-active amine and carbonyl moieties. Similarly, if the amine or carbonyl compounds are the biologically active compounds of interest, the corresponding dynamic mixtures are found to be efficient delivery systems, allowing their controlled release over time.

  6. Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants.

    PubMed

    Zhang, Jiapu

    2010-05-07

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect humans and animals. Rabbits are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species (Vorberg et al., 2003). Fortunately, the NMR structure of rabbit prion (124-228) (PDB entry 2FJ3), the NMR structure of rabbit prion protein mutation S173N (PDB entry 2JOH) and the NMR structure of rabbit prion protein mutation I214V (PDB entry 2JOM) were released recently. This paper studies these NMR structures by molecular dynamics simulations. Simulation results confirm the structural stability of wild-type rabbit prion, and show that the salt bridge between D177 and R163 greatly contributes to the structural stability of rabbit prion protein.

  7. Molecular recognition of curcumin (Indian Ayurvedic medicine) by the supramolecular probe, p-t-butyl calix(8)arene.

    PubMed

    Meenakshi, C; Jayabal, P; Ramakrishnan, V

    2014-06-05

    The thermodynamic property of the host-guest complexes formed between the curcumin, component of Indian Ayurvedic medicine turmeric, a drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene has been used as a host molecule and curcumin as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(8)arene with curcumin. The stochiometry of the host-guest complexes formed and the binding constant were determined. An interesting 1:1 and 4:1 stochiometric host-guest complexes were formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed.

  8. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  9. Probing the Electron Capture Dissociation Mass Spectrometry of Phosphopeptides with Traveling Wave Ion Mobility Spectrometry and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kim, Doyong; Pai, Pei-Jing; Creese, Andrew J.; Jones, Andrew W.; Russell, David H.; Cooper, Helen J.

    2015-06-01

    Electron capture dissociation mass spectrometry offers several advantages for the analysis of peptides, most notably that backbone c and z fragments typically retain labile modifications such as phosphorylation. We have shown previously that, in some cases, the presence of phosphorylation has a deleterious effect on peptide sequence coverage, and hypothesized that intramolecular interactions involving the phosphate group were preventing separation of backbone fragments. In the present work, we seek to rationalize the observed ECD behavior through a combination of ECD of model peptides, traveling wave ion mobility mass spectrometry and molecular dynamics simulations. The results suggest that for doubly protonated ions of phosphopeptide APLpSFRGSLPKSYVK a salt-bridge structure is favored, whereas for the doubly-protonated ions of APLSFRGSLPKpSYVK ionic hydrogen bonds predominate.

  10. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-Based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid.

    PubMed

    Chen, Sihua; Li, Aimin; Zhang, Lizhi; Gong, Jingming

    2015-10-08

    Driven by the urgent demand for the determination of low level perfluorooctanoic acid (PFOA) present in environment, a novel electrochemiluminescence (ECL) sensor has been first developed for the detection of PFOA using the molecularly imprinted polypyrrole modified two-dimensional ultrathin g-C3N4 (utg-C3N4) nanosheets as a cathodic ECL emitter with S2O8(2-) as coreactant. The prepared molecularly imprinted polymer (MIP) functionalized utg-C3N4 nanosheets (MIP@utg-C3N4) exhibit a stable and significantly amplified ECL signal. It is found that the targets of PFOA could be efficiently oxidized by the electro-generated strong oxidants of SO4(-) (from the reduction of coreactant S2O8(2-)), thus leading to a low yield of the excited utg-C3N4 (g-C3N4*) and finally a decrease in ECL signal. Based on this, a highly sensitive and selective MIP@utg-C3N4-based signal-off ECL sensor is developed for sensing PFOA. Such a newly designed ECL sensor exhibits highly linear over the PFOA concentration in two ranges, from 0.02 to 40.0 ng mL(-1) and 50.0-400.0 ng mL(-1). The detection limit (S/N = 3) is estimated to be 0.01 ng mL(-1) (i.e. 0.01 ppb), comparable to the results obtained by using well-established liquid chromatography-tandem mass spectrometry (LC-MS/MS). Toward practical applications, this low-cost and sensitive assay was successfully applied to measure PFOA in real water samples, showing fine applicability for the detection of PFOA in real samples.

  11. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    PubMed

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so

  12. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  13. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  14. Probing the interactions of the solvated electron with DNA by molecular dynamics simulations: II. bromodeoxyuridine-thymidine mismatched DNA.

    PubMed

    Gantchev, Tsvetan G; Hunting, Darel J

    2009-01-01

    The interaction of solvated electrons (e(-)(aq)) with DNA results in various types of DNA lesions. The in vitro and in vivo sensitisation of DNA to (e(-)(aq))-induced damage is achieved by incorporation of the electron-affinity radiosensitiser bromodeoxyuridine (BUdR) in place of thymidine. However, in DNA duplexes containing single-stranded regions (bulged BUdR-DNA), the type of lesion is different and the efficiency of damage is enhanced. In particular, DNA interstrand crosslinks (ICL) form at high efficiency in bulged DNA but are not detectable in completely duplex DNA. Knowledge about the processes and interactions leading to these differences is obscure. Previously, we addressed the problem by applying molecular modelling and molecular dynamics (MD) simulations to a system of normal (BUdR.A)-DNA and a hydrated electron, where the excess electron was modelled as a localised e(-)(H2O6) anionic cluster. The goal of the present study was to apply the same MD simulation to a wobble DNA-e(-)(aq) system, containing a pyrimidine-pyrimidine mismatched base pair, BUdR.T. The results show an overall dynamic pattern similar to that of the e(-)(aq) motion around normal DNA. However, the number of configuration states when e(-)(aq)) was particularly close to DNA is different. Moreover, in the (BUdR.T)-wobble DNA system, the electron frequently approaches the brominated strand, including BUdR, which was not observed with the normal (BUdR.A)-DNA. The structure and exchange of water at the sites of e(-)(aq) immobilisation near DNA were also characterised. The structural dynamics of the wobble DNA is prone to more extensive perturbations, including frequent formation of cross-strand (cs) interatomic contacts. The structural deviations correlated with e(-)(aq) approaching DNA from the major groove side, with sodium ions trapped deep in the minor groove. Altogether, the obtained results confirm and/or throw light on dynamic-structure determinants possibly responsible for the

  15. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  16. The Ar-HCO{sup +} and He-HCO{sup +} molecular complexes. Theoretical probe of the experimental data

    SciTech Connect

    Nowek, A.; Leszczynski, J.

    1996-12-31

    A number of ab initio correlated levels of theory, up to MP4(SDTQ), CCSD(T), and QCISD(T), have been employed in studies on molecular geometry and stability of the Ar-HCO{sup +} and He-HCO{sup +} complexes. At the applied levels of theory, the predicted interaction energies (corrected for the BSSE and ZPE) for Ar-HCO{sup +} range from -3.21 kcal/mol to -4.21 kcal /mol and for He-HCO{sup +} vary from -0.12 kcal/mol (-42 cm{sup -1}) to -0.37 kcal/mol (-130 cm{sup -1}). The optimized Ar-H distance agree very well with the experimentally determined value, whereas when step-by-step higher-level methods and basis sets are applied, the He-H distance, (1.9156 {angstrom} at QCISD(T)/aug-cc-pVTZ) dramatically retreats from the experimental value of 2.00 {angstrom}.

  17. Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods.

    PubMed

    Fang, Fang; Pan, Dong-Qi; Qiu, Min-Jie; Liu, Ting-Ting; Jiang, Min; Wang, Qi; Shi, Jie-Hua

    2016-09-01

    To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA-BSA complex. The number of binding sites (n) and the binding constant for MPA-BSA complex are ~1 and 4.6 × 10(3)  M(-1) at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG(0) , ΔH(0) and ΔS(0) in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II'') of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α-helix structure. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis.

    PubMed

    Guo, Zuojun; Mohanty, Udayan; Noehre, Justin; Sawyer, Tomi K; Sherman, Woody; Krilov, Goran

    2010-04-01

    Reactivation of the p53 cell apoptosis pathway through inhibition of the p53-hDM2 interaction is a viable approach to suppress tumor growth in many human cancers and stabilization of the helical structure of synthetic p53 analogs via a hydrocarbon cross-link (staple) has been found to lead to increased potency and inhibition of protein-protein binding (J. Am. Chem. Soc. 129: 5298). However, details of the structure and dynamic stability of the stapled peptides are not well understood. Here, we use extensive all-atom molecular dynamics simulations to study a series of stapled alpha-helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted alpha-helical propensities that are in good agreement with the experimental observations. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha-helical stability. These simulations provide new insights into the design of alpha-helical stapled peptides and the development of potent inhibitors of alpha-helical protein-protein interfaces.

  19. Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy.

    PubMed

    Allen, Jesse J; Bowser, Sage R; Damodaran, Krishnan

    2014-05-07

    Interactions of ionic liquids (ILs) with water are of great interest for many potential IL applications. 1-Ethyl-3-methylimidazolium (emim) acetate, in particular, has shown interesting interactions with water including hydrogen bonding and even chemical exchange. Previous studies have shown the unusual behavior of emim acetate when in the presence of 0.43 mole fraction of water, and a combination of NMR techniques is used herein to investigate the emim acetate-water system and the unusual behavior at 0.43 mole fraction of water. NMR relaxometry techniques are used to describe the effects of water on the molecular motion and interactions of emim acetate with water. A discontinuity is seen in nuclear relaxation behavior at the concentration of 0.43 mole fraction of water, and this is attributed to the formation of a hydrogen bonded network. EXSY measurements are used to determine the exchange rates between the H2 emim proton and water, which show a complex dependence on the concentration of the mixture. The findings support and expand our previous results, which suggested the presence of an extended hydrogen bonding network in the emim acetate-water system at concentrations close to 0.50 mole fraction of H2O.

  20. Probing Immobilization Mechanism of alpha-chymotrypsin onto Carbon Nanotube in Organic Media by Molecular Dynamics Simulation

    PubMed Central

    Zhang, Liyun; Xiao, Xiuchan; Yuan, Yuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei

    2015-01-01

    The enzyme immobilization has been adopted to enhance the activity and stability of enzymes in non-aqueous enzymatic catalysis. However, the activation and stabilization mechanism has been poorly understood on experiments. Thus, we used molecular dynamics simulation to study the adsorption of α-chymotrypsin (α-ChT) on carbon nanotube (CNT) in aqueous solution and heptane media. The results indicate that α-ChT has stronger affinity with CNT in aqueous solution than in heptane media, as confirmed by more adsorption atoms, larger contact area and higher binding free energies. Although the immobilization causes significant structure deviations from the crystal one, no significant changes in secondary structure of the enzyme upon adsorption are observed in the two media. Different from aqueous solution, the stabilization effects on some local regions far from the surface of CNT were observed in heptane media, in particular for S1 pocket, which should contribute to the preservation of specificity reported by experiments. Also, CNT displays to some extent stabilization role in retaining the catalytic H-bond network of the active site in heptane media, which should be associated with the enhanced activity of enzymes. The observations from the work can provide valuable information for improving the catalytic properties of enzymes in non-aqueous media. PMID:25787884

  1. Probing thermal stability of the β-lactoglobulin-oleic acid complex by fluorescence spectroscopy and molecular modeling

    NASA Astrophysics Data System (ADS)

    Simion (Ciuciu), Ana-Maria; Aprodu, Iuliana; Dumitrașcu, Loredana; Bahrim, Gabriela Elena; Alexe, Petru; Stănciuc, Nicoleta

    2015-09-01

    Bovine β-lactoglobulin is able to interact with different bioactive compounds, thus being an important candidate in the development of delivery systems with improved functionality. The heat induced changes in the β-lactoglobulin-oleic acid complex were examined by means of fluorescence spectroscopy and molecular modeling techniques. Fluorescence spectroscopy results indicated a rigid protein structure in the temperature range 25-70 °C, whereas at temperatures over 75 °C, the rearrangements of the polypeptide chains led to higher exposure of hydrophobic residues. The most significant increase of the accessible surface area with temperature increase was identified in case of Tyr99 and Tyr102. The phase diagram method indicated an all or none transition between two conformations. Due to conformational changes, no contact between Ile56 or Lys60 and the fatty acid could be identified at 85 °C, but new non-bonding interaction were established with Ile12 and Val15. The results obtained in this study provide important details about thermal induced changes in the conformation of β-lactoglobulin-oleic acid complex. Significant conformational changes were registered above 75 °C, suggesting the possibility of obtaining highly functional complexes between whey proteins and natural unsaturated fatty acids.

  2. Using singlet molecular oxygen to probe the solute and temperature dependence of liquid-like regions in/on ice.

    PubMed

    Bower, Jonathan P; Anastasio, Cort

    2013-08-01

    Liquid-like regions (LLRs) are found at the surfaces and grain boundaries of ice and as inclusions within ice. These regions contain most of the solutes in ice and can be (photo)chemically active hotspots in natural snow and ice systems. If we assume all solutes partition into LLRs as a solution freezes, freezing-point depression predicts that the concentration of a solute in LLRs is higher than its concentration in the prefrozen (or melted) solution by the freeze-concentration factor (F). Here we use singlet molecular oxygen production to explore the effects of total solute concentration ([TS]) and temperature on experimentally determined values of F. For ice above its eutectic temperature, measured values of F agree well with freezing-point depression when [TS] is above ∼1 mmol/kg; at lower [TS] values, measurements of F are lower than predicted from freezing-point depression. For ice below its eutectic temperature, the influence of freezing-point depression on F is damped; the extreme case is with Na2SO4 as the solute, where F shows essentially no agreement with freezing-point depression. In contrast, for ice containing 3 mmol/kg NaCl, measured values of F agree well with freezing-point depression over a range of temperatures, including below the eutectic. Our experiments also reveal that the photon flux in LLRs increases in the presence of salts, which has implications for ice photochemistry in the lab and, perhaps, in the environment.

  3. Probing the interaction mechanism of small molecule inhibitors with matriptase based on molecular dynamics simulation and free energy calculations.

    PubMed

    Sun, Dong-Ru; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2017-03-01

    Matriptase is a serine protease associated with a wide variety of human tumors and carcinoma progression. Up to now, many promising anti-cancer drugs have been developed. However, the detailed structure-function relationship between inhibitors and matriptase remains elusive. In this work, molecular dynamics simulation and binding free energy studies were performed to investigate the biochemistry behaviors of two class inhibitors binding to matriptase. The binding free energies predicted by MM/GBSA methods are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. The key residues responsible for achieving strong binding have been identified by the MM/GBSA free energy decomposition analysis. Especially, Trp215 and Phe99 had an important impact on active site architecture and ligand binding. The results clearly identify the two class inhibitors exist different binding modes. Through summarizing the two different modes, we have mastered some important and favorable interaction patterns between matriptase and inhibitors. Our findings would be helpful for understanding the interaction mechanism between the inhibitor and matriptase and afford important guidance for the rational design of potent matriptase inhibitors.

  4. 1H and 2H NMR spin-lattice relaxation probing water: PEG molecular dynamics in solution.

    PubMed

    Clop, Eduardo M; Perillo, María A; Chattah, Ana K

    2012-10-04

    Nuclear magnetic resonance spin-lattice relaxation times (T(1)) measurements were performed in aqueous solutions of poly(ethylene glycol) (PEG) of 6000 Da molecular mass to study the dynamical relation between PEG and water molecules at different solute concentrations. (1)H-T(1) experiments were carried on at a low magnetic field in the time domain (20 MHz) and at a high field (400 MHz) to obtain spectral resolution. Two contributing components were identified in each proton system, PEG and water, presenting values of T(1) with very different orders of magnitude. The approximate matching between the shorter (1)H-T(1) values associated with water and PEG has lead us to conclude that there exists a network of interactions (hydrogen bonds) between the solute and the solvent, which results in the presence of an ordered and dehydrated structure of PEG folded or self-assembled in equilibrium with a more flexible monomer structure. Dynamic light scattering results were consistent with the formation of PEG aggregates, showing a mean size between 40 and 100 nm.

  5. Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo

    PubMed Central

    Pan, Jie; Yuan, Hong; Zhang, Xiaoxue; Zhang, Huijuan; Xu, Qiming; Zhou, Yajun; Tan, Li; Nagawa, Shingo; Huang, Zhong-Xian; Tan, Xiangshi

    2017-01-01

    Soluble guanylate cyclase (sGC) is a heme-containing metalloprotein in NO-sGC-cGMP signaling. NO binds to the heme of sGC to catalyze the synthesis of the second messenger cGMP, which plays a critical role in several physiological processes. However, the molecular mechanism for sGC to mediate the NO signaling remains unclear. Here fluorophore FlAsH-EDT2 and fluorescent proteins were employed to study the NO-induced sGC activation. FlAsH-EDT2 labeling study revealed that NO binding to the H-NOX domain of sGC increased the distance between H-NOX and PAS domain and the separation between H-NOX and coiled-coil domain. The heme pocket conformation changed from “closed” to “open” upon NO binding. In addition, the NO-induced conformational change of sGC was firstly investigated in vivo through fluorescence lifetime imaging microscopy. The results both in vitro and in vivo indicated the conformational change of the catalytic domain of sGC from “open” to “closed” upon NO binding. NO binding to the heme of H-NOX domain caused breaking of Fe-N coordination bond, initiated the domain moving and conformational change, induced the allosteric effect of sGC to trigger the NO-signaling from H-NOX via PAS & coiled-coil to the catalytic domain, and ultimately stimulates the cyclase activity of sGC. PMID:28230071

  6. A study of dynamical processes in the Orion KL region using ALMA—probing molecular outflow and inflow

    SciTech Connect

    Wu, Yuefang; Liu, Tie; Qin, Sheng-Li

    2014-08-20

    This work reports high spatial resolution observations toward the Orion KL region with high critical density lines of CH{sub 3}CN (12{sub 4}-11{sub 4}) and CH{sub 3}OH (8{sub –1,8}-7{sub 0,7}), as well as a continuum at ∼1.3 mm band. The observations were made using the Atacama Large Millimeter/Submillimeter Array with a spatial resolution of ∼1.''5 and sensitivity of about 0.07 K and ∼0.18 K for continuum and line, respectively. The observational results showed that the gas in the Orion KL region consists of jet-propelled cores at the ridge and dense cores east and south of the region that are shaped like a wedge ring. The outflow has multiple lobes, which may originate from an explosive ejection, and is not driven by young stellar objects. Four infrared bubbles were found in the Spitzer/IRAC emissions. These bubbles, the distributions of the previously found H{sub 2} jets, the young stellar objects, and molecular gas suggest that BN is the explosive center. The burst time was estimated to be ≤1300 yr. At the same time, signatures of gravitational collapse toward Source I and the hot core were detected with material infall velocities of 1.5 km s{sup –1} and ∼0.6 km s{sup –1}, corresponding to mass accretion rates of 1.2 × 10{sup –3} M {sub ☉}/yr and 8.0 × 10{sup –5} M {sub ☉}/yr, respectively. These observations may support the belief that high-mass stars form via the accretion model, similar to their low-mass counterparts.

  7. Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001).

    PubMed

    Laporte, Sara; Finocchi, Fabio; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne; Guyot, François; Saitta, Antonino Marco

    2015-08-21

    We report a density-functional theory (DFT)-based study of the interface of bulk water with a prototypical oxide surface, MgO(001), and focus our study on the often-overlooked surface electric field. In particular, we observe that the bare MgO(001) surface, although charge-neutral and defectless, has an intense electric field on the Å scale. The MgO(001) surface covered with 1 water monolayer (1 ML) is investigated via a supercell accounting for the experimentally-observed (2 × 3) reconstruction, stable at ambient temperature, and in which two out of six water molecules are dissociated. This 1 ML-hydrated surface is also found to have a high, albeit short-ranged, normal component of the field. Finally, the oxide/water interface is studied via room-temperature ab initio molecular dynamics (AIMD) using 34 H2O molecules between two MgO(001) surfaces. To our best knowledge this is the first AIMD study of the MgO(001)/liquid water interface in which all atoms are treated using DFT and including several layers above the first adsorbed layer. We observe that the surface electric field, averaged over the AIMD trajectories, is still very strong on the fully-wet surface, peaking at about 3 V Å(-1). Even in the presence of bulk-like water, the structure of the first layer in contact with the surface remains similar to the (2 × 3)-reconstructed ice ad-layer on MgO(001). Moreover, we observe proton exchange within the first layer, and between the first and second layers - indeed, the O-O distances close to the surface are found to be distributed towards shorter distances, a property which has been shown to directly promote proton transfer.

  8. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  9. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  10. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma.

    PubMed

    Shen, Jian-Min; Li, Xin-Xin; Fan, Lin-Lan; Zhou, Xing; Han, Ji-Min; Jia, Ming-Kang; Wu, Liang-Fan; Zhang, Xiao-Xue; Chen, Jing

    2017-01-01

    A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)-magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP-DGL-RGD-GX1-DOX nanoparticles (NPs) was ~150-160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP-DGL-RGD-GX1-DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP-DGL-RGD-GX1-DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP-DGL-RGD-GX1-DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP-DGL-RGD-GX1-DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe.

  11. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes.

    PubMed

    Zhou, Jing; Gan, Ning; Li, Tianhua; Hu, Futao; Li, Xing; Wang, Lihong; Zheng, Lei

    2014-04-15

    In this report, a rapid and cost-effective sandwich electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of human immunodeficiency virus type 1 antibody (anti-HIV-1) using magnetic molecularly imprinted polymers (MMIPs) as capture probes by combining surface and epitope imprinting techniques and antigen conjugated with horseradish peroxidase (HRP-HIV-1) as labels. First, 3-aminobenzeneboronic acid (APBA) was used as the functional monomer and cross-linking reagent, which was polymerized on the surface of silicate-coated magnetic iron oxide nanoparticles (Fe3O4@SiO2 NPs) in the presence of human immunoglobulin G (HIgG), as the template exhibiting the same Fc region but different Fab region to anti-HIV-1 after the addition of the initiator, ammonium persulfate. This process resulted in grafting a hydrophilic molecularly imprinted polymer (MIP) film on the Fe3O4@SiO2 NPs. Thus, MMIPs, which could be reused after eluting the template, were used to recognize and enrich ultra-trace levels of anti-HIV-1. Subsequently, a novel sandwich ECL immunosensor was formed through the immunoreaction between MMIPs conjugated with varied concentrations of anti-HIV-1 and HRP-HIV-1. By the catalysis of HRP immobilized onto HRP-HIV-1 on the ECL system of Luminol-H2O2, a linear response range of the anti-HIV-1 dilution ratio (standard positive serum) was achieved from 1:20,000 to 1:50, with a detection limit of 1:60,000 (S/N=3). The developed method provides a low-cost, simple, and sensitive way for the early diagnosis of HIV infected patients.

  12. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma

    PubMed Central

    Shen, Jian-Min; Li, Xin-Xin; Fan, Lin-Lan; Zhou, Xing; Han, Ji-Min; Jia, Ming-Kang; Wu, Liang-Fan; Zhang, Xiao-Xue; Chen, Jing

    2017-01-01

    A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)–magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP–DGL–RGD-GX1–DOX nanoparticles (NPs) was ~150−160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP–DGL–RGD-GX1–DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP–DGL–RGD-GX1–DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP–DGL–RGD-GX1–DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP–DGL–RGD-GX1–DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe. PMID:28243083

  13. Low molecular weight fluorescent probes with good photostability for imaging RNA-rich nucleolus and RNA in cytoplasm in living cells.

    PubMed

    Song, Guofen; Sun, Yuming; Liu, Yong; Wang, Xiankun; Chen, Meiling; Miao, Fang; Zhang, Weijia; Yu, Xiaoqiang; Jin, Jianling

    2014-02-01

    We have synthesized two low molecular weight organic molecules, PY and IN successfully, which selectively stain nucleolus and cytoplasm of living cells in 30 min, with a much lower uptake in the nucleus. Nucleic acids electrophoresis and digest test of ribonuclease indicate their markedly higher affinity for RNA, especially PY. Moreover their RNA localization in cells is further supported by digest test of ribonuclease, namely, the nucleolar fluorescence signal is distinctly lost upon treatment with RNase. And, the fact that live cells stained by PY and IN still possess physiological function can be confirmed: 1) MTT assay demonstrates that the mitochondria of cells stained remains its electron mediating ability, 2) Double assay of PY/IN and propidium iodide as well as trypan blue testing show that the membrane of cells stained still is intact. Importantly, compared with the only commercial RNA probe, SYTO RNA-Select, PY and IN exhibit much better photostability when continuously illuminated with 488 nm laser and mercury lamp. These results prove that PY and IN are very attractive staining reagents for visualizing RNA in living cells.

  14. Study on vibrational relaxation dynamics of phenol-water complex by picosecond time-resolved IR-UV pump-probe spectroscopy in a supersonic molecular beam

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yasunori; Inokuchi, Yoshiya; Ebata, Takayuki; Petković, Milena

    2013-06-01

    A comparative study of vibrational energy relaxation (VER) between the monohydrated complexes of phenol-d0 and phenol-d1 is investigated in a supersonic molecular beam. The direct time-resolved measurement of energy redistribution from the phenolic OH/OD stretching mode of the phenol-d0-H2O/phenol-d1-D2O is performed by picosecond IR-UV pump-probe spectroscopy. Two complexes follow the same relaxation process that begins with the intramolecular vibrational energy redistribution (IVR) and the intermolecular vibrational energy redistribution (IVR), which is followed by the vibrational predissociation (VP). The difference in the relaxation lifetimes between them is discussed by anharmonic force field and RRKM calculations. Anharmonic analysis implies that intra- (IVR) and intermolecular (IVR) relaxations occur in parallel in the complexes. The RRKM-predicted dissociation (VP) lifetimes show qualitative agreement with the observed results, suggesting that VP takes place after the statistical energy distribution in the complexes.

  15. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    NASA Astrophysics Data System (ADS)

    Ueta, Toshiya

    We propose to continue our successful investigations into simultaneous probing of each of the ionized/atomic/molecular gas and dust components in planetary nebulae using primarily far-IR broadband images and spatially-resolved spectroscopic data cubes obtained with the Herschel Space Observatory to enhance our understanding of the circumstellar environments. This research originally started as the Herschel Planetary Nebula Survey (HerPlaNS) - an open time 1 program of the Herschel Space Observatory - in which 11 high-excitation PNs were observed to study the nebular energetics that involves very hot X-ray emitting plasma to very cold dust grains, whose density ranges over 3 to 4 orders of magnitude and temperature ranges over 7 orders of magnitude. The HerPlaNS data include broadband maps, IFU spectral data cubes, and bolometer array spectral data cubes covering 50 to 670 microns. Because of the sheer volume and complexity of the data set, the original funding was exhausted almost exclusively to the initial data reduction and not much to the subsequent science analysis. However, we managed to perform a nearly full science analysis for one target, NGC 6781, for which the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbonrich dust shell and the surrounding halo having temperatures of 26-40 K. We also demonstrated that spatially resolved far-IR line diagnostics would yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allowed to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 with a standard deviation of 110. The analysis also yielded estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 0.004 M_sun of dust grains. These estimates

  16. Genome-wide copy number aberrations and HER2 and FGFR1 alterations in primary breast cancer by molecular inversion probe microarray.

    PubMed

    Chen, Hui; Singh, Rajesh R; Lu, Xinyan; Huo, Lei; Yao, Hui; Aldape, Kenneth; Abraham, Ronald; Virani, Shumaila; Mehrotra, Meenakshi; Mishra, Bal Mukund; Bousamra, Alex; Albarracin, Constance; Wu, Yun; Roy-Chowdhuri, Sinchita; Shamanna, Rashmi Kanagal; Routbort, Mark J; Medeiros, L Jeffrey; Patel, Keyur P; Broaddus, Russell; Sahin, Aysegul; Luthra, Rajyalakshmi

    2017-01-24

    Breast cancer remains the second leading cause of cancer-related death in women despite stratification based on standard hormonal receptor (HR) and HER2 testing. Additional prognostic markers are needed to improve breast cancer treatment. Chromothripsis, a catastrophic genome rearrangement, has been described recently in various cancer genomes and affects cancer progression and prognosis. However, little is known about chromothripsis in breast cancer. To identify novel prognostic biomarkers in breast cancer, we used molecular inversion probe (MIP) microarray to explore genome-wide copy number aberrations (CNA) and breast cancer-related gene alterations in DNA extracted from formalin-fixed paraffin-embedded tissue. We examined 42 primary breast cancers with known HR and HER2 status assessed via immunohistochemistry and FISH and analyzed MIP microarray results for correlation with standard tests and survival outcomes. Global genome-wide CNA ranged from 0.2% to 65.7%. Chromothripsis-like patterns were observed in 23/38 (61%) cases and were more prevalent in cases with ≥10% CNA (20/26, 77%) than in cases with <10% CNA (3/12, 25%; p<0.01). Most frequently involved chromosomal segment was 17q12-q21, the HER2 locus. Chromothripsis-like patterns involving 17q12 were observed in 8/19 (42%) of HER2-amplified tumors but not in any of the tumors without HER2 amplification (0/19; p<0.01). HER2 amplification detected by MIP microarray was 95% concordant with conventional testing (39/41). Interestingly, 21% of patients (9/42) had fibroblast growth factor receptor 1 (FGFR1)amplification and had a 460% higher risk for mortality than those without FGFR1 amplification (p<0.01). In summary, MIP microarray provided a robust assessment of genomic CNA of breast cancer.

  17. Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34.

    PubMed

    Bordiga, Silvia; Regli, Laura; Cocina, Donato; Lamberti, Carlo; Bjørgen, Morten; Lillerud, Karl Petter

    2005-02-24

    Zeolitic materials based on the chabazite topology, such as H-SAPO-34, possess unique shape-selectivity properties for converting methanol into light olefins. In addition to the topology, zeolite acidity is inherently linked to catalyst activity and selectivity. The acidic properties of high silica chabazite (H-SSZ-13) have attracted much attention in the past decade because the material represents an idealized model system having one acidic site per cage. Conclusions drawn so far have essentially been founded on quantum chemical methods. An experimentally based benchmark of the acidity of H-SSZ-13 has hitherto not been available. In this work, transmission FTIR spectroscopy provides a description of the different acidic sites of H-SSZ-13 by using CO as molecular probe at 70 K. The results demonstrate that H-SSZ-13 is a strongly Brønsted acidic material, essentially having two distinct families of acidic sites. In contrast to numerous preceding reports, we find it fundamental to consider proton distributions among all four possible sites, and do not delimit the interpretations to only two sites. The present data consistently suggest the most abundant family of protons to have three members being located on different crystalline positions on the eight-membered-ring window giving access to the chabazite cage. Consequently, these protons are exposed to two neighboring cages. The second, and less abundant family, is constituted by only one site that is situated on the six-membered ring defining the top/bottom of the barrel-shaped chabazite cage. This proton is therefore only exposed to one cage and requires a higher CO pressure to form adducts. Toward CO, both families of sites possess the same acidity. Parallel experiments were also carried out for the isostructural and commercially important H-SAPO-34 having an equal density of acidic sites. This is the first attempt to directly compare, on an experimental basis, the acidity of these two materials.

  18. An attempt to correlate surface physics with chemical properties: molecular beam and Kelvin probe investigations of Ce1-xZrxO2 thin films.

    PubMed

    Kolekar, Sadhu K; Dubey, Anjani; Date, Kalyani S; Datar, Suwarna; Gopinath, Chinnakonda S

    2016-10-05

    What is the correlation between physical properties of the surfaces (such as surface potential, electronic nature of the surface), and chemical and catalysis properties (such as chemisorption, sticking probability of surface)? An attempt has been made to explore any correlation that might exist between the physical and chemical properties of thin film surfaces. Kelvin probe microscopy (KPM) and the molecular beam (MB) methods were employed to carry out the surface potential, and oxygen adsorption and oxygen storage capacity (OSC) measurements on Ce1-xZrxO2 thin films. A sol-gel synthesis procedure and spin-coating deposition method have been applied to make continuous nanocrystalline Ce1-xZrxO2 (x = 0-1) (CZ) thin films with uniform thickness (35-50 nm); however, surface roughness and porosity inherently changes with CZ composition. MB studies of O2 adsorption on CZ reveal high OSC for Ce0.9Zr0.1O2, which also exhibits highly porous and significantly rough surface characteristics. The surface potential observed from KPM studies varied between 30 and 80 mV, with Ce-rich compositions exhibiting the highest surface potential. Surface potential shows large changes after reduction or oxidation of the CZ film demonstrating the influence of Ce(3+)/Ce(4+) on surface potential, which is also a key to catalytic activity for ceria-based catalysts. The surface potential measured from KPM and the OSC measured from MB vary linearly and they depend on the Ce(3+)/Ce(4+) ratio. More and detailed studies are suggested to arrive at a correlation between the physical and chemical properties of the surfaces.

  19. Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment

    PubMed Central

    Christensen, Geoff A.; Wymore, Ann M.; King, Andrew J.; Podar, Mircea; Hurt, Richard A.; Santillan, Eugenio U.; Soren, Ally; Brandt, Craig C.; Brown, Steven D.; Palumbo, Anthony V.; Wall, Judy D.; Gilmour, Cynthia C.

    2016-01-01

    recent discovery of the Hg-methylating gene pair, hgcA and hgcB, has allowed us to design and optimize molecular probes against these genes within the genomic DNA for microorganisms known to methylate Hg. The protocols designed in this study allow for both qualitative and quantitative assessments of pure-culture or environmental samples. With these protocols in hand, we can begin to study the distribution of Hg-methylating organisms in nature via a cultivation-independent strategy. PMID:27422835

  20. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  1. Probing the conditions within Photo-dissociation Regions with high resolution near-infrared spectroscopy of UV-excited molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2017-01-01

    UV radiation regulates the energetics, ionization, and chemistry in much of the ISM. Regions between hot ionized and cool molecular gas where non-ionizing far-UV radiation dominates the state of the gas are called Photo-Dissociation or Photon-Dominated Regions (PDRs). PDRs are found in regions of high-mass star formation, planetary nebulae, and other environments that contain strong far-UV radiation fields. Hydrogen molecules (H2) are pumped by far-UV photons into excited rotational-vibrational levels of the ground electronic state, which give rise to a rich array of transitions in the near to mid-infrared. These transitions make an excellent probe of the physical conditions within a PDR. I will present near-IR spectra taken with the Immersion GRating Infrared Spectrometer (IGRINS; Park et al. 2014, Proc. SPIE, 9147), a novel, sensitive spectrometer with high spectral resolving power (R~45000) and instantaneous broad wavelength coverage (1.45-2.45 μm). Using IGRINS, I obtained deep spectra and measured up to 100 H2 rotational-vibrational transitions in the well-studied Orion Bar PDR, four other star formation complexes, and over a dozen planetary nebulae. Measurements of many lines from a wide range of vibrational states (v=1 to 13), rotational states (J=1 to 13), and excitation energies provides leverage for constraining the overall level populations and discerning the state of and physical processes within the gas. This combination of high spectral and spatial resolution enables us to distinguish previously unresolved spatio-kinematical components with distinct intrinsic spectra and excitation mechanisms (e.g. shocks vs. radiative excitation) within some individual planetary nebulae. I use the plasma simulation code Cloudy (Ferland et al. 2013, ApJ, 757, 79) as a tool for interpreting the observed H2 line ratios. Some sources are well fit by models with a single temperature and density, consistent with emission from a narrow region of the overall PDR structure

  2. A conveniently prepared and hypersensitized small molecular fluorescent probe: Rapidly detecting free zinc ion in HepG2 cells and Arabidopsis.

    PubMed

    Gan, Xiaoping; Sun, Ping; Li, Hong; Tian, Xiaohe; Zhang, Baowei; Wu, Jieying; Tian, Yupeng; Zhou, Hongping

    2016-12-15

    In this paper, we reported a conveniently prepared fluorescent probe for zinc ions detection, which constructed by the condensation reaction between p-(benzothiazolyl)aniline with 4, 4- diethylaminesalicylaldehyde. The sensing ability of the probe toward zinc ions in vitro was tested by a series of UV-Vis and fluorescence spectroscopy studies, which showed that the probe possessed high sensitivity with a detection limit of 5.8nM and a rapid response time of 10s. We also carried out fluorescent bio-imaging of the probe for zinc ions in human liver hepatocellular carcinoma cells (HepG2), which showed that the probe could be utilized to detect the intracellular endogenous zinc ions visually without introducing external zinc sources. Meanwhile, co-staining experiment with organelle selective trackers was performed to illustrate that the probe could locate at endoplasmic reticulum. Finally, we successfully used it as a zinc ion developer in plant tissue, which clearly demonstrated the distribution of zinc ions in the growth stage of plant tissue.

  3. Design, synthesis, and biological evaluation of 4-(5-dimethylamino-naphthalene-1-sulfon-amido)-3-(4-iodophenyl)butanoic acid as a novel molecular probe for apoptosis imaging

    SciTech Connect

    Zeng, Wenbin; Miao, Weimin; Le Puil, Michael; Shi, Guangqing; Biggerstaff, John; Kabalka, George W.; Townsend, David

    2010-07-30

    Research highlights: {yields} Annexin V is the gold standard probe for imaging apoptosis. {yields} Unfavorable profiles of Annexin V make it difficult to apply in the clinic. {yields} A novel small-molecular probe DNSBA was designed as an alternative to Annexin V. {yields} DNSBA specifically and selectively detect apoptotic cancer cells at all stages. {yields} DNSBA is a potential SPECT and PET agent when labeled with radioiodine. -- Abstract: Apoptosis (programmed cell death) plays a crucial role in the pathogenesis of many disorders, thus the detection of apoptotic cells can provide the physician with important information to further therapeutic strategies and would substantially advance patient care. A small molecule, 4-(5-dimethylamino-naphthalene-1-sulfonamido)-3-(4-iodo-phenyl)butanoic acid (DNSBA), was designed as a novel probe for imaging apoptosis and synthesized with good yield. The biological characterization demonstrated that DNSBA can be used to specifically and selectively detect apoptotic cancer cells at all stages. DNSBA is also designed as a potential SPECT and PET probe when labeled with radioiodine (I-123, -124, and -131).

  4. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  5. Development and application of multiple-probe scanning probe microscopes.

    PubMed

    Nakayama, Tomonobu; Kubo, Osamu; Shingaya, Yoshitaka; Higuchi, Seiji; Hasegawa, Tsuyoshi; Jiang, Chun-Sheng; Okuda, Taichi; Kuwahara, Yuji; Takami, Kazuhiro; Aono, Masakazu

    2012-04-03

    In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  6. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  7. Probing pathways periodically.

    PubMed

    Elston, Timothy C

    2008-10-21

    Signal transduction pathways are used by cells to process and transmit information about their external surroundings. These systems are dynamic, interconnected molecular networks. Therefore, full characterization of their behavior requires a systems-level analysis. Investigations with temporally oscillating input signals probed the dynamic properties of the high-osmolarity glycerol (HOG) pathway of the budding yeast Saccharomyces cerevisiae. These studies shed light on how the network functions as a whole to respond to changing environmental conditions.

  8. Alternative methods for estimating common descriptors for QSAR studies of dyes and fluorescent probes using molecular modeling software. 2. Correlations between log P and the hydrophilic/lipophilic index, and new methods for estimating degrees of amphiphilicity.

    PubMed

    Dapson, Richard W; Horobin, Richard W

    2013-11-01

    The log P descriptor, despite its usefulness, can be difficult to use, especially for researchers lacking skills in physical chemistry. Moreover this classic measure has been determined in numerous ways, which can result in inconsistant estimates of log P values, especially for relatively complex molecules such as fluorescent probes. Novel measures of hydrophilicity/lipophilicity (the Hydrophilic/Lipophilic Index, HLI) and amphiphilicity (hydrophilic/lipophilic indices for the head group and tail, HLIT and HLIHG, respectively) therefore have been devised. We compare these descriptors with measures based on log P, the standard method for quantitative structure activity relationships (QSAR) studies. HLI can be determined using widely available molecular modeling software, coupled with simple arithmetic calculations. It is based on partial atomic charges and is intended to be a stand-alone measure of hydrophilicity/lipophilicity. Given the wide application of log P, however, we investigated the correlation between HLI and log P using a test set of 56 fluorescent probes of widely different physicochemical character. Overall correlation was poor; however, correlation of HLI and log P for probes of narrowly specified charge types, i.e., non-ionic compounds, anions, conjugated cations, or zwitterions, was excellent. Values for probes with additional nonconjugated quaternary cations, however, were less well correlated. The newly devised HLI can be divided into domain-specific descriptors, HLIT and HLIHG in amphiphilic probes. Determinations of amphiphilicity, made independently by the authors using their respective methods, showed excellent agreement. Quantifying amphiphilicity from partial log P values of the head group (head group hydrophilicity; HGH) and tail (amphiphilicity index; AI) has proved useful for understanding fluorescent probe action. The same limitations of log P apply to HGH and AI, however. The novel descriptors, HLIT and HLIHG, offer analogous advantages

  9. Preferential molecular encapsulation of an ICT fluorescence probe in the supramolecular cage of cucurbit[7]uril and β-cyclodextrin: an experimental and theoretical approach.

    PubMed

    Samanta, Anuva; Guchhait, Nikhil; Bhattacharya, Subhash Chandra

    2014-11-20

    Supramolecular interaction between an intramolecular charge transfer (ICT) probe, N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN), and two well-recognized macrocyclic hosts, cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD), has been studied in aqueous medium by absorption, emission, time-resolved measurements, and (1)H NMR spectroscopic methods. The changes in the profiles of the fluorescence spectra illustrate significant modifications in fluorescence intensity, decay time, and quantum yield upon confinement of probe within the hydrophobic cavity of the hosts. Using the Benesi-Hildebrand relationship, the stoichiometric ratio as well as the binding constant of the host-guest complexation has been estimated. The stable inclusion complexes of the probe with different hosts have been supported by DFT and ONIOM based quantum chemical calculations. These methods of measurement establish that the acceptor group of the probe resides inside the hydrophobic cavity of the macrocycle. The competitive binding of metal ions and cationic surfactants to CB7 has been excellently mapped with this guest fluorosensor.

  10. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  11. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.

    PubMed

    Fujii, Tomohiko; Kamiya, Mako; Urano, Yasuteru

    2014-10-15

    It is difficult to completely remove carcinomas in unguided ablative surgery because they cannot be distinguished with the unaided human eye. Therefore, in order to precisely visualize tiny tumors and the borders between cancerous lesions and normal tissues, we have been developing fluorescence probes activatable only in cancer cells. We previously reported the hydroxymethylrhodamine green (HMRG)-based fluorescence probe gGlu-HMRG for γ-glutamyltransferase (GGT), which is overexpressed in a variety of cancer cells, and we showed that it enables in vivo rapid detection of human ovarian cancer SHIN-3 nodules with a high tumor-to-background (T/B) fluorescence ratio in model mice. However, cancer cell lines with low GGT expression could hardly be detected with gGlu-HMRG. Here we developed two new HMRG-based fluorescence probes for the cathepsin family of cysteine proteases, including cathepsin B (CatB) and cathepsin L (CatL), which show increased expression and/or activity, secretion, and altered localization in many kinds of cancer cells. The developed probes, Z-Phe-Arg-HMRG and Z-Arg-Arg-HMRG, are colorless and nonfluorescent at the physiological pH of 7.4, but are hydrolyzed to HMRG upon reaction with purified cathepsins, resulting in a more than 200-fold fluorescence increase. These probes could visualize human ovarian cancer cell lines SHIN-3, SK-OV-3, and OVCAR-3, of which the latter two were hardly detectable with gGlu-HMRG. Z-Phe-Arg-HMRG showed higher applicability than Z-Arg-Arg-HMRG for in vivo imaging, and we confirmed that 0.5-mm-sized SK-OV-3 tumor nodules disseminated on the mesentery in a mouse model could be rapidly visualized by Z-Phe-Arg-HMRG, with a T/B fluorescence ratio of 4.2. Further, intraperitoneally disseminated tumor could be visualized in real time in vivo by fluorescence endoscopy after spraying Z-Phe-Arg-HMRG, with a T/B ratio of 3. In conclusion, our HMRG-based activatable probes targeted to cathepsins have expanded the detectable range

  12. A naturally occurring mutation within the probe-binding region compromises a molecular-based West Nile virus surveillance assay for mosquito pools (Diptera: Culicidae).

    PubMed

    Brault, Aaron C; Fang, Ying; Dannen, Maureen; Anishchenko, Michael; Reisen, William K

    2012-07-01

    A naturally occurring mutation was detected within the probe binding region targeting the envelope gene sequence of West Nile virus used in real-time polymerase chain reaction assays to test mosquito pools and other samples. A single C-->T transition 6nt from the 5' end of the 16mer in the envelope gene probe-binding region at genomic position 1,194 reduced assay sensitivity. The mutation first was detected in 2009 and persisted at a low prevalence into 2011. The mutation caused a 0.4% false negative error rate during 2011. These data emphasized the importance of confirmational testing and redundancy in surveillance systems relying on highly specific nucleic acid detection platforms.

  13. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    SciTech Connect

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.; Beusekom, Mara M. van; Mol, Isabel M.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Rooij, Karien E. de

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.

  14. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin

    NASA Astrophysics Data System (ADS)

    Fani, N.; Bordbar, A. K.; Ghayeb, Y.

    2013-02-01

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  15. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin.

    PubMed

    Fani, N; Bordbar, A K; Ghayeb, Y

    2013-02-15

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  16. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes.

    PubMed

    El Khoury, Elsy; Patra, Digambara

    2016-05-01

    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.

  17. Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by (13)C NMR and SAXS.

    PubMed

    Gunness, Purnima; Flanagan, Bernadine M; Mata, Jitendra P; Gilbert, Elliot P; Gidley, Michael J

    2016-04-15

    Two main classes of interaction between soluble dietary fibres (SDFs), such as (1,3:1,4)-β-D-glucan (βG) and arabinoxylan (AX) and bile salt (BS) or diluted porcine bile, were identified by (13)C NMR and small angle X-ray scattering (SAXS). Small chemical shift differences of BS NMR resonances were consistent with effective local concentration or dilution of BS micelles mostly by βG, suggesting dynamic interactions; whilst the reduced line widths/intensities observed were mostly caused by wheat AX and the highest molecular size and concentrations of βG. SAXS showed evidence of changes in βG but not AX in the presence of BS micelles, at >13 nm length scale consistent with molecular level interactions. Thus intermolecular interactions between SDF and BS depend on both SDF source and its molecular weight and may occur alone or in combination.

  18. What lurks in ULIRGs?—Probing the chemistry and excitation of molecular gas in the nuclei of Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nick

    2017-02-01

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO+, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H2 densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO+ in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H2 volume densities are ∼5 × 104 cm‑3 in the Arp 220 nuclei and ∼104 cm‑3 in NGC 6240.

  19. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin-embedded human renal allograft tissue.

    PubMed

    Adam, Benjamin; Afzali, Bahman; Dominy, Katherine M; Chapman, Erin; Gill, Reeda; Hidalgo, Luis G; Roufosse, Candice; Sis, Banu; Mengel, Michael

    2016-03-01

    Histopathologic diagnoses in transplantation can be improved with molecular testing. Preferably, molecular diagnostics should fit into standard-of-care workflows for transplant biopsies, that is, formalin-fixed paraffin-embedded (FFPE) processing. The NanoString(®) gene expression platform has recently been shown to work with FFPE samples. We aimed to evaluate its methodological robustness and feasibility for gene expression studies in human FFPE renal allograft samples. A literature-derived antibody-mediated rejection (ABMR) 34-gene set, comprised of endothelial, NK cell, and inflammation transcripts, was analyzed in different retrospective biopsy cohorts and showed potential to molecularly discriminate ABMR cases, including FFPE samples. NanoString(®) results were reproducible across a range of RNA input quantities (r = 0.998), with different operators (r = 0.998), and between different reagent lots (r = 0.983). There was moderate correlation between NanoString(®) with FFPE tissue and quantitative reverse transcription polymerase chain reaction (qRT-PCR) with corresponding dedicated fresh-stabilized tissue (r = 0.487). Better overall correlation with histology was observed with NanoString(®) (r = 0.354) than with qRT-PCR (r = 0.146). Our results demonstrate the feasibility of multiplexed gene expression quantification from FFPE renal allograft tissue. This represents a method for prospective and retrospective validation of molecular diagnostics and its adoption in clinical transplantation pathology.

  20. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse

  1. Stable Isotope Probing of an Algal Bloom To Identify Uncultivated Members of the Rhodobacteraceae Associated with Low-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation▿

    PubMed Central

    Gutierrez, Tony; Singleton, David R.; Aitken, Michael D.; Semple, Kirk T.

    2011-01-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria associated with an algal bloom in Tampa Bay, FL, were investigated by stable isotope probing (SIP) with uniformly labeled [13C]naphthalene. The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from naphthalene enrichments) were identified as uncharacterized members of the family Rhodobacteraceae. Quantitative PCR primers targeting the 16S rRNA gene of these uncultivated organisms were used to determine their abundance in incubations amended with unlabeled naphthalene and phenanthrene, both of which showed substantial increases in gene copy numbers during the experiments. As demonstrated by this work, the application of uniformly 13C-labeled PAHs in SIP experiments can successfully be used to identify novel PAH-degrading bacteria in marine waters. PMID:21926219

  2. Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species

    PubMed Central

    Arif, Mohammad; Opit, George; Mendoza-Yerbafría, Abigail; Dobhal, Shefali; Li, Zhihong; Kučerová, Zuzana; Ochoa-Corona, Francisco M.

    2015-01-01

    Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics. PMID:26086728

  3. HOPS + MALT90 + Hi-GAL: Probing star formation on a Galactic scale through mm molecular line and far-IR continuum Galactic plane surveys

    NASA Astrophysics Data System (ADS)

    Longmore, Steven N.; Rathborne, Jill; Bastian, Nate; Alves, Joao; Ascenso, Joana; Bally, John; Testi, Leonardo; Longmore, Andy; Battersby, Cara; Bressert, Eli; Purcell, Cormac; Walsh, Andrew; Jackson, James; Foster, Jonathan; Molinari, Sergio; Meingast, Stefan; Amorim, A.; Lima, J.; Marques, R.; Moitinho, A.; Pinhao, J.; Rebordao, J.; Santos, F. D.

    2012-03-01

    With the HOPS and MALT90 Galactic plane surveys we are mapping a significant fraction of the dense molecular gas in the Galaxy in over 20 dense-gas-tracing transitions (e.g. from H2O, NH3, HC3N, HC5N, N2H+, HCN, HNC, HCO+, CH3CN, SiO, C2H, ...). Combining this with the far-IR continuum emission from Hi-GAL we can derive the physical/chemical/kinematic properties and evolutionary state of much of the molecular gas in the Galaxy destined to form stars. I will present results from three science projects based on this combined dataset, namely: i) looking for variations in the star formation rate across the Galaxy as a function of environment, in particular, comparing the CMZ with the rest of the Galactic disk -- we find the rate of star formation per unit mass of dense gas in the CMZ may be an order of magnitude lower than that in the disk; ii) seeing if Galactic dense molecular clouds follow the empirical relations observed in extragalactic systems (e.g. the Kennicutt-Schmidt and Gao & Solomon relations) and what this implies for interpretating the extragalactic relations; iii) searching for molecular cloud progenitors of the most extreme (massive and dense) stellar clusters. I will present one cloud we have studied as part of project iii) which lies close to the Galactic center and which is clearly extreme compared to the rest of the Galactic molecular cloud population. With a mass of 10^5 Msun, a radius of only ~3pc and almost no signs of star formation it appears to be the progenitor of an Arches-like stellar cluster. As such, we speculate this molecular cloud may be a local-universe-analogue of the initial conditions of a super star cluster or potentially even a small globular cluster. From our Galactic plane survey data this object appears to be unique in the Galaxy, making it extremely important for testing massive cluster formation models. We have been awarded 6 hours of ALMA Cycle 0 observing time to study this object in detail and I hope to show preliminary

  4. Probing Molecular Interactions of Asphaltenes in Heptol Using a Surface Forces Apparatus: Implications on Stability of Water-in-Oil Emulsions.

    PubMed

    Zhang, Ling; Shi, Chen; Lu, Qingye; Liu, Qingxia; Zeng, Hongbo

    2016-05-17

    The behaviors and molecular interactions of asphaltenes are related to many challenging issues in oil production. In this study, the molecular interaction mechanism of asphaltenes in Heptol solvents of varying toluene/n-heptane ratio were directly measured using a surface forces apparatus (SFA). The results showed that the interactions between asphaltene surfaces gradually changed from pure repulsion to weak adhesion as the weight ratio of toluene (ω) in Heptol decreased from ω = 1 to 0. The measured repulsion was mainly due to the steric interactions between swelling asphaltene molecules and/aggregates. The micropipet technique was applied to test the stability of two water-in-oil emulsion droplets attached to glass pipettes. A computer-controlled 4-roll mill fluidic device was also built in-house to investigate the interaction of free-suspending water-in-oil emulsions under dynamic flow conditions. Both micropipet and 4-roll mill fluidic tests demonstrate that asphaltenes adsorbed at oil/water interfaces play a critical role in stabilizing the emulsion drops, in agreement with the repulsion measured between asphaltene surfaces in toluene using SFA, and that interfacial sliding or shearing is generally required to destabilize the protective interfacial apshaltene layers which facilitates the coalescence of emulsion drops. Our results provide insights into the fundamental understanding of molecular interaction mechanisms of asphaltenes in organic solvents and stabilization/destabilization behaviors of water-in-oil emulsions with asphaltenes.

  5. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.

    PubMed

    Gorai, Biswajit; Sivaraman, Thirunavukkarasu

    2017-02-01

    Cardiotoxins (CTXs) are single polypeptide chain consisting of 59-62 amino acids with four disulfide bridges and globular proteins of simple β-sheet folds. The CTXs are one of principal toxic components causing haemolysis and damaging various cells and belong to three-finger toxin (TFT) superfamily of snake venoms. However, there is no natural or synthetic small molecular inhibitor to the protein toxins to date. In the present study, modes of interaction of cardiotoxin 1 (CTX1) from Indian cobra (Naja naja) with heterogeneous erythrocyte membrane (EM) model system have been extensively examined by using all-atom molecular dynamics (MD) simulations in near physiological conditions and comprehensive analyses of the MD data revealed two distinct principal regions ('head groove' and 'loop groove') of the protein toxin for establishing structural interactions with the EM system. Moreover, combined analyses of data from high-throughput virtual screening of NCI small molecular database, in vitro haemolytic assays for top-hits of the chemical compounds against crude venom of Naja naja and as well CTXs purified from the venom and pharmacokinetic examinations on the chemical compounds retarding haemolytic activities of CTXs suggested that Etidronic acid and Zoledronic acid are promising prototypic chemical inhibitors to CTXs of snake venoms.

  6. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling.

    PubMed

    Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future.

  7. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling

    PubMed Central

    Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future. PMID:27669518

  8. Layer-by-layer assembly sensitive electrochemical sensor for selectively probing L-histidine based on molecular imprinting sol-gel at functionalized indium tin oxide electrode.

    PubMed

    Zhang, Zhaohui; Hu, Yufang; Zhang, Huabin; Luo, Lijuan; Yao, Shouzhuo

    2010-10-15

    A novel sensitive and selective imprinted electrochemical sensor was successfully constructed for the direct detection of L-histidine by combination of a molecular imprinting film and multi-walled carbon nanotubes (MWNTs). The sensor was fabricated onto an indium tin oxide (ITO) electrode via stepwise modification of MWNTs and a thin film of molecularly imprinted polymers (MIPs) via sol-gel technology. The introduced MWNTs exhibited noticeable enhancement on the sensitivity of the MIPs sensor. Meanwhile, the molecularly imprinted film displayed high sensitivity and excellent selectivity for the target molecule L-histidine. The proposed imprinted sensor was characterized by using scanning electron microscope (SEM) and electrochemical methods involving cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometric i-t curve. A linear ranging from 2.0 μmol L(-1) to 1.0 mmol L(-1) for the detection of L-histidine was observed with the detection limit of 5.8×10(-9) mol L(-1) for S/N=3. This imprinted electrochemical sensor was successfully employed to detect L-histidine in human blood serum.

  9. Optical imaging probes in oncology

    PubMed Central

    Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-01-01

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373

  10. Optical imaging probes in oncology.

    PubMed

    Martelli, Cristina; Lo Dico, Alessia; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-07-26

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.

  11. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation

    PubMed Central

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S.

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD). PMID:28082953

  12. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy.

    PubMed

    Xia, Rui; Cao, Xingzhong; Gao, Meizhen; Zhang, Peng; Zeng, Minfeng; Wang, Baoyi; Wei, Long

    2017-02-01

    Chitosan, CS, cross-linked with bivalent palladium has shown enhanced mechanical and thermal properties depending on the transformation of the structure at a microscopic scale. In the present study, CS directly cross-linked by palladium cation membranes (CS-cr-PM) was prepared through a solution-casting method. Mobility of chitosan chains were greatly reduced after crosslinking, making a great reduction in the swelling ratio studied by a water-swelling degree measurement, which led to an improvement in molecular chain rigidity. In order to investigate the chain packing at the molecular level in the ionic cross-linked CS system, the structure of chemically-crosslinked CS is investigated by means of the combined use of wide angle X-ray diffraction (WAXD) and infrared measurements, and a combination of positron annihilation lifetime spectroscopy (PALS) and simultaneous coincidence Doppler broadening (CDB) spectroscopy offers coherent information on both the free-volume related sub-nano level molecular packing and the chemical surrounding of free volume nanoholes in CS-cr-PM as a function of palladium salt loading. The variations in the free volume size and size distribution have been determined through the ortho-positronium (o-Ps) lifetime and its lifetime distribution. The studies showed that a strong interaction between CS molecules and palladium cations results in the change in crystallinity in formed CS-cr-PM leading to variational chain packing density. Meanwhile, significant inhibition effects on positronium formation due to doping are observed, which could be interpreted in terms of the existence of chloride ions. Applications of positron annihilation spectroscopy to study the microstructure and correlated positron annihilation characteristics of an ionic cross-linked CS system are systematically discussed.

  13. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2008-09-01

    In this study, we investigated the electronic character of protein environment in enzymatic processes by performing all-electron QM calculations based on the fragment molecular orbital (FMO) method. By introducing a new computational strategy combining all-electron QM analysis with ab initio QM/MM modeling, we investigated the details of molecular interaction energy between a reactive substrate and amino acid residues at a catalytic site. For a practical application, we selected the chorismate mutase catalyzed reaction as an example. Because the computational time required to perform all-electron QM reaction path searches was very large, we employed the ab initio QM/MM modeling technique to construct reliable reaction profiles and performed all-electron FMO calculations for the selected geometries. The main focus of the paper is to analyze the details of electrostatic stabilization, which is considered to be the major feature of enzymatic catalyses, and to clarify how the electronic structure of proteins is polarized in response to the change in electron distribution of the substrate. By performing interaction energy decomposition analysis from a quantum chemical viewpoint, we clarified the relationship between the location of amino acid residues on the protein domain and the degree of electronic polarization of each residue. In particular, in the enzymatic transition state, Arg7, Glu78, and Arg90 are highly polarized in response to the delocalized electronic character of the substrate, and as a result, a large amount of electrostatic stabilization energy is stored in the molecular interaction between the enzyme and the substrate and supplied for transition state stabilization.

  14. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase.

    PubMed

    Ishida, Toyokazu

    2008-09-28

    In this study, we investigated the electronic character of protein environment in enzymatic processes by performing all-electron QM calculations based on the fragment molecular orbital (FMO) method. By introducing a new computational strategy combining all-electron QM analysis with ab initio QM/MM modeling, we investigated the details of molecular interaction energy between a reactive substrate and amino acid residues at a catalytic site. For a practical application, we selected the chorismate mutase catalyzed reaction as an example. Because the computational time required to perform all-electron QM reaction path searches was very large, we employed the ab initio QM/MM modeling technique to construct reliable reaction profiles and performed all-electron FMO calculations for the selected geometries. The main focus of the paper is to analyze the details of electrostatic stabilization, which is considered to be the major feature of enzymatic catalyses, and to clarify how the electronic structure of proteins is polarized in response to the change in electron distribution of the substrate. By performing interaction energy decomposition analysis from a quantum chemical viewpoint, we clarified the relationship between the location of amino acid residues on the protein domain and the degree of electronic polarization of each residue. In particular, in the enzymatic transition state, Arg7, Glu78, and Arg90 are highly polarized in response to the delocalized electronic character of the substrate, and as a result, a large amount of electrostatic stabilization energy is stored in the molecular interaction between the enzyme and the substrate and supplied for transition state stabilization.

  15. Molecular ordering of PAH/MA-co-DR13 azopolymer layer-by-layer films probed by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Silva, Heurison S.; Lopes, Fábio J. S.; Miranda, Paulo B.

    2016-09-01

    Molecular orientation within azopolymer thin films is important for their nonlinear optical properties and photonic applications. We have used optical second-harmonic generation (SHG) to study the molecular orientation of Layer-by-Layer (LbL) films of a cationic polyelectrolyte (poly(allylamine hydrochloride)) and an anionic polyelectrolyte containing azochromophore side groups (MA-co-DR13) on a glass substrate. The SHG measurements indicate that there is a preferential orientation of the azochromophores in the film, leading to a significant optical nonlinearity. However, both the signal strength and its anisotropy are not homogeneous throughout the sample, indicating the presence of large orientational domains. This is corroborated with Brewster angle microscopy. The average SHG signal does not increase with film thickness, in contrast to some reports in the literature, indicating an independent orientational order for successive bilayers. Analyzing the SHG signal as a function of the input and output polarizations, a few parameters of the azochromophore orientational distribution can be deduced. Fitting the SHG signal to a simple model distribution, we have concluded that the chromophores have an angular distribution with a slight in-plane anisotropy and a mean polar angle ranging from 45° to 80° with respect to substrate normal direction, with a relatively large width of about 25°. These results show that SHG is a powerful technique for a detailed investigation of the molecular orientation in azopolymer LbL films, allowing a deeper understanding of their self-assembling mechanism and nonlinear optical properties. The inhomogeneity and anisotropy of these films may have important consequences for their applications in nonlinear optical devices.

  16. Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories1[W

    PubMed Central

    Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A.; Caldana, Camila; Lisec, Jan; Beemster, Gerrit T.S.; Meyer, Rhonda C.; Messerli, Gaëlle; Gronlund, Jesper T.; Perkovic, Josip; Wigmore, Emma; May, Sean; Bevan, Michael W.; Meyer, Christian; Rubio-Díaz, Silvia; Weigel, Detlef; Micol, José Luis; Buchanan-Wollaston, Vicky; Fiorani, Fabio; Walsh, Sean; Rinn, Bernd; Gruissem, Wilhelm; Hilson, Pierre; Hennig, Lars; Willmitzer, Lothar; Granier, Christine

    2010-01-01

    A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories. PMID:20200072

  17. Diffusion and molecular interactions in a methanol/polyimide system probed by coupling time-resolved FTIR spectroscopy with gravimetric measurements

    PubMed Central

    Musto, Pellegrino; Galizia, Michele; La Manna, Pietro; Pannico, Marianna; Mensitieri, Giuseppe

    2013-01-01

    In this contribution the diffusion of methanol in a commercial polyimide (PMDA-ODA) is studied by coupling gravimetric measurements with in-situ, time-resolved FTIR spectroscopy. The spectroscopic data have been treated with two complementary techniques, i.e., difference spectroscopy (DS) and least-squares curve fitting (LSCF). These approaches provided information about the overall diffusivity, the nature of the molecular interactions among the system components and the dynamics of the various molecular species. Additional spectroscopic measurements on thin film samples (about 2 μm) allowed us to identify the interaction site on the polymer backbone and to propose likely structures for the H-bonding aggregates. Molar absorptivity values from a previous literature report allowed us to estimate the population of first-shell and second-shell layers of methanol in the polymer matrix. In terms of diffusion kinetics, the gravimetric and spectroscopic estimates of the diffusion coefficients were found to be in good agreement with each other and with previous literature reports. A Fickian behavior was observed throughout, with diffusivity values markedly affected by the total concentration of sorbed methanol. PMID:24809042

  18. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  19. The Release of Trapped Gases from Amorphous Solid Water Films: I. “Top-Down” Crystallization-Induced Crack Propagation Probed using the Molecular Volcano

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-03-14

    In this (Paper I) and the companion paper (Paper II) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization ASW, a phenomenon that we termed the "molecular volcano". The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length and distribution are independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2 or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rate reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

  20. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods.

    PubMed

    Li, Xiangrong; Ni, Tianjun

    2016-06-01

    α-Tocopherol is a required nutrient for a variety of biological functions. In this study, the binding of α-tocopherol to trypsin and pepsin was investigated using isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements, circular dichroism (CD) spectroscopy, and molecular modeling methods. Thermodynamic investigations reveal that α-tocopherol binds to trypsin/pepsin is synergistically driven by enthalpy and entropy. The fluorescence experimental results indicate that α-tocopherol can quench the fluorescence of trypsin/pepsin through a static quenching mechanism. The binding ability of α-tocopherol with trypsin/pepsin is in the intermediate range, and one molecule of α-tocopherol combines with one molecule of trypsin/pepsin. As shown by circular dichroism (CD) spectroscopy, α-tocopherol may induce conformational changes of trypsin/pepsin. Molecular modeling displays the specific binding site and gives information about binding forces and α-tocopherol-tryptophan (Trp)/tyrosine (Tyr) distances. In addition, the inhibition rate of α-tocopherol on trypsin and pepsin was studied. The study provides a basic data set for clarifying the binding mechanisms of α-tocopherol with trypsin and pepsin and is helpful for understanding its biological activity in vivo.

  1. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation

    PubMed Central

    Chen, Jianzhong; Wang, Jinan; Zhang, Qinggang; Chen, Kaixian; Zhu, Weiliang

    2015-01-01

    Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions. PMID:26616018

  2. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results

    NASA Astrophysics Data System (ADS)

    Vander Auwera, J.; Ngo, N. H.; El Hamzaoui, H.; Capoen, B.; Bouazaoui, M.; Ausset, P.; Boulet, C.; Hartmann, J.-M.

    2013-10-01

    Transmission spectra of gases confined (but not adsorbed) within the pores of a 1.4-cm-thick silica xerogel sample have been recorded between 2.5 and 5 μm using a high-resolution Fourier transform spectrometer. This was done for pure CO, CO2, N2O, H2O, and CH4 at room temperature and pressures of a few hectopascals. Least-squares fits of measured absorption lines provide the optical-path lengths within the confined (LC) and free (LF) gas inside the absorption cell and the half width at half maximum ΓC of the lines of the confined gases. The values of LC and LF retrieved using numerous transitions of all studied species are very consistent. Furthermore, LC is in satisfactory agreement with values obtained from independent measurements, thus showing that reliable information on the open porosity volume can be retrieved from an optical experiment. The values of ΓC, here resulting from collisions of the molecules with the inner surfaces of the xerogel pores, are practically independent of the line for each gas and inversely proportional to the square root of the probed-molecule molar mass. This is a strong indication that, for the studied transitions, a single collision of a molecule with a pore surface is sufficient to change its rotational state. A previously proposed simple model, used for the prediction of the line shape, leads to satisfactory agreement with the observations. It also enables a determination of the average pore size, bringing information complementary to that obtained from nitrogen adsorption porosimetry.

  3. Electronic and molecular structure of photoexcited [Ru(II)(bpy)3]2+ probed by picosecond X-ray absorption spectroscopy.

    PubMed

    Gawelda, Wojciech; Johnson, Melanie; de Groot, Frank M F; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2006-04-19

    L(2,3) X-ray absorption spectra of aqueous [Ru(II)(bpy)3]2+ have been recorded in its ground and excited states, 50 ps after short pulse laser excitation. Significant changes in both the XANES (X-ray Near-Edge Absorption Structure) and the EXAFS (Extended X-ray Absorption Fine Structure) regions of the excited state complex are detected. The XANES line shapes have been quantitatively simulated using a crystal field multiplet code in trigonal symmetry. In addition, spectral changes in the EXAFS region of both ground and excited states are analyzed in order to extract structural parameters of their corresponding molecular structures. We obtain a Ru-N bond contraction by approximately 0.03 angstroms in the excited-state complex, as compared to the ground-state compound. This contraction results from electrostatic and polarization contributions, limited by steric constraints on the bpy ligands.

  4. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.

    PubMed

    Cai, Kaicong; Su, Tingting; Lin, Shen; Zheng, Renhui

    2014-01-03

    A general electrostatic potential map based on molecular mechanics force field for modeling the amide I frequency is presented. This map is applied to N-methylacetamide (NMA) and designed to be transferable in different micro-environments. The electrostatic potentials from solvent and peptide side chain are projected on the amide unit of NMA to induce the frequency shift of amide I mode. It is shown that the predicted amide I frequency reproduces the experimental data satisfactorily, especially when NMA in polar solvents. The amide I frequency shift is largely determined by the solvents in aqueous solution while it is dominated by the local structure of peptide in other solvent environments. The map parameters are further applied on NMA-MeOH system and the obtained IR spectra show doublet peak profile with negligible deviation from the experimental data, suggesting the usefulness of this general map for providing information about vibrational parameters of amide motions of peptide in different environments.

  5. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.

    PubMed

    Ghosh, Soumadwip; Patel, Nisheet; Chakrabarti, Rajarshi

    2016-01-28

    The hybrids of single-walled carbon nanotube (SWCNT) and single stranded DNA (ssDNA) are novel nanoscale materials having remarkable applications in nanotechnology. The absorption of nucleobases on the surface of a SWCNT depends strongly on the ionic strength of the medium. In this paper, using atomistic molecular dynamics we have shown that at low salt concentration ssDNA wraps on the surface of SWCNT through hydrophobic π-π stacking between the DNA bases and the sp(2)-hybridized carbon atoms of the carbon nanotube. At high salt concentration, however, the DNA molecule adopts a partially folded structure and the ssDNA-SWCNT wrapping gets weakened significantly due to the self-stacking of the DNA bases. Our study can find relevance in CNT mediated gene delivery processes where subsequent unwrapping of the gene from its carrier is anticipated across the cell membrane regulated by an existing salt concentration gradient.

  6. Probing the Properties of the Molecular Adlayers on Metal Substrates: Scanning Tunneling Microscopy Study of Amine Adsorption on Gold(111) and Graphene Nanoislands on Cobalt(0001)

    NASA Astrophysics Data System (ADS)

    Zhou, Hui

    In this thesis, we present our findings on two major topics, both of which are studies of molecules on metal surfaces by scanning tunneling microscopy (STM). The first topic is on adsorption of a model amine compound, 1,4-benzenediamine (BDA), on the reconstructed Au(111) surface, chosen for its potential application as a molecular electronic device. The molecules were deposited in the gas phase onto the substrate in the vacuum chamber. Five different patterns of BDA molecules on the surface at different coverages, and the preferred adsorption sites of BDA molecules on reconstructed Au(111) surface, were observed. In addition, BDA molecules were susceptible to tip-induced movement, suggesting that BDA molecules on metal surfaces can be a potential candidate in STM molecular manipulations. We also studied graphene nanoislands on Co(0001) in the hope of understanding interaction of expitaxially grown graphene and metal substrates. This topic can shed a light on the potential application of graphene as an electronic device, especially in spintronics. The graphene nanoislands were formed by annealing contorted hexabenzocoronene (HBC) on the Co(0001) surface. In our experiments, we have determined atop registry of graphene atoms with respect to the underlying Co surface. We also investigated the low-energy electronic structures of graphene nanoislands by scanning tunneling spectroscopy. The result was compared with a first-principle calculation using density functional theory (DFT) which suggested strong coupling between graphene pi-bands and cobalt d-electrons. We also observed that the islands exhibit zigzag edges, which exhibits unique electronic structures compared with the center areas of the islands.

  7. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures III: nonequilibrium hydrogen-bond dynamics and infrared pump-probe spectra.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-06-27

    We present a mixed quantum-classical molecular dynamics study of the nonequilibrium hydrogen-bond dynamics following vibrational energy relaxation of the hydroxyl stretch in a 10 mol % methanol/carbon tetrachloride mixture and pure methanol. The ground and first-excited energy levels and wave functions are identified with the eigenvalues and eigenfunctions of the hydroxyl's adiabatic Hamiltonian and as such depend parametrically on the configuration of the remaining, classically treated, degrees of freedom. The dynamics of the classical degrees of freedom are in turn governed by forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields and nonlinear mapping relations between the hydroxyl transition frequencies and dipole moments and the electric field along the hydroxyl bond are used, which were previously shown to quantitatively reproduce the experimental infrared steady-state absorption spectra and excited state lifetime [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184; 2012, 116, 2856]. The relaxation from the first-excited state to the ground state is treated as a nonadiabatic transition. Within the mixed quantum-classical treatment, relaxation from the excited state to the ground state is accompanied by a momentum-jump in the classical degrees of freedom, which is in turn dictated by the nonadiabatic coupling vector. We find that the momentum jump leads to breaking of hydrogen bonds involving the relaxing hydroxyl, thereby blue-shifting the transition frequency by more than the Stokes shift between the steady-state emission and absorption spectra. The subsequent nonequilibrium relaxation toward equilibrium on the ground state potential energy surface is thereby accompanied by red shifting of the transition frequency. The signature of this nonequilibrium relaxation process on the pump-probe spectrum is analyzed in detail. The calculated pump-probe spectrum is found

  8. Raman tags: Novel optical probes for intracellular sensing and imaging.

    PubMed

    Li, Yuee; Wang, Zhong; Mu, Xijiao; Ma, Aning; Guo, Shu

    Optical labels are needed for probing specific target molecules in complex biological systems. As a newly emerging category of tags for molecular imaging in live cells, the Raman label attracts much attention because of the rich information obtained from targeted and untargeted molecules by detecting molecular vibrations. Here, we list three types of Raman probes based on different mechanisms: Surface Enhanced Raman Scattering (SERS) probes, bioorthogonal Raman probes, and Resonance Raman (RR) probes. We review how these Raman probes work for detecting and imaging proteins, nucleic acids, lipids, and other biomolecules in vitro, within cells, or in vivo. We also summarize recent noteworthy studies, expound on the construction of every type of Raman probe and operating principle, sum up in tables typically targeting molecules for specific binding, and provide merits, drawbacks, and future prospects for the three Raman probes.

  9. Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis.

    PubMed

    Fleury, Blaise; Cortes-Huerto, Robinson; Taché, Olivier; Testard, Fabienne; Menguy, Nicolas; Spalla, Olivier

    2015-09-09

    Shape and size are known to determine a nanoparticle's properties. Hardly ever studied in synthesis, the internal crystal structure (i.e., particle defects, crystallinity, and symmetry) is just as critical as shape and size since it directly impacts catalytic efficiency, plasmon resonance, and orients anisotropic growth of metallic nanoparticles. Hence, its control cannot be ignored any longer in today's research and applications in nanotechnology. This study implemented an unprecedented reliable measurement combining these three structural aspects. The unified small-angle X-ray scattering and diffraction measurement (SAXS/XRD) was coupled with molecular dynamics to allow simultaneous determination of nanoparticles' shape, size, and crystallinity at the atomic scale. Symmetry distribution (icosahedra-Ih, decahedra-Dh, and truncated octahedra-TOh) of 2-6 nm colloidal gold nanoparticles synthesized in organic solvents was quantified. Nanoparticle number density showed the predominance of Ih, followed by Dh, and little, if any, TOh. This result contradicts some theoretical predictions and highlights the strong effect of the synthesis environment on structure stability. We foresee that this unified SAXS/XRD analysis, yielding both statistical and quantitative counts of nanoparticles' symmetry distribution, will provide new insights into nanoparticle formation, growth, and assembly.

  10. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles.

    PubMed

    Sugahara, T; Ohama, Y; Fukuda, A; Hayashi, M; Kawakubo, A; Kato, K

    2001-07-01

    Eucheuma serra agglutinin (ESA) derived from a marine red alga, Eucheuma serra, is a lectin that specifically binds to mannose-rich carbohydrate chains. ESA is a monomeric molecule, with a molecular weight of29,000. ESA induced cell death against several cancer cell lines, such as colon cancer Colo201 cells and cervix cancer HeLa cells. DNA ladder detection and the induction of caspase-3 activity suggested that the cell death induced by ESA against cancer cells was apoptosis. ESA bound to the cell surface of Colo201 cells in the sugar chain dependent manner. This means that the binding of ESA to the cell surface is specific for mannose-rich sugar chains recognized by ESA. The binding of ESA to the cell surface of Colo201 cells was slightly suppressed by the high concentrations of serum because of the competition with serum components possessing the mannose-rich sugar chain motifs. On the other hand, a lipid vesicle is a very useful microcapsule constructed by multilamellar structure,and adopted as drug or gene carrier. ESA was immobilized on the surface of the lipid vesicles to apply the lipid vesicles to cancer specific drug delivery system. ESA-immobilized lipid vesicles were effectively bound to cancer cell lines compared with plane vesicles.

  11. Probing Lewis Acid-Base Interactions with Born-Oppenheimer Molecular Dynamics: The Electronic Absorption Spectrum of p-Nitroaniline in Supercritical CO2.

    PubMed

    Cabral, Benedito J Costa; Rivelino, Roberto; Coutinho, Kaline; Canuto, Sylvio

    2015-07-02

    The structure and dynamics of p-nitroaniline (PNA) in supercritical CO2 (scCO2) at T = 315 K and ρ = 0.81 g cm(-3) are investigated by carrying out Born-Oppenheimer molecular dynamics, and the electronic absorption spectrum in scCO2 is determined by time dependent density functional theory. The structure of the PNA-scCO2 solution illustrates the role played by Lewis acid-base (LA-LB) interactions. In comparison with isolated PNA, the ν(N-O) symmetric and asymmetric stretching modes of PNA in scCO2 are red-shifted by -17 and -29 cm(-1), respectively. The maximum of the charge transfer (CT) absorption band of PNA in scSCO2 is at 3.9 eV, and the predicted red-shift of the π → π* electronic transition relative to the isolated gas-phase PNA molecule reproduces the experimental value of -0.35 eV. An analysis of the relationship between geometry distortions and excitation energies of PNA in scCO2 shows that the π → π* CT transition is very sensitive to changes of the N-O bond distance, strongly indicating a correlation between vibrational and electronic solvatochromism driven by LA-LB interactions. Despite the importance of LA-LB interactions to explain the solvation of PNA in scCO2, the red-shift of the CT band is mainly determined by electrostatic interactions.

  12. Probing molecular dynamics in chromatographic systems using high-resolution 1H magic-angle-spinning NMR spectroscopy: interaction between p-Xylene and C18-bonded silica.

    PubMed

    Coen, Muireann; Wilson, Ian D; Nicholson, Jeremy K; Tang, Huiru; Lindon, John C

    2004-06-01

    The exact nature of the interaction between small molecules and chromatographic solid phases has been the subject of much research, but detailed understanding of the molecular dynamics in such systems remains elusive. High-resolution (1)H magic-angle-spinning (MAS) NMR spectroscopy has been applied to the investigation of C18-bonded silica material as used in chromatographic separation techniques together with an adsorbed model analyte, p-xylene. Two distinct p-xylene and water environments were identified within the C18-bonded silica through the measurement of (1)H NMR chemical shifts, T(1) and T(2) relaxation times and diffusion coefficients, including their temperature dependence. The results have been analyzed in terms of two environments, p-xylene within the C18 chains, in slow exchange on the NMR time scale with p-xylene in a more mobile state adsorbed as a layer in close proximity to the C18 particles, but which is distinct from free liquid p-xylene. The techniques used here could have more general applications, including the study of drug molecules bound into phospholipid membranes in micelles or vesicles.

  13. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy.

    PubMed

    Fawzi, Nicolas L; Ying, Jinfa; Torchia, Dennis A; Clore, G Marius

    2012-07-19

    We present the protocol for the measurement and analysis of dark-state exchange saturation transfer (DEST), a novel solution NMR method for characterizing, at atomic resolution, the interaction between an NMR-'visible' free species and an NMR-'invisible' species transiently bound to a very high-molecular-weight (>1 MDa) macromolecular entity. The reduced rate of reorientational motion in the bound state that precludes characterization by traditional NMR methods permits the observation of DEST. (15)N-DEST profiles are measured on a sample comprising the dark state in exchange with an NMR-visible species; in addition, the difference (ΔR(2)) in (15)N transverse relaxation rates between this sample and a control sample comprising only the NMR-visible species is also obtained. The (15)N-DEST and ΔR(2) data for all residues are then fitted simultaneously to the McConnell equations for various exchange models describing the residue-specific dynamics in the bound state(s) and the interconversion rate constants. Although the length of the experiments depends strongly on sample conditions, approximately 1 week of NMR spectrometer time was sufficient for full characterization of samples of amyloid-β (Aβ) at concentrations of ~100 μM.

  14. Probing Molecular Associations of Field-Collected and Laboratory-Generated SOA with Nano-DESI High-Resolution Mass Spectrometry

    SciTech Connect

    O'Brien, Rachel E.; Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia; Hayes, Patrick L.; Liu, Shang; Jimenez, Jose L.; Russell, Lynn M.; Nizkorodov, Sergey; Goldstein, Allen H.

    2013-01-30

    Aerosol samples from the 2010 CalNex field study in Bakersfield (BF) and Los Angeles (LA) were analyzed using positive mode nanospray-desorption electrospray ionization mass spectrometry (nano-DESI-MS). Secondary organic aerosol (SOA) produced in a photochemical chamber by photooxidation of diesel (DSL) fuel and isoprene (ISO) under humid, high-NOx conditions, was analyzed for comparison. Three groups of organic compounds with zero, one, or two nitrogen atoms in their molecular formulas (0N, 1N, 2N) were compared in detail. The composition of ambient SOA exhibited greater overlap with DSL than with ISO. The overlap of the chamber experiments with the BF data was relatively consistent throughout the day while the overlap with LA data increased significantly in the noon-6pm sample, consistent with the SOA plume arriving from downtown Los Angeles. BF samples were more oxidized, contained more organic nitrogen, and had more overlap with the chamber data compared to LA samples. The addition of gaseous ammonia (NH3) to the DSL experiment was necessary to generate many of the 2N compounds observed in BF. This analysis demonstrates that DSL and ISO were important sources but cannot account for all of the observed ambient compounds indicating that other sources of organics were also likely important.

  15. Probing the molecular and electronic structure of norhipposudoric and hipposudoric acids from the red sweat of Hippopotamus amphibius: a DFT investigation.

    PubMed

    Galasso, Vinicio; Pichierri, Fabio

    2009-03-19

    Molecular structure and tautomeric/conformational preferences of norhipposudoric and hipposudoric acids, the recently isolated pigments of the Hippopotamus amphibius' sweat, were investigated using the density functional theory (DFT) PBE0 formalism. Among a large variety of possible structures, two similar keto-enol tautomer/conformers are nearly isoenergetic and markedly more stable than the others both in the gas phase and aqueous solution. The bulk solvent effect was accounted for with the polarizable continuum model (PCM). A distinctive structural feature is the strong intramolecular hydrogen bonding in the keto-enol O-H...O bridge, as shown by analysis of the atoms-in-molecules topological properties of the electron density. To elucidate the claimed strong acidity of these pigments, the site-specific microscopic dissociation constants were also calculated using the cluster-continuum model, a hybrid approach based on inclusion of explicit solvent molecules and solvation of the cluster by the dielectric continuum. Notably, the first deprotonation should occur predominantly from the enolic group with a remarkably low pk(i) value. This factor could play an important role in the potent antibiotic activity of the pigments. The absorption spectra of the undissociated and dissociated compounds in aqueous solution were interpreted with time-dependent DFT/PCM calculations. The pi-pi* diquinoid excitations, mainly occurring in the fluorenoid nucleus, are the major contributors to the color and strong absorption bands in the UVA and UVB regions, which are closely related to the efficient sunscreen activity exerted by the pigments.

  16. Probing Molecular Interactions between Ammonium-Based Ionic Liquids and N,N-Dimethylacetamide: A Combined FTIR, DLS, and DFT Study.

    PubMed

    Kumar, Pannuru Kiran; Rani, Anjeeta; Olasunkanmi, Lukman O; Bahadur, Indra; Venkatesu, Pannuru; Ebenso, Eno E

    2016-12-15

    The present study investigates the effects of the alkyl chain length of the cationic head-group of some ammonium-based ionic liquids (ILs) (having the same anion) on the interaction between the ILs and N,N-dimethylacetamide (DMA). The molecular interactions between the studied ILs, tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), and their binary mixtures with DMA were studied using the Fourier transform infrared spectroscopy (FTIR) technique, dynamic light scattering (DLS) experiments, and quantum chemical calculations. It was observed from both experimental FTIR analysis and theoretical studies that the strength of intermolecular interactions, such as hydrogen bonding, ion-ion interactions, and induced dipole interactions, between the ILs and DMA depends on the alkyl chain length of the IL cation head-group. The interaction of DMA with IL is energetically favorable and occurs via direct interactions between the IL anion and the carbonyl oxygen of DMA. The results further revealed that the shorter the alkyl chain length of the cationic head-group of the ILs, the stronger the interaction with the DMA molecule, such that the strength of interactions between the ILs and DMA follows the order TEAH > TPAH > TBAH. This trend can be attributed to the increased self-organized aggregation with increasing alkyl chain length of the IL cation.

  17. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    PubMed

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  18. Probing the binding of Cu(2+) ions to a fragment of the Aβ(1-42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Żmudzińska, Wioletta; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-09-01

    Steady-state and time-resolved fluorescence quenching measurements supported by isothermal titration calorimetry (ITC) and molecular dynamics simulations (MD), with the NMR-derived restraints, were used to investigate the interactions of Cu(2+) ions with a fragment of the Aβ(1-42) polypeptide, Aβ(5-16) with the following sequence: Ac-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-NH2, denoted as HZ1. The studies presented in this paper, when compared with our previous results (Makowska et al., Spectrochim. Acta A 153: 451-456), show that the affinity of the peptide to metal ions is conformation-dependent. All the measurements were carried out in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution, pH6.0. The Stern-Volmer equations, along with spectroscopic observations, were used to determine the quenching and binding parameters. The obtained results unequivocally suggest that Cu(2+) ions quench the fluorescence of HZ1 only through a static quenching mechanism, in contrast to the fragment from the N-terminal part of the FPB28 protein, with sequence Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr- NH2 (D9) and its derivative with a single point mutation: Ac-Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr- NH2 (D9_M), where dynamic quenching occurred. The thermodynamic parameters (ΔITCH, ΔITCS) for the interactions between Cu(2+) ions and the HZ1 peptide were determined from the calorimetric data. The conditional thermodynamic parameters suggest that, under the experimental conditions, the formation of the Cu(2+)-HZ1 complex is both an enthalpy and entropy driven process.

  19. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.

    PubMed

    Zheng, Wenjun; Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant--while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  20. Probing the Effect of Two Heterozygous Mutations in Codon 723 of SLC26A4 on Deafness Phenotype Based on Molecular Dynamics Simulations

    PubMed Central

    Yao, Jun; Qian, Xuli; Bao, Jingxiao; Wei, Qinjun; Lu, Yajie; Zheng, Heng; Cao, Xin; Xing, Guangqian

    2015-01-01

    A Chinese family was identified with clinical features of enlarged vestibular aqueduct syndrome (EVAS). The mutational analysis showed that the proband (III-2) had EVAS with bilateral sensorineural hearing loss and carried a rare compound heterozygous mutation of SLC26A4 (IVS7-2A>G, c.2167C>G), which was inherited from the same mutant alleles of IVS7-2A>G heterozygous father and c.2167C>G heterozygous mother. Compared with another confirmed pathogenic biallelic mutation in SLC26A4 (IVS7-2A>G, c.2168A>G), these two biallelic mutations shared one common mutant allele and the same codon of the other mutant allele, but led to different changes of amino acid (p.H723D, p.H723R) and both resulted in the deafness phenotype. Structure-modeling indicated that these two mutant alleles changed the shape of pendrin protein encoded by SLC26A4 with increasing randomness in conformation, and might impair pendrin’s ability as an anion transporter. The molecular dynamics simulations also revealed that the stability of mutant pendrins was reduced with increased flexibility of backbone atoms, which was consistent with the structure-modeling results. These evidences indicated that codon 723 was a hot-spot region in SLC26A4 with a significant impact on the structure and function of pendrin, and acted as one of the genetic factors responsible for the development of hearing loss. PMID:26035154

  1. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-05-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33-->Ala33, Asp60-->Ala60, Ser62-->Ala62, and Thr220-->Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (DeltaDeltaG(T)). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the K(m) values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.

  2. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjun; Glenn, Paul

    2015-01-01

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  3. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    SciTech Connect

    Zheng, Wenjun Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  4. Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment

    DOE PAGES

    Christensen, Geoff A.; Wymore, Ann M.; King, Andrew J.; ...

    2016-07-15

    Two genes, hgcA and hgcB, are essential for microbial mercury (Hg)-methylation. Detection and estimation of their abundance, in conjunction with Hg concentration, bioavailability and biogeochemistry is critical in determining potential hot spots of methylmercury (MeHg) generation in at-risk environments. We developed broad-range degenerate PCR primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These primers were tested against an extensive set of pure cultures with published genomes, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea. A distinct PCR product at the expected size was confirmed for all hgcAB+ strains tested via Sanger sequencing.more » Additionally, we developed clade-specific degenerate quantitative primers (qPCR) that targeted hgcA for each of the three dominant Hg-methylating clades. The clade-specific qPCR primers amplified hgcA from 64%, 88% and 86% of tested pure cultures of Deltaproteobacteria, Firmicutes and Archaea, respectively, and were highly specific for each clade. Amplification efficiencies and detection limits were quantified for each organism. Primer sensitivity varied among species based on sequence conservation. Finally, to begin to evaluate the utility of our primer sets in nature, we tested hgcA and hgcAB recovery from pure cultures spiked into sand and soil. These novel quantitative molecular tools designed in this study will allow for more accurate identification and quantification of the individual Hg-methylating groups of microorganisms in the environment. Here, the resulting data will be essential in developing accurate and robust predictive models of Hg-methylation potential, ideally integrating the geochemistry of Hg methylation to the microbiology and genetics of hgcAB.« less

  5. Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment

    SciTech Connect

    Christensen, Geoff A.; Wymore, Ann M.; King, Andrew J.; Podar, Mircea; Hurt, Jr., Richard A.; Santillan, Eugenio U.; Soren, Ally; Brandt, Craig C.; Brown, Steven D.; Palumbo, Anthony V.; Wall, Judy D.; Gilmour, Cynthia C.; Elias, Dwayne A.

    2016-07-15

    Two genes, hgcA and hgcB, are essential for microbial mercury (Hg)-methylation. Detection and estimation of their abundance, in conjunction with Hg concentration, bioavailability and biogeochemistry is critical in determining potential hot spots of methylmercury (MeHg) generation in at-risk environments. We developed broad-range degenerate PCR primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These primers were tested against an extensive set of pure cultures with published genomes, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea. A distinct PCR product at the expected size was confirmed for all hgcAB+ strains tested via Sanger sequencing. Additionally, we developed clade-specific degenerate quantitative primers (qPCR) that targeted hgcA for each of the three dominant Hg-methylating clades. The clade-specific qPCR primers amplified hgcA from 64%, 88% and 86% of tested pure cultures of Deltaproteobacteria, Firmicutes and Archaea, respectively, and were highly specific for each clade. Amplification efficiencies and detection limits were quantified for each organism. Primer sensitivity varied among species based on sequence conservation. Finally, to begin to evaluate the utility of our primer sets in nature, we tested hgcA and hgcAB recovery from pure cultures spiked into sand and soil. These novel quantitative molecular tools designed in this study will allow for more accurate identification and quantification of the individual Hg-methylating groups of microorganisms in the environment. Here, the resulting data will be essential in developing accurate and robust predictive models of Hg-methylation potential, ideally integrating the geochemistry of Hg methylation to the microbiology and genetics of hgcAB.

  6. Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy.

    PubMed

    Dupree, Ray; Simmons, Thomas J; Mortimer, Jennifer C; Patel, Dharmesh; Iuga, Dinu; Brown, Steven P; Dupree, Paul

    2015-04-14

    The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass properties, such as recalcitrance to breakdown, it is poorly understood. Here, unprocessed dry (13)C-labeled stems from the model plant Arabidopsis thaliana were analyzed by a variety of (13)C solid state magic angle spinning nuclear magnetic resonance methods, such as one-dimensional cross-polarization and direct polarization, two-dimensional refocused INADEQUATE, RFDR, PDSD, and three-dimensional DARR, demonstrating their viability for the study of native polymer arrangements in intact secondary cell walls. All carbon sites of the two main glucose environments in cellulose (previously assigned to microfibril surface and interior residues) are clearly resolved, as are carbon sites of the other major components of the secondary cell wall: xylan and lignin. The xylan carbon 4 chemical shift is markedly different from that reported previously for solution or primary cell wall xylan, indicating significant changes in the helical conformation in these dried stems. Furthermore, the shift span indicates that xylan adopts a wide range of conformations in this material, with very little in the 31 conformation typical of xylan in solution. Additionally, spatial connections of noncarbohydrate species were observed with both cellulose peaks conventionally assigned as "surface" and as "interior" cellulose environments, raising questions about the origin of these two cellulose signals.

  7. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used