Sample records for cellulosic material batch

  1. Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation

    PubMed Central

    Jiang, He-Long; He, Qiang; He, Zhili; Hemme, Christopher L.; Wu, Liyou

    2013-01-01

    Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter−1, the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter−1 and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures. PMID:23275517

  2. Conversion of cellulosic materials into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma spp. under SHF and SSF processes.

    PubMed

    Faria, Nuno Torres; Santos, Marisa; Ferreira, Carla; Marques, Susana; Ferreira, Frederico Castelo; Fonseca, César

    2014-11-04

    Mannosylerythritol lipids (MEL) are glycolipids with unique biosurfactant properties and are produced by Pseudozyma spp. from different substrates, preferably vegetable oils, but also sugars, glycerol or hydrocarbons. However, solvent intensive downstream processing and the relatively high prices of raw materials currently used for MEL production are drawbacks in its sustainable commercial deployment. The present work aims to demonstrate MEL production from cellulosic materials and investigate the requirements and consequences of combining commercial cellulolytic enzymes and Pseudozyma spp. under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes. MEL was produced from cellulosic substrates, Avicel® as reference (>99% cellulose) and hydrothermally pretreated wheat straw, using commercial cellulolytic enzymes (Celluclast 1.5 L® and Novozyme 188®) and Pseudozyma antarctica PYCC 5048(T) or Pseudozyma aphidis PYCC 5535(T). The strategies included SHF, SSF and fed-batch SSF with pre-hydrolysis. While SSF was isothermal at 28°C, in SHF and fed-batch SSF, yeast fermentation was preceded by an enzymatic (pre-)hydrolysis step at 50°C for 48 h. Pseudozyma antarctica showed the highest MEL yields from both cellulosic substrates, reaching titres of 4.0 and 1.4 g/l by SHF of Avicel® and wheat straw (40 g/l glucan), respectively, using enzymes at low dosage (3.6 and 8.5 FPU/gglucan at 28°C and 50°C, respectively) with prior dialysis. Higher MEL titres were obtained by fed-batch SSF with pre-hydrolysis, reaching 4.5 and 2.5 g/l from Avicel® and wheat straw (80 g/l glucan), respectively. This work reports for the first time MEL production from cellulosic materials. The process was successfully performed through SHF, SSF or Fed-batch SSF, requiring, for maximal performance, dialysed commercial cellulolytic enzymes. The use of inexpensive lignocellulosic substrates associated to straightforward downstream processing from sugary broths is expected to have a great impact in the economy of MEL production for the biosurfactant market, inasmuch as low enzyme dosage is sufficient for good systems performance.

  3. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

    PubMed

    Yang, Bin; Wyman, Charles E

    2004-04-05

    Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.

  4. Chapter 1.1 Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory

    Treesearch

    Richard S. Reiner; Alan W. Rudie

    2013-01-01

    The Fiber and Chemical Sciences Research Work Unit at the Forest Products Laboratory began working out the preparation of cellulose nanocrystals in 2006, using the method of Dong, Revol, and Gray. Initial samples were provided to several scientists within the Forest Service. Continued requests for this material forced scale-up from the initial 20 g scale to kg...

  5. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    PubMed

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  6. Economic and kinetic studies of the biological production of farm energy and chemicals from biomass. Annual progress report, March 1979-August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaddy, J.L.

    1981-08-01

    A system has been designed and built to test the technical and economic feasibility of producing farm energy from cellulosic residues. The system has the capacity to produPropinibactriume 1300 CF of biogas and 180 kwh per day, using four parallel batch anaerobic digesters which are agitated mechanically and heated with waste heat from the engine-generator. This system has been satisfactorily operated for a one year period utilizing native grasses as the raw material. Laboratory reactors have been operated to determine the proper inoculation ratio for starting batch cultures with cellulosic raw materials. Procedures for startup and operation of batch digestionmore » systems have been developed and are presented. Energy and economic analyses of the operation of the test unit have been performed. Studies to determine the fertilizer potential of anaerobic digestor sludge (from agricultural residues) have been conducted. Additional studies reported include determinations of the feasibility of separating the stages of anaerobic digestion, the production of acetic and propionic acids by the micro-organism Propionibacterium acidi-propionici, the production of methane from acid hydrolyzates, and the kinetics of the continuos digestion of corn stover.« less

  7. The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor.

    PubMed

    Ritter, Carla Eliana Todero; Fontana, Roselei Claudete; Camassola, Marli; da Silveira, Maurício Moura; Dillon, Aldo José Pinheiro

    2013-11-01

    The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    PubMed Central

    2011-01-01

    Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF) of lignocellulosic residues from commercial furfural production (furfural residue, FR) and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration. PMID:21801455

  10. Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol.

    PubMed

    Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan

    2014-11-01

    Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    PubMed

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  12. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation.

    PubMed

    Dong, Zhen; Zhao, Long

    2018-06-01

    Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. [Effect of moisture content on anaerobic methanization of municipal solid waste].

    PubMed

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore

    2009-03-15

    Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.

  14. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery.

    PubMed

    Crutchik, Dafne; Frison, Nicola; Eusebi, Anna Laura; Fatone, Francesco

    2018-06-01

    Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m 3 /capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVS fed ·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material.

    PubMed

    González, M E; Cea, M; Medina, J; González, A; Diez, M C; Cartes, P; Monreal, C; Navia, R

    2015-02-01

    Biochar constitutes a promising support material for the formulation of controlled-release fertilizers (CRFs). In this study we evaluated the effect of different polymeric materials as encapsulating agents to control nitrogen (N) leaching from biochar based CRFs. Nitrogen impregnation onto biochar was performed in a batch reactor using urea as N source. The resulting product was encapsulated by using sodium alginate (SA), cellulose acetate (CA) and ethyl cellulose (EC). Leaching potential was studied in planted and unplanted soil columns, monitoring nitrate, nitrite, ammonium and urea concentrations. After 90 days, plants were removed from the soil columns and plant yield was evaluated. It was observed that the ammonium concentration in leachates presented a maximum concentration for all treatments at day 22. The highest concentration of N in the leachates was the nitrate form. The crop yield was negatively affected by all developed CRFs using biochar compared with the traditional fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    PubMed

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  17. Pyrolysis of softwood carbohydrates in a fluidized bed reactor.

    PubMed

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu

    2008-09-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 degrees C/min) was applied to the heating until a reactor temperature of 460 degrees C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  18. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    PubMed Central

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.

    2008-01-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824

  19. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  20. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    PubMed

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations.

    PubMed

    Du, Jian; Cao, Yuan; Liu, Guodong; Zhao, Jian; Li, Xuezhi; Qu, Yinbo

    2017-04-01

    Cellulose conversion decreases significantly with increasing solid concentrations during enzymatic hydrolysis of insoluble lignocellulosic materials. Here, mass transfer limitation was identified as a significant determining factor of this decrease by studying the hydrolysis of delignified corncob residue in shake flask, the most used reaction vessel in bench scale. Two mass transfer efficiency-related factors, mixing speed and flask filling, were shown to correlate closely with cellulose conversion at solid loadings higher than 15% DM. The role of substrate characteristics in mass transfer performance was also significant, which was revealed by the saccharification of two corn stover substrates with different pretreatment methods at the same solid loading. Several approaches including premix, fed-batch operation, and particularly the use of horizontal rotating reactor were shown to be valid in facilitating cellulose conversion via improving mass transfer efficiency at solid concentrations higher than 15% DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    PubMed

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  4. Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization.

    PubMed

    Heinämäki, Jyrki; Pirttimaa, Minni M; Alakurtti, Sami; Pitkänen, H Pauliina; Kanerva, Heimo; Hulkko, Janne; Paaver, Urve; Aruväli, Jaan; Yliruusi, Jouko; Kogermann, Karin

    2017-04-28

    The isolation and physical material properties of suberin fatty acids (SFAs) were investigated with special reference to their potential applications as novel pharmaceutical excipients. SFAs were isolated from outer birch bark (OBB) with a new extractive hydrolysis method. The present simplified isolation process resulted in a moderate batch yield and chemical purity of SFAs, but further development is needed for establishing batch-to-batch variation. Cryogenic milling was the method of choice for the particle size reduction of SFAs powder. The cryogenically milled SFAs powder exhibited a semicrystalline structure with apparent microcrystalline domains within an amorphous fatty acids matrix. The thermogravimetric analysis (TGA) of SFAs samples showed a good thermal stability up to 200 °C, followed by a progressive weight loss, reaching a plateau at about 95% volatilization at about 470 °C. The binary blends of SFAs and microcrystalline cellulose (MCC; Avicel PH 101) in a ratio of 25:75 (w/w) displayed good powder flow and tablet compression properties. The corresponding theophylline-containing tablets showed sustained or prolonged-release characteristics. The physicochemical and bulk powder properties of SFAs isolated from OBB are auspicious in terms of potential pharmaceutical excipient applications.

  5. The Influences of Stirring and Cow Manure Added on Biogas Production From Vegetable Waste Using Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Abdullah, N. O.; Pandebesie, E. S.

    2018-03-01

    Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.

  6. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces.

    PubMed

    Robledo, M; Rivera, L; Jiménez-Zurdo, Jose I; Rivas, R; Dazzo, F; Velázquez, E; Martínez-Molina, E; Hirsch, Ann M; Mateos, Pedro F

    2012-09-12

    The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this "building material" seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.

  7. Anaerobic rumen SBR for degradation of cellulosic material.

    PubMed

    Barnes, S P; Keller, J

    2004-01-01

    Hydrolysis of organic particulates under anaerobic conditions is generally regarded as the rate limiting step in solid digestion processes. Rumen-based ecosystems appear to achieve very high hydrolysis rates for cellulosic organic material. This study aimed at the development and demonstration of an anaerobic sequencing batch reactor (SBR) process operating with a rumen-based microbial inoculum. Fibrous alpha cellulose was used as sole carbon substrate and the use of an SBR operating cycle allowed the utilisation of a high liquid flow rate (hydraulic retention time of 0.67 d) while maintaining a much longer solids retention time of 7 d. Complete mass balances for carbon and nitrogen, as well as COD balancing allowed the full characterisation of the process stoichiometry and kinetics. Elemental analysis of the biomass revealed a composition of C5H4.8O2.4N0.7, which is quite different from other generic biomass compositions used in the literature. The anaerobic rumen SBR was compared with another rumen-based reactor system in the literature which used a continuous filtration process for solid/liquid separation. This comparison showed that the volatile fatty acid production rate from cellulose in the anaerobic SBR was comparable with the performance achieved in the continuous system, although loading, substrate type and media composition were quite different between these two studies. Further evaluation of the anaerobic rumen SBR is required to determine its practical application for other substrates and to demonstrate the scale-up potential of this concept.

  8. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use intoxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and α-cellulose (as a source of organic carbon). α-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of α-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures, consistent responses of amphipods were observed in both formulated and control sediments.

  9. Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties

    PubMed Central

    Badalato, Nelly; Guillot, Alain; Sabarly, Victor; Dubois, Marc; Pourette, Nina; Pontoire, Bruno; Robert, Paul; Bridier, Arnaud; Monnet, Véronique; Sousa, Diana Z.; Durand, Sylvie; Mazéas, Laurent; Buléon, Alain; Bouchez, Théodore; Mortha, Gérard

    2017-01-01

    Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery. To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the “xyl-doc” cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics. PMID:28114419

  10. Co-inoculating ruminal content neither provides active hydrolytic microbes nor improves methanization of ¹³C-cellulose in batch digesters.

    PubMed

    Chapleur, Olivier; Bize, Ariane; Serain, Thibaut; Mazéas, Laurent; Bouchez, Théodore

    2014-03-01

    Cellulose hydrolysis often limits the kinetics and efficiency of anaerobic degradation in industrial digesters. In animal digestive systems, specialized microorganisms enable cellulose biodegradation at significantly higher rates. This study aims to assess the potential of ruminal microbial communities to settle and to express their cellulolytic properties in anaerobic digesters. Cellulose-degrading batch incubations were co-inoculated with municipal solid waste digester sludge and ruminal content. ¹³C-labeled cellulose degradation was described over time with Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. Results were linked to the identification of the microorganisms assimilating ¹³C and to the monitoring of their relative dynamics. Cellulose degradation in co-inoculated incubations was efficient but not significantly improved. Transient disturbances in degradation pathways occurred, as revealed by propionate accumulation. Automated Ribosomal Intergenic Spacer Analysis dynamics and pyrosequencing revealed that expected classes of Bacteria and Archaea were active and degraded cellulose. However, despite the favorable co-inoculation conditions, molecular tools also revealed that no ruminal species settled in the bioreactors. Other specific parameters were probably needed for this to happen. This study shows that exploiting the rumen's cellulolytic properties in anaerobic digesters is not straightforward. Co-inoculation can only be successful if ruminal microorganisms manage to thrive in the anaerobic digester and outcompete native microorganisms, which requires specific nutritional and environmental parameters, and a meticulous reproduction of the selection pressure encountered in the rumen. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, X.; Cemagref, UR-HBAN, Parc de Tourvoie, Antony cedex F-92163; Vavilin, V.A.

    Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO{sub 2} partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H{sub 2}/H{sub 2}CO{sub 3} as well as acetate-oxidizing syntrophs, were considered. It was shownmore » that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 {sup o}C where during the first and second steps methane was generated mostly from H{sub 2}/H{sub 2}CO{sub 3} and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 {sup o}C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.« less

  12. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.

    PubMed

    Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin

    2013-02-15

    The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose.

    PubMed

    Guo, Zhong-Peng; Robin, Julien; Duquesne, Sophie; O'Donohue, Michael Joseph; Marty, Alain; Bordes, Florence

    2018-01-01

    Both industrial biotechnology and the use of cellulosic biomass as feedstock for the manufacture of various commercial goods are prominent features of the bioeconomy. In previous work, with the aim of developing a consolidated bioprocess for cellulose bioconversion, we conferred cellulolytic activity of Yarrowia lipolytica , one of the most widely studied "nonconventional" oleaginous yeast species. However, further engineering this strain often leads to the loss of previously introduced heterologous genes due to the presence of multiple LoxP sites when using Cre -recombinase to remove previously employed selection markers. In the present study, we first optimized the strategy of expression of multiple cellulases and rescued selection makers to obtain an auxotrophic cellulolytic Y. lipolytica strain. Then we pursued the quest, exemplifying how this cellulolytic Y. lipolytica strain can be used as a CBP platform for the production of target products. Our results reveal that overexpression of SCD1 gene, encoding stearoyl-CoA desaturase, and DGA1 , encoding acyl-CoA:diacylglycerol acyltransferase, confers the obese phenotype to the cellulolytic Y. lipolytica . When grown in batch conditions and minimal medium, the resulting strain consumed 12 g/L cellulose and accumulated 14% (dry cell weight) lipids. Further enhancement of lipid production was achieved either by the addition of glucose or by enhancing cellulose consumption using a commercial cellulase cocktail. Regarding the latter option, although the addition of external cellulases is contrary to the concept of CBP, the amount of commercial cocktail used remained 50% lower than that used in a conventional process (i.e., without internalized production of cellulases). The introduction of the LIP2 gene into cellulolytic Y. lipolytica led to the production of a strain capable of producing lipase 2 while growing on cellulose. Remarkably, when the strain was grown on glucose, the expression of six cellulases did not alter the level of lipase production. When grown in batch conditions on cellulose, the engineered strain consumed 16 g/L cellulose and produced 9.0 U/mL lipase over a 96-h period. The lipase yield was 562 U lipase/g cellulose, which represents 60% of that obtained on glucose. Finally, expression of the hydroxylase from Claviceps purpurea (CpFAH12) in cellulolytic Y. lipolytica procured a strain that can produce ricinoleic acid (RA). Using this strain in batch cultures revealed that the consumption of 11 g/L cellulose sustained the production of 2.2 g/L RA in the decane phase, 69% of what was obtained on glucose. In summary, this study has further demonstrated the potential of cellulolytic Y. lipolytica as a microbial platform for the bioconversion of cellulose into target products. Its ability to be used in consolidated process designs has been exemplified and clues revealing how cellulose consumption can be further enhanced using commercial cellulolytic cocktails are provided.

  14. Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.

    PubMed

    Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain

    2017-01-01

    Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetically engineered Escherichia coli FBR5 to use cellulosic sugars: Production of ethanol from corn fiber hydrolyzate employing commercial nutrient medium

    USDA-ARS?s Scientific Manuscript database

    Transportation biofuel ethanol was produced from xylose and corn fiber hydrolyzate (CFH) in a batch reactor employing Escherichia coli FBR5. This strain was previously developed in our laboratory to use cellulosic sugars. The culture can produce up to 49.32 gL-1 ethanol from approximately 125 gL-1 x...

  16. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We hypothesized that consecutive dilute sulfuric acid-dilute sodium hydroxide pretreatment would overcome the native recalcitrance of sugarcane bagasse (SB) by enhancing cellulase accessibility of the embedded cellulosic microfibrils. Results SB hemicellulosic hydrolysate after concentration by vacuum evaporation and detoxification showed 30.89 g/l xylose along with other products (0.32 g/l glucose, 2.31 g/l arabinose, and 1.26 g/l acetic acid). The recovered cellulignin was subsequently delignified by sodium hydroxide mediated pretreatment. The acid–base pretreated material released 48.50 g/l total reducing sugars (0.91 g sugars/g cellulose amount in SB) after enzymatic hydrolysis. Ultra-structural mapping of acid–base pretreated and enzyme hydrolyzed SB by microscopic analysis (scanning electron microcopy (SEM), transmitted light microscopy (TLM), and spectroscopic analysis (X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy) elucidated the molecular changes in hemicellulose, cellulose, and lignin components of bagasse. The detoxified hemicellulosic hydrolysate was fermented by Scheffersomyces shehatae (syn. Candida shehatae UFMG HM 52.2) and resulted in 9.11 g/l ethanol production (yield 0.38 g/g) after 48 hours of fermentation. Enzymatic hydrolysate when fermented by Saccharomyces cerevisiae 174 revealed 8.13 g/l ethanol (yield 0.22 g/g) after 72 hours of fermentation. Conclusions Multi-scale structural studies of SB after sequential acid–base pretreatment and enzymatic hydrolysis showed marked changes in hemicellulose and lignin removal at molecular level. The cellulosic material showed high saccharification efficiency after enzymatic hydrolysis. Hemicellulosic and cellulosic hydrolysates revealed moderate ethanol production by S. shehatae and S. cerevisiae under batch fermentation conditions. PMID:24739736

  17. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates.

    PubMed

    Delabona, Priscila da Silva; Lima, Deise Juliana; Robl, Diogo; Rabelo, Sarita Cândida; Farinas, Cristiane Sanchez; Pradella, José Geraldo da Cruz

    2016-05-01

    The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.

  18. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production.

    PubMed

    Garcia-Kirchner, O; Muñoz-Aguilar, M; Pérez-Villalva, R; Huitrón-Vargas, C

    2002-01-01

    The efficient saccharification of lignocellulosic materials requires the cooperative actions of different cellulase enzyme activities: exoglucanase, endoglucanase, beta-glucosidase, and xylanase. Previous studies with the fungi strains Aureobasidium sp. CHTE-18, Penicillium sp. CH-TE-001, and Aspergillus terreus CH-TE-013, selected mainly because of their different cellulolytic and xylanolytic activities, have demonstrated the capacity of culture filtrates of cross-synergistic action in the saccharification of native sugarcane bagasse pith. In an attempt to improve the enzymatic hydrolysis of different cellulosic materials, we investigated a coculture fermentation with two of these strains to enhance the production of cellulases and xylanases. The 48-h batch experimental results showed that the mixed culture of Penicillium sp. CH-TE-001 and A. terreus CH-TE-013 produced culture filtrates with high protein content, cellulase (mainly beta-glucosidase), and xylanase activities compared with the individual culture of each strain. The same culture conditions were used in a simple medium with mineral salts, corn syrup liquor, and sugarcane bagasse pith as the sole carbon source with moderate shaking at 29 degrees C. Finally, we compared the effect of the cell-free culture filtrates obtained from the mixed and single fermentations on the saccharification of different kinds of cellulosic materials.

  19. Mechanisms and kinetics of cellulose fermentation for protein production

    NASA Technical Reports Server (NTRS)

    Dunlap, C. A.

    1971-01-01

    The development of a process (and ancillary processing and analytical techniques) to produce bacterial single-cell protein of good nutritional quality from waste cellulose is discussed. A fermentation pilot plant and laboratory were developed and have been in operation for about two years. Single-cell protein (SCP) can be produced from sugarcane bagasse--a typical agricultural cellulosic waste. The optimization and understanding of this process and its controlling variables are examined. Both batch and continuous fermentation runs have been made under controlled conditions in the 535 liter pilot plant vessel and in the laboratory 14-liter fermenters.

  20. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    PubMed Central

    Cheng, Kuan-Chen; Catchmark, Jeff M; Demirci, Ali

    2009-01-01

    Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The results clearly demonstrated that implementation of PCS within agitated fermentation enhanced BC production and improved its mechanical properties and thermal stability. PMID:19630969

  1. Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process.

    PubMed

    Juarez Jimenez, B; Reboleiro Rivas, P; Gonzalez Lopez, J; Pesciaroli, C; Barghini, P; Fenice, M

    2012-01-01

    Delftia tsuruhatensis BM90, previously isolated from Tyrrhenian Sea and selected for its ability to degrade a wide array of phenolic compounds, was immobilized in chemically modified macro porous cellulose. The development of bacterial adhesion on the selected carrier was monitored by scanning electron microscopy. Evident colonization started already after 8h of incubation. After 72h, almost all the carrier surface was covered by the bacterial cells. Extracellular bacterial structures, such as pili or fimbriae, contributed to carrier colonization and cell attachment. Immobilized cells of D. tsuruhatensis were tested for their ability to biodegrade a pool of 20 phenols in repeated batch process. During the first activation batch (72h), 90% of phenols degradation was obtained already in 48h. In the subsequent batches (up to 360h), same degradation was obtained after 24h only. By contrast, free cells were slower: to obtain almost same degradation, 48h were needed. Thus, process productivity, achieved by the immobilized cells, was double than that of free cells. Specific activity was also higher suggesting that the use of immobilized D. tsuruhatensis BM90 could be considered very promising in order to obtain an efficient reusable biocatalyst for long-term treatment of phenols containing effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Improvement of yields and rates during enzymatic hydrolysis of cellulose to glucose. Progress report, March 1, 1979-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundstrom, D W; Klei, H E; Coughlin, R W

    1979-05-01

    The objective of this program is to show that the conversion of cellulose to glucose can be significantly increased by enzymatically removing the inhibitory cellobiose from the reaction system using immobilized ..beta..-glucosidase (..beta..-G). An enzymatic catalyst was prepared and used in a fluidized bed with cellobiose as the substrate, only a 10% loss of activity was observed during a 500 hour period. Cellulose was hydrolyzed in two batch reactors operated side-by-side, with one reactor containing immobilized ..beta..-G and cellulose and the other reactor containing an equal amount of cellulose only. After 30 hours the reactor containing the immobilized ..beta..-G hadmore » 100% more glucose, indicating that the catalytic removal of the cellobiose had a significant effect upon the production of glucose.« less

  3. Acid-Soluble Internal Capsules for Closed-Face Cassette Elemental Sampling and Analysis of Workplace Air

    PubMed Central

    Harper, Martin; Ashley, Kevin

    2013-01-01

    Airborne particles that are collected using closed-face filter cassettes (CFCs), which are used widely in the sampling of workplace aerosols, can deposit in places other than on the filter and thereby may not be included in the ensuing analysis. A technique for ensuring that internal non-filter deposits are included in the analysis is to collect airborne particles within an acid-soluble internal capsule that, following sampling, can be dissolved along with the filter for subsequent elemental analysis. An interlaboratory study (ILS) was carried out to evaluate the use of cellulosic CFC capsule inserts for their suitability in the determination of trace elements in airborne samples. The ILS was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Performance evaluation materials consisted of prototype cellulose acetate capsules attached to mixed-cellulose ester filters. Batches of capsules were dosed with Pb-containing materials (standard aqueous solutions, and certified reference material soil and paint). Also, aerosol samples containing nine target analyte elements (As, Cd, Co, Cr, Cu, Fe, Pb, Mn, and Ni) were generated using a multiport sampler; various concentrations and sampling times were employed to yield samples fortified at desired loading levels. Triplicates of spiked capsules at three different loadings were conveyed to each volunteer laboratory; loading levels were unknown to the participants. The laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by atomic spectrometry in accordance with applicable ASTM International Standards. Participants were asked to report their results in units of μg of each target element per sample. For the elements investigated, interlaboratory precision and recovery estimates from the participating laboratories demonstrated the utility of the cellulosic capsule inserts for the measurement of sampled trace elements. PMID:23548078

  4. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dilute Acid and Autohydrolysis Pretreatment

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wyman, Charles E.

    Exposure of cellulosic biomass to temperatures of about 120-210°C can remove most of the hemicellulose and produce cellulose-rich solids from which high glucose yields are possible with cellulase enzymes. Furthermore, the use of dilute sulfuric acid in this pretreatment operation can increase recovery of hemicellulose sugars substantially to about 85-95% of the maximum possible versus only about 65% if no acid is employed. The use of small-diameter tubes makes it possible to employ high solids concentrations similar to those preferred for commercial operations, with rapid heat-up, good temperature control, and accurate closure of material balances. Mixed reactors can be employed to pretreat larger amounts of biomass than possible in such small-diameter tubes, but solids concentrations are limited to about 15% or less to provide uniform temperatures. Pretreatment of large amounts of biomass at high solids concentrations is best carried out using direct steam injection and rapid pressure release, but closure of material balances in such “steam gun” devices is more difficult. Although flow of water alone or containing dilute acid is not practical commercially, such flow-through configurations provide valuable insight into biomass deconstruction kinetics not possible in the batch tubes, mixed reactors, or steam gun systems.

  6. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose.

    PubMed

    He, Xiaoyun; Male, Keith B; Nesterenko, Pavel N; Brabazon, Dermot; Paull, Brett; Luong, John H T

    2013-09-11

    The dynamic batch adsorption of methylene blue (MB), a widely used and toxic dye, onto nanocrystalline cellulose (NCC) and crushed powder of carbon monolith (CM) was investigated using the pseudo-first- and -second-order kinetics. CM outperformed NCC with a maximum capacity of 127 mg/g compared to 101 mg/g for NCC. The Langmuir isotherm model was applicable for describing the binding data for MB on CM and NCC, indicating the homogeneous surface of these two materials. The Gibbs free energy of -15.22 kJ/mol estimated for CM unravelled the spontaneous nature of this adsorbent for MB, appreciably faster than the use of NCC (-4.47 kJ/mol). Both pH and temperature exhibited only a modest effect on the adsorption of MB onto CM. The desorption of MB from CM using acetonitrile was very effective with more than 94 % of MB desorbed from CM within 10 min to allow the reusability of this porous carbon material. In contrast, acetonitrile was less effective than ethanol in desorbing MB from NCC. The two solvents were incapable of completely desorbing MB on commercial granular coal-derived activated carbon.

  7. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    NASA Astrophysics Data System (ADS)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  8. Succinic acid production from cellobiose by Actinobacillus succinogenes.

    PubMed

    Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping

    2013-05-01

    In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. [Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alterniflora].

    PubMed

    Chen, Guang-Yin; Zheng, Zheng; Chang, Zhi-Zhou; Ye, Xiao-Mei; Luo, Yan

    2011-07-01

    In order to improve the biotransformation rate of lignocellulosic materials, sodium hydroxide (NaOH) was widely used to pretreat lignocellulosic materials. Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alternflora was studied by batch model under the temperature of 55 degrees C +/- 1 degrees C, at the initial total solid loading (TSL) of 20%. The results indicated that biogas production was inhibited by NaOH-treatment and improved by NaOH-treatment with water washed. The cumulative biogas yield of control (CK), NaOH-treated and NaOH-treated with water washed (NaOH + water) were 268.35 mL/g, 205.76 mL/g and 299.97 mL/g, respectively. The methane content of CK and NaOH + water treatments kept stable while fluctuation of NaOH-treated treatment during anaerobic digestion process was observed. Compared with CK and NaOH + water treatments, methane content of NaOH-treated treatment was improved by 5.30%. The content of hemi-cellulose and cellulose of S. alternifora decreased while content of lignin of S. alterniflora increased after 51-day anaerobic digestion. The crystallinity of cellulose of S. alterniflora increased after NaOH-treatment which was consistent to the result of FTIR. The lignocellulosic structure was destroyed and the biodegradability of S. alterniflora was increased by NaOH pretreatment. However, the amount of Na+ was taken into the anaerobic system, besides the high Na+ content in the plant itself which inhibited the anaerobic microorganisms. Therefore, NaOH-treatment is considered to be unsuitable for the anaerobic digestion of S. alterniflora.

  10. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  11. CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production.

    PubMed

    Wang, Jianjun; Zhu, Junge; Min, Cong; Wu, Sheng

    2014-05-13

    γ-lactamase is used for the resolution of γ-lactam which is utilized in the synthesizing of abacavir and peramivir. In some cases, enzymatic method is the most utilized method because of its high efficiency and productivity. The cellulose binding domain (CBD) of cellulose is often used as the bio-specific affinity matrix for enzyme immobilization. Cellulose is cheap and it has excellent chemical and physical properties. Meanwhile, binding between cellulose and CBD is tight and the desorption rarely happened. We prepared two fusion constructs of the γ-lactamase gene gla, which was from Sulfolobus solfataricus P2. These two constructs had Cbd (cellulose binding domain from Clostridium thermocellum) fused at amino or carboxyl terminus of the γ-lactamase. These two constructs were heterogeneously expressed in E. coli rosetta (DE3) as two fusion proteins. Both of them were immobilized well on Avicel (microcrystalline cellulose matrix). The apparent kinetic parameters revealed that carboxyl terminus fused protein (Gla-linker-Cbd) was a better catalyst. The V(max) and k(cat) value of Avicel immobilized Gla-linker-Cbd were 381 U mg⁻¹ and 4.7 × 10⁵ s⁻¹ respectively. And the values of the free Gla-linker-Cbd were 151 U mg⁻¹ and 1.8 × 10⁵ s⁻¹ respectively. These data indicated that the catalytic efficiency of the enzyme was upgraded after immobilization. The immobilized Gla-linker-Cbd had a 10-degree temperature optimum dropping from 80°C to 70°C but it was stable when incubated at 60°C for 48 h. It remained stable in catalyzing 20-batch reactions. After optimization, the immobilized enzyme concentration in transformation was set as 200 mg/mL. We found out that there was inhibition that occurred to the immobilized enzyme when substrate concentration exceeded 60 mM. Finally a 10 mL-volume transformation was conducted, in which 0.6 M substrate was hydrolyzed and the resolution was completed within 9 h with a 99.5% ee value. Cellulose is the most abundant and renewable material on the Earth. The absorption between Cbd domain and cellulose is a bio-green process. The cellulose immobilized fusion Gla exhibited good catalytic characters, therefore we think the cellulose immobilized Gla is a promising catalyst for the industrial preparation of (-) - γ-lactam.

  12. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  13. Cellulose-Based Biomimetics and Their Applications.

    PubMed

    Almeida, Ana P C; Canejo, João P; Fernandes, Susete N; Echeverria, Coro; Almeida, Pedro L; Godinho, Maria H

    2018-05-01

    Nature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.

    PubMed

    Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin

    2010-07-01

    In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  16. Paper Actuators Made with Cellulose and Hybrid Materials

    PubMed Central

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K.; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated. PMID:22294882

  17. Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Zhai, Lindong; Mun, Seongcheol; Ko, Hyun-U.; Yun, Young-Min

    2015-04-01

    Cellulose is one of abundant renewable biomaterials in the world. Over 1.5 trillion tons of cellulose is produced per year in nature by biosynthesis, forming microfibrils which in turn aggregate to form cellulose fibers. Using new effective methods these microfibrils can be disintegrated from the fibers to nanosized materials, so called cellulose nanocrystal (CNC) and cellulose nanofiber (CNF). The CNC and CNF have extremely good strength properties, dimensional stability, thermal stability and good optical properties on top of their renewable behavior, which can be a building block of new materials. This paper represents recent advancement of cellulose nanocrystals and cellulose nanofibers, followed by their possibility for smart materials. Natural behaviors, extraction, modification of cellulose nanocrystals and fibers are explained and their synthesis with nanomaterials is introduced, which is necessary to meet the technological requirements for smart materials. Also, its challenges are addressed.

  18. Paper actuators made with cellulose and hybrid materials.

    PubMed

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.

  19. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    PubMed

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  1. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  2. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    NASA Astrophysics Data System (ADS)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  3. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  4. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structure of a cellulose degrading bacterial community during anaerobic digestion.

    PubMed

    O'Sullivan, Cathryn A; Burrell, Paul C; Clarke, William P; Blackall, Linda L

    2005-12-30

    It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. Copyright 2005 Wiley Periodicals, Inc

  6. Methods for treating lignocellulosic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Robert; Travisano, Philip; Madsen, Lee

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  7. Methods for treating lignocellulosic materials

    DOEpatents

    Jansen, Robert; Gregoire, Claire; Travisano, Philip; Madsen, Lee; Matis, Neta; Har-Tal, Yael Miriam; Eliahu, Shay; Lawson, James Alan; Lapidot, Noa; Eyal, Aharon M.; Bauer, Timothy Allen; McWilliams, Paul; Zviely, Michael; Carden, Adam

    2017-05-16

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  8. Methods for treating lignocellulosic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Robert; Gregoire, Claire; Travisano, Philip

    2017-04-25

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  9. Methods for treating lignocellulosic materials

    DOEpatents

    Jansen, Robert; Gregoire, Claire; Travisano, Philip; Madsen, Lee; Matis, Neta; Har-Tal, Yael; Eliahu, Shay; Lawson, James Alan; Lapidot, Noa; Eyal, Aharon M.; Bauer, Timothy Allen; Sade, Hagit; McWilliams, Paul; Zviely, Michael; Carden, Adam

    2016-11-15

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  10. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  11. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.

    PubMed

    Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang

    2015-05-05

    With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hydrolysis rate constants at 10-25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C.

    PubMed

    Zhang, L; Gao, R; Naka, A; Hendrickx, T L G; Rijnaarts, H H M; Zeeman, G

    2016-11-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10-25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were executed using cellulose and tributyrin as model substrates for carbohydrates and lipids. The results showed that the low temperature anaerobic hydrolysis rate constants increased by a factor of 1.5-10, when the short anaerobic pre-hydrolysis at 35 °C was applied. After the pre-hydrolysis phase at 35 °C and decreasing the temperature, no lag phase was observed in any case. Without the pre-hydrolysis, the lag phase for cellulose hydrolysis at 35-10 °C was 4-30 days. Tributyrin hydrolysis showed no lag phase at any temperature. The hydrolysis efficiency of cellulose increased from 40 to 62%, and from 9.6 to 40% after 9.1 days at 15 and 10 °C, respectively, when the pre-hydrolysis at 35 °C was applied. The hydrolysis efficiency of tributyrin at low temperatures with the pre-hydrolysis at 35 °C was similar to those without the pre-hydrolysis. The hydrolytic activity of the supernatant collected from the digestate after batch digestion of cellulose and tributyrin at 35 °C was higher than that of the supernatants collected from the low temperature (≤25 °C) digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    PubMed Central

    Qiu, Xiaoyun; Hu, Shuwen

    2013-01-01

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review. PMID:28809338

  14. Processes for treating cellulosic material

    NASA Technical Reports Server (NTRS)

    Kohlman, Karen L. (Inventor); Weil, Joseph R. (Inventor); Westgate, Paul L. (Inventor); Ladisch, Michael R. (Inventor); Yang, Yiqi (Inventor)

    1998-01-01

    Disclosed are processes for pretreating cellulosic materials in liquid water by heating the materials in liquid water at a temperature at or above their glass transition temperature but not substantially exceeding 220.degree. C., while maintaining the pH of the reaction medium in a range that avoids substantial autohydrolysis of the cellulosic materials. Such pretreatments minimize chemical changes to the cellulose while leading to physical changes which substantially increase susceptibility to hydrolysis in the presence of cellulase.

  15. 40 CFR 80.1451 - What are the reporting requirements under the RFS program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for... renewable fuel produced or imported and assigned a unique batch-RIN per § 80.1426(d): (A) The RIN generator's name. (B) The RIN generator's EPA company registration number. (C) The renewable fuel producer EPA...

  16. 40 CFR 80.1451 - What are the reporting requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for...) used for each batch meets the definition of renewable biomass as defined in § 80.1401. (P) Producers of... thinnings from forestlands or biomass obtained from areas at risk of wildfire must submit quarterly reports...

  17. Microalgae cultivation in a tubular bioreactor and utilization of their cells

    NASA Astrophysics Data System (ADS)

    Koyu, Hon-Nami; Shunji, Kunito

    1998-03-01

    In this study on the possiblities of microalgae technology as an option for CO2 mitigation, many microalgae were isolated from seawater. Some species of the isolates, Chlamydomonas sp. strain YA-SH-1, which accumulates starch in cells under light and ferment ethanol in dark and anaerobic condition, was grown outdoors by using 50-L tubular bioreactors in batch cultivation and harvested. Using these cells, the performance of ethanol production was examined quantitatively in a 0.5-L scale fermentor. Another species, Tetraselmis sp. strain Tt-1, was cultivated in a semi-batch manner by a similar type of tubular bioreactor indoors and examined for its utilization. Tests showed these cells could be used as partial substitute for wood and kenaf pulp for processing into paper. With the idea of making microalgae produce cellulose by genetic engineering in their minds, the authors studied the structure of bacterial cellulose synthase genes and the low temperature-induced, reversible flocculation in a thermophilic blue green alga (Cyanobacterium), Synechocystis vulcanus in order to examine the feasibility of using these genes as gene source and the cynanobacterium as host.

  18. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  19. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  20. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  1. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  2. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.

    PubMed

    Vanhoorne, V; Bekaert, B; Peeters, E; De Beer, T; Remon, J-P; Vervaet, C

    2016-06-15

    In most formulations processed via continuous twin screw granulation microcrystalline cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. Therefore, the aim of the current study was to investigate the influence of process parameters on critical quality attributes of granules (moisture content, solid state, morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced transformation to β-mannitol was observed during batch wet granulation, which exhibited a unique morphology with a large surface area and improved tabletability. A full factorial experimental design was performed, varying screw speed (400-900rpm), granulation temperature (25-40°C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) ratio, on the granulation unit of a ConsiGma™-25 line (a continuous powder-to-tablet manufacturing system). After tray drying the granules were milled and tableted. The results showed that the polymorphic transition from δ- to β-mannitol also occurred during twin screw granulation, although the residence time and L/S ratios were much lower in continuous twin screw granulation compared to batch processing. However, the polymorphic transition was not complete in all experiments and depended on the L/S ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited the unique morphology linked to the polymorphic transition and had a superior tabletability compared to granules produced with β-mannitol as starting material. This was attributed to enhanced plastic deformation of the granules manufactured using δ-mannitol as starting material. In addition, it was concluded that mannitol was granulated via a different mechanism than other, less-soluble, excipients (e.g. lactose, microcrystalline cellulose) due to its high solubility and dissolution rate as the influence of process parameters on the mannitol granule characteristics was different. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  4. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.

    PubMed

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-11-11

    "Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan. The resulting μPAD based on the fluorescence emission distance successfully analyzed 0-4 mg mL(-1) of lactoferrin in complex human tear matrix with a lower limit of detection of 0.1 mg mL(-1) by simple visual inspection. Assay results of 18 human tear samples including ocular disease patients and healthy volunteers showed good correlation to the reference ELISA method with a slope of 0.997 and a regression coefficient of 0.948. The distance-based quantitative signal and the good batch-to-batch fabrication reproducibility relying on printing methods enable quantitative analysis by simply reading out "concentration scale marks" printed on the μPAD without performing any calibration and using any signal readout instrument.

  5. Radiation pretreatment of cellulose for energy production

    NASA Astrophysics Data System (ADS)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  6. Aerogel materials with periodic structures imprinted with cellulose nanocrystals.

    PubMed

    Xu, Yi-Tao; Dai, Yiling; Nguyen, Thanh-Dinh; Hamad, Wadood Y; MacLachlan, Mark J

    2018-02-22

    Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.

  7. Cellulosic ethanol byproducts as a bulking agent

    Treesearch

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang

    2017-01-01

    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...

  8. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk

    2017-10-01

    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  9. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces

    PubMed Central

    2012-01-01

    Background The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. Results ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Conclusions Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this “building material” seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates. PMID:22970813

  10. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk.

    PubMed

    Collazo-Bigliardi, Sofía; Ortega-Toro, Rodrigo; Chiralt Boix, Amparo

    2018-07-01

    Cellulosic material from coffee husk has not been previously studied despite being a potential source of reinforcing agents for different applications. This material has been extracted and characterised from coffee husk, in parallel with previously studied rice husk. Samples have been analysed as to their ability to obtain cellulosic fibres and cellulose nanocrystals (CNC) by applying alkali and bleaching treatments and final sulphuric acid hydrolysis. Microstructural changes were analysed after treatments, and the size and aspect ratio of CNCs were determined. Crystallinity and thermal stability of both materials progressed in line with the enrichment in cellulosic compounds. The CNC aspect ratio was higher than 10, which confers good reinforcing properties. These were tested in thermoplastic starch films, whose elastic modulus increased by 186 and 121% when 1 wt% of CNCs from rice and coffee husks, respectively, was incorporated into the matrix. Coffee husk represents an interesting source of cellulosic reinforcing materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose.

    PubMed

    Lu, Lili; Xu, Shuze; Zhao, Renfei; Zhang, Dayu; Li, Zhengyi; Li, Yumei; Xiao, Min

    2012-07-01

    The β-galactosidase gene (bgaL3) was cloned from Lactobacillus bulgaricus L3 and fused with cellulose binding domain (CBD) using pET-35b (+) vector in Escherichia coli. The resulting fusion protein (CBD-BgaL3) was directly adsorbed onto microcrystalline cellulose with a high immobilization efficiency of 61%. A gram of cellulose was found to absorb 97.6 U of enzyme in the solution containing 100mM NaCl (pH 5.8) at room temperature for 20 min. The enzymatic and transglycosylation characteristics of the immobilized CBD-BgaL3 were similar to the free form. Using the immobilized enzyme as the catalyst, the yield of galactooligosaccharides (GOS) reached a maximum of 49% (w/w) from 400 g/L lactose (pH 7.6) at 45 °C for 75 min, with a high productivity of 156.8 g/L/h. Reusability assay was subsequently performed under the same reaction conditions. The immobilized enzyme could retain over 85% activity after twenty batches with the GOS yields all above 40%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector.

    PubMed

    Zhang, Chunliang; Cha, Ruitao; Yang, Luming; Mou, Kaiwen; Jiang, Xingyu

    2018-03-15

    Flexible and foldable devices attract substantial attention in low-cost electronics. Among the flexible substrate materials, paper has several attractive advantages. In our study, we fabricate cellulose/graphene paper by wet end formation (papermaking). The cationic polyacrylamide remarkably improve the retention ratio of graphene of cellulose/graphene slurry. Besides, cellulose/graphene paper exhibits well mechanical properties such as its flexibility and folding endurance. And we replace copper foil collector with cellulose/graphene paper in lithium-ion batteries without collector, and investigate its electrochemical properties. The obtained results show that cellulose/graphene paper presents excellent charge-discharge stability after 1600th cycles as the anode of lithium-ion batteries. These advantages highlight the potential applications of cellulose/graphene paper as anode materials for lithium-ion batteries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows

    PubMed Central

    Opdahl, Lee James; Gonda, Michael G.

    2018-01-01

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides. PMID:29495256

  14. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows.

    PubMed

    Opdahl, Lee James; Gonda, Michael G; St-Pierre, Benoit

    2018-02-24

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6-50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers ( Ruminococcus flavefaciens and Fibrobacter succinogenes ), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.

  15. Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.; Chen, X.; Tucker, M.

    2012-01-01

    The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw inmore » the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.« less

  16. Raman spectroscopy in the analysis of cellulose nanomaterials

    Treesearch

    Umesh P. Agarwal

    2017-01-01

    Cellulose nanomaterials (CNs) are new types of materials derived from celluloses and offer unique challenges and opportunities for Raman spectroscopic investigations. CNs can be classified into the categories of cellulose nanocrystals (CNCs, also known as cellulose whisker) and cellulose nanofibrils (CNFs, also known as nanofibrillated cellulose or NFCs) which when...

  17. An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces.

    PubMed

    Gurtowski, Luke A; Griggs, Chris S; Gude, Veera G; Shukla, Manoj K

    2018-02-01

    This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole (DNAN), triaminotrinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (FOX-7) and nitroguanidine (NQ), and traditional munition compound 2,4,6-trinitrotoluene (TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose, cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of 4 C 1 chair conformation of β-d-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1➔4 linkage. Geometries were optimized at the M062X functional level of the density functional theory (DFT) using the 6-31G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model (CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error (BSSE) corrected interaction energies were obtained using the 6-311G(d,p) basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed. Copyright © 2017. Published by Elsevier B.V.

  18. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  19. A multiscale crack-bridging model of cellulose nanopaper

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao

    2017-06-01

    The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.

  20. Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer

    DOE PAGES

    Zhang, Dezhi; Hegab, Hisham E.; Lvov, Yuri; ...

    2016-01-20

    Cellulase was immobilized onto silica gel surfaces pretreated with (3-aminopropyl) triethoxy-silane (3-APTES), and glutaraldehyde (GA) was used as a cross-linker. A carboxymethyl cellulose sodium salt (CMC) solution was used for activity experiments. Protein assay was performed to determine the mass immobilized and compare with free enzyme. Cellulase was successfully demonstrated to be immobilized on the modified silica gel surface, and no detectable amount of enzyme was stripped off during the hydrolysis of the CMC solution. The specific activity of the immobilized cellulase is 7 ± 2 % compared to the similar amount of free cellulase. Significant activity over multiple reusesmore » was observed. The seventh batch achieved 82 % activity of the initial batch, and the fifteenth batch retained 31 %. Lastly, it was observed that the immobilized cellulase retained 48 % of its initial activity after 4 days, and 22 % even after 14 days.« less

  1. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  2. Cellulose extraction from orange peel using sulfite digestion reagents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2011-11-01

    Orange peel (OP) was used as raw material for cellulose extraction. Two different pulping reagents were used, sodium sulfite and sodium metabisulfite. The effect of the main process parameters, sulfite agent dosage and reaction duration, on cellulose yield was investigated. A central composite rotatable design involving two variables at five levels and response surface methodology were used for the optimization of cellulose recovery. Other two invariable parameters were reaction temperature and hydromodulus. The optimum yields, referred to the weight of double extracted OP, were 40.4% and 45.2% for sodium sulfite and sodium metabisulfite digestions, respectively. The crude celluloses were bleached with hypochlorite and oxygen. The physicochemical characterization data of these cellulose materials indicate good levels of purity, low crystallinities, good whitenesses, good water retention and moderate molecular weights. According to these specific properties the recovered celluloses could be used as fillers, water absorbents, or as raw materials for cellulose derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  4. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.

    PubMed

    Gao, Honghong; Qiang, Tao

    2017-06-07

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.

  5. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites

    PubMed Central

    Gao, Honghong; Qiang, Tao

    2017-01-01

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983

  6. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  7. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  8. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtrationmore » cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.« less

  10. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary

    2011-06-01

    During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  11. Conversion of cellulosic materials to sugar

    DOEpatents

    Wilke, Charles R.; Mitra, Gautam

    1976-08-03

    A process for the production of sugar, mainly glucose, by the enzymatic degradation of cellulosic materials, particularly cellulosic wastes, which comprises hydrolyzing the cellulosic material in the presence of cellulase enzyme to produce a sugar solution and recovering from the hydrolysis products a major proportion of the cellulase enzyme used in the hydrolysis reaction for re-use. At least a portion of the required makeup cellulase enzyme is produced in a two-stage operation wherein, in the first stage, a portion of the output sugar solution is utilized to grow a cellulase-secreting microorganism, and, in the second stage, cellulase enzyme formation is induced in the microorganism-containing culture medium by the addition of an appropriate inducer, such as a cellulosic material. Cellulase enzyme is precipitated from the culture liquid by the addition of an organic solvent material, such as a low molecular weight alkyl ketone or alcohol, and the cellulase precipitate is then fed to the hydrolysis reaction.

  12. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  13. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  14. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  15. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    PubMed

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.

  16. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    PubMed Central

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  17. EB and EUV lithography using inedible cellulose-based biomass resist material

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2016-03-01

    The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.

  18. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    NASA Astrophysics Data System (ADS)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  19. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  20. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  1. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  3. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  4. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    NASA Astrophysics Data System (ADS)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  5. An Assessment of Cellulose Filters as a Standardized Material for Measuring Litter Breakdown in Headwater Streams

    EPA Science Inventory

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  6. An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams

    EPA Science Inventory

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  7. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOEpatents

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  8. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOEpatents

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  9. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOEpatents

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  10. Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes.

    PubMed

    Gebreyohannes, Abaynesh Yihdego; Dharmjeet, Madhav; Swusten, Tom; Mertens, Matthias; Verspreet, Joran; Verbiest, Thierry; Courtin, Christophe M; Vankelecom, Ivo F J

    2018-05-02

    This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMR SP ). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction. Due to in-situ biocatalysis, there was limited filtration resistance. Simultaneous separation of the product helped to avoid enzyme product inhibition, achieve constant reaction rate over time and 50% higher enzyme efficiency than batch reactor. Stable enzyme immobilization and the ability to keep enzyme in the system for long period helped to achieve continuous productivity at very low enzyme but high solid loading, while also reducing the extent of membrane fouling. Hence, the BMR SP paves a path for sustainable production of bioethanol from the cheaply available lignocellulose. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    PubMed

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2015-01-01

    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Tilki, Serhad; Kavaklı, Cengiz; Güven, Olgun

    2018-01-01

    The main objective of this work is to prepare a renewable cellulosic adsorbent by γ-initiated grafting of poly(glycidyl methacrylate) (PGMA) from cellulose substrate and subsequent modification of PGMA with chelating species, iminodiacetic acid (IDA), for Cd (II), Pb(II) and Cu(II) removal from aqueous media. Modification of PGMA grafted cellulose with IDA in aqueous solution under mild conditions has proceeded efficiently to yield a natural-based and effective porous adsorbent with well-defined properties as provided by the controlled polymerization technique, namely RAFT, applied during the radiation-induced graft copolymerization step and with sufficient degree of IDA immobilization as confirmed by XPS, FTIR, contact angle measurements and elemental analysis. In order to examine the Cd (II), Pb(II) and Cu(II) removing performance of the resulting adsorbent, batch experiments were carried out by ICP-MS. The adsorption capacities were determined as 53.4 mg Cd(II)/g polymer, 52.0 mg Pb(II)/g polymer and 69.6 mg Cu(II)/g polymer at initial feed concentration of 250 ppm, showing the promising potential of the natural-based adsorbent to steadily and efficiently chemisorb toxic metal ions.

  14. Large-scale additive manufacturing with bioinspired cellulosic materials.

    PubMed

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  15. Fermentation of cellulosic materials to mycoprotein foods.

    PubMed

    Moo-Young, M; Chisti, Y; Vlach, D

    1993-01-01

    A new bioprocess is described in which a cellulolytic, food-grade fungus Neurospora sitophila converts cellulosic materials to protein-rich products for food and fodder. The optimal conditions for the conversion are identified: 35-37 degrees C temperature, pH 5.5, 2.35 ms(-1) agitator tip speed. Scale-up of the production process to 1,300 L is reported. The mycoprotein production data on several types of cellulosic materials (sugarcane bagasse, corn stover, wood cellulose) are presented. The performance of N. sitophila is found to compare favourably with that of Chaetomium cellulolyticum, another cellulolytic organism previously reported on by us.

  16. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    USDA-ARS?s Scientific Manuscript database

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  17. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method.

    PubMed

    Chen, Jinghuan; Xu, Jikun; Wang, Kun; Cao, Xuefei; Sun, Runcang

    2016-02-10

    Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.

    PubMed

    Frey, Marion; Widner, Daniel; Segmehl, Jana S; Casdorff, Kirstin; Keplinger, Tobias; Burgert, Ingo

    2018-02-07

    Today's materials research aims at excellent mechanical performance in combination with advanced functionality. In this regard, great progress has been made in tailoring the materials by assembly processes in bottom-up approaches. In the field of wood-derived materials, nanocellulose research has gained increasing attention, and materials with advanced properties were developed. However, there are still unresolved issues concerning upscaling for large-scale applications. Alternatively, the sophisticated hierarchical scaffold of wood can be utilized in a top-down approach to upscale functionalization, and one can profit at the same time from its renewable nature, CO 2 storing capacity, light weight, and good mechanical performance. Nevertheless, for bulk wood materials, a wider multipurpose industrial use is so far impeded by concerns regarding durability, natural heterogeneity as well as limitations in terms of functionalization, processing, and shaping. Here, we present a novel cellulose bulk material concept based on delignification and densification of wood resulting in a high-performance material. A delignification process using hydrogen peroxide and acetic acid was optimized to delignify the entire bulk wooden blocks and to retain the highly beneficial structural directionality of wood. In a subsequent step, these cellulosic blocks were densified in a process combining compression and lateral shear to gain a very compact cellulosic material with entangled fibers while retaining unidirectional fiber orientation. The cellulose bulk materials obtained by different densification protocols were structurally, chemically, and mechanically characterized revealing superior tensile properties compared to native wood. Furthermore, after delignification, the cellulose bulk material can be easily formed into different shapes, and the delignification facilitates functionalization of the bioscaffold.

  19. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Metagenomic Characterization and Biochemical Analysis of Cellulose-Degrading Bacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials, and Soil

    DTIC Science & Technology

    2016-01-04

    Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials,and Soil In an effort to...degrading bacteria from various samples, including termite gut, sheep rumen, soil, and decaying plant materials. Using selective media culture with...Metagenomic Characterization and Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant

  1. Chemical modifications of renewable cellulosic materials

    USDA-ARS?s Scientific Manuscript database

    In agriculture, there is a fair amount of byproducts and waste materials. These materials typically contain significant portions of cellulose and hemicellulose. A good opportunity is to take advantage of these relatively cheap renewable materials, carry out chemical reactions, and increase their v...

  2. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  3. Anomalous scaling law of strength and toughness of cellulose nanopaper

    PubMed Central

    Zhu, Hongli; Zhu, Shuze; Jia, Zheng; Parvinian, Sepideh; Li, Yuanyuan; Vaaland, Oeyvind; Hu, Liangbing; Li, Teng

    2015-01-01

    The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough. PMID:26150482

  4. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  5. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    PubMed Central

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-01-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy. PMID:27009788

  6. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    NASA Astrophysics Data System (ADS)

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-03-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy.

  7. Extraction of cellulose microcrystalline from galam wood for biopolymer

    NASA Astrophysics Data System (ADS)

    Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky

    2018-04-01

    Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.

  8. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that themore » chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.« less

  9. A Batch Feeder for Inhomogeneous Bulk Materials

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  10. Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose.

    PubMed

    Zhao, Linguo; Pang, Qian; Xie, Jingcong; Pei, Jianjun; Wang, Fei; Fan, Song

    2013-11-14

    The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid-liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in Vmax/Km in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process.

  11. Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose

    PubMed Central

    2013-01-01

    Background The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid–liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. Results The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in V max /K m in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. Conclusions The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process. PMID:24228818

  12. Cellulose nanowhiskers and nanofibers from biomass for composite applications

    NASA Astrophysics Data System (ADS)

    Wang, Tao

    2011-12-01

    Biological nanocomposites such as plant cell wall exhibit high mechanical properties at a light weight. The secret of the rigidity and strength of the cell wall lies in its main structural component -- cellulose. Native cellulose exists as highly-ordered microfibrils, which are just a few nanometers wide and have been found to be stiffer than many synthetic fibers. In the quest for sustainable development around the world, using cellulose microfibrils from plant materials as renewable alternatives to conventional reinforcement materials such as glass fibers and carbon fibers is generating particular interest. In this research, by mechanical disintegration and by controlled chemical hydrolysis, both cellulose nanofibers and nanowhiskers were extracted from the cell wall of an agricultural waste, wheat straw. The reinforcement performances of the two nanofillers were then studied and compared using the water-soluble polyvinyl alcohol (PVOH) as a matrix material. It was found that while both of these nanofillers could impart higher stiffness to the polymer, the nanofibers from biomass were more effective in composite reinforcement than the cellulose crystals thanks to their large aspect ratio and their ability to form interconnected network structures through hydrogen bonding. One of the biggest challenges in the development of cellulose nanocomposites is achieving good dispersion. Because of the high density of hydroxyl groups on the surface of cellulose, it remains a difficult task to disperse cellulose nanofibers in many commonly used polymer matrices. The present work addresses this issue by developing a water-based route taking advantage of polymer colloidal suspensions. Combining cellulose nanofibers with one of the most important biopolymers, poly(lactic acid) (PLA), we have prepared nanocomposites with excellent fiber dispersion and improved modulus and strength. The bio-based nanocomposites have a great potential to serve as light-weight structural materials for automotive, medical, and other applications.

  13. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    PubMed

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-12-03

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.

  15. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Treesearch

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  16. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    PubMed

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  17. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  18. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  19. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.

    PubMed

    Jagia, Moksh; Trivedi, Maitri; Dave, Rutesh H

    2016-08-01

    The solvent used for preparing the binder solution in wet granulation can affect the granulation end point and also impact the thermal, rheological, and flow properties of the granules. The present study investigates the effect of solvents and percentage relative humidity (RH) on the granules of microcrystalline cellulose (MCC) with hydroxypropyl methyl cellulose (HPMC) as the binder. MCC was granulated using 2.5% w/w binder solution in water and ethanol/water mixture (80:20 v/v). Prepared granules were dried until constant percentage loss on drying, sieved, and further analyzed. Dried granules were exposed to different percentage RH for 48 h at room temperature. Powder rheometer was used for the rheological and flow characterization, while thermal effusivity and differential scanning calorimeter were used for thermal analysis. The thermal effusivity values for the wet granules showed a sharp increase beginning 50% w/w binder solution in both cases, which reflected the over-wetting of granules. Ethanol/water solvent batches showed greater resistance to flow as compared to the water solvent batches in the wet granule stage, while the reverse was true for the dried granule stage, as evident from the basic flowability energy values. Although the solvents used affected the equilibration kinetics of moisture content, the RH-exposed granules remained unaffected in their flow properties in both cases. This study indicates that the solvents play a vital role on the rheology and flow properties of MCC granules, while the different RH conditions have little or no effect on them for the above combination of solvent and binder.

  20. 77 FR 2662 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... to batches of raw material that did not meet required tensile strength. This proposed AD would..., Avox Systems Inc., revealed that the deformation was attributed to two (2) batches of raw material that... regulator on the oxygen cylinder, which was attributed to batches of raw material that did not meet required...

  1. 77 FR 31174 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ..., which was attributed to batches of raw material that did not meet required tensile strength. This AD... the deformation was attributed to two (2) batches of raw material that did not meet the required... deformation of the pressure regulator on the oxygen cylinder, which was attributed to batches of raw material...

  2. Rheological behavior of highly loaded cellulose nanocrystal/poly(vinyl alcohol) composite suspensions

    Treesearch

    Caitlin E. Meree; Gregory T. Schueneman; J. Carson Meredith; Meisha L. Shofner

    2016-01-01

    Recent emphasis on the pilot scale production of cellulosic nanomaterials has increased interest in the effective use of these materials as reinforcements for polymer composites. An important, enabling step to realizing the potential of cellulosic nanomaterials in their applications is the materials processing of CNC/polymer composites through multiple routes, i.e....

  3. Comparison of the release of constituents from granular materials under batch and column testing.

    PubMed

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  4. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent.

    PubMed

    Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika

    2017-11-15

    Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  6. Studies of lignin-degrading fungi and enzymatic delignification of cellulosic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1976-04-01

    The potential of microbially delignifying cellulosic wastes as a pretreatment to cellulose hydrolysis was assessed. Delignification enhances the enzymatic conversion of cellulose to glucose. Also, where cellulosic induction solids are used in cellulase enzyme production schemes, a greater degree of cell recycle and correspondingly increased productivity of enzyme is potentially possible when delignified material is used. Experiments were undertaken to test the use of culture filtrates and whole fungus cells in delignifying cellulosic materials, such as newsprint and groundwood. Cell-free culture filtrates, and solutions obtained by mechanically lysing microbial cells and pressing the residual solids to harvest intracellular fluid, weremore » shown to be ineffective. Successful delignification was obtained only by culturing fungi directly on groundwood. Fermentation studies to determine growth rate and enzyme production optima as functions of temperature for the fungus Polyporus versicolor were completed. A composting-type process was designed and evaluated with respect to the operating costs and capital investment requirements for large-scale delignification.« less

  7. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.

  8. Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites

    PubMed Central

    Wang, Jinwu

    2018-01-01

    Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315

  9. Self-assembled cellulose materials for biomedicine: A review.

    PubMed

    Yang, Jisheng; Li, Jinfeng

    2018-02-01

    Cellulose-based materials have reached a growing interest for the improvement of biomedicine, due to their good biocompatibility, biodegradability, and low toxicity. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing steps. This article describes the modifications, properties and applications of cellulose and its derivatives, which including a detailed review of representative types of solvents such as NMMO, DMAc/LiCl, some molten salt hydrates, some aqueous solutions of metal complexes, ionic liquids and NaOH-water system etc. The modifications were frequently performed by esterification, etherification, ATRP, RAFT, ROP and other novel methods. Stimuli-responsive cellulose-based materials, such as temperature-, pH-, light- and redox-responsive, were synthesized for their superior performance. Additionally, the applications of cellulose-based materials which can self-assemble into micelles, vesicles and other aggregates, for drug/gene delivery, bioimaging, biosensor, are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources

    Treesearch

    Chao Jia; Liheng Chen; Ziqiang Shao; Umesh P. Agarwal; Liangbing Hu; J. Y. Zhu

    2017-01-01

    We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can easily be recovered,...

  11. Chapter 1.1 Crystallinity of Nanocellulose Materials by Near-IR FT-Raman Spectroscopy

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2013-01-01

    Considering that crystallinity is one of the important properties that influence the end use of cellulose nanomaterials, it is important that the former be measured accurately. Recently, a new method based on near-IR FTRaman spectroscopy was proposed to determine cellulose I crystallinity. It was reported that in the Raman spectrum of cellulose materials, the...

  12. Process for the production of superconductor containing filaments

    DOEpatents

    Tuominen, Olli P.; Hoyt, Matthew B.; Mitchell, David F.; Morgan, Carol W.; Roberts, Clyde Gordon; Tyler, Robert A.

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  13. Cellulose-Based Nanomaterials for Energy Applications.

    PubMed

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biodegradation of polyether-polyol-based polyurethane elastomeric films: influence of partial replacement of polyether polyol by biopolymers of renewable origin.

    PubMed

    Obruca, Stanislav; Marova, Ivana; Vojtova, Lucy

    2011-07-01

    In this work we investigated the degradation process ofpolyether-polyol-based polyurethane (PUR) elastomeric films in the presence of a mixed thermophilic culture as a model of a natural bacterial consortium. The presence of PUR material in cultivation medium resulted in delayed but intensive growth of the bacterial culture. The unusually long lag phase was caused by the release of unreacted polyether polyol and tin catalyst from the material. The lag phase was significantly shortened and the biodegradability of PUR materials was enhanced by partial replacement (10%) of polyether polyol with biopolymers (carboxymethyl cellulose, hydroxyethyl cellulose, acetyl cellulose and actylated starch). The process of material degradation consisted of two steps. First, the materials were mechanically disrupted and, second, the bacterial culture was able to utilize abiotic degradation products, which resulted in supported bacterial growth. Direct utilization of PUR by the bacterial culture was observed as well, but the bacterial culture contributed only slightly to the total mass losses. The only exception was PUR material modified by acetyl cellulose. In this case, direct biodegradation represented the major mechanism of material decomposition. Moreover, PUR material modified by acetyl cellulose did not tend to undergo abiotic degradation. In conclusion, the modification of PUR by proper biopolymers is a promising strategy for reducing potential negative effects of waste PUR materials on the environment and enhancing their biodegradability.

  15. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  16. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  17. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  18. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    PubMed Central

    Coletti, Alessia; Valerio, Antonio; Vismara, Elena

    2013-01-01

    High-grade cellulose (97% α-cellulose content) of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS) of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4) generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest. PMID:28809259

  19. Thermal conductivity analysis and applications of nanocellulose materials

    PubMed Central

    Uetani, Kojiro; Hatori, Kimihito

    2017-01-01

    Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020

  20. Structural evolution of Li{sub x}Mn{sub 2}O{sub 4} in lithium-ion battery cells measured in situ using synchrotron X-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukerjee, S.; Thurston, T.R.; Jisrawi, N.M.

    The authors describe synchrotron based X-ray diffraction techniques and issues related to in situ studies of intercalation processes in battery electrodes. They then demonstrate the utility of this technique, through a study of two batches of Li{sub x}Mn{sub 2}O{sub 4} cathode materials. The structural evolution of these spinel materials was monitored in situ during the initial charge of these electrodes in actual battery cells. Significant differences were observed in the two batches, particularly in the intercalation range of x = 0.45 to 0.20. The first-order structural transitions in this region indicated coexistence of two cubic phases in the batch 2more » material, whereas the batch 1 material showed suppressed two-phase coexistence. Batch 2 cells also indicated structural evolution in the low-potential region below 3.0 V in contrast to the batch 1 material. Differences in structural evolution between batches of Li{sub x}Mn{sub 2}O{sub 4} could have important ramifications in their cycle life and stability characteristics.« less

  1. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest that there is no significant difference of the immersion ice nucleation activity of MCC and fibrous cellulose in supercooled water. Overall, our findings support the view that MCC may be a good proxy for inferring water uptake, wettability and ice nucleating properties of various cellulose materials. In addition, we discuss the ice-nucleating efficiencies of both cellulose samples and plant debris from the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) chamber experiments in comparison to the BINARY results. The influence of the acid processing of cellulose on its ice nucleation propensity may also be discussed to further demonstrate their atmospheric relevancy. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).

  2. Dilute acid hydrolysis of paper birch : kinetics studies of xylan and acetyl-group hydrolysis

    Treesearch

    Mark T. Maloney; Thomas W. Chapman; Andrew J. Baker

    1985-03-01

    Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18 M and temperatures of between 100 and 170°C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based...

  3. Segal crystallinity index revisited by the simulation of x-ray diffraction patterns of cotton cellulose IB and cellulose II

    USDA-ARS?s Scientific Manuscript database

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  4. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    NASA Astrophysics Data System (ADS)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  5. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Sunagawa, Naoki; Tamura, Satoru; Yokoyama, Ryusuke; Ueda, Minoru; Igarashi, Kiyohiko; Nishitani, Kazuhiko

    2017-04-01

    Cellulose is an economically important material, but routes of its industrial processing have not been fully explored. The plant cell wall - the major source of cellulose - harbours enzymes of the xyloglucan endotransglucosylase/hydrolase (XTH) family. This class of enzymes is unique in that it is capable of elongating polysaccharide chains without the requirement for activated nucleotide sugars (e.g., UDP-glucose) and in seamlessly splitting and reconnecting chains of xyloglucan, a naturally occurring soluble analogue of cellulose. Here, we show that a recombinant version of AtXTH3, a thus far uncharacterized member of the Arabidopsis XTH family, catalysed the transglycosylation between cellulose and cello-oligosaccharide, between cellulose and xyloglucan-oligosaccharide, and between xyloglucan and xyloglucan-oligosaccharide, with the highest reaction rate observed for the latter reaction. In addition, this enzyme formed cellulose-like insoluble material from a soluble cello-oligosaccharide in the absence of additional substrates. This newly found activity (designated “cellulose endotransglucosylase,” or CET) can potentially be involved in the formation of covalent linkages between cellulose microfibrils in the plant cell wall. It can also comprise a new route of industrial cellulose functionalization.

  6. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    PubMed

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  9. Cellulose-ethylenediaminetetraacetic acid conjugates protect mammalian cells from bacterial cells.

    PubMed

    Luo, Jie; Lv, Wei; Deng, Ying; Sun, Yuyu

    2013-04-08

    Cellulose-ethylenediaminetetraacetic acid (EDTA) conjugates were synthesized by the esterification of cellulose with ethylenediaminetetraacetic dianhydride (EDTAD). The new materials provided potent antimicrobial activities against Staphylococcus aureus (S. aureus, Gram-positive bacteria) and Pseudomonas aeruginosa (P. aeruginosa, Gram-negative bacteria), and inhibited the formation of bacterial biofilms. The biocompatibility of the new cellulose-EDTA conjugates was evaluated with mouse skin fibroblasts for up to 14 days. SEM observation and DNA content analysis suggested that the new materials sustained the viability of fibroblast cells. Moreover, in mouse skin fibroblast-bacteria co-culture systems, the new cellulose-EDTA conjugates prevented bacterial biofilm formation and protected the mammalian cells from the bacterial cells for at least one day.

  10. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdi, M.

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA),more » tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.« less

  11. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Treesearch

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  12. Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction

    NASA Astrophysics Data System (ADS)

    Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.

    2018-04-01

    Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.

  13. Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials.

    PubMed

    Butler, Samuel J; Bülow, Leif; Bonde, Johan

    2016-10-01

    Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10 -7 mole/m 2 . By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of polyethelene oxide on the thermal degradation of cellulose biofilm – Low cost material for soft tissue repair in dentistry

    PubMed Central

    Tyler, Rakim; Schiraldi, David; Roperto, Renato; Faddoul, Fady; Teich, Sorin

    2017-01-01

    Background Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha’s byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. Material and Methods The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ºC/min. Results and Conclusions PEG control exhibited one transition with the peak at 380ºC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The activation energies for three transitions for cellulose and cellulose/PEG showed increasingly higher values for the transitions at higher temperatures. Key words:TGA, Bio-cellulose, PEG. PMID:28828153

  15. Advanced Materials through Assembly of Nanocelluloses.

    PubMed

    Kontturi, Eero; Laaksonen, Päivi; Linder, Markus B; Nonappa; Gröschel, André H; Rojas, Orlando J; Ikkala, Olli

    2018-06-01

    There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrospinning cellulose based nanofibers for sensor applications

    NASA Astrophysics Data System (ADS)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior. Using cellulose nitrate in biosensor materials provides excellent antibody binding characteristics that are resistant to pH changes. Sensors will be constructed of electrospun materials and compared to existing materials. The main advantage of electrospinning fiber mats is the increased surface area, and controllable morphology, which ultimately affects biosensor performance. Characterization tools will include Environmental Scanning Electron Microscopy (ESEM), BET N2 adsorption, X-Ray Photoelectron Spectroscopy (XPS), Dynamic Mechanical Analysis (DMA) and AC impedance.

  17. Pectinase from Trichoderma reesei QM 9414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haltmeier, T.; Leisola, M.; Ulmer, D.

    1983-06-01

    The present study was undertaken to determine whether T. reesei produces pectinolytic enzymes and, if so, to determine their action pattern and specificity. The aim was also to find out the practical importance of pectinolytic activity in the hydrolysis of cellulosic materials. It was found that the presence of pectinase does not appear to facilitate the hydrolysis of cellulose in plant material through any cell-separating mechanism. It is concluded that cellulase and xylanase activities are the important activities in the practical hydrolysis of cellulosic materials and that lignin is the real limiting factor. (Refs. 12).

  18. Chemistry of 5,8-dihydroxy-[1,4]-naphtoquinone, a key chromophore in aged cellulosics

    USDA-ARS?s Scientific Manuscript database

    5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores found in aged cellulosics. Cellulose aging and yellowing as well as bleaching of cellulosic materials are key processes in the pulp and paper industries and have considerable economic importance: the knowledge of the general re...

  19. Chemistry of 5,8-dihydroxy-[1,4]-benzoquinone, a key chromophore in aged cellulosics

    USDA-ARS?s Scientific Manuscript database

    2,5-Dihydroxy-[1,4]-benzoquione is one of the three key chromophores found in aged cellulosics. Knowledge of the general reactivity and chemistry of this compound is helpful for a better understanding of cellulose aging and yellowing as well as bleaching of cellulosic materials - processes which als...

  20. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir

    EPA Science Inventory

    Cellulose is usually isolated from the other components of plant material for analysis of carbon stable isotope ratios (δ13C). However, many studies have shown a strong correlation between whole-wood and cellulose δ13C values, prompting debate about the necessity of cellulose ext...

  1. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl)

    PubMed Central

    Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang

    2013-01-01

    More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209

  2. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  3. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly.

    PubMed

    Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J

    2017-04-15

    Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca 2+ -pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Recent progress in cellulose nanocrystals: sources and production.

    PubMed

    Trache, Djalal; Hussin, M Hazwan; Haafiz, M K Mohamad; Thakur, Vijay Kumar

    2017-02-02

    Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.

  5. Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose.

    PubMed

    Thongsomboon, Wiriya; Serra, Diego O; Possling, Alexandra; Hadjineophytou, Chris; Hengge, Regine; Cegelski, Lynette

    2018-01-19

    Cellulose is a major contributor to the chemical and mechanical properties of plants and assumes structural roles in bacterial communities termed biofilms. We find that Escherichia coli produces chemically modified cellulose that is required for extracellular matrix assembly and biofilm architecture. Solid-state nuclear magnetic resonance spectroscopy of the intact and insoluble material elucidates the zwitterionic phosphoethanolamine modification that had evaded detection by conventional methods. Installation of the phosphoethanolamine group requires BcsG, a proposed phosphoethanolamine transferase, with biofilm-promoting cyclic diguanylate monophosphate input through a BcsE-BcsF-BcsG transmembrane signaling pathway. The bcsEFG operon is present in many bacteria, including Salmonella species, that also produce the modified cellulose. The discovery of phosphoethanolamine cellulose and the genetic and molecular basis for its production offers opportunities to modulate its production in bacteria and inspires efforts to biosynthetically engineer alternatively modified cellulosic materials. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the feedstock and the performance in the end-application. The cellulose resource matrix should become a practical tool for stakeholders to make choices regarding raw materials, process or market. Although there is a vast amount of scientific and economic information available on cellulose and lignocellulosic resources, the accessibility for the interested layman or entrepreneur is very difficult and the relevance of the numerous details in the larger context is limited. Translation of science to practical accessible information with modern data management and data integration tools is a challenge. Therefore, a detailed matrix structure was composed in which the different elements or entries of the matrix were identified and a tentative rough set up was made. The inventory includes current commodities and new cellulose containing and raw materials as well as exotic sources and specialties. Important chemical and physical properties of the different raw materials were identified for the use in processes and products. When available, the market data such as price and availability were recorded. Established and innovative cellulose extraction and refining processes were reviewed. The demands on the raw material for suitable processing were collected. Processing parameters known to affect the cellulose properties were listed. Current and expected emerging markets were surveyed as well as their different demands on cellulose raw materials and processes. The setting up of the cellulose matrix as a practical tool requires two steps. Firstly, the reduction of the needed data by clustering of the characteristics of raw materials, processes and markets and secondly, the building of a database that can provide the answers to the questions from stakeholders with an indicative character. This paper describes the steps taken to achieve the defined clusters of most relevant and characteristic properties. These data can be expanded where required. More detailed specification can be obtained from the background literature and handbooks. Where gaps of information are identified, the research questions can be defined that will require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Maki, Hirotaka; Sugahara, Kigen; Ito, Kenta; Hanabata, Makoto

    2015-07-01

    An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.

  8. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    PubMed

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  9. Magnetic field effect for cellulose nanofiber alignment

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark

    2008-11-01

    Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.

  10. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    DOE PAGES

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; ...

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less

  11. Immobilization of Aspergillus oryzae  β-Galactosidase on Cellulose Acetate-Polymethylmethacrylate Membrane and Its Application in Hydrolysis of Lactose from Milk and Whey.

    PubMed

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Kashif Zaidi, Syed; Ahmad, Abrar

    2014-01-01

    The present study demonstrates the immobilization of Aspergillus oryzae β-galactosidase on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane and its application in hydrolyzing lactose in dairy industries. The effect of physical and chemical denaturants like pH, temperature, product inhibition by galactose, storage stability, and reuse number of the enzyme immobilized on CA-PMMA membrane has been investigated. Lactose was hydrolyzed from milk and whey in batch reactors at 50°C by free and immobilized β-galactosidase (IβG). Optimum pH for the free and immobilized enzyme was found to be the same, that is, 4.5. However, IβG retained greater fractions of catalytic activity at lower and higher pH ranges. The temperature optimum for the immobilized enzyme was increased by 10°C. Moreover, Michaelis-Menten constant was increased for IβG as compared to the native one while maximum reaction rate was reduced for the immobilized enzyme. The preserved activity of free and immobilized enzyme was found to be 45% and 83%, respectively, after five weeks of storage at 4°C. Reusability of IβG was observed to be 86% even after fifth repeated use, thereby signifying its application in lactose hydrolysis (as shown in lab-scale batch reactors) in various dairy products including milk and whey.

  12. Immobilization of Aspergillus oryzae   β-Galactosidase on Cellulose Acetate-Polymethylmethacrylate Membrane and Its Application in Hydrolysis of Lactose from Milk and Whey

    PubMed Central

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Kashif Zaidi, Syed; Ahmad, Abrar

    2014-01-01

    The present study demonstrates the immobilization of Aspergillus oryzae β-galactosidase on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane and its application in hydrolyzing lactose in dairy industries. The effect of physical and chemical denaturants like pH, temperature, product inhibition by galactose, storage stability, and reuse number of the enzyme immobilized on CA-PMMA membrane has been investigated. Lactose was hydrolyzed from milk and whey in batch reactors at 50°C by free and immobilized β-galactosidase (IβG). Optimum pH for the free and immobilized enzyme was found to be the same, that is, 4.5. However, IβG retained greater fractions of catalytic activity at lower and higher pH ranges. The temperature optimum for the immobilized enzyme was increased by 10°C. Moreover, Michaelis-Menten constant was increased for IβG as compared to the native one while maximum reaction rate was reduced for the immobilized enzyme. The preserved activity of free and immobilized enzyme was found to be 45% and 83%, respectively, after five weeks of storage at 4°C. Reusability of IβG was observed to be 86% even after fifth repeated use, thereby signifying its application in lactose hydrolysis (as shown in lab-scale batch reactors) in various dairy products including milk and whey. PMID:27350979

  13. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    PubMed

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.

  14. Utilization of ethyl cellulose polymer and waste materials for roofing tile production

    NASA Astrophysics Data System (ADS)

    Sam, Suubitaa Spencer; Ng, ChoonAun; Chee, Swee Yong; Habib, NoorZainab; Nadeem, Humayon; Teoh, Wei Ping

    2017-05-01

    The aim of this study was to utilize ethyl cellulose, mixture of waste engine oil and waste vegetable oil as a binder in the environmental friendly roofing tile production. The waste engine-vegetable oil wasmix together with ethyl cellulose, fly ash, coarse aggregates, fine aggregatesand a catalyst. The Fourier Transform Infrared (FTIR) analysis showed that the oil mixture added with ethyl cellulose has the relatively high binding effect due to the presence of strong carbonyl group especially after being heat cured at 1900C for 24 hours. The mixed proportion of materials with different amount of ethyl cellulose used was studied in the production of tile specimen. The results showed that the ethyl cellulose composed roofing tile specimens passed the transverse breaking strength, durability, permeabilityand the ultraviolet accelerated test. The shrinkage on the tile can be overcome by adding temperature resistance polymer on the exterior of the tile.

  15. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.

    PubMed

    Larsson, Per A; Berglund, Lars A; Wågberg, Lars

    2014-06-09

    Cellulosic materials have many desirable properties such as high mechanical strength and low oxygen permeability and will be an important component in a sustainable biomaterial-based society, but unfortunately they often lack the ductility and formability offered by petroleum-based materials. This paper describes the fabrication and characterization of nanocomposite films made of core-shell modified cellulose nanofibrils (CNFs) surrounded by a shell of ductile dialcohol cellulose, created by heterogeneous periodate oxidation followed by borohydride reduction of the native cellulose in the external parts of the individual fibrils. The oxidation with periodate selectively produces dialdehyde cellulose, and the process does not increase the charge density of the material. Yet the modified cellulose fibers could easily be homogenized to CNFs. Prior to film fabrication, the CNF was shown by atomic force microscopy to be 0.5-2 μm long and 4-10 nm wide. The films were fabricated by filtration, and besides uniaxial tensile testing at different relative humidities, they were characterized by scanning electron microscopy and oxygen permeability. The strength-at-break at 23 °C and 50% RH was 175 MPa, and the films could, before rupture, be strained, mainly by plastic deformation, to about 15% and 37% at 50% RH and 90% RH, respectively. This moisture plasticization was further utilized to form a demonstrator consisting of a double-curved structure with a nominal strain of 24% over the curvature. At a relative humidity of 80%, the films still acted as a good oxygen barrier, having an oxygen permeability of 5.5 mL·μL/(m(2)·24 h·kPa). These properties indicate that this new material has a potential for use as a barrier in complex-shaped structures and hence ultimately reduce the need for petroleum-based plastics.

  16. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month.

    PubMed

    Ilves, Marit; Vilske, Sara; Aimonen, Kukka; Lindberg, Hanna K; Pesonen, Saila; Wedin, Irene; Nuopponen, Markus; Vanhala, Esa; Højgaard, Casper; Winther, Jakob R; Willemoës, Martin; Vogel, Ulla; Wolff, Henrik; Norppa, Hannu; Savolainen, Kai; Alenius, Harri

    2018-05-30

    Nanofibrillated cellulose (NFC) is a renewable nanomaterial that has beneficial uses in various applications such as packaging materials and paper. Like carbon nanotubes (CNT), NFCs have high aspect ratio and favorable mechanical properties. The aspect ratio also rises a concern whether NFC could pose a health risk and induce pathologies, similar to those triggered by multi-walled CNT. In this study, we explored the immunomodulatory properties of four NFCs in vitro and in vivo, and compared the results with data on bulk-sized cellulose fibrils and rigid multi-walled CNT (rCNT). Two of the NFCs were non-functionalized and two were carboxymethylated or carboxylated. We investigated the production of pro-inflammatory cytokines in differentiated THP-1 cells, and studied the pulmonary effects and biopersistence of the materials in mice. Our results demonstrate that one of the non-functionalized NFCs tested reduced cell viability and triggered pro-inflammatory reactions in vitro. In contrast, all cellulose materials induced innate immunity response in vivo 24 h after oropharyngeal aspiration, and the non-functionalized NFCs additionally caused features of Th2-type inflammation. Modest immune reactions were also seen after 28 days, however, the effects were markedly attenuated as compared with the ones after 24 h. Cellulose materials were not cleared within 1 month, as demonstrated by their presence in the exposed lungs. All effects of NFC were modest as compared with those induced by rCNT. NFC-induced responses were similar or exceeded those triggered by bulk-sized cellulose. These data provide new information about the biodurability and pulmonary effects of different NFCs; this knowledge can be useful in the risk assessment of cellulose materials.

  17. Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication

    NASA Astrophysics Data System (ADS)

    Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.

  18. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    PubMed

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  19. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555.

    PubMed

    Kim, Seonghun; Park, Jang Min; Kim, Chul Ho

    2013-03-01

    Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke.

  20. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    PubMed

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong

    2016-08-01

    Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

  2. Formation of Irreversible H-bonds in Cellulose Materials

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  3. Properties of foam and composite materials made o starch and cellulose fiber

    USDA-ARS?s Scientific Manuscript database

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  4. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less

  5. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  6. Innovative Life Cycle Management Systems for Composites. Phase 1

    DTIC Science & Technology

    1991-12-01

    of the window were not yet identified with a particular batch, but we knew that they would be required to be Kevlar -29 and Polyester. From this plan...materials and processes and has selected Kevlar batch #139 as one of the starting materials. (KevIar was chosen as the only material in this example to...assigned to the flow diagram by clicking on a material icon. The accompanying control panel allowed the user I, I to inspect the batches of Kevlar in

  7. Light Weight Biomorphous Cellular Ceramics from Cellulose Templates

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.

  8. Disposable chemical sensors and biosensors made on cellulose paper.

    PubMed

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-03-07

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

  9. Absorbent properties of carboxymethylated fiber, hydroentangled nonwoven and regenerated cellulose: a comparative study

    USDA-ARS?s Scientific Manuscript database

    Commercially-available, bleached cotton fibers, rayon, and their hydroentangled counterparts were carboxymethylated to produce cellulosic products with increased absorbency. These cellulose materials were tested for absorbance, spectroscopic properties, degree of substitution and carding ability. Ca...

  10. The Influence of Drying on the Structures and Mechanics of Poly (P- Phenylene Benzobisthiazole) Fibers

    DTIC Science & Technology

    1986-09-01

    since the first fibers based on modified cellulose were developed at the end of the 19th century. Recent advances in fiber science have focused on high...investigations to date have focused on the wet spinning of such flexible extended chain polymers as cellulosic materials (30), proteins (31,32), and...instabilities. Materials such as coagulated cellulose , PAN, poly (amino acids), and wet wood possess an interconnected fibrillar structure (30,32,35

  11. Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study.

    PubMed

    Caccavo, Diego; Lamberti, Gaetano; Barba, Anna Angela; Abrahmsén-Alami, Susanna; Viridén, Anna; Larsson, Anette

    2017-08-07

    The purpose of this study was to investigate the hydration behavior of two matrix formulations containing the cellulose derivative hydroxypropyl methylcellulose (HPMC). The two HPMC batches investigated had different substitution pattern along the backbone; the first one is referred to as heterogeneous and the second as homogenous. The release of both the drug molecule theophylline and the polymer was determined. Additionally, the water concentrations at different positions in the swollen gel layers were determined by Magnetic Resonance Imaging. The experimental data was compared to predicted values obtained by the extension of a mechanistic Fickian based model. The hydration of tablets containing the more homogenous HPMC batch showed a gradual water concentration gradient in the gel layer and could be well predicted. The hydration process for the more heterogeneous batch showed a very abrupt step change in the water concentration in the gel layer and could not be well predicted. Based on the comparison between the experimental and predicted data this study suggests, for the first time, that formulations with HPMC of different heterogeneities form gels in different ways. The homogeneous HPMC batch exhibits a water sorption behavior ascribable to a Ficḱs law for the diffusion process whereas the more heterogeneous HPMC batches does not. This conclusion is important in the future development of simulation models and in the understanding of drug release mechanism from hydrophilic matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Poro-elasto-capillary wicking of cellulose sponges

    PubMed Central

    Kim, Do-Nyun

    2018-01-01

    We mundanely observe cellulose (kitchen) sponges swell while absorbing water. Fluid flows in deformable porous media, such as soils and hydrogels, are classically described on the basis of the theories of Darcy and poroelasticity, where the expansion of media arises due to increased pore pressure. However, the situation is qualitatively different in cellulosic porous materials like sponges because the pore expansion is driven by wetting of the surrounding cellulose walls rather than by increase of the internal pore pressure. We address a seemingly so simple but hitherto unanswered question of how fast water wicks into the swelling sponge. Our experiments uncover a power law of the wicking height versus time distinct from that for nonswelling materials. The observation using environmental scanning electron microscopy reveals the coalescence of microscale wall pores with wetting, which allows us to build a mathematical model for pore size evolution and the consequent wicking dynamics. Our study sheds light on the physics of water absorption in hygroscopically responsive multiscale porous materials, which have far more implications than everyday activities (for example, cleaning, writing, and painting) carried out with cellulosic materials (paper and sponge), including absorbent hygiene products, biomedical cell cultures, building safety, and cooking. PMID:29682606

  13. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.

    PubMed

    Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang

    2014-09-01

    In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical and thermal studies on esterification of EDTA with raw cellulose and mercerized cellulose EFB

    NASA Astrophysics Data System (ADS)

    Azamkamal, Fatihah; Zakaria, Sarani; Gan, Sinyee; Kaco, Hatika

    2018-04-01

    Oil palm empty fruit bunch fibre (EFB) was bleached using four stages bleaching sequences (DEED) where D was a bleaching process composed of 1.7 wt% NaClO2 and buffer solution while E was composed of NaOH solution. Raw cellulose and mercerized cellulose which treated with 3.5 N sodium hydroxide were used as a raw material for esterification with ethylenediaminetetraacetic acid (EDTA) and enhancement with acetic acid. The samples of raw cellulose and mercerized cellulose were observed using optical microscope. The thermal properties of raw cellulose and mercerized cellulose esterified with EDTA were studied. The effect of mercerized cellulose on esterification process of EDTA was investigated. The studies suggested that the mercerization process affect the thermal stability of the cellulose. The transmittance of FTIR band showed that raw cellulose gave better esterification product compared to mercerized cellulose. Hence, the mercerization process of cellulose does not improve the esterification of cellulose with EDTA.

  15. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  16. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  17. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    PubMed

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Inhibition of cellulases by phenols

    USDA-ARS?s Scientific Manuscript database

    The inhibition of enzymes by the end products that they make is a well-known phenomenon. Another form of inhibition is manifested by the decrease in hydrolysis of pretreated cellulosic material as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is...

  20. Nanoscale analysis of degradation processes of cellulose fibers.

    PubMed

    Teodonio, Lorenzo; Missori, Mauro; Pawcenis, Dominika; Łojewska, Joanna; Valle, Francesco

    2016-12-01

    Mapping the morphological and nano-mechanical properties of cellulose fibers within paper sheets or textile products at the nano-scale level by using atomic force microscopy is a challenging task due to the huge surface level variation of these materials. However this task is fundamental for applications in forensic or cultural heritage sciences and for the industrial characterization of materials. In order to correlate between nano-mechanical properties and local nanometer scale morphology of different layers of cellulose fibers, a new strategy to prepare samples of isolated cellulose fibers was designed. This approach is based on immobilizing isolated fibers onto glass slides chemically pretreated so as to promote cellulose adhesion. The experiments presented here aim at the nano-scale characterization of fibers in paper samples aged under different external agents (relative humidity, temperature) in such a way as to promote hydrolysis and oxidation of polymers. The observed variability of local mechanical properties of paper fibers was related to varying degrees of cellulose polymerization induced by artificial aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries.

    PubMed

    Henry, Aurélien; Louvain, Nicolas; Fontaine, Olivier; Stievano, Lorenzo; Monconduit, Laure; Boury, Bruno

    2016-02-08

    Nanostructured TiO2 and TiO2@C nanocomposites were prepared directly from urea-impregnated cellulose by a simple reaction/diffusion process and evaluated as negative electrode materials for Li and Na batteries. By direct treatment with TiCl4 under anhydrous conditions, the urea impregnation of cellulose impacts both the TiO2 morphology and the carbon left by cellulose after pyrolysis. Hierarchical TiO2 structures with a flower-like morphology grown from-and-at the surface of the cellulose fibers are obtained without any directing agent. The resulting TiO2/cellulose composite is then transformed either into pure TiO2 flowers by calcination in air at 600 °C, or into TiO2@C nanocomposites by pyrolysis under Ar at 600 °C. Electrochemical studies demonstrate that both samples can (de)insert lithium and sodium ions and are promising electrode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The case for cellulose production on Mars

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1989-01-01

    From examining the consequences of not requiring that all wastes from life support be recycled back to the food plants, it is concluded that cellulose production on Mars could be an important input for many nonmetabolic material requirements on Mars. The fluxes of carbon in cellulose production would probably exceed those in food production, and therefore settlements on Mars could utilize cellulose farms in building a Mars infrastructure.

  3. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

  4. Acoustic Properties of Cellulose

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Cellulose is the oldest material for thermal insulation in construction field. Thomas Jefferson was the first architect that used the cellulose in his project of the Monticello house (1800). But only after 1945 that the cellulose from newsprint was used across America and northern Europe. In the 70s with the energy crisis it Austria, Czech Republic, Switzerland and Germany began the production of cellulose derived from paper newspapers. It used for both winter and summer thermal insulation, while respecting the environment. In this paper are reported acoustic measurements carried out with the tube of Kundt, with the cellulose melted and with glue with different thicknesses.

  5. Natural cellulose fiber as substrate for supercapacitor.

    PubMed

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  6. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts.

    PubMed

    Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M

    2015-03-25

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  7. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongfu; Lee, Y.Y.

    1997-12-31

    Lactic acid production from cellulosic biomass by cellulose and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (NIHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by an in situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20%more » Alamine 336,40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase. 20 refs., 10 figs., 1 tab.« less

  8. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.

    PubMed

    Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R

    2009-12-01

    A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.

  9. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    PubMed Central

    Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013

  10. Technical note: stress analysis of cellulosic-manure composites

    Treesearch

    Y.H. Ro; J.F. Hunt; R.E. Rowlands

    2017-01-01

    Ability to determine stresses in loaded, perforated cellulosic-manure composites from recorded temperature information was demonstrated. Being able to stress analyze such green materials addresses several societal issues. These include providing engineering members fabricated from materials that are suitable for developed and developing nations, relieving a troubling...

  11. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.

    PubMed

    Malho, Jani-Markus; Ouellet-Plamondon, Claudiane; Rüggeberg, Markus; Laaksonen, Päivi; Ikkala, Olli; Burgert, Ingo; Linder, Markus B

    2015-01-12

    Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for specific interactions with other components. Here we studied how fusion proteins that consist of cellulose binding proteins linked to proteins that show a natural tendency to form multimer complexes act as an adhesive matrix in combination with nanofibrillated cellulose. We found that the fusion proteins are retained with the cellulose and that the proteins mainly affect the plastic yield behavior of the cellulose material as a function of water content. Interestingly, the proteins increased the moisture absorption of the composite, but the well-known plastifying effect of water was clearly decreased. The work helps to understand the functional basis of nanocellulose composites as materials and aims toward building model systems for molecular biomimetic materials.

  12. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    NASA Astrophysics Data System (ADS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  13. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    PubMed

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. White Paper on Potential Hazards Associated with Contaminated Cheesecloth Exposed to Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    This white paper addresses the potential hazards associated with waste cheesecloth that has been exposed to nitric acid solutions. This issue was highlighted by the cleanup of a 100 ml leak of aqueous nitric acid solution containing Heat Source (HS) plutonium on 21 June 2016. Nitration of cellulosic material is a well-understood process due to industrial/military applications of the resulting material. Within the Department of Energy complex, nitric acids have been used extensively, as have cellulosic wipes. If cellulosic materials are nitrated, the cellulosic material can become ignitable and in extreme cases, reactive. We have chemistry knowledge and operating experiencemore » to support the conclusion that all current wastes are safe and compliant. There are technical questions worthy of further experimental evaluation. An extent of condition evaluation has been conducted back to 2004. During this time period there have been interruptions in the authorization to use cellulosic wipes in PF-4. Limited use has been authorized since 2007 (for purposes other than spill cleanup), so our extent of condition includes the entire current span of use. Our evaluation shows that there is no indication that process spills involving high molarity nitric acid were cleaned up with cheesecloth since 2007. The materials generated in the 21 June leak will be managed in a safe manner compliant with all applicable requirements.« less

  15. Development of the metrology and imaging of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  16. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils.

    PubMed

    Wu, Min; Kuga, Shigenori; Huang, Yong

    2008-09-16

    We demonstrate a simple, facile approach to the deposition of silver nanoparticles on the surface of cellulose microfibrils with a quasi-one-dimensional arrangement. The process involves the generation of aldehyde groups by oxidizing the surface of cellulose microfibrils and then the assembly of silver nanoparticles on the surface by means of the silver mirror reaction. The linear nature of the microfibrils and the relatively uniform surface chemical modification result in a uniform linear distribution of silver particles along the microfibrils. The effects of various reaction parameters, such as the reaction time for the reduction process and employed starting materials, have been investigated by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Additionally, the products were examined for their electric current-voltage characteristics, the results showing that these materials had an electric conductivity of approximately 5 S/cm, being different from either the oxidated cellulose or bulk silver materials by many orders of magnitude.

  17. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    PubMed Central

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  18. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  19. Cellulose nanocrystals the next big nano-thing?

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the development of the basic manufacturing metrology infrastructure to implement fundamental best practices for manufacturing and in the determination of properties for these for nanoscale materials and the resultant products.

  20. Cellulolytic enzyme compositions and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  1. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    PubMed

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  2. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    NASA Astrophysics Data System (ADS)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  3. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments

    PubMed Central

    Håkansson, Karl M. O.; Fall, Andreas B.; Lundell, Fredrik; Yu, Shun; Krywka, Christina; Roth, Stephan V.; Santoro, Gonzalo; Kvick, Mathias; Prahl Wittberg, Lisa; Wågberg, Lars; Söderberg, L. Daniel

    2014-01-01

    Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved. PMID:24887005

  4. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  5. Producing sorghum cellulosic feedstock for advanced biofuels production and its impact on soil physical properties

    USDA-ARS?s Scientific Manuscript database

    According Energy Policy Act of 2005, the U.S. must produce 21 billion gallons of advanced biofuels in 2022. Cellulosic material is considered a renewable and environmental improved alternative source for energy production. Sorghum (Sorghum bicolor L.) is considered a high cellulosic biomass producti...

  6. Passive sampler for dissolved organic matter in freshwater environments.

    PubMed

    Lam, Buuan; Simpson, André J

    2006-12-15

    A passive sampler for the isolation of dissolved organic matter (DOM) from freshwater environments is described. The sampler consists of a molecular weight selective membrane (1000 kDa) and an anion exchange resin (diethylaminoethylcellulose (DEAE-cellulose)). NMR indicates the samplers isolate DOM that is nearly indistinguishable from that isolated using the batch DEAE-cellulose procedure. In a comparative study DOM isolated from Lake Ontario cost approximately 0.30 dollars/mg to isolate using the passive samplers while DOM isolated using the traditional batch procedure cost approximately 8-10 dollars/mg. The samplers have been shown to be effective in a range of freshwater environments including a large inland lake (Lake Ontario), fast flowing tributary, and wetland. Large amounts (gram quantities of DOM) can be easily isolated by increasing the size or number of samplers deployed. Samplers are easy to construct, negate the need for pressure filtering, and also permit a range of temporal and spatial experiments that would be very difficult or impossible to perform using conventional approaches. For example, DOM can be monitored on a regular basis at numerous different locations, or samplers could be set at different depths in large lakes. Furthermore, they could potentially be deployed into hard to reach environments such as wells, groundwater aquifers, etc., and as they are easy to use, they can be mailed to colleagues or included with expeditions going to difficult to reach places such as the Arctic and Antarctic.

  7. Old Cellulose for New Multifunctional Networks

    NASA Astrophysics Data System (ADS)

    Yong, Geng

    Cellulose is considered to be the most abundant and renewable natural polymer on earth. It is the main component of plant cells. The exploration of the utility and applications of this material and its derivatives has never stopped since human's birth. It is well known that cellulose based materials can generate films and fibers, which can be, for instance, produced from cellulosic solutions. The Cellulose rich chemical structure allows different behaviors of the polymer in solution, which is the driving force for diverse films and fibers features. The main goal of this work is the manufacture and characterization of new application of the renewable cellulosic-based materials, which are at the origin of stimuli-responsive and/or functional soft films and fibers. The several materials obtained have in common the main chain cellulose backbone but present different liquid crystalline properties. Firstly rheology coupled to nuclear magnetic resonance techniques (rheo-NMR) were used to characterize a cellulose-water based liquid crystalline solution in order to establish structure/properties relationships, which were the basis to improve the design of films and fibers produced in the framework of this work. The results achieved were at the origin of a paper published in Macromolecules. Then films were produced and due to their structure and enhanced mechanical properties, different applications were realized by producing cellulosic gratings, which mimic the periodic structures that can be found in some petals of plants and a soft cellulose moisture motor was built for the first time. Two manuscripts were published, one related to the grating mimics, in Macromolecular Chemistry and Physics, and the other one dedicated to the mechanical properties and the bending of a cellulosic film controlled by moisture action in Scientific Reports (Nature Publishing Group). Concerning cellulosic fibers, two methods were selected to fabricate micro/nano networks. In order to produce suspended aligned arrays, electrospinning was chosen due to its versatility. On the obtained nano/micro cylinders, nematic and cholesteric droplets were threaded producing necklaces of liquid crystal beads for the first time. The fiber changes not only the topology of the droplet but also distorts its spherical shape to an approximately ellipsoidal droplet. An additional cylindrical surface with planar anchoring along the droplet's long axis was also added. Designing nematic and cholesteric liquid crystal microdroplets on thin long threads opened new routes to produce fiber waveguides decorated with complex microresonators. Two Soft Matter scientific papers were published based on this work (One was chosen as the cover of that issue). Finally, nano-fibers produced by cellulose acid hydrolises were prepared and a new electro-optical sensor was built up and characterized and the results published in Liquid Crystals journal. Throughout this work Landau-de-Gennes theory was used in order to interpret and understand some of the experimental results achieved.

  8. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  9. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  10. Nanocellulosic materials as bioinks for 3D bioprinting.

    PubMed

    Piras, Carmen C; Fernández-Prieto, Susana; De Borggraeve, Wim M

    2017-09-26

    3D bioprinting is a new developing technology with lots of promise in tissue engineering and regenerative medicine. Being biocompatible, biodegradable, renewable and cost-effective, cellulosic nanomaterials have recently captured the attention of researchers due to their applicability as inks for 3D bioprinting. Although a number of cellulose-based bioinks have been reported, the potential of cellulose nanofibrils and nanocrystals has not been fully explored yet. This minireview aims at highlighting the use of nanocellulosic materials for 3D bioprinting as an emerging, promising, new research field.

  11. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    PubMed

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  13. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.

    PubMed

    Nirmale, Trupti C; Kale, Bharat B; Varma, Anjani J

    2017-10-01

    Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Functional materials from cellulose-derived liquid-crystal templates.

    PubMed

    Giese, Michael; Blusch, Lina K; Khan, Mostofa K; MacLachlan, Mark J

    2015-03-02

    Cellulose nanocrystals (CNCs), known for more than 50 years, have attracted attention because of their unique properties such as high specific strength and modulus, high surface area, and fascinating optical properties. Just recently, however, their potential in supramolecular templating was identified by making use of their self-assembly behavior in aqueous dispersions in the presence of compatible precursors. The combination of the mesoporosity, photonic properties, and chiral nematic order of the materials, which are available as freestanding films, has led to a significant number of interesting and promising discoveries towards new functional materials. This Review summarizes the use of cellulose derivatives, especially CNCs, as novel templates and gives an overview of the recent developments toward new functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fate of 2,4,6-Trinitrotoluene in a Simulated Compost System

    DTIC Science & Technology

    1994-09-01

    to the NaOH solution. The insoluble material remaining after the NaOH fractionation con- tained the humin fraction as well as remaining cellulose ...insoluble) (solb) HUMIN + CELLULOSE MIBK (insoluble) (MIBK) (aqueous) ICELLULOSE HUMIN HUMIC ACID + FULVIC ACID +HCI to pH 1 (insoLuble) (soluble...0.5 N NaOH (insoluble) (soluble) HUMIN+ CELLULOSE • MIBK (insoluble) (MIBK) (aqueous) CELLULOSE HUMIN HUMIC ACID + FULVIC ACID + HUMIN +HCl to pH 1

  16. High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    PubMed Central

    Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif

    2011-01-01

    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031

  17. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    PubMed Central

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  18. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK₁₇.

    PubMed

    Almarsdottir, Arnheidur Ran; Sigurbjornsdottir, Margret Audur; Orlygsson, Johann

    2012-03-01

    The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively. Copyright © 2011 Wiley Periodicals, Inc.

  19. A Molecular Description of Cellulose Biosynthesis

    PubMed Central

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  20. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity

    Treesearch

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Alper Kiziltas; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were...

  1. Atomic force microscopy characterization of cellulose nanocrystals

    Treesearch

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  2. Evaluating Performance and Stability of Polyethylene Terephthalate (PET) and Cellulose Polymer as Soilless Mix Components

    USDA-ARS?s Scientific Manuscript database

    In the U.S., concerns over the long-term sustainability of peat, perlite, and other media components have led to searches for alternative materials. FiberFill, a synthetic fiber made of recyclable polyethylene terephthalate, and Tencel, a cellulose fiber, are new materials with potential as substra...

  3. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  4. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Richard S. Reiner; Carlos Baez

    2016-01-01

    The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that...

  5. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  6. [Study on HPLC fingerprint of Oldenlandia diffusa].

    PubMed

    Chen, Yan; Yao, Zhi-Hong; Dai, Yi; Cheng, Hong; Wen, Li-Rong; Zhou, Guang-Xiong; Yao, Xin-Sheng

    2012-06-01

    To establish the HPLC fingerprint chromatogram of Oldenlandia diffusa coupled with chemometrics means for the quality control of multi-batches of medicinal material. The separation was developed on C18 column(4.6 mm x 250 mm, 5 microm) by gradient elution with acetonitrile-water(both containing 0.1 per thousand (V/V) ocetic acid) as mobile phase at a flow rate of 0.8 mL/min, the detection wavelength at 238 nm and column temperature at 30 degrees C. The HPLC fingerprint chromatogram of Oldenlandia diffusa was set up and the main characteristic peaks were identified by comparing with chemical reference substance. The quality of 22 batches of medicinal material was evaluated by similarity assay as well as principal component analysis (PCA) and cluster analysis. The established HPLC fingerprint chromatogram of Oldenlandia diffusa was specific, precise, reproducible and stable. 11 peaks were chemically identified. The similarity of 17 batches of Oldenlandia diffusa was obviously higher than 5 batches of adulterants. PCA showed that 17 batches of Oldenlandia diffusa were in a domain and 5 batches of adulterants were far apart from the domain. The cluster analysis of the 22 batches of medicinal material showed that 17 batches of Oldenlandia diffusa were in a cluster while 5 batches of adulterants were excluded. Further cluster analysis was carried out for the quality consistency of 17 batches of Oldenlandia diffusa and accordingly they were devided into 4 clusters. With the combination of chemometrics means, the HPLC fingerprint chromatogram provides a method for evaluation of authenticity and quality control of Oldenlandia diffusa, which is favorable to improve overall quality control of Oldenlandia diffusa.

  7. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less

  8. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    NASA Astrophysics Data System (ADS)

    Goutianos, S.; Arévalo, R.; Sørensen, B. F.; Peijs, T.

    2014-12-01

    The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general method was first developed to obtain fracture resistance values from the DCB specimens taking into account the non-linear material response. The binderfree all-cellulose composites were prepared by a mechanical refinement process that allows the formation of intramolecular bonds between the cellulose molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance.

  9. Functional materials based on nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  10. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered bymore » the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.« less

  11. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    NASA Astrophysics Data System (ADS)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  12. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry),more » melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)« less

  13. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

  14. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells.

    PubMed

    Ren, Z; Steinberg, L M; Regan, J M

    2008-01-01

    Converting biodegradable materials into electricity, microbial fuel cells (MFCs) present a promising technology for renewable energy production in specific applications. Unlike typical soluble substrates that have been used as electron donors in MFC studies, cellulose is unique because it requires a microbial consortium that can metabolize both an insoluble electron donor (cellulose) and electron acceptor (electrode). In this study, electricity generation and the microbial ecology of cellulose-fed MFCs were analyzed using a defined co-culture of Clostridium cellulolyticum and Geobacter sulfurreducens. Fluorescent in situ hybridization and quantitative PCR showed that when particulate MN301 cellulose was used as sole substrate, most Clostridium cells were found adhered to cellulose particles in suspension, while most Geobacter cells were attached to the electrode. By comparison, both bacteria resided in suspension and biofilm samples when soluble carboxymethyl cellulose was used. This distinct function-related distribution of the bacteria suggests an opportunity to optimize reactor operation by settling cellulose and decanting supernatant to extend cellulose hydrolysis and improve cellulose-electricity conversion. (c) IWA Publishing 2008.

  15. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. © 2015 Institute of Food Technologists®

  16. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  17. Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing.

    PubMed

    Stauffer, F; Vanhoorne, V; Pilcer, G; Chavez, P-F; Rome, S; Schubert, M A; Aerts, L; De Beer, T

    2018-06-01

    Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flowability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any other compound which is prone to batch-to-batch variability. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Optical response of strongly absorbing inhomogeneous materials: Application to paper degradation

    NASA Astrophysics Data System (ADS)

    Missori, M.; Pulci, O.; Teodonio, L.; Violante, C.; Kupchak, I.; Bagniuk, J.; Łojewska, J.; Conte, A. Mosca

    2014-02-01

    In this paper, we present a new noninvasive and nondestructive approach to recover scattering and absorption coefficients from reflectance measurements of highly absorbing and optically inhomogeneous media. Our approach is based on the Yang and Miklavcic theoretical model of light propagation through turbid media, which is a generalization of the Kubelka-Munk theory, extended to accommodate optically thick samples. We show its applications to paper, a material primarily composed of a web of fibers of cellulose, whose optical properties are strongly governed by light scattering effects. Samples studied were ancient and industrial paper sheets, aged in different conditions and highly absorbing in the ultraviolet region. The recovered experimental absorptions of cellulose fibers have been compared to theoretical ab initio quantum-mechanical computational simulations carried out within time-dependent density functional theory. In this way, for each sample, we evaluate the absolute concentration of different kinds of oxidized groups formed upon aging and acting as chromophores causing paper discoloration. We found that the relative concentration of different chromophores in cellulose fibers depends on the aging temperature endured by samples. This clearly indicates that the oxidation of cellulose follows temperature-dependent reaction pathways. Our approach has a wide range of applications for cellulose-based materials, like paper, textiles, and other manufactured products of great industrial and cultural interest, and can potentially be extended to other strongly absorbing inhomogeneous materials.

  19. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.

    PubMed

    Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B

    2016-09-20

    Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    PubMed

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Formulation and evaluation of floating matrix tablet of stavudine

    PubMed Central

    Prajapati, Pankaj H; Nakum, Vijay V; Patel, Chhagan N

    2012-01-01

    Background/Aim: The purpose of the study was to prolong the gastric residence time of stavudine by designing its floating tablets and to study the influence of different polymers on its release rate. Materials and Methods: The floating mix matrix tablets of stavudine were prepared by melt granulation method. Beeswax was used as hydrophobic meltable material. Hydroxypropyl methylcellulose (HPMC), sodium bicarbonate, and ethyl cellulose were used as matrixing agent, gas generating agent, and floating enhancer, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, and in vitro drug release. The drug- polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infared (FT-IR). Results: The floating lag time of all the formulations was within the prescribed limit (<3 min). All the formulations showed good matrix integrity and retarded the release of drug for 12 h except the formulation F5.The concentration of beeswax (X1), HPMC K4M (X2), and ethyl cellulose (X3) were selected as independent variables and drug release values at 1 (Q1), at 6 (Q6) and at 12 h (Q12) as dependent variables. Formulation F7 was selected as an optimum formulation as it showed more similarity in dissolution profile with theoretical profile (similarity factor, f2 = 70.91). The dissolution of batch F7 can be described by zero-order kinetics (R2 =0.9936) with anomalous (non-Fickian) diffusion as the release mechanism (n=0.545). There was no difference observed in release profile after temperature sensitivity study at 40°C/75% relative humidity (RH) for 1 month. Conclusion: It can be concluded from this study that the combined mix matrix system containing hydrophobic and hydrophilic polymer minimized the burst release of drug from the tablet and achieved a drug release by zero-order kinetics, which is practically difficult with only hydrophilic matrix. PMID:23119237

  2. Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods.

    PubMed

    Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-01-01

    Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.

  3. Cellulose nanocrystals the next big nano-thing?

    Treesearch

    Michael T. Postek; Andras Vladar; John Dagata; Natalia Farkas; Bin Ming; Ronald Sabo; Theodore H. Wegner; James Beecher

    2008-01-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world’s most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material...

  4. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Treesearch

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  5. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Treesearch

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  6. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Jon; Ireland, Sean; Skuse, David

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  7. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  8. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  9. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  10. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  11. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  12. Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries.

    PubMed

    Shen, Dazhi; Huang, Chaofan; Gan, Lihui; Liu, Jian; Gong, Zhengliang; Long, Minnan

    2018-03-07

    In this work, we propose a novel and facile route for the rational design of Si@SiO 2 /C anode materials by using sustainable and environment-friendly cellulose as a carbon resource. To simultaneously obtain a SiO 2 layer and a carbon scaffold, a specially designed homogeneous cellulose solution and commercial Si nanopowder are used as the starting materials, and the cellulose/Si composite is directly assembled by an in situ regenerating method. Subsequently, Si@SiO 2 /C composite is obtained after carbonization. As expected, Si@SiO 2 is homogeneously encapsulated in the cellulose-derived carbon network. The obtained Si@SiO 2 /C composite shows a high reversible capacity of 1071 mA h g -1 at a current density of 420 mA g -1 and 70% capacity retention after 200 cycles. This novel, sustainable, and effective design is a promising approach to obtain high-performance and cost-effective composite anodes for practical applications.

  13. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis

    PubMed Central

    Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo

    2018-01-01

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522

  14. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis.

    PubMed

    Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha

    2018-04-09

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

  15. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.

    PubMed

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng

    2017-01-01

    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (<8wt%) caused increased cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.

    PubMed

    Bai, Zhongzhong; Gao, Zhen; Sun, Junfei; Wu, Bin; He, Bingfang

    2016-05-01

    d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    PubMed Central

    Lertngim, Anantaya; Phiriyawirut, Manisara; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-01-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure–properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film. PMID:29134083

  18. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    NASA Astrophysics Data System (ADS)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  19. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2016-01-01

    Malic acid is mainly used as an acidulant and taste enhancer in the beverage and food industry. Previously, a mutant strain Thermobifida fusca muC, obtained by adaptive evolution was found to accumulate malic acid on cellulose with low yield. In this study, the malic acid synthesis pathway in T. fusca muC was confirmed to be from phosphoenolpyruvate to oxaloacetate, followed by reduction of oxaloacetate to malate. To increase the yield of malic acid by the muC strain significantly, the carbon flux from pyruvate was redirected to oxaloacetate by expressing an exogenous pyruvate carboxylase (PCx) gene from Corynebacterium glutamicum ATCC 13032 in the chromosome of T. fusca muC-16. The yield of malic acid in the engineered strain muC-16 was increased by 47.9% compared to the parent strain muC. The muC-16 strain was then grown on ∼100 g/L cellulose and the highest titer of malic acid was 62.76 g/L by batch fermentation. T. fusca muC-16 strain converted milled corn stover to malic acid with the highest titer of 21.47 g/L with minimal treatment. © 2016 American Institute of Chemical Engineers.

  20. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  1. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field

    PubMed Central

    Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele

    2017-01-01

    Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682

  2. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose.

    PubMed

    Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria

    2008-10-02

    We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.

  3. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    NASA Astrophysics Data System (ADS)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  4. Effect of cellulose fiber reinforcement on the temperature dependent mechanical performance of nylon 6

    Treesearch

    Mehdi Tajvidi; Mokhtar Feizmand; Robert H. Falk; Colin Felton

    2009-01-01

    In order to quantify the effect of temperature on the mechanical properties of pure nylon 6 and its composite with cellulose fibers (containing 25 wt% cellulose fibers), the materials were sampled and tested at three representative temperatures of 256, 296, and 336 K. Flexural and tensile tests were performed and the reductions in mechanical properties were evaluated....

  5. Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang; Ding, Feng

    2018-05-01

    Although carbon aerogels derived from naturally occurring materials have been developed extensively, a reasonable synthetic approach using cellulose-resource remains unclear. Here, we report a strategy to prepare carbon aerogels originated from cellulose position-selectively oxidized by TEMPO-oxidized process. Contrary to non-TEMPO-oxidized cellulose-derived carbon aerogels (NCCA) with relative loose structure, TEMPO-oxidized cellulose-derived carbon aerogels (TCCA) with tight fibrillar-continuous network are monitored, suggesting the importance of TEMPO-oxidized modification towards creating the architecture of subsequently produced carbon aerogels. TCCA endows a higher BET area despite owning slightly dense bulk density comparing with that of NCCA. The structural texture of TCCA could be maintained in a way in comparison to TEMPO-oxidized cellulose-derived aerogel, due to the integration and aggregation effect by losing the electric double layer repulsion via ionization of the surface carboxyl groups. FTIR and XPS analyses signify the evidence of non-functionalized carbon-skeleton network formation in terms of TCCA. Further, the mechanism concerning the creation of carbon aerogels is also established. These findings not only provide new insights into the production of carbon aerogels but also open up a new opportunity in the field of functional carbon materials.

  6. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    NASA Astrophysics Data System (ADS)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  7. Molecular Origin of Strength and Stiffness in Bamboo Fibrils.

    PubMed

    Youssefian, Sina; Rahbar, Nima

    2015-06-08

    Bamboo, a fast-growing grass, has a higher strength-to-weight ratio than steel and concrete. The unique properties of bamboo come from the natural composite structure of fibers that consists mainly of cellulose microfibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have used atomistic simulations to study the mechanical properties of and adhesive interactions between the materials in bamboo fibers. With this aim, we have developed molecular models of lignin, hemicellulose and LCC structures to study the elastic moduli and the adhesion energies between these materials and cellulose microfibril faces. Good agreement was observed between the simulation results and experimental data. It was also shown that the hemicellulose model has stronger mechanical properties than lignin while lignin exhibits greater tendency to adhere to cellulose microfibrils. The study suggests that the abundance of hydrogen bonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose microfibril is responsible for higher adhesion energy between LCC and cellulose microfibrils. We also found out that the amorphous regions of cellulose microfibrils are the weakest interfaces in bamboo fibrils. Hence, they determine the fibril strength.

  8. Molecular Origin of Strength and Stiffness in Bamboo Fibrils

    PubMed Central

    Youssefian, Sina; Rahbar, Nima

    2015-01-01

    Bamboo, a fast-growing grass, has a higher strength-to-weight ratio than steel and concrete. The unique properties of bamboo come from the natural composite structure of fibers that consists mainly of cellulose microfibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have used atomistic simulations to study the mechanical properties of and adhesive interactions between the materials in bamboo fibers. With this aim, we have developed molecular models of lignin, hemicellulose and LCC structures to study the elastic moduli and the adhesion energies between these materials and cellulose microfibril faces. Good agreement was observed between the simulation results and experimental data. It was also shown that the hemicellulose model has stronger mechanical properties than lignin while lignin exhibits greater tendency to adhere to cellulose microfibrils. The study suggests that the abundance of hydrogen bonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose microfibril is responsible for higher adhesion energy between LCC and cellulose microfibrils. We also found out that the amorphous regions of cellulose microfibrils are the weakest interfaces in bamboo fibrils. Hence, they determine the fibril strength. PMID:26054045

  9. Molecular Origin of Strength and Stiffness in Bamboo Fibrils

    NASA Astrophysics Data System (ADS)

    Youssefian, Sina; Rahbar, Nima

    2015-06-01

    Bamboo, a fast-growing grass, has a higher strength-to-weight ratio than steel and concrete. The unique properties of bamboo come from the natural composite structure of fibers that consists mainly of cellulose microfibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have used atomistic simulations to study the mechanical properties of and adhesive interactions between the materials in bamboo fibers. With this aim, we have developed molecular models of lignin, hemicellulose and LCC structures to study the elastic moduli and the adhesion energies between these materials and cellulose microfibril faces. Good agreement was observed between the simulation results and experimental data. It was also shown that the hemicellulose model has stronger mechanical properties than lignin while lignin exhibits greater tendency to adhere to cellulose microfibrils. The study suggests that the abundance of hydrogen bonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose microfibril is responsible for higher adhesion energy between LCC and cellulose microfibrils. We also found out that the amorphous regions of cellulose microfibrils are the weakest interfaces in bamboo fibrils. Hence, they determine the fibril strength.

  10. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  11. Possibility of cellulose-based electro-active paper energy scavenging transducer.

    PubMed

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo Hyung

    2014-10-01

    In this paper, a cellulose-based Electro-Active Paper (EAPap) energy scavenging transducer is presented. Cellulose is proven as a smart material, and exhibits piezoelectric effect. Specimens were prepared by coating gold electrodes on both sides of cellulose film. The fabricated specimens were tested by a base excited aluminum cantilever beam at resonant frequency. Different tests were performed with single and multiple parallel connected electrodes coated on the cellulose film. A maximum of 131 mV output voltage was measured, when three electrodes were connected in parallel. It was observed that voltage output increases significantly with the area of electrodes. From these results, it can be concluded that the piezoelectricity of cellulose-based EAPap can be used in energy transduction application.

  12. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization.

    PubMed

    Salama, Ahmed; El-Sakhawy, Mohamed

    2016-11-01

    The current article investigates the effect of bioactive cellulose/wool blend on calcium phosphate biomimetic mineralization. Regenerated cellulose/wool blend was prepared by dissolution-regeneration of neat cellulose and natural wool in 1-butyl-3-methyl imidazolium chloride [Bmim][Cl], as a solvent for the two polymers. Crystalline hydroxyapatite nanofibers with a uniform size, shape and dimension were formed after immersing the bioactive blend in simulated body fluid. The cytotoxicity of cellulose/wool/hydroxyapatite was studied using animal fibroblast baby hamster kidney cells (BHK-21) and the result displayed good cytocompatability. This research work presents a green processing method for the development of novel cellulose/wool/hydroxyapatite hybrid materials for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Single-cell protein from waste cellulose

    NASA Technical Reports Server (NTRS)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  14. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Treesearch

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  15. Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution.

    PubMed

    Song, Kaili; Xu, Helan; Xu, Lan; Xie, Kongliang; Yang, Yiqi

    2017-05-01

    High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg -1 , respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor).

    PubMed

    Zhao, X; Moates, G K; Wellner, N; Collins, S R A; Coleman, M J; Waldron, K W

    2014-10-13

    Duckweed is potentially an ideal biofuel feedstock due to its high proportion of cellulose and starch and low lignin content. However, there is little detailed information on the composition and structure of duckweed cell walls relevant to optimising the conversion of duckweed biomass to ethanol and other biorefinery products. This study reports that, for the variety and batch evaluated, carbohydrates constitute 51.2% (w/w) of dry matter while starch accounts for 19.9%. This study, for the first time, analyses duckweed cell wall composition through a detailed sequential extraction. The cell wall is rich in cellulose and also contains 20.3% pectin comprising galacturonan, xylogalacturonan, rhamnogalacturonan; 3.5% hemicellulose comprising xyloglucan and xylan, and 0.03% phenolics. In addition, essential fatty acids (0.6%, α-linolenic and linoleic/linoelaidic acid) and p-coumaric acid (0.015%) respectively are the most abundant fatty acids and phenolics in whole duckweed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The type of carbohydrates specifically selects microbial community structures and fermentation patterns.

    PubMed

    Chatellard, Lucile; Trably, Eric; Carrère, Hélène

    2016-12-01

    The impact on dark fermentation of seven carbohydrates as model substrates of lignocellulosic fractions (glucose, cellobiose, microcrystalline cellulose, arabinose, xylose, xylan and wheat straw) was investigated. Metabolic patterns and bacterial communities were characterized at the end of batch tests inoculated with manure digestate. It was found that hydrogen production was linked to the sugar type (pentose or hexose) and the degree of polymerisation. Hexoses produced less hydrogen, with a specific selection of lactate-producing bacterial community structures. Maximal hydrogen production was five times higher on pentose-based substrates, with specific bacterial community structures producing acetate and butyrate as main metabolites. Low hydrogen amounts accumulated from complex sugars (cellulose, xylan and wheat straw). A relatively high proportion of the reads was affiliated to Ruminococcaceae suggesting an efficient hydrolytic activity. Knowing that the bacterial community structure is very specific to a particular substrate offers new possibilities to design more efficient H 2 -producing biological systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Isolation and partial characterization of a protein fraction from the opossum (Didelphis marsupialis) serum, with protecting property against the Bothrops jararaca snake venom.

    PubMed

    Perales, J; Muñoz, R; Moussatché, H

    1986-01-01

    Two separated methods were used to purify a fraction from the opossum (Didelphis marsupialis) serum able to protect mice against Bothrops jararaca venom. The first of them included an initial batch DEAE-Cellulose ion-exchange of the serum, followed by another ion-exchange chromatography on a Carboxymethyl Sepharose column. The second method was a column ion-exchange chromatography on DEAE-Sephacel. These techniques allowed to obtain a protein fraction which resulted homogeneous in cellulose acetate and conventional polyacrylamide gel electrophoresis. The obtained protein fraction proved to be a glycoprotein according to the positive staining with periodic acid Schiff. Sodium dodecylsulfate polyacrylamide gel electrophoresis of the B-mercaptoethanol-reduced fraction showed heterogeneity and allowed to estimate molecular weights in the range of 42,000 to 58,000 daltons. The obtained serum fraction could effectively block the lethal effect of B. jararaca venom when jointly injected to laboratory mice by peritoneal route.

  19. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis.

    PubMed

    Zhang, Hongyu; Xu, Yong; Yu, Shiyuan

    2017-06-01

    A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob. Copyright © 2017. Published by Elsevier Ltd.

  20. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions.

    PubMed

    Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi

    2016-10-04

    The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.

  1. Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase.

    PubMed

    Hideno, Akihiro; Ogbonna, James C; Aoyagi, Hideki; Tanaka, Hideo

    2007-04-01

    The feasibility of using loofa sponge for immobilization of cellulase-producing microorganisms was investigated by acetylating loofa sponge. Acetylation was achieved by autoclaving process of loofa sponge immersed in acetic anhydride at various temperatures for various times. The degree of acetylation, as inferred by the weight percentage gain (WPG), was enhanced by increasing both temperature and the duration of acetylation. The acetylation of a piece of loofa sponge in an autoclave at 120 degrees C for 20 min resulted in a WPG of about 8%, which was sufficient to protect the loofa sponge against cellulose degradation. The acetylated loofa sponge prepared under this condition was not decomposed by commercial cellulase and its structure was maintained for more than 720 h during repeated-batch treatments with commercial cellulase. A flocculating yeast (Saccharomyces cerevisiae IR-2) and a fungus (Trichoderma reesei QM9414) were successfully immobilized in the acetylated loofa sponge. In each case, the percentage of immobilized cells was as high as that obtained using nonacetylated loofa sponge. Acetylation had no adverse effects on cell growth and immobilization of T. reesei QM9414, as well as on cell growth and ethanol production by S. cerevisiae IR-2. T. reesei QM9414 immobilized on an acetylated loofa sponge was successfully used for repeated-batch cellulase production from commercial cellulose powder. Although the acetylated loofa sponge showed a slight weight loss, it was not disintegrated by activated sludge. The results obtained in this study showed that acetylated loofa sponge is suitable as an immobilization carrier for bioprocesses involving cellulase.

  2. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  3. Cellulose-Organic Montmorillonite Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor.

    PubMed

    Demircan, Deniz; Ilk, Sedef; Zhang, Baozhong

    2017-10-09

    The aim of this study was to develop simple cellulose nanocomposites that can interfere with the quorum-sensing (QS)-regulated physiological process of bacteria, which will provide a sustainable and inexpensive solution to the serious challenges caused by bacterial infections in various products like food packaging or biomedical materials. Three cellulose nanocomposites with 1-5 w% octadecylamine-modified montmorillonite (ODA-MMT) were prepared by regeneration of cellulose from ionic liquid solutions in the presence of ODA-MMT suspension. Structural characterization of the nanocomposites showed that the ODA-MMT can be exfoliated or intercalated, depending on the load level of the nanofiller. Thermal gravimetric analysis showed that the incorporation of ODA-MMT nanofiller can improve the thermal stability of the nanocomposites compared with regenerated cellulose. Evaluation of the anti-QS effect against a pigment-producing bacteria C. violaceum CV026 by disc diffusion assay and flask incubation assay revealed that the QS-regulated violacein pigment production was significantly inhibited by the cellulose nanocomposites without interfering the bacterial vitality. Interestingly, the nanocomposite with the lowest load of ODA-MMT exhibited the most significant anti-QS effect, which may be correlated to the exfoliation of nanofillers. To our knowledge, this is the first report on the anti-QS effect of cellulose nanocomposites without the addition of any small molecular agents. Such inexpensive and nontoxic biomaterials will thus have great potential in the development of new cellulosic materials that can effectively prevent the formation of harmful biofilms.

  4. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    PubMed Central

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials. PMID:28772670

  5. Structure-property relationships of Thai silk-microcrystalline cellulose biocomposite materials fabricated from ionic liquid.

    PubMed

    DeFrates, Kelsey; Markiewicz, Theodore; Callaway, Kayla; Xue, Ye; Stanton, John; Salas-de la Cruz, David; Hu, Xiao

    2017-11-01

    Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  7. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    NASA Astrophysics Data System (ADS)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  8. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.

    PubMed

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2017-07-15

    A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application.

    PubMed

    Li, Zehui; Yang, Lan; Cao, Hongbin; Chang, Yu; Tang, Kexin; Cao, Zhiqin; Chang, Junjun; Cao, Youpeng; Wang, Wenbo; Gao, Meng; Liu, Chenming; Liu, Dagang; Zhao, He; Zhang, Yi; Li, Mingjie

    2017-11-01

    In order to promote sustainable development, green and renewable clean energy technologies continue to be developed to meet the growing demand for energy, such as supercapacitor, fuel cells and lithium-ion battery. It is urgent to develop appropriate nanomaterials for these energy technologies to reduce the volume of the device, improve the efficiency of energy conversion and enlarge the energy storage capacity. Here, chitosan/cellulose carbon cryogel (CCS/CCL) were designed and synthesized. Through the introduction of zeolite imidazole frameworks (ZIFs) into the chitosan/cellulose cryogels, the obtained materials showed a microstructure of ZIF-7 (a kind of ZIFs) coated chitosan/cellulose fibers (CS/CL). After carbonizing, the as-prepared carbonized ZIF-7@cellulose cryogel (NC@CCL, NC is carbonized ZIF-7) and carbonized ZIF-7@chitosan cryogel (NC@CCS) exhibited suitable microspore contents of 34.37% and 30%, respectively, and they both showed an internal resistance lower than 2Ω. Thereby, NC@CCL and NC@CCS exhibited a high specific capacitance of 150.4Fg -1 and 173.1Fg -1 , respectively, which were much higher than those of the original materials. This approach offers a facile method for improving the strength and electronic conductivity of carbon cryogel derived from nature polymers, and also efficiently inhibits the agglomeration of cryogel during carbonization in high temperature, which opens a novel avenue for the development of carbon cryogel materials for application in energy conversion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  11. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  12. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  13. Development of a novel regenerated cellulose composite material.

    PubMed

    De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2015-05-05

    We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy. Copyright © 2015. Published by Elsevier Ltd.

  14. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    NASA Astrophysics Data System (ADS)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  15. Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control

    PubMed Central

    Karan, Anik; Darder, Margarita; Kansakar, Urna; Norcross, Zach

    2018-01-01

    We previously described the novel synthesis of a copper high-aspect ratio structure (CuHARS) biohybrid material using cystine. While extremely stable in water, CuHARS is completely (but slowly) degradable in cellular media. Here, integration of the CuHARS into cellulose matrices was carried out to provide added control for CuHARS degradation. Synthesized CuHARS was concentrated by centrifugation and then dried. The weighed mass was re-suspended in water. CuHARS was stable in water for months without degradation. In contrast, 25 μg/mL of the CuHARS in complete cell culture media was completely degraded (slowly) in 18 days under physiological conditions. Stable integration of CuHARS into cellulose matrices was achieved through assembly by mixing cellulose micro- and nano-fibers and CuHARS in an aqueous (pulp mixture) phase, followed by drying. Additional materials were integrated to make the hybrids magnetically susceptible. The cellulose-CuHARS composite films could be transferred, weighed, and cut into usable pieces; they maintained their form after rehydration in water for at least 7 days and were compatible with cell culture studies using brain tumor (glioma) cells. These studies demonstrate utility of a CuHARS-cellulose biohybrid for applied applications including: (1) a platform for biomedical tracking and (2) integration into a 2D/3D matrix using natural products (cellulose). PMID:29693569

  16. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    PubMed

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Relative toxicity of pyrolysis products of some synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Slattengren, C. L.; Furst, A.; Kourtides, D. A.; Parker, J. A.

    1976-01-01

    Nineteen samples of synthetic polymers were evaluated for relative toxicity in the course of characterizing materials intended for aircraft interior applications. The generic polymers included ABS, chlorinated PVC, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyaryl sulfone, polyether sulfone, polybismaleimide, and polyvinyl fluoride. Test results are presented, and compared in relative rankings with similar results on cellulosic materials and other synthetic polymers. Under these test conditions, the samples of synthetic polymers were either comparable to or significantly less toxic than the samples of commercial cellulosic materials.

  19. Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1989-01-01

    Polymeric blends of lignin with ethyl cellulose (EC) and cellulose acetate/butyrate (CAB) prepared by solution casting from dioxane. Fracture surface analysis by scanning electron microscopy revealed phase separation when the lignin content exceeded 10% for blends with EC and 5% in the CAB system. While this phase behavior is as predicted for the EC blends, a greater...

  20. Effect of the raw material composition of fabrics on the Limiting Oxygen Index (LOI)

    NASA Technical Reports Server (NTRS)

    Jeler, S.; Ceric, B.

    1986-01-01

    The raw material composition of fabrics is one of the most important factors for LOI value. LOI value was determined in samples of varying composition composed of cellulose, protein, and synthetic fibers and their mixtures, based on ASTM D 2863-76. Cellulose fibers and their mixtures exhibited the lowest value, while synthetic fibers had the highest LOI value.

  1. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  2. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  3. On-line monitoring of fluid bed granulation by photometric imaging.

    PubMed

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    PubMed

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  6. Micromechanics and poroelasticity of hydrated cellulose networks.

    PubMed

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-09

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.

  7. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    PubMed

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  9. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    EPA Science Inventory

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  10. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.

    PubMed

    Winkelhausen, Eleonora; Velickova, Elena; Amartey, Samuel A; Kuzmanova, Slobodanka

    2010-12-01

    A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12-216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.

  11. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.

    PubMed

    Lindeboom, J; Mulder, B M; Vos, J W; Ketelaar, T; Emons, A M C

    2008-08-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose synthase complexes into the plasma membrane. These complexes, the nanomachines that produce the cellulose microfibrils, move inside the plasma membrane leaving the cellulose microfibrils in their wake. Cellulose microfibril angle is an important determinant of cell development and of tissue properties and as such relevant for the industrial use of plant material. Here, we provide an integrated view of the events taking place in the not more than 100 nm deep area in and around the plasma membrane, correlating recent results provided by the distinct field of plant cell biology. We discuss the coordinated activities of exocytosis, endocytosis, and movement of cellulose synthase complexes while producing cellulose microfibrils and the link of these processes to the cortical microtubules.

  12. Electrocatalytic oxidation of cellulose at a gold electrode.

    PubMed

    Sugano, Yasuhito; Latonen, Rose-Marie; Akieh-Pirkanniemi, Marceline; Bobacka, Johan; Ivaska, Ari

    2014-08-01

    The electrochemical properties of cellulose dissolved in NaOH solution at a Au surface were investigated by cyclic voltammetry, FTIR spectroscopy, the electrochemical quartz crystal microbalance technique, and electrochemical impedance spectroscopy. The reaction products were characterized by SEM, TEM, and FTIR and NMR spectroscopy. The results imply that cellulose is irreversibly oxidized. Adsorption and desorption of hydroxide ions at the Au surface during potential cycling have an important catalytic role in the reaction (e.g., approach of cellulose to the electrode surface, electron transfer, adsorption/desorption of the reaction species at the electrode surface). Moreover, two types of cellulose derivatives were obtained as products. One is a water-soluble cellulose derivative in which some hydroxyl groups are oxidized to carboxylic groups. The other derivative is a water-insoluble hybrid material composed of cellulose and Au nanoparticles (≈4 nm). Furthermore, a reaction scheme of the electrocatalytic oxidation of cellulose at a gold electrode in a basic medium is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    NASA Astrophysics Data System (ADS)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  14. Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.

    PubMed

    Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D

    2016-08-15

    1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.

  15. Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure.

    PubMed

    Alonso, Diana; Gimeno, Miquel; Sepúlveda-Sánchez, José D; Shirai, Keiko

    2010-04-19

    A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08+/-0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances.

    PubMed

    Azzaoui, Khalil; Lamhamdi, Abdelatif; Mejdoubi, El Miloud; Berrabah, Mohammed; Hammouti, Belkheir; Elidrissi, Abderrahman; Fouda, Moustafa M G; Al-Deyab, Salem S

    2014-10-13

    The aim of this work is to develop composite materials with hydroxyapatite (HAp) mineral and organic matrix such as cellulosic polymers. We use cellulose acetate with different percentages, and then inorganic-organic films were fabricated by evaporation of solvent. The composite films were characterized using emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FT-IR) spectra. Test results show that these films are uniform and have good ductility. A strong interaction existed between HAp and cellulosic polymers, and the method allows the production of very fine particles size of about 92 nm. We have developed a new chromatographic method for the quantification of bisphenol A (BPA) in samples of baby food. The result of this study demonstrates how to use this type of composite materials to remove pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).

    PubMed

    Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott

    2016-01-01

    Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Production and Status of Bacterial Cellulose in Biomedical Engineering

    PubMed Central

    Moniri, Mona; Boroumand Moghaddam, Amin; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Zuhainis Saad, Wan; Navaderi, Mohammad; Mohamad, Rosfarizan

    2017-01-01

    Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in amore » reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.« less

  20. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.

    PubMed

    Shi, Jianjun; Lu, Lingbin; Guo, Wantao; Zhang, Jingying; Cao, Yang

    2013-10-15

    Cellulose-SiO2 composite hydrogel was prepared by combining the NaOH/thiourea/H2O solvent system and the immersion method with controlling the hydrolysis-fasculation rate of tetraethyl orthosilicate (TEOS). The hydrophobic composite aerogels were obtained through the freeze-drying technology and the cold plasma modification technology. Composite SiO2 could obviously reduce the thermal conductivity of cellulose aerogel. The thermal conductivity could be as low as 0.026 W/(mK). The thermal insulation mechanism of the aerogel material was discussed. Composite SiO2 reduced hydrophilicity of cellulose aerogel, but environmental humidity had a significant influence on heat insulation performance. After hydrophobic modification using CCl4 as plasma was conducted, the surface of composite aerogel was changed from hydrophilic to hydrophobic and water contact angle was as high as 132°. The modified composite aerogel still kept good heat insulation performance. This work provided a foundation for the possibility of applying cellulose-SiO2 composite aerogel in the insulating material field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water

    NASA Astrophysics Data System (ADS)

    Bo, Shaoguo; Ren, Wenjing; Lei, Chao; Xie, Yuanbo; Cai, Yurong; Wang, Shunli; Gao, Junkuo; Ni, Qingqing; Yao, Juming

    2018-06-01

    The low cost of adsorption treatment of heavy metal ions in water has been extensively studied. In this paper, we have demonstrated a facile method of combining two emerging materials cellulose aerogels (CA) and metal-organic frameworks (MOFs) into one highly functional aerogel to adsorption removal of heavy metal ions from water, by entrapping MOF particles into a flexible and porous CA. The resultant hybrid cellulose aerogels had a highly porous structure with zeolitic imidazolate framework-8 (ZIF-8) loadings can reach 30 wt%. The hybrid cellulose aerogels (named as ZIF-8@CA) show good adsorption capacity for Cr(Ⅵ). The adsorption process of ZIF-8@CA is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacity of 41.8 mg g-1 for Cr(Ⅵ), whose adsorption capacity has greatly improved when compared with a single CA or ZIF-8. Thus, such a flexible and durable hybrid cellulose aerogel is a very prospective material for metal ions cleanup and industrial wastewater purification.

  2. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment.

    PubMed

    Khawas, Prerna; Deka, Sankar C

    2016-02-10

    In the present study, culinary banana peel was explored as a source of raw material for production of cellulose nanofibers (CNFs). For isolation of CNFs, first the peel flour was subjected to different chemical treatments to eliminate non-cellulosic compounds. The obtained chemically treated cellulose fibers were then mechanically tailored and separated into nanofibers using high-intensity ultrasonication at different output power ranging from 0 to 1000 W. The presences of nanofibers in all samples were confirmed by TEM. Increasing output power of ultrasonication reduced size of CNFs and generated more thinner and needle-like structure. SEM, FT-IR and XRD results indicated chemical treatment employed was effective in removing compounds other than cellulose fibers. Thermal analyses evinced the developed CNFs enhanced thermal properties which serve the purpose as an effective reinforcing material to be used as bionanocomposites. Hence, the production of CNFs from this underutilized agro-waste has potential application in commercial field that can add high value to culinary banana. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Separator for alkaline electric batteries and method of making

    NASA Technical Reports Server (NTRS)

    Pfluger, H. L. (Inventor); Hoyt, H. E.

    1970-01-01

    Battery separator membranes of high electrolytic conductivity comprising a cellulose ether and a compatible metallic salt of water soluble aliphatic acids and their hydroxy derivatives are described. It was found that methyl cellulose can be modified by another class of materials, nonpolymeric in nature, to form battery separator membranes of low electrolytic resistance but which have the flexibility of membranes made of unmodified methyl cellulose, and which in many cases enhance flexibility over membranes made with unmodified methyl cellulose. Separator membranes for electrochemical cells comprising a cellulose ether and a modified selected from the group consisting of metallic salts of water soluble alphatic acids and their hydroxy derivatives and to electrochemical cells utilizing said membranes are described.

  4. Production of chemicals and fuels from biomass

    DOEpatents

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  5. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    PubMed

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective.

    PubMed

    Tian, Donglin; Li, Tao; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2017-06-29

    Fabricating materials with excellent mechanical performance from the natural renewable and degradable biopolymers has drawn significant attention in recent decades due to the environmental concerns and energy crisis. As two of the most promising substitutes of synthetic polymers, silk fibroin (SF), and cellulose, have been widely used in the field of textile, biomedicine, biotechnology, etc. Particularly, the cellulose/SF blend film exhibits better strength and toughness than that of regenerated cellulose film. Herein, this study is aimed to understand the molecular origin of the enhanced mechanical properties for the cellulose/SF blend film, using solid-state NMR as a main tool to investigate the conformational changes, intermolecular interactions between cellulose and SF and the water organization. It is found that the content of the β-sheet structure is increased in the cellulose/SF blend film with respect to the regenerated SF film, accompanied by the reduction of the content of random coil structures. In addition, the strong hydrogen bonding interaction between the SF and cellulose is clearly elucidated by the two-dimensional (2D) 1 H- 13 C heteronuclear correlation (HETCOR) NMR experiments, demonstrating that the SF and cellulose are miscible at the molecular level. Moreover, it is also found that the -NH groups of SF prefer to form hydrogen bonds with the hydroxyl groups bonded to carbons C2 and C3 of cellulose, while the hydroxyl groups bonded to carbon C6 and the ether oxygen are less favorable for hydrogen bonding interactions with the -NH groups of SF. Interestingly, bound water is found to be present in the air-dried cellulose/SF blend film, which is predominantly associated with the cellulose backbones as determined by 2D 1 H- 13 C wide-line-separation (WISE) experiments with spin diffusion. This clearly reveals the presence of nanoheterogeneity in the cellulose/SF blend film, although cellulose and SF are miscible at a molecular level. Without doubt, these in-depth atomic-level structural information could help reveal the molecular origin of the enhanced mechanical properties of the blend film, and thus to establish the structure-property relationship, which could further provide guidance for the fabrication of high performance biopolymer-based materials.

  7. INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  8. Combustible Cartridge Cases, an Account of the Current Technology and Proposals for Future Development.

    DTIC Science & Technology

    1986-10-01

    mixture of energetic nitrocellulose libres and inert cellulose fibres. Additives, such as polymeric wet strength resins, fillers, waxes and other...produced using inert cellulosic materials, while incorporation of nitrocellulose, a strong oxidiser, results in a ’ombustible’ product. At present...textiles with wet strength resins. The nitrated cellulosic fabric was laminated by winding around a collapsible mandrel which is rotated under pressure

  9. Multifunctional cellulase and hemicellulase

    DOEpatents

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  10. CARS and SHG microscopy of artificial bioengineered tissues

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Brackmann, Christian; Dahlberg, Jan-Olof; Vrana, Engin; Gatenholm, Paul

    2010-02-01

    Major efforts are presently made to develop artificial replacement tissues with optimal architectural and material characteristics, mimicking those of their natural correspondents. Encouraged by the readiness with which cellulose fibers woven by the bacteria Acetobacter xylinum can be formed into organ-like macroscopic shapes and with different microscopic textures, it emerges as an interesting material within tissue engineering. We have developed a protocol employing simultaneous CARS and SHG microscopy for monitoring the cellulose network characteristics and its impact on the integration of smooth muscle cells (SMCs) for functionalized artificial tissues. CARS and SHG overlay images of the cells and the cellulose fibers reveal an immediate interaction irrespective of scaffold morphology and that the SMCs attach to the cellulose fibers already during the first cultivation day without cell-adhesive coatings. During the subsequent 28 days, SMCs were found to readily proliferate and differentiate on the cellulose scaffold without the need for exogenous growth factors. However, the efficiency with which this occurred depended on the topography of the cellulose constructs, benefited by porous and less compact matrices. This brings forward the need for in-depth studies on how the microstructure of tissue scaffolds influences and can be optimized for native cell integration and proliferation, studies where the benefits of multi-modal non-linear microscopy can be fully exploited.

  11. Effect of fire-extinguishing agents on combustion of sucrose

    Treesearch

    A. Broido

    1961-01-01

    Although sucrose and cellulose are both carbohydrates of basically similar composition, the very materials which have been found to be most effective in preventing flaming combustion of cellulose are also effective in causing sugar cubes to support flame.

  12. Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties

    Treesearch

    Qifeng Zheng; Alireza Javadi; Ronald Sabo; Zhiyong Cai; Shaoqin Gong

    2013-01-01

    Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process with renewable materials. The material properties of these “green” hybrid aerogels were characterized extensively using various techniques. It was found that adding a small amount of CNFs...

  13. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.

  14. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  15. Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste.

    PubMed

    Diesen, Veronica; Forsberg, Kerstin; Jonsson, Mats

    2017-10-15

    The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme

    PubMed Central

    Xiong, Wei; Chen, Fang-Yuan; Xu, Li; Han, Zheng-Gang

    2017-01-01

    The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids. PMID:28475645

  17. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    NASA Astrophysics Data System (ADS)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved the existence of the silica-based coatings on all treated cellulosic substrates after intense ultrasound washes. The results obtained in this work allow us to conclude that silica-based coatings used in conjunction with plasma processes have high potential to obtain green flame retardant cellulosic materials with potential applications in the development of upholstered furniture, clothing and military applications.

  18. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; ...

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  19. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  20. Sustainable hybrid photocatalysts: titania immobilized on ...

    EPA Pesticide Factsheets

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientific insights into widely used TiO2 supported on carbonaceous materials emanating from biopolymeric materials such as lignin, cellulose, cellulose acetate, bacterial cellulose, bamboo, wood, starch, chitosan and agricultural residues (biochar, charcoal, activated carbon and their magnetic forms, coal fly ash) or seafood wastes namely eggshell, clamshell and fish scales; materials that serve as a support/template for TiO2. Heightened awareness and future inspirational developments for the valorisation of various forms of carbonaceous functional materials is the main objective. This appraisal abridges various strategies available to upgrade renewable carbon-based feedstock via the generation of sustainable TiO2/carbon functional materials and provides remarks on their future prospects. Hopefully, this will stimulate the development of efficient and novel composite photocatalysts and engender the necessary knowledge base for further advancements in greener photocatalytic technologies. Prepared as a Critical Review for the Royal Society of Chemistry (RSC) journal, Green Chemistry. This review discusses the sustainable use of earth-abundant materials exemplified by Titanium dioxide and carbon.

  1. Collaborative study for the calibration of the Ph. Eur. prekallikrein activator in albumin BRP batches 4, 5 and 6.

    PubMed

    Lackner, F; Daas, A; Terao, E

    2015-01-01

    An international collaborative study was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM, Council of Europe) to calibrate replacement batches for the current European Pharmacopoeia (Ph. Eur.) prekallikrein activator (PKA) in albumin biological reference preparation (BRP), whose stocks were dwindling. The study was run in the framework of the Biological Standardisation Programme (BSP) of the Council of Europe and the European Union (EU) Commission. Twenty three laboratories from official medicines control authorities and manufacturers in Europe and outside Europe took part in the study. Three candidate replacement batches were produced from the same material as the one used for the World Health Organization (WHO) 2(nd) International Standard (IS) for PKA in albumin (02/168) and the Ph. Eur. PKA in albumin BRP batches 1, 2 and 3. Participants were requested to evaluate the candidate batches against the current WHO IS using their routine assay method. The Ph. Eur. PKA in albumin BRP batch 3 (BRP3) was also included in the test panel to ensure the continuity of the consecutive BRP batches. The study confirmed the stability of the PKA content of the current BRP3. The candidate batches were found to be comparable. Previous data on the starting material support its high stability. Thermal stress study on the candidate batches confirmed the stability of their PKA activity. The Commission of the Ph. Eur. officially adopted in November 2013 the 3 candidate batches as Ph. Eur. PKA in albumin BRP batches 4, 5 and 6 with an assigned content of 38 IU/vial. The activity of the 3 new batches of Ph. Eur. PKA in albumin BRP will be regularly monitored.

  2. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    PubMed Central

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  3. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis.

    PubMed

    Dos Santos Castro, Lilian; de Paula, Renato G; Antoniêto, Amanda C C; Persinoti, Gabriela F; Silva-Rocha, Rafael; Silva, Roberto N

    2016-01-01

    We defined the role of the transcriptional factor-XYR1-in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.

  4. HPMC reinforced with different cellulose nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  5. Deactivation of cellulases by phenols

    USDA-ARS?s Scientific Manuscript database

    Pretreatment of lignocellulosic materials may result in the release of inhibitors and deactivators of cellulose enzyme hydrolysis. We report the identification of phenols with major inhibition and/or deactivation effect on enzymes used for conversion of cellulose to ethanol. The inhibition effects w...

  6. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Dufresne, Alain; Bras, Julien

    2012-10-01

    Interest in microfibrillated cellulose (MFC) has been increasing exponentially. During the last decade, this bio-based nanomaterial was essentially used in nanocomposites for its reinforcement property. Its nano-scale dimensions and its ability to form a strong entangled nanoporous network, however, have encouraged the emergence of new high-value applications. In previous years, its mode of production has completely changed, as many forms of optimization have been developed. New sources, new mechanical processes, and new pre- and post-treatments are currently under development to reduce the high energy consumption and produce new types of MFC materials on an industrial scale. The nanoscale characterization possibilities of different MFC materials are thus increasing intensively. Therefore, it is critical to review such MFC materials and their properties. Moreover, very recent studies have proved the significant barrier properties of MFC. Hence, it is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A Thermal Stability Test for Primary Explosive Stab Sensitizers: Study of the Thermal and Hydrolytic Stability of 2-Picryl-5-Nitrotetrazole,

    DTIC Science & Technology

    1984-02-01

    have been described previously (2]. The actual batch used was designated Batch D and was identical to that referred to as Batch C in Reference [2...Tetrazene was type RD1357 prepared at Materials Research Laboratories. The batch used was designated Batch 10/83(A). Lead Azide was type RD1343 and was...Preparation of Experimental Detonators Eperimental detonators were prepared in mild steel tubes, 6 mm o.d., 3.2 mm i.d., length 6 mm, prepared from

  8. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland.

    PubMed

    Jessen, Jan Eric; Orlygsson, Johann

    2012-01-01

    Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).

  9. Cellulose-Derived Supercapacitors from the Carbonisation of Filter Paper.

    PubMed

    Jiang, Luyun; Nelson, Geoffrey W; Kim, Heeyeon; Sim, I N; Han, Seong Ok; Foord, John S

    2015-10-01

    Advanced carbon materials are important for the next-generation of energy storage apparatus, such as electrochemical capacitors. Here, the physical and electrochemical properties of carbonised filter paper (FP) were investigated. FP is comprised of pure cellulose and is a standardised material. After carbonisation at temperatures ranging from 600 to 1700 °C, FP was contaminant-free, containing only carbon and some oxygenated species, and its primary fibre structure was retained (diameter ≈20-40 μm). The observed enhancement in conductivity of the carbonised FP was correlated with the carbonisation temperature. Electrochemical capacitance in the range of ≈1.8-117 F g(-1) was achieved, with FP carbonised at 1500 °C showing the best performance. This high capacitance was stable with >87 % retained after 3000 charge-discharge cycles. These results show that carbonised FP, without the addition of composite materials, exhibits good supercapacitance performance, which competes well with existing electrodes made of carbon-based materials. Furthermore, given the lower cost and renewable source, cellulose-based materials are the more eco-friendly option for energy storage applications.

  10. Cellulose-Derived Supercapacitors from the Carbonisation of Filter Paper

    PubMed Central

    Jiang, Luyun; Nelson, Geoffrey W; Kim, Heeyeon; Sim, I N; Han, Seong Ok; Foord, John S

    2015-01-01

    Advanced carbon materials are important for the next-generation of energy storage apparatus, such as electrochemical capacitors. Here, the physical and electrochemical properties of carbonised filter paper (FP) were investigated. FP is comprised of pure cellulose and is a standardised material. After carbonisation at temperatures ranging from 600 to 1700 °C, FP was contaminant-free, containing only carbon and some oxygenated species, and its primary fibre structure was retained (diameter ≈20–40 μm). The observed enhancement in conductivity of the carbonised FP was correlated with the carbonisation temperature. Electrochemical capacitance in the range of ≈1.8–117 F g−1 was achieved, with FP carbonised at 1500 °C showing the best performance. This high capacitance was stable with >87 % retained after 3000 charge–discharge cycles. These results show that carbonised FP, without the addition of composite materials, exhibits good supercapacitance performance, which competes well with existing electrodes made of carbon-based materials. Furthermore, given the lower cost and renewable source, cellulose-based materials are the more eco-friendly option for energy storage applications. PMID:26491636

  11. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Application of the spectral-correlation method for diagnostics of cellulose paper

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Malyugin, V.; Reznik, A.; Yudin, A.; Zhuravleva, N.

    2017-11-01

    The spectral-correlation method was described for diagnostics of optically inhomogeneous biological objects and materials of natural origin. The interrelation between parameters of the studied objects and parameters of the cross correlation function of speckle patterns produced by scattering of coherent light at different wavelengths is shown for thickness, optical density and internal structure of the material. A detailed study was performed for cellulose electric insulating paper with different parameters.

  13. Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.

    PubMed

    Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao

    2017-02-15

    The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.

  14. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties

    NASA Astrophysics Data System (ADS)

    Natarajan, Bharath; Gilman, Jeffrey W.

    2017-12-01

    The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into `chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  15. Poly-paper: a sustainable material for packaging, based on recycled paper and recyclable with paper.

    PubMed

    Del Curto, Barbara; Barelli, Nadia; Profaizer, Mauro; Farè, Silvia; Tanzi, Maria Cristina; Cigada, Alberto; Ognibene, Giulia; Recca, Giuseppe; Cicala, Gianluca

    2016-11-02

    Until now, environmental sustainability issues are almost entirely unsolved for packaging materials. With the final aim of finding materials with a single recycling channel, cellulose fiber/poly(vinyl)alcohol composites were investigated. After extrusion and injection molding, samples of composite with different cellulose fiber content (30%, 50% and 70% w/w) were tested. Tensile mechanical tests exhibited an improvement in composite stiffness when the reinforcement content was increased together with a decrease in composite elongation. Solubility tests performed at room temperature and 45°C showed different behavior depending on the water-resistant film applied on the composite (50% cellulose fiber content). In particular, the uncoated composite showed complete solubility after 2 hours, whereas at the same time point, no solubility occurred when a non-water-soluble varnish was used. The proposed composites, named Poly-paper, appear to warrant further investigation as highly sustainable packaging.

  16. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.

  17. Dissolution and fractionation of nut shells in ionic liquids.

    PubMed

    Carneiro, Aristides P; Rodríguez, Oscar; Macedo, Eugénia A

    2017-03-01

    The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13 Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-03-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 °C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical "cellulose-like" EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs—Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  19. Electron (charge) density studies of cellulose models

    USDA-ARS?s Scientific Manuscript database

    Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...

  20. Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum.

    PubMed

    Recouvreux, Derce O S; Carminatti, Claudimir A; Pitlovanciv, Ana K; Rambo, Carlos R; Porto, Luismar M; Antônio, Regina V

    2008-11-01

    The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons. In the present work, experimental evidences of the presence of cellulose in the extracellular matrix of the biofilm produced by C. violaceum in static cultures are shown. Biofilm samples were enzymatically digested by cellulase, releasing glucose units, suggesting the presence of cellulose as an extracellular matrix component. Fluorescence microscopy observations showed that C. violaceum produces a cellulase-sensitive extracellular matrix composed of fibers able to bind calcofluor. C. violaceum grows on medium containing Congo red, forming brown-red colonies. Together, these results suggest that cellulase-susceptible matrix material is cellulose. Scanning electronic microscopy analysis showed that the extracellular matrix exhibited a network of microfibrils, typical of bacterial cellulose. Although cellulose production is widely distributed between several bacterial species, including at least the groups of Gram-negative proteobacteria alpha and gamma, we give for the first time experimental evidence for cellulose production in beta-proteobacteria.

  1. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  2. Effect of Intrinsic Twist on Length of Crystalline and Disordered Regions in Cellulose Microfibrils

    NASA Astrophysics Data System (ADS)

    Nili, Abdolmadjid; Shklyaev, Oleg; Zhao, Zhen; Zhong, Linghao; Crespi, Vincent

    2013-03-01

    Cellulose is the most abundant biological material in the world. It provides mechanical reinforcement for plant cell wall, and could potentially serve as renewable energy source for biofuel. Native cellulose forms a non-centrosymmetric chiral crystal due to lack of roto-inversion symmetry of constituent glucose chains. Chirality of cellulose crystal could result in an overall twist. Competition between unwinding torsional/extensional and twisting energy terms leads to twist induced frustration along fibril's axis. The accumulated frustration could be the origin of periodic disordered regions observed in cellulose microfibrils. These regions could play significant role in properties of cellulose bundles and ribbons as well as biological implications on plant cell walls. We propose a mechanical model based on Frenkel-Kontorova mechanism to investigate effects of radius dependent twist on crystalline size in cellulose microfibrils. Parameters of the model are adjusted according to all-atom molecular simulations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center

  3. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cellulose-based magnetoelectric composites.

    PubMed

    Zong, Yan; Zheng, Tian; Martins, Pedro; Lanceros-Mendez, S; Yue, Zhilian; Higgins, Michael J

    2017-06-28

    Since the first magnetoelectric polymer composites were fabricated more than a decade ago, there has been a reluctance to use piezoelectric polymers other than poly(vinylidene fluoride) and its copolymers due to their well-defined piezoelectric mechanism and high piezoelectric coefficients that lead to superior magnetoelectric coefficients of >1 V cm -1  Oe -1 . This is the current situation despite the potential for other piezoelectric polymers, such as natural biopolymers, to bring unique, added-value properties and functions to magnetoelectric composite devices. Here we demonstrate a cellulose-based magnetoelectric laminate composite that produces considerable magnetoelectric coefficients of ≈1.5 V cm -1  Oe -1 , comprising a Fano resonance that is ubiquitous in the field of physics, such as photonics, though never experimentally observed in magnetoelectric composites. The work successfully demonstrates the concept of exploring new advances in using biopolymers in magnetoelectric composites, particularly cellulose, which is increasingly employed as a renewable, low-cost, easily processable and degradable material.Magnetoelectric materials by converting a magnetic input to a voltage output holds promise in contactless electrodes that find applications from energy harvesting to sensing. Zong et al. report a promising laminate composite that combines a piezoelectric biopolymer, cellulose, and a magnetic material.

  5. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.

    PubMed

    Lizundia, E; Urruchi, A; Vilas, J L; León, L M

    2016-01-20

    In this work we attempt to improve the functional properties and thermal stability of cellulose nanocrystal (CNC) films by means of eco-friendly materials and processes. Mechanically flexible films of closely packed CNCs with concentrations up to 5 wt.% of zinc oxide (ZnO) nanoparticles have been prepared by a simple, standard and environmentally friendly method using solely water. Results reveal that ultraviolet light is blocked by 98.5% at 1 wt.% ZnO while good transparency is maintained. A sharp hydrophobicity increase is observed with the addition of ZnO which would enhance the durability of films by decreasing the water diffusion through the material. The thermal degradation activation energy (E) presents an increase of 141%, denoting a high thermal stability of films, which would result beneficial for their potential application in the field of flexible electronics. Mechanical results demonstrate a high structural integrity of CNC/ZnO as a result of the occurring strong cellulosic inter- and intramolecular interactions within the closely packed CNC network. In overall, this work highlights the potential for environmentally friendly processing of sustainable nanostructured functional materials based on cellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells.

    PubMed

    Nordli, Henriette Rogstad; Chinga-Carrasco, Gary; Rokstad, Anne Mari; Pukstad, Brita

    2016-10-05

    Wood cellulose nanofibrils (CNF) have been suggested as a potential wound healing material, but its utilization is limited by FDA requirements regarding endotoxin levels. In this study a method using sodium hydroxide followed by TEMPO mediated oxidation was developed to produce ultrapure cellulose nanofibrils, with an endotoxin level of 45 endotoxin units/g (EU/g) cellulose. Scanning transmission electron microscopy (S(T)EM) revealed a highly nanofibrillated structure (lateral width of 3.7±1.3nm). Assessment of cytotoxicity and metabolic activity on Normal Human Dermal Fibroblasts and Human Epidermal Keratinocytes was done. CNF-dispersion of 50μg/ml did not affect the cells. CNF-aerogels induced a reduction of metabolic activity by the fibroblasts and keratinocytes, but no significant cell death. Cytokine profiling revealed no induction of the 27 cytokines tested upon exposure to CNF. The moisture-holding capacity of aerogels was relatively high (∼7500%), compared to a commercially available wound dressing (∼2500%), indicating that the CNF material is promising as dressing material for management of wounds with a moderate to high amount of exudate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing.

    PubMed

    Fan, Lihong; Zhou, Xiaoyu; Wu, Penghui; Xie, Weiguo; Zheng, Hua; Tan, Wang; Liu, Shuhua; Li, Qingyuan

    2014-05-01

    Tissue engineering is aiming to build an artificial environment or biological scaffold material that imitates the living environment of cells in the body. In this work, carboxymethyl cellulose sulfates were prepared by reacting carboxymethyl cellulose with N(SO3Na)3 which was synthesized by sodium bisulfite and sodium nitrite in aqueous solution. The reaction conditions affected the degree of substitution (DS) were measured by the barium sulfate nephelometry method. And the anticoagulant activity of carboxymethyl cellulose sulfates with different DS, concentration and molecular weights were investigated by the activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT). In addition, the effect of carboxymethyl cellulose sulfates on wound healing had been evaluated by the rate of wound healing and the histological examinations. The results indicated that the introduction of sulfate groups into the carboxymethyl cellulose sulfates improved its anticoagulant activity, and the wound dressings treated with carboxymethyl cellulose sulfates obviously promoted wound healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    PubMed Central

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  9. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    PubMed

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  11. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  12. Nanocellulose in green food packaging.

    PubMed

    Vilarinho, Fernanda; Sanches Silva, Ana; Vaz, M Fátima; Farinha, José Paulo

    2018-06-13

    The development of packaging materials with new functionalities and lower environmental impact is now an urgent need of our society. On one hand, the shelf-life extension of packaged products can be an answer to the exponential increase of worldwide demand for food. On the other hand, uncertainty of crude oil prices and reserves has imposed the necessity to find raw materials to replace oil-derived polymers. Additionally, consumers' awareness toward environmental issues increasingly pushes industries to look with renewed interest to "green" solutions. In response to these issues, numerous polymers have been exploited to develop biodegradable food packaging materials. Although the use of biopolymers has been limited due to their poor mechanical and barrier properties, these can be enhanced by adding reinforcing nanosized components to form nanocomposites. Cellulose is probably the most used and well-known renewable and sustainable raw material. The mechanical properties, reinforcing capabilities, abundance, low density, and biodegradability of nanosized cellulose make it an ideal candidate for polymer nanocomposites processing. Here we review the potential applications of cellulose based nanocomposites in food packaging materials, highlighting the several types of biopolymers with nanocellulose fillers that have been used to form bio-nanocomposite materials. The trends in nanocellulose packaging applications are also addressed.

  13. Cellulase production from spent sulfite liquor and paper-mill waste fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Yinbo; Zhao Xin; Gao Peiji

    1991-12-31

    Since a high proportion of the overall cost of the conversion of cellulosics to useful products is the expense of cellulose production (1), it is desirable to develop new processes for producing large amounts of cellulase inexpensively. So far, most of the research work on cellulose production has been carried out using milled cellulose powder and inorganic salts as substrates, which significantly increases the cost of enzyme production. In order to reduce the cost of raw materials, we tried to develop from industrial wastes a new medium for the production of cellulose. In this report, we describe a simple methodmore » by which an all-waste medium, which was composed of spent ammonium sulfite liquor and cellulosic waste of a paper mill, and a catabolite derepression mutant of Penicillium decumbens were used to produce the enzyme efficiently.« less

  14. Thermal Behaviour of Nanocomposites based on Glycerol Plasticized Thermoplastic Starch and Cellulose Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kaushik, Anupama; Kaur, Ramanpreet

    2011-12-01

    The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.

  15. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    PubMed

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  17. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  18. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery.

    PubMed

    Maulvi, Furqan A; Lakdawala, Dhara H; Shaikh, Anjum A; Desai, Ankita R; Choksi, Harsh H; Vaidya, Rutvi J; Ranch, Ketan M; Koli, Akshay R; Vyas, Bhavin A; Shah, Dinesh O

    2016-03-28

    Glaucoma is commonly treated using eye drops, which is highly inefficient due to rapid clearance (low residence time) from ocular surface. Contact lenses are ideally suited for controlled drug delivery to cornea, but incorporation of any drug loaded particulate system (formulation) affect the optical and physical property of contact lenses. The objective of the present work was to implant timolol maleate (TM) loaded ethyl cellulose nanoparticle-laden ring in hydrogel contact lenses that could provide controlled drug delivery at therapeutic rates without compromising critical lens properties. TM-implant lenses were developed, by dispersing TM encapsulated ethyl cellulose nanoparticles in acrylate hydrogel (fabricated as ring implant) and implanted the same in hydrogel contact lenses (sandwich system). The TM-ethyl cellulose nanoparticles were prepared by double emulsion method at different ratios of TM to ethyl cellulose. The X-ray diffraction studies revealed the transformation of TM to amorphous state. In vitro release kinetic data showed sustained drug release within the therapeutic window for 168h (NP 1:3 batch) with 150μg loading. Cytotoxicity and ocular irritation study demonstrated the safety of TM-implant contact lenses. In vivo pharmacokinetic studies in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC), with TM-implant contact lenses in comparison to eye drop therapy. In vivo pharmacodynamic data in rabbit model showed sustained reduction in intra ocular pressure for 192h. The study demonstrated the promising potential of implantation technology to treat glaucoma using contact lenses, and could serve as a platform for other ocular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.

    PubMed

    Ruel, Katia; Nishiyama, Yoshiharu; Joseleau, Jean-Paul

    2012-09-01

    In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Treesearch

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  1. A simple numerical model for predicting organic matter decomposition in a fed-batch composting operation.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito

    2002-01-01

    Using dog food as a model of the organic waste that comprises composting raw material, the degradation pattern of organic materials was examined by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. A simple numerical model was made on the basis of three suppositions for describing the organic matter decomposition in the batch operation. First, a certain quantity of carbon in the dog food was assumed to be recalcitrant to degradation in the composting reactor within the retention time allowed. Second, it was assumed that the decomposition rate of carbon is proportional to the quantity of easily degradable carbon, that is, the carbon recalcitrant to degradation was subtracted from the total carbon remaining in the dog food. Third, a certain lag time is assumed to occur before the start of active decomposition of organic matter in the dog food; this lag corresponds to the time required for microorganisms to proliferate and become active. It was then ascertained that the decomposition pattern for the organic matter in the dog food during the fed-batch operation could be predicted by the numerical model with the parameters obtained from the batch operation. This numerical model was modified so that the change in dry weight of composting materials could be obtained. The modified model was found suitable for describing the organic matter decomposition pattern in an actual fed-batch composting operation of the garbage obtained from a restaurant, approximately 10 kg d(-1) loading for 60 d.

  2. 'Own-Label' Versus Branded Commercial Dental Resin Composite Materials: Mechanical And Physical Property Comparisons.

    PubMed

    Shaw, Kathryn; Martins, Ricardo; Hadis, Mohammed Abdul; Burke, Trevor; Palin, William

    2016-09-01

    A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted. Copyright© 2016 Dennis Barber Ltd.

  3. Nano-Tubular Cellulose for Bioprocess Technology Development

    PubMed Central

    Koutinas, Athanasios A.; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M.; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in “cold pasteurization” processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc. PMID:22496794

  4. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.

    PubMed

    Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi

    2016-10-20

    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    PubMed

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  6. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  7. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  8. Nano-tubular cellulose for bioprocess technology development.

    PubMed

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  9. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.

    PubMed

    Cai, Jie; Niu, Haitao; Li, Zhenyu; Du, Yong; Cizek, Pavel; Xie, Zongli; Xiong, Hanguo; Lin, Tong

    2015-07-15

    Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

  10. One-Step Production of Amphiphilic Nanofibrillated Cellulose Using a Cellulose-Producing Bacterium.

    PubMed

    Tajima, Kenji; Kusumoto, Ryo; Kose, Ryota; Kono, Hiroyuki; Matsushima, Tokuo; Isono, Takuya; Yamamoto, Takuya; Satoh, Toshifumi

    2017-10-09

    Nanofibrillated bacterial cellulose (NFBC) is produced by culturing a cellulose-producing bacterium (Gluconacetobacter intermedius NEDO-01) with rotation or agitation in medium supplemented with carboxymethylcellulose (CMC). Despite a high yield and dispersibility in water, the product immediately aggregates in organic solvents. To broaden its applicability, we prepared amphiphilic NFBC by culturing strain NEDO-01 in medium supplemented with hydroxyethylcellulose or hydroxypropylcellulose instead of CMC. Transmission electron microscopy analysis revealed that the resultant materials (HE-NFBC and HP-NFBC, respectively) comprised relatively uniform fibers with diameters of 33 ± 7 and 42 ± 8 nm, respectively. HP-NFBC was dispersible in polar organic solvents such as methanol, acetone, isopropyl alcohol, acetonitrile, tetrahydrofuran (THF), and dimethylformamide, and was also dispersible in poly(methyl methacrylate) (PMMA) by solvent mixing using THF. HP-NFBC/PMMA composite films were highly transparent and had a higher tensile strength than neat PMMA film. Thus, HP-NFBC has a broad range of applications, including as a filler material.

  11. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    PubMed

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    NASA Astrophysics Data System (ADS)

    Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2014-09-01

    Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  13. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass.

    PubMed

    Chen, R; Lee, Y Y

    1997-01-01

    Lactic acid production from cellulosic biomass by cellulase and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (MHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by anin situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20% Alamine 336, 40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase.

  14. Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases.

    PubMed

    Husson, Eric; Auxenfans, Thomas; Herbaut, Mickael; Baralle, Manon; Lambertyn, Virginie; Rakotoarivonina, Harivoni; Rémond, Caroline; Sarazin, Catherine

    2018-03-01

    Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Combined utilization of nutrients and sugar derived from wheat bran for d-Lactate fermentation by Sporolactobacillus inulinus YBS1-5.

    PubMed

    Li, Jiahuang; Sun, Junfei; Wu, Bin; He, Bingfang

    2017-04-01

    To decrease d-Lactate production cost, wheat bran, a low-cost waste of milling industry, was selected as the sole feedstock. First, the nutrients were recovered from wheat bran by acid protease hydrolysis. Then, cellulosic hydrolysates were prepared from protease-treated samples after acid pretreatment and enzymatic saccharification. The combined use of nutrients and hydrolysates as nitrogen and carbon sources for fermentation by S. inulinus YB1-5 resulted in d-Lactate levels of 99.5g/L, with an average production efficiency of 1.94g/L/h and a yield of 0.89g/g glucose. Moreover, fed-batch simultaneous saccharification and fermentation process at 40°C, 20% (w/v) solid loading and 20FPU/g solid cellulase concentration was obtained. d-Lactate concentrations, yield, productivity, and optical purity were 87.3g/L, 0.65g/g glucose, 0.81g/L/h and 99.1%, respectively. This study provided a feasible procedure that can help produce cellulosic d-Lactate using agricultural waste without external nutrient supplementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis

    DOE PAGES

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; ...

    2016-07-19

    Here, cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fastmore » pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.« less

  17. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation.

    PubMed

    Zhang, Hao; Luan, Qian; Huang, Qingde; Tang, Hu; Huang, Fenghong; Li, Wenlin; Wan, Chuyun; Liu, Changsheng; Xu, Jiqu; Guo, Pingmei; Zhou, Qi

    2017-02-10

    The linseed gum/cellulose composite hydrogels were successfully fabricated by mixing cellulose and linseed gum solutions dissolved in the NaOH/urea aqueous system and cross-linked with epichlorohydrin. The morphology and structure of the composite hydrogels were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD) and thermogravimetric analysis (TGA). The swelling ratio and water retention properties were investigated. The results revealed that linseed gum mainly contributed to water adsorption, whereas the cellulose acted as a backbone to strengthen the porous structure. This work provided a simple way to prepare cellulose-based superabsorbent hydrogels, which could be potentially applied as an effective water conservation material in agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Structural Variation of Bamboo Lignin before and after Ethanol Organosolv Pretreatment

    PubMed Central

    Bai, Yuan-Yuan; Xiao, Ling-Ping; Shi, Zheng-Jun; Sun, Run-Cang

    2013-01-01

    In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups. PMID:24169436

  19. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water

    PubMed Central

    Engström, Ann-Christine; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Olin, Håkan

    2016-01-01

    The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process. PMID:27128841

  1. Lower-cost cellulosic ethanol production using cellobiose fermenting yeast Clavispora NRRL Y-50464

    USDA-ARS?s Scientific Manuscript database

    For ethanol production from cellulosic materials, there are generally two major steps needed including enzymatic hydrolysis to break down biomass sugars and microbial fermentation to convert available simple sugars into ethanol. It often requires two different kinds of microorganisms since ethanolog...

  2. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  3. Determination of the long-term release of metal(loid)s from construction materials using DGTs.

    PubMed

    Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A

    2013-09-15

    Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Decomposition of cellulose by ultrasonic welding in water

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Miyagawa, Seiya; Mukasa, Shinobu; Toyota, Hiromichi

    2016-07-01

    The use of ultrasonic welding in water to decompose cellulose placed in water was examined experimentally. Filter paper was used as the decomposition material with a horn-type transducer 19.5 kHz adopted as the ultrasonic welding power source. The frictional heat at the point where the surface of the tip of the ultrasonic horn contacts the filter paper decomposes the cellulose in the filter paper into 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharide through hydrolysis and thermolysis that occurs in the welding process.

  5. The effect of fire retardants on the fire response characteristics of cellulosic materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brauer, D. P.

    1978-01-01

    The resistance to ignition of fire retardant-treated wood, cotton, and cellulose insulation was studied. The proprietary composition used to treat wood was found to increase resistance to ignition and to reduce smoke toxicity. Cotton treated with boric acid (added by padding on or by vapor phase process) was found to have increased resistance to ignition and decreased smoke toxicity. Boric acid increased the resistance of cellulose insulation to ignition but also slightly increased the smoke toxicity.

  6. A comparative study of green composites based on tapioca starch and celluloses

    NASA Astrophysics Data System (ADS)

    Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md

    2017-07-01

    The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.

  7. An Investigation of Cellulose Digesting Bacteria in the Camel Feces Microbiome

    NASA Astrophysics Data System (ADS)

    Man, V.; Leung, F. C.

    2015-12-01

    Research Question: Is there a bacteria in camel feces that digests cellulose material and can be used for waste to energy projects? Fossil fuels are the current main resource of energy in the modern world. However, as the demand for fuel increases, biofuels have been proposed as an alternative energy source that is a more sustainable form of liquid fuel generation from living things or waste, commonly known as biofuels and ethanol. The Camelus dromedarius', also known as Arabian camel, diet consist of grass, grains, wheat and oats as well desert vegetation in their natural habitat. However, as the Arabian camel lacks the enzymes to degrade cellulose, it is hypothesized that cellulose digestion is performed by microbial symbionts in camel microbiota. Fecal samples were collected from the Camelus dromedarius in United Arab Emirates and diluted 10-7 times. The diluted sample was then streaked onto a Sodium Carboxymethyl Cellulose plate, and inoculated onto CMC and Azure-B plates. Afterwards, Congo Red was used for staining in order to identify clearance zones of single colonies that may potentially be used as a qualitative assays for cellulose digestion. Then the colonies undergo polymerase chain reaction amplification to produce amplified RNA fragments. The 16S ribosomal RNA gene is identified based on BLAST result using Sanger Sequencing. Amongst the three identified microbes: Bacillus, Staphylococcus and Escherichia coli, both Bacillus and Staphylococcus are cellulose-digesting microbes, and through the fermentation of lignocellulosic, biomasses can be converted into cellulosic ethanol (Biofuel). According to the Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn-Ethanol by Adam J. Liska, ""Ethanol reduces greenhouse gas emissions by 40-50% when compared directly to gasoline." The determination of bacterial communities that are capable of efficiently and effectively digesting cellulose materials requires that the bacteria be first isolated and then a full genome characterization. This bacteria study is apart of a much larger study and will be tested against the gut microbiome of other animals successfully digesting cellulose to determine the ones that are best suited for biofuel production.

  8. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  9. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Composite fiber structures for catalysts and electrodes

    NASA Technical Reports Server (NTRS)

    Marrion, Christopher J.; Cahela, Donald R.; Ahn, Soonho; Tatarchuk, Bruce J.

    1993-01-01

    We have recently envisioned a process wherein fibers of various metals in the 0.5 to 15 micron diameter range are slurried in concert with cellulose fibers and various other materials in the form of particulates and/or fibers. The resulting slurry is cast via a wet-lay process into a sheet and dried to produce a free-standing sheet of 'composite paper.' When the 'preform' sheet is sintered in hydrogen, the bulk of the cellulose is removed with the secondary fibers and/or particulates being entrapped by the sinter-locked network provided by the metal fibers. The resulting material is unique, in that it allows the intimate contacting and combination of heretofore mutually exclusive materials and properties. Moreover, due to the ease of paper manufacture and processing, the resulting materials are relatively inexpensive and can be fabricated into a wide range of three-dimensional structures. Also, because cellulose is both a binder and a pore-former, structures combining high levels of active surface area and high void volume (i.e., low pressure drop) can be prepared as freestanding flow through monoliths.

  11. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  12. Effect of sorghum biofuel production systems on soil characteristics in Souteastern U.S.

    USDA-ARS?s Scientific Manuscript database

    According Energy Policy Act of 2005, the U.S. must to produce 36 billion gallons of oil equivalent in 2022.Cellulosic material is considered a renewable and environmental improved alternative source for energy production. Sorghum (Sorghum bicolor L.) could provide food and cellulosic feedstock produ...

  13. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  14. Reusable photocatalytic titanium dioxide-cellulose nanofiber films

    Treesearch

    Alexandra Snyder; Zhenyu Bo; Robert Moon; Jean-Christophe Rochet; Lia Stanciu

    2013-01-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet (UV) irradiation. Cellulose nanofibers (CNFs) act as an attractive matrix material for the suspension of photocatalytic particles due to their desirable mechanical and optical properties. In this work, TiO2...

  15. Nanoreinforced xylan–cellulose composite foams by freeze-casting

    Treesearch

    Tobias Köhnke; Angela Lin; Thomas Elder; Hans Theliander; Arthur J. Ragauskas

    2012-01-01

    Structured biofoams have been prepared from the readily available renewable biopolymer xylan by employing an ice-templating technique, where the pore morphology of the material can be controlled by the solidification conditions and the molecular structure of the polysaccharide. Furthermore, reinforcement of these biodegradable foams using cellulose nanocrystals shows...

  16. 40 CFR 63.5610 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...

  17. 40 CFR 63.5610 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...

  18. 40 CFR 63.5610 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...

  19. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Treesearch

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  20. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    PubMed

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer's exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives.

    PubMed

    Breum, N O; Schneider, T; Jørgensen, O; Valdbjørn Rasmussen, T; Skibstrup Eriksen, S

    2003-11-01

    A task-specific exposure matrix was designed for workers installing building insulation materials. A priori, a matrix element was defined by type of task (installer or helper), type of work area (attic spaces or wall cavities) and type of insulation material (slabs from mineral wool, fiberglass or flax; loose-fill cellulosic material or perlite). In the laboratory a mock-up (full scale) of a one-family house was used for simulated installation of insulation materials (four replicates per matrix element). Personal exposure to dust and fibers was measured. The dust was analyzed for content of endotoxin and some trace elements (boron and aluminum) from fire-retardant or mold-resistant additives. Fibers were characterized as WHO fibers or non-WHO fibers. In support of the exposure matrix, the dustiness of all the materials was measured in a rotating drum tester. For installers in attic spaces, risk of exposure was low for inhalation of dust and WHO fibers from slab materials of mineral wool or fiberglass. Slab materials from flax may cause high risk of exposure to endotoxin. The risk of exposure by inhalation of dust from loose-fill materials was high for installers in attic spaces and for some of the materials risk of exposure was high for boron and aluminum. Exposure by inhalation of cellulosic WHO fibers was high but little is known about the health effects and a risk assessment is not possible. For the insulation of walls, the risk of installers' exposure by inhalation of dust and fibers was low for the slab materials, while a high risk was observed for loose-fill materials. The exposure to WHO fibers was positively correlated to the dust exposure. A dust level of 6.1 mg/m3 was shown to be useful as a proxy for screening exposure to WHO fibers in excess of 10(6) fibers/m3. In the rotating drum, slabs of insulation material from mineral wool or fiberglass were tested as not dusty. Cellulosic loose-fill materials were tested as very dusty, and perlite proved to be extremely dusty.

  2. Immobilized rennin in TC/SG composite in cheese production.

    PubMed

    Barouni, Eleftheria; Petsi, Theano; Kolliopoulos, Dionysios; Vasileiou, Dimitrios; Panas, Panagiotis; Bekatorou, Argyro; Kanellaki, Maria; Koutinas, Athanasios A

    2016-06-01

    The object of the current study was to develop a new process for continuous Feta-type cheese production using a biocatalyst consisting of immobilized rennin on a tubular cellulose/starch gel (TC/SG) composite, which has been proven to be an appropriate carrier for enzyme immobilization. Different methodologies were used in order to prepare four biocatalysts. The most effective was selected for cheese production in a 1L continuous system, providing two economically useful results for the dairy industries: (i) increase of productivity by the continuous coagulation of milk, and (ii) saving of the rennin enzyme expenses of the batch coagulation of milk. The criteria used to choose the appropriate biocatalyst was based on the time of coagulation in successive batches, the concentration of immobilized rennin combined with the filter efficiency and its application in the continuous system. Physicochemical analyses of the cheeses at various stages of the ripening were performed. No significant differences compared to cheeses prepared with the traditional method were found. Aroma compounds were determined by SPME GC-MS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum.

    PubMed

    Botta, Lívia Silva; Ratti, Regiane Priscila; Sakamoto, Isabel Kimiko; Ramos, Lucas Rodrigues; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2016-12-01

    In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H 2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H 2 yields were 5.51, 4.65, and 3.96 mmol H 2 /g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H 2 -producing strain in addition to ethanol and n-butanol which were also detected in the reactors.

  4. Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester.

    PubMed

    Zhao, Yadong; Moser, Carl; Henriksson, Gunnar

    2018-05-25

    A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode.

    PubMed

    Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir

    2015-08-01

    A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.

  6. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.

    PubMed

    Carlsson, Daniel O; Lindh, Jonas; Strømme, Maria; Mihranyan, Albert

    2015-05-11

    The susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation was studied in this work since the cellulose Iα-allomorph is generally considered to be thermodynamically less stable and therefore more reactive than the cellulose Iβ-allomorph. Highly crystalline Cladophora nanocellulose, which is dominated by the Iα-allomorph, was oxidized to various degrees with TEMPO oxidant via bulk electrolysis in the absence of co-oxidants. Further, the Cladophora nanocellulose was thermally annealed in glycerol to produce its Iβ-dominated form and then oxidized. The produced materials were subsequently studied using FTIR, CP/MAS (13)C NMR, XRD, and SEM. The solid-state analyses confirmed that the annealed Cladophora cellulose was successfully transformed from an Iα- to an Iβ-dominated form. The results of the analyses of pristine and annealed TEMPO-oxidized samples suggest that Iα- and Iβ-dominated cellulose do not differ in susceptibility to TEMPO-oxidation. This work hence suggests that cellulose from different sources are not expected to differ in susceptibility to the oxidation due to differences in allomorph composition.

  7. Preparation of cellulose diacetate/cellulose hybrid fiber by dry-jet wet spinning in tetrabutylammonium acetate/dimethyl sulfoxide solvent

    NASA Astrophysics Data System (ADS)

    Yu, Yongqi; Zhang, Wentao; Gao, Xin; Jiang, Zeming; Miao, Jiaojiao; Zhang, Liping

    2017-12-01

    Cellulose diacetate (CDA)/cellulose hybrid fibers with nice properties were prepared by dry-jet wet spinning using a tetrabutylammonium acetate/dimethylsulfoxide system as a solvent at 50 °C. Scanning electron microscopy (SEM) images exhibited the hybrid fibers with circular cross section and smooth surface. In addition, SEM and Fourier transform infrared spectroscopy analysis indicated the nice compatibility of CDA and cellulose. The hybrid fibers with the addition of CDA showed higher thermal stability and a wider range of degradation than pure cellulose material. It was found that the elongation at break of the fibers increased from 4.87 to 13.22% with increasing CDA/cellulose ratio from 0 to 4:6, which was comparable with CDA fiber spun from 1-butyl-3-methylimidazolium chloride. The 1095.5/cm Raman characteristic band of the hybrid fibers with lower intensity was observed, while it did not towards a higher wave number compared to that of fibers containing less CDA. In addition, the shear viscosity of the solutions exhibited a character of typical shear-thinning behaviour with variation of shear rates.

  8. Effect of cellulose nanocrystals (CNC) addition and citric acid as co-plasticizer on physical properties of sago starch biocomposite

    NASA Astrophysics Data System (ADS)

    Nasution, Halimatuddahliana; Afandy, Yayang; Al-fath, M. Thoriq

    2018-04-01

    Cellulose has potential applications in new high-performance materials with low environmental impact. Rattan biomass is a fiber waste from processing industry of rattan which contains 37,6% cellulose. The high cellulose contents of rattan biomass make it a source of cellulose nanocrystals as a filler in biocomposite. Isolation of alpha cellulose from biomass rattan was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3,5% HNO3 and NaNO2, precipitated with 17,5% NaOH, bleaching process with 10% H2O2. Nanocrystals obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Sago starch biocomposites were prepared using a solution casting method, which includes 1-4 wt % cellulose nanocrystals rattan biomass as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TEM and FTIR characteristic of cellulose nanocrystals show spherical like shape FTIR and chemical composition analysis demonstrated that lignin and hemicellulose structures were successfully removed. Biocomposite characteristic consists of density and water absorption. The results showed the highest density values were 0,266 gram/cm3 obtained at an additional of 3% cellulose nanocrystals rattan biomass and 30% citric acid. The lowest water absorption was 7,893% obtained at an additional of 4% cellulose nanocrystals rattan biomass and 10% citric acid.

  9. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    PubMed

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  10. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties.

    PubMed

    Feese, Elke; Sadeghifar, Hasan; Gracz, Hanna S; Argyropoulos, Dimitris S; Ghiladi, Reza A

    2011-10-10

    Adherence and survival of pathogenic bacteria on surfaces leading to concomitant transmission to new hosts significantly contributes to the proliferation of pathogens, which in turn considerably increases the threat to human health, particularly by antibiotic-resistant bacteria. Consequently, more research into effective surface disinfection and alternative materials (fabrics, plastics, or coatings) with antimicrobial and other bioactive characteristics is desirable. This report describes the synthesis and characterization of cellulose nanocrystals that were surface-modified with a cationic porphyrin. The porphyrin was appended onto the cellulose surface via the Cu(I)-catalyzed Huisgen-Meldal-Sharpless 1,3-dipolar cycloaddition having occurred between azide groups on the cellulosic surface and porphyrinic alkynes. The resulting, generally insoluble, crystalline material, CNC-Por (5), was characterized by infrared and diffusion (1)H NMR spectroscopies, gel permeation chromatography, and thermogravimetric analysis. Although only suspended, and not dissolved, in an aqueous system, CNC-Por (5) showed excellent efficacy toward the photodynamic inactivation of Mycobacterium smegmatis and Staphylococcus aureus , albeit only slight activity against Escherichia coli . The synthesis, properties, and activity of CNC-Por (5) described herein serve as a benchmark toward our overall objectives of developing novel, potent, bioactive, photobactericidal materials that are effective against a range of bacteria, with potential utilization in the health care and food preparation industries.

  11. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility.

    PubMed

    Alam, Md Mehebub; Mandal, Dipankar

    2016-01-27

    A flexible hybrid piezoelectric generator (HPG) based on native cellulose microfiber (NCMF) and polydimethylsiloxane (PDMS) with multi wall carbon nanotubes (MWCNTs) as conducting filler is presented where the further chemical treatment of the cellulose and traditional electrical poling steps for piezoelectric voltage generation is avoided. It delivers a high electrical throughput that is an open circuit voltage of ∼30 V and power density ∼9.0 μW/cm(3) under repeated hand punching. We demonstrate to power up various portable electronic units by HPG. Because cellulose is a biocompatible material, suggesting that HPG may have greater potential in biomedical applications such as implantable power source in human body.

  12. Cellulose-Based Smart Fluids under Applied Electric Fields

    PubMed Central

    Choi, Kisuk; Gao, Chun Yan; Nam, Jae Do

    2017-01-01

    Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices. PMID:28891966

  13. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    DOE PAGES

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; ...

    2014-05-29

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggestsmore » that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Finally, we found mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.« less

  14. Reductive mineralization of cellulose with vanadium, iron and tungsten chlorides and access to MxOy metal oxides and MxOy/C metal oxide/carbon composites.

    PubMed

    Henry, Aurélien; Hesemann, Peter; Alauzun, Johan G; Boury, Bruno

    2017-10-15

    M x O y and M x O y /C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl 3 and WCl 6 ) and a poorly soluble ionic chloride compound (FeCl 3 ) were chosen as metal oxide precursors. In a first time, primary metal oxide/cellulose composites were obtained via a thermal treatment by reacting urea impregnated filter paper with the corresponding metal chlorides in an autoclave at 150°C after 3days. After either pyrolysis or calcination steps of these intermediate materials, interesting metal oxides with various morphologies were obtained (V 2 O 5, V 2 O 3 , Fe 3 O 4 , WO 3, H 0.23 WO 3 ), composites (V 2 O 3 /C) as well as carbides (hexagonal W 2 C and WC, Fe 3 C) This result highlight the reductive role that can play cellulose during the pyrolysis step that allows to tune the composition of M x O y /C composites. The materials were characterized by FTIR, Raman, TGA, XRD and SEM. This study highlights that cellulose can be used for a convenient preparation of a variety of highly demanded M x O y and M x O y /C composites with original shapes and morphologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept.

    PubMed

    Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán

    2016-01-01

    Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.

  16. Degradation mechanism of polysaccharides on irradiated sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. A.; Oikawa, H.; Mori, M. N.; Napolitano, C. M.; Duarte, C. L.

    2013-03-01

    Sugarcane bagasse is composed of cellulose, hemicelluloses, lignin, and a minor amount of protein and inorganic materials. Cellulose consists of linear macromolecular chains of glucose, linked by β-1,4-glucosidic bonds between the number one and the number four carbon atoms of the adjacent glucose units. Hemicelluloses are heterogeneous polymers, unlike cellulose, and are usually composed of 50-200 monomer units of pentose such as xylose and arabinose. Lignin is a complex polymer of p-hydroxyphenylpropanoid units connected by CC and COC links. Radiation-induced reactions in the macromolecules of the cellulose materials are known to be initiated through fast distribution of the absorbed energy within the molecules to produce long- and short-lived radicals. The present study was carried out using sugarcane bagasse samples irradiated by a Radiation Dynamics electron beam accelerator with 1.5 MeV and 37 kW, with the objective to evaluate the cleavage of the polysaccharides and the by-products formed as a result of the absorbed dose. The electron beam processing in 30 kGy of absorbed dose changed the sugarcane bagasse structure and composition, causing some cellulose and hemicelluloses cleavage. These cleavages were partial, forming oligosaccharides and liberating the sugars glucose and arabinose. The main by-product was acetic acid, originated from the de-acetylating of hemicelluloses.

  17. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films

    NASA Astrophysics Data System (ADS)

    Barbash, V. A.; Yaschenko, O. V.; Alushkin, S. V.; Kondratyuk, A. S.; Posudievsky, O. Y.; Koshechko, V. G.

    2016-09-01

    The development of the nanomaterials with the advanced functional characteristics is a challenging task because of the growing demand in the market of the optoelectronic devices, biodegradable plastics, and materials for energy saving and energy storage. Nanocellulose is comprised of the nanosized cellulose particles, properties of which depend on characteristics of plant raw materials as well as methods of nanocellulose preparation. In this study, the effect of the mechanochemical treatment of bleached softwood sulfate pulp on the optical and mechanical properties of nanocellulose films was assessed. It was established that the method of the subsequent grinding, acid hydrolysis and ultrasound treatment of cellulose generated films with the significant transparency in the visible spectral range (up to 78 % at 600 nm), high Young's modulus (up to 8.8 GPa), and tensile strength (up to 88 MPa) with increased ordering of the packing of the cellulose macromolecules. Morphological characterization was done using the dynamic light scattering (DLS) analyzer and transmission electron microscopy (TEM). The nanocellulose particles had an average diameter of 15-30 nm and a high aspect ratio in the range 120-150. The crystallinity was increased with successive treatments as shown by the X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The thermal degradation behavior of cellulose samples was explored by thermal gravimetric analysis (TGA).

  18. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    NASA Astrophysics Data System (ADS)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  19. Synthesis and characterization of graphene/cellulose nanocomposite

    NASA Astrophysics Data System (ADS)

    Kafy, Abdullahil; Yadav, Mithilesh; Kumar, Kishor; Kumar, Kishore; Mun, Seongcheol; Gao, Xiaoyuan; Kim, Jaehwan

    2014-04-01

    Cellulose is one of attractive natural polysaccharides in nature due to its good chemical stability, mechanical strength, biocompatibility, hydrophilic, and biodegradation properties [1-2]. The main disadvantages of biopolymer films like cellulose are their poor mechanical properties. Modification of polymers with inorganic materials is a new way to improve polymer properties such as mechanical strength [3-4]. Presently, the use of graphene/graphene oxide (GO) in materials research has attracted tremendous attention in the past 40 years in various fields including biomedicine, information technology and nanotechnology[5-7]. Graphene, a single sheet of graphite, has an ideal 2D structure with a monolayer of carbon atoms packed into a honeycomb crystal plane. Using both experimental and theoretical scientific research, researchers including Geim, Rao and Stankovich [8-10] have described the attractiveness of graphene in the materials research field. Due to its sp2 hybrid carbon network as well as extraordinary mechanical, electronic, and thermal properties, graphene has opened new pathways for developing a wide range of novel functional materials. Perfect graphene does not exist naturally, but bulk and solution processable functionalized graphene materials including graphene oxide (GO) can now be prepared [11-13].The large surface area of GO has a number of functional groups, such as -OH, -COOH, -O- , and C=O, which make GO hydrophilic and readily dispersible in water as well as some organic solvents[14] , thereby providing a convenient access to fabrication of graphene-based materials by solution casting. According to several reports [15-17], GO can be dispersed throughout a selected polymer matrix to make GO-based nanocomposites with excellent mechanical and thermal properties. Since GO is prepared from low-cost graphite, it has an outstanding price advantage over CNTs, which has encouraged studies of GO/synthetic polymer composites [18-20]. In some reported papers, graphene oxide has also been used to reinforce polysaccharide matrices such as carboxymethyl cellulose-starch[21]. Here, we report a simple and environmentally benign preparation of GO/cellulose nanocomposite films by a simple solution mixing-curing method.

  20. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.

    PubMed

    Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto

    2008-03-01

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

Top