Dose response effect of cement dust on respiratory muscles competence in cement mill workers.
Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad
2006-12-01
Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.
Peculiarities of binding composition production in vortex jet mill
NASA Astrophysics Data System (ADS)
Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.
2018-03-01
The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.
Health risk among asbestos cement sheet manufacturing workers in Thailand.
Phanprasit, Wantanee; Sujirarat, Dusit; Chaikittiporn, Chalermchai
2009-12-01
To assess asbestos exposure and calculate the relative risks of lung cancer among asbestos cement roof sheet workers and to predict the incidence rate of lung cancer caused by asbestos in Thailand. A cross-sectional study was conducted in four asbestos cement roof factories. Both area and personal air samples were collected and analyzed employing NIOSH method # 7400 and counting rule A for all procesess and activities. The time weight average exposures were calculated for each studied task using average area concentrations of the mill and personal concentrations. Then, cumulative exposures were estimated based on the past nation-wide air sampling concentrations and those from the present study. The relative risk (RR) of lung cancer among asbestos cement sheet workers was calculated and the number of asbestos related lung cancer case was estimated. The roof fitting polishers had the highest exposure to airborne asbestos fiber (0.73 fiber/ml). The highest average area concentration was at the conveyor to the de-bagger areas (0.02 fiber/ml). The estimated cumulative exposure for the workers performed studied-tasks ranged in between 90.13-115.65 fiber-years/ml while the relative risk of lung cancer calculated using US. EPA's model were 5.37-5.96. Based on the obtained RR, lung cancer among AC sheet in Thailand would be 2 case/year. In case that AC sheet will not be prohibited from being manufactured, even though only chrysotile is allowed, the surveillance system should be further developed and more seriously implemented. The better control measures for all processes must be implemented. Furthermore, due to the environmental persistence of asbestos fiber, its life cycle analysis should be conducted in order to control environmental exposure of general population.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Matrix model of the grinding process of cement clinker in the ball mill
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.
34. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
34. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Side view of mill. Vertical drive shaft lying on ground in foreground. When drive-shaft was in upright position its bevel gear was meshed with the bevel gear of the top roll, transmitting the animals'circular motion around the drive shaft to the horizontal rolls. The foundation is of portland cement. The heavy timber mill bed, between the mill and the portland cement foundation has rolled away. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Influence of high-energy milling on structure and microstructure of asbestos-cement materials
NASA Astrophysics Data System (ADS)
Iwaszko, Józef; Zawada, Anna; Lubas, Małgorzata
2018-03-01
Asbestos-Containing Waste (ACW) in the form of a fragment from an asbestos-cement board was subjected to high-energy milling in a planetary mill at a constant rotational speed of 650 rpm and for variable milling times: 1, 2, and 3 h. The initial and the milled materials were subjected to infrared spectroscopic examination to identify the asbestos variety and to evaluate changes in the structure caused by high-energy milling. FT-IR (Fourier Transform Infrared Spectroscopy) examinations followed optical microscopy and SEM (Scanning Electron Microscopy) studies as well as X-ray analysis of the phase composition. It was found that the asbestos fibres present in the asbestos-cement board were respirable fibres with pathogenic properties. Identifying asbestos using the spectroscopic method showed that chrysotile asbestos was present in the as-received ACW while no characteristics of absorption bands from crocidolite or amosite were found. The results of the spectroscopic examinations were confirmed by the X-ray phase analysis. During SEM investigations of the milled ACW, complete loss of the fibrous structure of chrysotile was observed. The FT-IR examinations of the milled material showed that with an increased milling time, the characteristic absorption bands characteristic for chrysotile diminished and already after 2 h of milling their almost complete decay was observed. Thereby, it was confirmed that high-energy milling results in destruction of the crystalline structure of the asbestos phase. The conducted studies have shown that the treatment of asbestos-cement materials using high-energy milling is an effective method for asbestos disposal, capable of competing with other technologies and solutions. Moreover, FT-IR spectroscopy was found to be useful to identify asbestos phases and to assess changes caused by high-energy milling.
Amandus, H E; Althouse, R; Morgan, W K; Sargent, E N; Jones, R
1987-01-01
A study was conducted to estimate the exposure-response relationship for tremolite-actinolite fiber exposure and radiographic findings among 184 men employed at a Montana vermiculite mine and mill. Workers were included if they had been employed during 1975-1982 and had achieved at least 5 years tenure at the Montana site. Past fiber exposure was associated with an increased prevalence of parenchymal and pleural radiographic abnormalities. Smoking was not significantly related to the prevalence of small opacities. However, the number of workers who had never smoked was small, and this prevented measurement of the smoking effect. Under control for smoking and age, the prevalence of small opacities was significantly greater for vermiculite workers with greater than 100 fiber/cc-years exposure than for comparison groups (cement workers, blue collar workers, and coal miners) who had no known occupational fiber exposure. A logistic model predicted an increase of 1.3% in the odds ratio for small opacities at an additional exposure of 5 fiber-years.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... Company, Franklin Pulp & Paper Mill, Including On-Site Leased Workers From Railserve, Franklin, VA..., applicable to workers and former workers of International Paper Company, Franklin Pulp & Paper Mill, Franklin... follows: All workers International Paper Company, Franklin Pulp & Paper Mill, including on-site leased...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amandus, H.E.; Althouse, R.; Morgan, W.K.
1987-01-01
A study was conducted to estimate the exposure-response relationship for tremolite-actinolite fiber exposure and radiographic findings among 184 men employed at a Montana vermiculite mine and mill. Workers were included if they had been employed during 1975-1982 and had achieved at least 5 years tenure at the Montana site. Past fiber exposure was associated with an increased prevalence of parenchymal and pleural radiographic abnormalities. Smoking was not significantly related to the prevalence of small opacities. However, the number of workers who had never smoked was small, and this prevented measurement of the smoking effect. Under control for smoking and age,more » the prevalence of small opacities was significantly greater for vermiculite workers with greater than 100 fiber/cc-years exposure than for comparison groups (cement workers, blue collar workers, and coal miners) who had no known occupational fiber exposure. A logistic model predicted an increase of 1.3% in the odds ratio for small opacities at an additional exposure of 5 fiber-years.« less
Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian
2014-01-01
Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785
Cantekin, Kenan; Delikan, Ebru; Cetin, Secil
2014-01-01
Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Company Franklin Pulp & Paper Mill Including On-Site Leased Workers From Railserve, Franklin, VA; Amended... workers of International Paper Company, Franklin Pulp & Paper Mill, Franklin, Virginia. The notice was... Pulp & Paper Mill. The Department has determined that these workers were sufficiently under the control...
An on-belt elemental analyser for the cement industry.
Lim, C S; Tickner, J R; Sowerby, B D; Abernethy, D A; McEwan, A J; Rainey, S; Stevens, R; Manias, C; Retallack, D
2001-01-01
On-line control of raw mill feed composition is a key factor in the improved control of cement plants. A new and improved on-conveyor belt elemental analyser for cement raw mill feed based on neutron inelastic scatter and capture techniques has been developed and tested successfully in Adelaide Brighton's Birkenhead cement plant on highly segregated material with a depth range of 100 to 180 mm. Dynamic tests in the plant have shown analyser RMS total errors of 0.49, 0.52, 0.38 and 0.23 wt% (on a loss free basis) for CaO, SiO2, Al2O3 and Fe2O3 respectively, when 10-minute counting periods are used.
Occupational hearing loss of market mill workers in the city of Accra, Ghana.
Kitcher, Emmanuel D; Ocansey, Grace; Abaidoo, Benjamin; Atule, Alidu
2014-01-01
Noise induced hearing loss (NIHL) is an irreversible sensorineural hearing loss associated with exposure to high levels of excessive noise. Prevention measures are not well established in developing countries. This comparative cross sectional study aims to determine the prevalence of hearing loss in both a group of high risk workers and a control group and to assess their knowledge of the effects of noise on hearing health. A total of 101 market mill workers and 103 controls employed within markets in the city of Accra, Ghana, were evaluated using a structured questionnaire and pure tone audiometry. The questionnaire assessed factors including self-reported hearing loss, tinnitus, knowledge on the effects of noise on hearing health and the use of hearing protective devices. Pure tone audiometric testing was conducted for both mill workers and controls. Noise levels at the work premises of the mill workers and controls were measured. Symptoms of hearing loss were reported by 24 (23.76%) and 8 (7.7%) mill workers and controls respectively. Fifty-five (54.5%) and fifty-four (52.37%) mill workers and controls exhibited knowledge of the effects of noise on hearing health. Five (5.0%) mill workers used hearing protective devices. There was significant sensorineural hearing loss and the presence of a 4 kHz audiometric notch among mill workers when compared with controls for the mean thresholds of 2 kHz, 3 kHz and 4 kHz (P = 0. 001). The prevalence of hearing loss in the better hearing ears of the mill workers and controls was 24.8% and 4.8% respectively (P < 0.5). The prevalence of hearing loss, which may be characteristic of NIHL in the better hearing ears of the mill workers and controls was 24.8% and 4.8% respectively. The majority of mill workers did not use hearing protection.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... Corporation, Containerboard Mill, Including On-Site Leased Workers From KMW Enterprises, Ontonagon, MI... to workers of Smurfit-Stone Container Corporation, Containerboard Mill, Ontonagon, Michigan. The... Ontonagon, Michigan location of Smurfit-Stone Container Corporation, Containerboard Mill. The Department has...
Chromium-induced skin damage among Taiwanese cement workers.
Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng
2016-10-01
Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... bypass stacks at portland cement manufacturing facilities, for use in applicability determinations under... kiln/raw mills and associated bypass stacks at portland cement manufacturing facilities, for use in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Corporation, Containerboard Mill, Including On-Site Leased Workers From KMW Enterprises and General Security... Assistance on May 6, 2010, applicable to workers of Smurfit-Stone Container Corporation, Containerboard Mill... Ontonagon, Michigan location of Smurfit-Stone Container Corporation, Containerboard Mill, Ontonagon...
NASA Astrophysics Data System (ADS)
Guguloth, Mohan Rao.; Sambanaik, A.; srinivasnaik, L.; Mude, Jagadishnaik.
2012-10-01
This study was measured on haematological parameters in workers exposed to cement dust in order to test the the hypothesis and to identify a simple, readily available, cost effective screening test that could help in identifying the presence of disease, its severity, that Cement dust exposure may perturb these functions related to their workplace.Assesment of haematological parameters were performed in 100exposed workers occupationally exposed to cement dust and 50 matched unexposed controls with ages ranging from 20-35, 35-50, 50-65 years. The blood samples were taken from them and percentage of hemoglobin, Lymphocytes / monocytes count were analysed.The hemoglobin percentage of exposed workers were significantly lower(P<0.05).Lymphocytes/Monocytes counts of exposed workers was insignificant (P<0.05).These results suggest that long term occupational exposure to cement dust may perturb haemopoietic function.
40 CFR 63.1340 - Applicability and designation of affected sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... portland cement plant which is a major source or an area source as defined in § 63.2. (b) The affected... portland cement plant which is a major source; (3) Each raw mill at any portland cement plant which is a...
Occupational dermatitis. An epidemiological study in the rubber and cement industries.
Varigos, G A; Dunt, D R
1981-03-01
An epidemiological study of occupational dermatitis in a tyre company and a cement company is reported. Ninety-seven percent of 999 tyre workers and 78% of 151 cement workers were screened by an occupational nurse and subsequently assessed by a specialist dermatologist. Prevalence rates of occupational contact dermatitis were 37 per 1000 and 68 per 1000 in the tyre and cement companies, respectively. Maintenance workers and tyre builders - particularly if they were Yugoslav and female - had high prevalence rates amongst tyre workers. Worker's compensation claim rates for the tyre company are similar to U.K. and U.S. rates for this industry. Prevalence rates of 37 per 1000 can be considered as a lower limit for this industry. The high prevalence rates in the cement company are noteworthy and require further study.
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...
40 CFR 63.6015 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... cements, bead cements, tire building cements and solvents, green tire spray, blemish repair paints, side... in tire component identification; component storage; tire building; tire curing; and tire repair... of warm-up mills, extruders, calendars, tire building, or other tire component and tire manufacturing...
Westinghouse modular grinding process - improvement for follow on processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrmann, Henning
2013-07-01
In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompactionmore » (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,695] Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration By application dated July 22... regarding the eligibility of workers and former workers of Woodland Mills Corporation, Mill Spring, North...
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Romanovich, M. A.; Apukhtina, I. V.
2018-03-01
The article considers topical issues of energy saving in cement production with the use of a technological grinding complex, which includes a press roller grinder and a ball mill. Rational conditions of grinding are proposed for pre-shredded material through the installation of blade energy exchange devices (BEED) in the mill drum. The loading level in the first chamber varies periodically depending on the drum rotation angle, equipped with BEED. In the zone of BEED’s active action, there is a “scooping” of a part of grinding bodies together with crushed material, raising them to a height and giving them a longitudinally transverse movement, which is different from movement created in the mill without BEED. At the same time, additional work that consumes engine power is being done. A technique is proposed for calculating the additional engine power consumption of a mill, equipped with a BEED. This power is spent on creating a longitudinal-transverse motion of grinding bodies and its first and second chambers in areas of active influence of the BEED. Comparative analysis of results obtained experimentally and calculations of proposed equations show a high convergence of results. These analytical dependencies may be interest to Russian and foreign organizations that carry out their activities in the field of design and manufacture of cement equipment, as well as to cement producers.
40 CFR 98.80 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.80 Definition of the source category. The cement production source category consists of each kiln and each in-line kiln/raw mill at any portland cement manufacturing facility including alkali bypasses, and includes kilns and in-line kiln/raw...
40 CFR 98.80 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.80 Definition of the source category. The cement production source category consists of each kiln and each in-line kiln/raw mill at any portland cement manufacturing facility including alkali bypasses, and includes kilns and in-line kiln/raw...
40 CFR 98.80 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.80 Definition of the source category. The cement production source category consists of each kiln and each in-line kiln/raw mill at any portland cement manufacturing facility including alkali bypasses, and includes kilns and in-line kiln/raw...
Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano
2017-05-01
The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.
40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from particulate matter... chapter that are applicable to cement kilns and in-line kiln/raw mills. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns...
40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from particulate matter... chapter that are applicable to cement kilns and in-line kiln/raw mills. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns...
Richard, Egbe Edmund; Augusta Chinyere, Nsonwu-Anyanwu; Jeremaiah, Offor Sunday; Opara, Usoro Chinyere Adanna; Henrieta, Etukudo Maise; Ifunanya, Egbe Deborah
2016-01-01
Background. Cement dust inhalation is associated with deleterious health effects. The impact of cement dust exposure on the peak expiratory flow rate (PEFR), liver function, and some serum elements in workers and residents near cement factory were assessed. Methods. Two hundred and ten subjects (50 workers, 60 residents, and 100 controls) aged 18–60 years were studied. PEFR, liver function {aspartate and alanine transaminases (AST and ALT) and total and conjugated bilirubin (TB and CB)}, and serum elements {lead (Pb), copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), selenium (Se), chromium (Cr), zinc (Zn), and arsenic (As)} were determined using peak flow meter, colorimetry, and atomic absorption spectrometry, respectively. Data were analysed using ANOVA and correlation at p = 0.05. Results. The ALT, TB, CB, Pb, As, Cd, Cr, Se, Mn, and Cu were significantly higher and PEFR, Fe, and Zn lower in workers and residents compared to controls (p < 0.05). Higher levels of ALT, AST, and Fe and lower levels of Pb, Cd, Cr, Se, Mn, and Cu were seen in cement workers compared to residents (p < 0.05). Negative correlation was observed between duration of exposure and PEFR (r = −0.416, p = 0.016) in cement workers. Conclusions. Cement dust inhalation may be associated with alterations in serum elements levels and lung and liver functions while long term exposure lowers peak expiratory flow rate. PMID:26981118
40 CFR 63.1356 - Exemption from new source performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry... from the mill to the kiln that are associated with coal preparation at a portland cement plant that is...
Is Oral Health of the Sugar Mill Workers Being Compromised?
Pandita, Venisha; Patthi, Basavaraj; Singla, Ashish; Jain, Swati; Kundu, Hansa; Malhi, Ravneet; Vashishtha, Vaibhav
2015-01-01
Introduction Occupational environment has an immense influence on the general as well as oral health. The specific exposure to sugar and its byproducts might influence the dental health of sugar mill workers. Aim and Objectives The present study was conducted to assess and compare the oral health status of production line workers and administration staff working in the sugar mills of Western Uttar Pradesh. Materials and Methods A cross-sectional study was conducted in four Government aided and four Private sugar mills of West Uttar Pradesh, India among the production line workers and administration staff. Multistage random sampling methodology was employed to select total of 600 sugar mill factory workers (449 production line workers and 151 administration staff). The oral health status of the study subjects was assessed using the modified WHO Oral health survey Performa 1997. Statistical Analysis SPSS 19 Version was used for statistical analysis. Mean, Standard Deviation and proportions were calculated for each clinical parameter. Student t-test and Chi-square analysis was done to analyse inter group comparison. Results Mean DMFT for production and non production line workers was 7.67± 2.99 and 0.15 ± 1.34 (p= 0.001) respectively. 80.17% of production line workers had maximum CPI score 2 in contrast to 63.57% of administration staff (p=0.324). Conclusion The dental health was found to be debilitated among the production line workers of Sugar mill as compared to the Administrative staff. It is therefore recommended to raise the awareness among the sugar mill workers regarding the same. PMID:26266207
1. VIEW OF MILL WORKER HOUSE AT 502 ASKEW AVE. ...
1. VIEW OF MILL WORKER HOUSE AT 502 ASKEW AVE. HOUSE IS 1 1/2 STORY, 3 BAY SIDE GABLE WITH REAR KITCHEN ELL AND PORCH EXTENDING FROM FRONT. LOCKWOOD GREENE ENGINEERS BUILT THIS AND 128 OTHER NEW HOUSES FOR NEW ENGLAND SOUTHERN MILLS IN 1923-1924. THE PREEXISTING MILL VILLAGE NEEDED TO BE EXPANDED TO ACCOMODATE WORKERS FOR THEIR NEW STARK MILL IN HOGANSVILLE. THIS HOUSE WAS BUILT WITH INDOOR PLUMBING, AND ELECTRICITY AT A COST OF APPROXIMATELY $430 PER ROOM. - 502 Askew Avenue (House), 502 Askew Avenue, Hogansville, Troup County, GA
Prevalence of respiratory symptoms and disorders among rice mill workers in India.
Ghosh, Tirthankar; Gangopadhyay, Somnath; Das, Banibrata
2014-05-01
Lung function tests have become an integral part of assessment of pulmonary disease. Diseases of the respiratory system induced by occupational dusts are influenced by the duration of exposure. The aim of the study is to investigate the impairment of lung function and prevalence of respiratory symptoms among the rice mill workers. A total of 120 rice mill workers from three districts of Karnataka were included in this study. Fifty urban dwellers from the same socio-economic level were selected as controls. The study included clinical examination, assessment of respiratory symptoms, pulmonary function test, measurement of peak expiratory flow rate, absolute eosinophil count, ESR estimation, total IgE estimation and radiographic test. The present study has shown that the rice mill workers complained of several types of respiratory disorders like phlegm (40.8 %), dyspnea (44.2 %), chest tightness (26.7 %), cough (21.7 %), and nose irritation (27.5 %). Rice mill workers exposed to dust presented significantly (p < 0.05) lower levels of FVC (3.44 ± 0.11), FEV1 (2.73 ± 0.15) and PEFR (304.95 ± 28.79) than the controls. The rice mill workers are having significantly higher absolute eosinophil counts, total IgE and ESR than control groups. The hematological findings suggest that the harmful effects may be linked to both non-specific irritation and allergic responses to rice husk dust among rice mill workers. Dust exposure in the working environment affects the lung function values and increased the respiratory symptoms among the rice mill workers.
40 CFR 63.1340 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...
40 CFR 63.1340 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Gang; Sun, Chang-Jung, E-mail: sun.3409@hotmail.com; Gau, Sue-Huai
2013-04-15
Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA)more » leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.« less
33. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
33. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: From above the mill showing the three 15' x 22' horizontal rolls, mill frame or cheeks, portland cement foundation, and lower part of vertical drive shaft lying next mill in foreground. The loose metal piece resting on top of the mill frame matched the indented portion of the upper frame to form a bracket and bearing for the drive shaft when it was in its proper upright position. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,321] Auburn Hosiery Mills, Inc... Auburn Hosiery Mills, Inc., including on-site leased workers from Quality Personnel, Auburn, Kentucky... related to apparel. Information shows that Auburn Hosiery Mills was merged into its parent company, Delta...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,416] Desoto Mills LLC, Fort... applicable to workers and former workers at Desoto Mills, LLC, a Subsidiary of Fruit of the Loom, Fort Payne... * * * locations outside the Desoto Mills Plant.'' The petitioner compares the situation at this location with...
Hammond, Duane R.; Shulman, Stanley A.; Echt, Alan S.
2016-01-01
Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This paper describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for eleven days at four highway construction sites in Wisconsin, while Manufacturer B completed milling for ten days at seven highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at eleven different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m3 for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m3 for the operator and 6.1 µg/m3 for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m3 for the operator and 9.0 µg/m3 for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m3 for both studies. The silica content in the bulk asphalt material being milled ranged from 7% to 23% silica for roads milled by Manufacturer A and from 5% to 12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites. PMID:26913983
Hammond, Duane R; Shulman, Stanley A; Echt, Alan S
2016-07-01
Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites.
Grain dust and respiratory health in South African milling workers.
Bachmann, M; Myers, J E
1991-01-01
Respiratory health was investigated in 224 grain milling workers. The likelihood of respiratory symptoms and chronic airflow limitation was raised for workers exposed to dust independent of the effects of smoking. Smokers were more likely than non-smokers to respond to a bronchodilator at the end of the working week. Dust was more strongly associated with most abnormal outcomes than was smoking. Subjective categories of exposure to dust were more strongly associated with most abnormal outcomes than were objective categories. The prevalence of all symptoms at the time of a survey conducted at the mill six years before was higher in workers who subsequently left the mill than in those who remained employed although the differences were not significant. PMID:1931723
Evaluation of Dust Exposure among the Workers in Agricultural Industries in North-East India.
Dewangan, Krishna N; Patil, Mahesh R
2015-11-01
This study aims to quantify dust exposure among the workers in four different industrial settings: rice mills, flour mills, oil mills, and tea factories and to compare the obtained data with the permissible exposure limit (PEL) of Indian Union Ministry of Labour as well as to compare the dust exposure across activities and seasons. RespiCon(TM) particle sampler was used for collecting dust concentration in the breathing zone of the workers. In total, 149 workers participated in the study and 204 samples were collected. Samples were collected in the vicinity of different processing operations. Samples in the rice mills were collected for two consecutive years in two seasons; however samples from other industries were collected for 1 year. The results indicate that geometric mean (GM) of dust exposure was significantly (P < 0.0001) different among industrial settings. Respirable dust were 8.22, 5.76, 2.98, and 6.34mg m(-3) and total dust exposure were 81.05, 111.02, 56.68, and 39.85mg m(-3) in the rice mills, oil mills, flour mills, and tea factories, respectively. Considerable variations in dust exposure were observed in different activities in the rice and oil mills; however variation was relatively less in the flour mills and tea factories. In the rice mills, dust concentration was higher in winter than those obtained in autumn and it is significantly different (P < 0.05) for inhalable dust and total dust. Positive correlation was obtained in thoracic dust (r (2) = 0.94) and inhalable dust (r (2) = 0.97) with total dust and thoracic dust with inhalable dust (r (2) = 0.89). The results show that majority of the workers are exposed to higher level of respirable dust as compared to the PEL, while total dust exposure to all the workers were higher than the PEL; thus, immediate reduction of dust exposure among the workers is necessary for preventing respiratory system impairment. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
...., Columbia Mill, Lee, Massachusetts; Amended Certification Regarding Eligibility To Apply for Worker... revealed that workers of Schweitzer-Mauduit International, Inc., Columbia Mill, Lee, Massachusetts are... working at Schweitzer-Mauduit International, Inc., Columbia Mill, Lee, Massachusetts (TA-W-82,718A). The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Analysis of chromosomal aberrations in men occupationally exposed to cement dust.
Fatima, S K; Prabhavathi, P A; Padmavathi, P; Reddy, P P
2001-02-20
Cement industry is considered as a major pollution problem on account of dust and particulate matter emitted at various steps of cement manufacture. Cement dust consists of many toxic constituents. The workers who are employed in cement industries are exposed to cement dust for long periods. Therefore, it is mandatory to evaluate the mutagenic effects of occupational exposure to cement dust in such workers. In the present study, we analyzed the samples of 124 male workers including 59 smokers and 65 non-smokers who were employed in cement industry for a period of 1-17 years. For comparison, 106 controls (including 47 smokers and 59 non-smokers) of the same age group and socio-economic status were also studied. Controls had no exposure to cement dust or any known physical or chemical agent. A significant increase in the incidence of chromosomal aberrations was observed in the exposed group when compared to the control group. The results were analyzed separately for non-smokers and smokers. The chromosomal damage was more pronounced in the smokers when compared with the non-smokers both in control and exposed groups. A significant increase in the frequency of chromosomal aberrations was also observed with increase in age in both control and exposed subjects.
Shift work and sleep disorder among textile mill workers in Bahir Dar, northwest Ethiopia.
Abebe, Y; Fantahun, M
1999-07-01
To assess the length and quality of sleep among shift workers at Bahir Dar textile mill. A cross sectional study using structured questionnaire that contained sociodemographic variables, duration of work, work schedule, number of sleeping hours, sleep disorders, and associated reasons for such disorders. A textile mill in Bahir Dar, northwest Ethiopia. Three-hundred ninety four random sample of production workers of the mill. Sleep disorders, and the impact of external and home environment on sleep. The mean duration of work in the factory was 25.4 +/- 7.1 years. Ninety-seven per cent of the study population work in a rotating eight hourly shift system. The mean number of hours a worker sleeps after a worked shift was 5.1 +/- 2.3. Two hundred thirty (58.4%) claimed to experience a sleep disorder. Sleep disturbance was significantly associated with rotating shift work, external environmental noise, and working in the spinning department. The majority of the workers in Bahir Dar textile mill experienced sleep disturbances as detailed in the study methodology.
Dust exposure and the risk of cancer in cement industry workers in Korea.
Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seunghee; Ryu, Hyang-Woo
2013-03-01
Cement is used widely in the construction industry, though it contains hazardous chemicals such as hexavalent chromium. Several epidemiological studies have examined the association between cement dust exposure and cancer, but these associations have proved inconclusive. In the present study, we examined the association between dust exposure and cancer in cement industry workers in Korea. Our cohort consisted of 1,324 men who worked at two Portland cement manufacturing factories between 1997 and 2005. We calculated cumulative dust exposures, then categorized workers into high and low dust exposure groups. Cancer cases were identified between 1997 and 2005 by linking with the national cancer registry. Standardized incidence ratios (SIRs) were calculated for all workers and the high and low dust exposure groups, respectively. The SIR for overall cancers in all workers was increased (1.35, 95% CI: 1.01-1.78). The SIR for stomach cancer in the high dust exposure group was increased (2.18, 95% CI: 1.19-3.65), but there was no increased stomach cancer risk in the low dust exposure group. The SIR for rectal cancer in all workers was increased (3.05, 95% CI: 1.32-6.02). Rectal cancer risk was similar in the high and low exposure groups. Our findings suggest a potential association between exposure in the cement industry and an increased risk of stomach and rectal cancers. However, due to the small number of cases, this association should be further investigated in a study with a longer follow-up period and adjustment for confounders. Copyright © 2012 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... Hagemeyer North America, Lake Mills, IA; Amended Certification Regarding Eligibility To Apply for Worker... from Manpower, Lake Mills, Iowa. The notice was published in the Federal Register on December 11, 2009... America were employed on-site at the Lake Mills, Iowa location of Cummins Filtration to provide...
San Sebastián: the social and political effects of sugar mill closure in Mexico.
Powell, Kathy
2007-01-01
Mexico's sugar mills face an uncertain future: the closure of San Sebastián may well presage others if the climate for sugar production on national and international levels does not improve. While the continued squeezing of small cane producers reflects processes affecting peasant agriculture generally in Mexico, and indeed beyond, the fate of the mill workers made redundant when the mill closed similarly mirrors broad tendencies in labor in both the developed and developing world under neoliberalism. Former workers fell back upon personal, family, and community resources by migrating to the U.S. or locally reconstructing livelihoods characterized by a reduction in income, security, and access to social benefits. This article reports on the impact of the mill closure on the livelihoods of former mill worker families in the community of San Sebastián and offers some observations on their responses to the situation.
Chromate and amine contact allergies in workers manufacturing precast concrete elements.
Mowitz, Martin; Zimerson, Erik; Hauksson, Inese; Pontén, Ann
2016-12-01
Five workers from a plant manufacturing concrete wall panels and beams were referred to our department because of suspected occupational dermatitis. When patch tested, 3 workers reacted to potassium dichromate. Four workers reacted to ethylenediamine dihydrochloride, without any obvious exposure. Owing to the high proportion of workers with recent-onset skin disease, an investigation of all workers at the plant was initiated. To investigate the prevalence of occupational dermatitis and contact allergy in the workers at the plant. All 24 workers at the plant underwent a clinical investigation and were patch tested. Four cases of allergic occupational contact dermatitis and 3 cases of irritant occupational contact dermatitis were diagnosed. Contact allergy to potassium dichromate was found in 4 workers. All 4 also reacted to ethylenediamine dihydrochloride and/or amines that were present as additives in the cement. Chromate contact allergy can still be found in concrete workers, despite the legislation regulating the amount of hexavalent chromium (chromate) in cement. Occupational contact allergy to amines can be found in workers exposed to cement and concrete, so amines should be tested in these workers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2011-01-01
Background The association between chronic respiratory diseases and work disability has been demonstrated a number of times over the past 20 years, but still little is known about work disability in occupational cohorts of workers exposed to respiratory irritants. This study investigated job or task changes due to respiratory problems as an indicator of work disability in pulp mill workers occupationally exposed to irritants. Methods Data about respiratory symptoms and disease diagnoses, socio-demographic variables, occupational exposures, gassing episodes, and reported work changes due to respiratory problems were collected using a questionnaire answered by 3226 pulp mill workers. Information about work history and departments was obtained from personnel files. Incidence and hazard ratios for respiratory work disability were calculated with 95% confidence intervals (CI). Results The incidence of respiratory work disability among these pulp mill workers was 1.6/1000 person-years. The hazard ratios for respiratory work disability were increased for workers reporting gassings (HR 5.3, 95% CI 2.7-10.5) and for those reporting physician-diagnosed asthma, chronic bronchitis, and chronic rhinitis, when analyzed in the same model. Conclusions This cohort study of pulp mill workers found that irritant peak exposure during gassing episodes was a strong predictor of changing work due to respiratory problems, even after adjustment for asthma, chronic bronchitis, and chronic rhinitis. PMID:21896193
Kieć-Swierczyńska, M; Woźniak, H; Wojtczak, J
1989-01-01
The study involved 461 building workers exposed to ashes, cement and ash-cement mixtures in direct production and at auxiliary posts (fitters, welders, mechanics, electricians etc.). In addition, all those workers were exposed to lubricants ans machine oils, as well as anti-adhesive oils used to lubricate moulds. All the subjects underwent patch tests. Dermatitis was found in 18.9%, whereas oil acne in 7.4% of subjects, 23.0% exhibited chromium allergy, 15.2% - cobalt allergy and 5.0% - nickel allergy. Two workers were ++hypersensitive to zinc. No differences were found in the rates of dermatitis, oil acne and metal allergy between production workers and auxiliary ones. Airborne dust concentrations at those workplaces were similar. Cement and ashes contained compounds of chromium, cobalt and nickel.
Economical drive for large tube mills by means of planetary gears
NASA Technical Reports Server (NTRS)
Ackle, W.
1980-01-01
The performance of heavy-duty planetary gear drives for ball mills used in the cement industry since 1967 is described. These gear drives transmit up to 8500 HP per installation. A reliable method for establishing gear drive efficiency is described and possible savings due to higher efficiency are indicated.
ERIC Educational Resources Information Center
Weisburd, Melvin I.
The Field Operations and Enforcement Manual for Air Pollution Control, Volume III, explains in detail the following: inspection procedures for specific sources, kraft pulp mills, animal rendering, steel mill furnaces, coking operations, petroleum refineries, chemical plants, non-ferrous smelting and refining, foundries, cement plants, aluminum…
Lung Function before and after a Large Chlorine Gas Release in Graniteville, South Carolina
Karmaus, Wilfried J. J.; Mohr, Lawrence C.; Cai, Bo; Balte, Pallavi; Gibson, James J.; Ownby, Dennis; Lawson, Andrew B.; Vena, John E.; Svendsen, Erik R.
2016-01-01
Rationale: On January 6, 2005 a train derailment led to an estimated 54,915-kg release of chlorine at a local textile mill in Graniteville, South Carolina. Objectives: We used the employee health spirometry records of the textile to identify enduring effects of chlorine gas exposure resulting from the incident on the lung function of workers employed at the textile mill. Methods: Spirometry records from 1,807 mill workers (7,332 observations) were used from 4 years before and 18 months after the disaster. Longitudinal analysis using marginal regression models produced annual population mean estimates for FEV1, FVC, and FEV1/FVC ratio. Covariate adjustment was made for sex, age, smoking, height, season tested, technician, obesity, season × year interactions, and smoker × year interactions. The increased prevalence of mill workers having accelerated FEV1 decline was also evaluated after the chlorine spill. Measurements and Main Results: In the year of the accident, we observed a significant reduction in mean FEV1 (–4.2% predicted; P = 0.019) when compared with the year before the incident. In the second year, partial recovery in the mean FVC % predicted level was seen, but the cohort’s average FEV1/FVC ratio continued to decrease over time. Severe annual FEV1 decline was most prevalent in the year of the accident, and independent of mill worker smoking status. Conclusions: The Graniteville mill worker cohort revealed significant reductions in lung function immediately after the chlorine incident. Improvement was seen in the second year; but the proportion of mill workers experiencing accelerated FEV1 annual decline significantly increased in the 18 months after the chlorine incident. PMID:26695511
Melo Freire, C A; Borges, G A; Caldas, Dbm; Santos, R S; Ignácio, S A; Mazur, R F
To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (p<0.05). The U200 presented lower cement line thickness values when compared to the ARC with both cementation techniques (p<0.05). With regard to the interface quality, the Mann-Whitney U-test and the Kruskal-Wallis test demonstrated statistical differences between the ceramic restoration manufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (p<0.05). Milled restorations cemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed ceramics cemented with resin cement with adhesive application. No difference between one-second tack-cure and self-activation was noted.
Saad-Hussein, A; Taha, M M; Fadl, N N; Awad, A-H; Mahdy-Abdallah, H; Moubarz, G; Aziz, H; El-Shamy, K A
2016-01-01
The present work aimed to investigate the relationship between occupational exposure to airborne molds, serum aflatoxin B1 (AFB1), and liver enzymes of workers handling wheat flour. The study included 90 bakers, 100 flour milling workers, and 100 controls with no exposure to flour dust. Workplace aspects such as temperature and relative humidity were measured. Airborne fungi were collected and identified. In all subjects included, the serum levels of AFB1, serum albumin (Alb), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were measured. Air temperature and relative humidity were found to be higher in bakeries than in flour mill sections. Airborne Aspergillus species were isolated in dust particles <8 µm in size. The concentration of Aspergillus flavus and Aspergillus niger were higher in bakeries than in the flour mill sections. They were higher in the grinding section than in other mill sections. The serum AFB1-Alb adduct and ALP levels were significantly higher in bakers compared to milling workers (p < 0.0001, p = 0.05), respectively. The liver enzymes AST and ALT were significantly higher among milling workers and bakers than controls (p < 0.05, p < 0.0001), respectively. The duration of exposure was significantly correlated with serum AFB1 in bakers. Moreover, there was significant correlation between serum AFB1, each of ALT and AST levels in bakers. chronic occupational exposure to high concentrations of Aspergillus in workplaces may cause elevations in serum levels of AFB1 and liver enzymes in workers exposed to flour dust. Hence, worker protection measures should be consistently adopted and enforced at the workplace. © The Author(s) 2015.
Relation between lung function, exercise capacity, and exposure to asbestos cement.
Wollmer, P; Eriksson, L; Jonson, B; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H
1987-01-01
A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to variables reflecting lung fibrosis but not to variables reflecting airflow obstruction. Smoking was related to variables reflecting obstructive lung disease. Exercise capacity was reduced in the exposed workers and was related to smoking and to lung function variables, reflecting obstructive airways disease. There was no significant correlation between exercise capacity and exposure to asbestos cement. PMID:3651353
Comparative study of lung functions in women working in different fibre industries.
Khanam, F; Islam, N; Hai, M A
2008-07-01
A cross sectional work has been done on Bangladeshi females, working in different fibre industries, to study the effect of exposure to fibre dust on pulmonary functions. The ventilatory capacities were measured by VMI ventilometer in 653 apparently healthy women (160, 162 and 167 were jute, textile and garment industry workers, respectively). For the controls 164 females were recruited who never worked in any fibre industry. The observed FVC, FEV1 and PEFR were lower in all groups of fibre industry workers than those of the control. Among the industry workers, the jute mill workers had the lowest ventilatory capacities and garment industry workers had the highest values. The jute and textile mill workers had also significantly lower FEV1 and PEFR than those of garment industry workers. The FEV1 and PEFR were significantly lower in jute mill workers than those of textile ill workers. The low ventilatory capacities were almost proportionate with the length of service of the workers. Thus, the present study indicates that the fibre dust, on regular exposure for longer duration, may limit the lung functions.
Psychosocial and health impacts of uranium mining and milling on Navajo lands.
Dawson, Susan E; Madsen, Gary E
2011-11-01
The uranium industry in the American Southwest has had profoundly negative impacts on American Indian communities. Navajo workers experienced significant health problems, including lung cancer and nonmalignant respiratory diseases, and psychosocial problems, such as depression and anxiety. There were four uranium processing mills and approximately 1,200 uranium mines on the Navajo Nation's over 27,000 square miles. In this paper, a chronology is presented of how uranium mining and milling impacted the lives of Navajo workers and their families. Local community leaders organized meetings across the reservation to inform workers and their families about the relationship between worker exposures and possible health problems. A reservation-wide effort resulted in activists working with political leaders and attorneys to write radiation compensation legislation, which was passed in 1990 as the Radiation Exposure Compensation Act (RECA) and included underground uranium miners, atomic downwinders, and nuclear test-site workers. Later efforts resulted in the inclusion of surface miners, ore truck haulers, and millworkers in the RECA Amendments of 2000. On the Navajo Nation, the Office of Navajo Uranium Workers was created to assist workers and their families to apply for RECA funds. Present issues concerning the Navajo and other uranium-impacted groups include those who worked in mining and milling after 1971 and are excluded from RECA. Perceptions about uranium health impacts have contributed recently to the Navajo people rejecting a resumption of uranium mining and milling on Navajo lands.
Development of an electromechanical principle for wet and dry milling
NASA Astrophysics Data System (ADS)
Halbedel, Bernd; Kazak, Oleg
2018-05-01
The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.
Mandryk, J; Alwis, K U; Hocking, A D
1999-05-01
Four sawmills, a wood chipping mill, and five joineries in New South Wales, Australia, were studied for the effects of personal exposure to wood dust, endotoxins. (1-->3)-beta-D-glucans, Gram-negative bacteria, and fungi on lung function among woodworkers. Personal inhalable and respirable dust sampling was carried out. The lung function tests of workers were conducted before and after a workshift. The mean percentage cross-shift decrease in lung function was markedly high for woodworkers compared with the controls. Dose-response relationships among personal exposures and percentage cross-shift decrease in lung function and percentage predicted lung function were more pronounced among joinery workers compared with sawmill and chip mill workers. Woodworkers had markedly high prevalence of regular cough, phlegm, and chronic bronchitis compared with controls. Significant associations were found between percentage cross-shift decrease in FVC and regular phlegm and blocked nose among sawmill and chip mill workers. Both joinery workers and sawmill and chip mill workers showed significant relationships between percentage predicted lung function (FVC, FEV1, FEV1/FVC, FEF25-75%) and respiratory symptoms. Wood dust and biohazards associated with wood dust are potential health hazards and should be controlled.
NASA Astrophysics Data System (ADS)
Heinze, Karsta; Frank, Xavier; Lullien-Pellerin, Valérie; George, Matthieu; Radjai, Farhang; Delenne, Jean-Yves
2017-06-01
Wheat grains can be considered as a natural cemented granular material. They are milled under high forces to produce food products such as flour. The major part of the grain is the so-called starchy endosperm. It contains stiff starch granules, which show a multi-modal size distribution, and a softer protein matrix that surrounds the granules. Experimental milling studies and numerical simulations are going hand in hand to better understand the fragmentation behavior of this biological material and to improve milling performance. We present a numerical study of the effect of granule size distribution on the strength of such a cemented granular material. Samples of bi-modal starch granule size distribution were created and submitted to uniaxial tension, using a peridynamics method. We show that, when compared to the effects of starch-protein interface adhesion and voids, the granule size distribution has a limited effect on the samples' yield stress.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... Woolen Mill Company, Faribault, MN; Faribo Woolens, Inc., a Related Company of Faribault Woolen Mill... December 9, 2009, applicable to workers of Faribault Woolen Mill Company, Faribault, Minnesota. The notice... Mill Company, a retail outlet store for the subject firm, Faribault Woolen Mill Company. Accordingly...
Cement dust exposition and bronchioalveolitis. A case report.
Soto-de la Fuente, Andrés Eduardo; Méndez-Vargas, María Martha; Báez-Revueltas, Fabiola Berenice; Soto-Vera, Eduardo Andrés
2015-01-01
The goal of the current investigation was to report an unusual case of a worker acutely exposed to big amounts of cement dust. This exposure caused chemical bronchioalveolitis and dermatitis due to chromium contact. This person suffered the exposure when a cement deposit exploded at work. This exposed the worker to big amounts of cement dust. After the accident, the individual suffered dyspnea and bilateral basal pulmonary crackles. The subject also presented an atypical restrictive pattern, which could also be seen on X-rays as 1/1 q/q images of the classification of 2000 of the International Labour Organization (ILO), and a bulging of a pulmonary artery. A restrictive pattern pure atypical was observed, and arterial blood gas with hipoxemia. A treatment with steroids was prescribed and the worker showed some improvement. There is high risk of developing pulmonary fibrosis with the progressive evolution in stages of the bronchioalveolitis, even when the subject is isolated. Therefore, it would be very convenient to create a specialized medical center where workers that have this kind of accidents can have the proper care by qualified personnel.
Haldiya, Kripa Ram; Mathur, Murli Lal; Sachdev, Raman; Saiyed, Habibulla N
2005-01-01
Background Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension. Methods To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied. Results Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m3 air. Conclusion Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure. PMID:16042798
Ismaila, Salami Olasunkanmi; Akanbi, Olusegun Gabriel; Olaoniye, Wasiu
2015-01-01
The main aim of the study was to propose a model for predicting the peak expiratory flow rate (PEFR) of Nigerian workers in a cement factory. Sixty randomly selected non-smoker and healthy workers (30 in production sections, 30 in the administrative section of the factory) participated in the study. Their physical characteristics and PEFR were measured. Multiple correlations using SPSS version 16.0 were performed on the data. The values of PEFR, using the obtained model, were compared with the measured values using a two-tailed t test. There were positive correlations among age, height and PEFR. A prediction equation for PEFR based on age, height, weight and years of exposure (experience) was obtained with R² = .843 (p < 0.001). The developed model will be useful for the management in determining PEFR of workers in the cement industry for possible medical attention.
Goswami, S.; Dasgupta, S.; Samanta, A.; Talukdar, G.; Chanda, A.; Ray Karmakar, P.; Bhattacharya, D.
2016-01-01
Introduction. WHO recognizes low back pain as one of the most important ergonomic stressors. Therefore, the present study was designed to find out the magnitude of the problem among jute mill workers in India and identify possible associations. Methodology. This cross-sectional workplace based study was conducted among eight (8) selected jute mills of India. Subjects with self-reported back pain for at least last 12 weeks were included and n = 717 male jute mill workers actively engaged in work entered the study and completed all assessments. Results. Among all participants 55% (n = 392) had current chronic low back pain. Age was an important association with subjects in the age group of 40–59 years more likely to have pain (p = 0.02, OR 1.44). Regarding ergonomic risk factors lifting of load of more than 20 kg (p = 0.04, OR 1.42) and repetitive movements of limbs (p = 0.03, OR 0.67) were significant associations of chronic low back pain. Conclusion. This study identified a significant prevalence of current chronic low back pain among jute mill workers. Regarding ergonomic risk factors the present study has identified two significant associations: lifting of load above 20 kg and repetitive movements of limbs. Therefore, this study has identified need for workplace interventions in this occupational group employing approximately 3,50,000 workers in India. PMID:27563463
The effect of various pozzolanic additives on the concrete strength index
NASA Astrophysics Data System (ADS)
Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.
2017-10-01
The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.
Roperto, Renato; Assaf, Hussein; Soares-Porto, Thiago; Lang, Lisa; Teich, Sorin
2016-10-01
Different CAD/CAM machines' generation may impact the restoration overall quality. The present study evaluated the marginal fit of CAD/CAM restorations manufactured with different generations of CEREC milling unit systems. Sixteen typodont teeth were divided into two groups (n=8) according to the machine's generation assigned. These are control group (G1): Cerec AC with Bluecam/Cerec 3 milling unit and (G2): Cerec AC with Bluecam/MC XL Premium Package milling unit. Scanning of the preparation were performed and crowns were milled using the Vita Mark II blocks. Blocks were cemented using epoxy glue on the pulpal floor only and finger pressure applied for 1 min. Upon completion of the cementation step, misfits between the restoration and abutment were measured by microphotography and the silicone replica technique using light body silicon material on Mesial (M) and Distal (D) surfaces. Mean and SDs of marginal gaps in micrometers were: G1/M: 94.90 (±38.52), G1/D: 88.53 (±44.87), G2/M: 85.65 (±29.89), G2/D: 95.28 (±28.13). Two-way ANOVA indicated no significant differences among different groups ( P >0.05); surface area ( P >0.05) and the interaction ( P >0.05). Overall, G2 had greater margin gaps than G1, however, without statistical difference ( P >0.05). Difference in milling unit generation did not significantly affect the marginal fit. Marginal gap means were in the range of the clinical acceptance levels for both generations of Cerec milling units, regardless the teeth site area. Key words: CAD/CAM, margin, ceramics.
Mortality and cancer morbidity among cement production workers: a meta-analysis.
Donato, Francesca; Garzaro, Giacomo; Pira, Enrico; Boffetta, Paolo
2016-11-01
To analyze overall and cause-specific mortality, especially from cancer, among cement production workers. Results from some epidemiological studies suggested an increased risk of overall mortality and of stomach cancer associated with employment in the cement production, but the presence of a hazard and, if present, the magnitude of a risk have not been precisely quantified. We conducted a systematic review and meta-analysis of data on mortality from all causes, cardiovascular or respiratory diseases, and cancer among cement workers. The literature search in PubMed and Scopus up to February 2016 and with appropriate keywords on mortality among cement workers revealed 188 articles which were screened. A total of 117 articles were reviewed in full text and 12 articles, referring to 11 study populations, were found to be relevant and of sufficient quality for further analysis. Meta-analyses were performed using a random-effects model. Eight cohort studies, one proportionate mortality study, and two case-control studies were identified. The summary RRs were 0.89 [95 % confidence interval (CI) 0.76-1.01] for all-cause mortality, 0.94 (95 %, CI 0.80-1.08) for cancer mortality, 1.07 (95 % CI 0.79-1.35) for lung cancer mortality, and 0.93 (95 % CI 0.70-1.17) for stomach cancer mortality, respectively. Significant heterogeneity in results was observed among studies. The present meta-analysis does not provide evidence of increased risk of overall mortality, as well as cancer, cardiovascular or respiratory mortality in relation to employment in cement production.
Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns.
Kale, Ediz; Seker, Emre; Yilmaz, Burak; Özcelik, Tuncer Burak
2016-12-01
Monolithic zirconia crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) have recently become a common practice for the restoration of posterior teeth. The marginal fit of monolithic zirconia crowns may be affected by different cement space parameters set in the CAD software. Information is scarce regarding the effect of cement space on the marginal fit of monolithic zirconia crowns fabricated with CAD-CAM technology. The purpose of this in vitro study was to evaluate the effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns before cementation. Fifteen right maxillary first molar typodont teeth with standardized anatomic preparations for complete-coverage ceramic crowns were scanned with a 3-dimensional laboratory scanner. Crowns were designed 3-dimensionally using software and then milled from presintered monolithic zirconia blocks in a computer numerical control dental milling machine. The cement space was set at 25 μm around the margins for all groups, and additional cement space starting 1 mm above the finish lines of the teeth was set at 30 μm for group 25-30, 40 μm for group 25-40, and 50 μm for group 25-50 in the CAD software. A total of 120 images (3 groups, 5 crowns per group, 8 sites per crown) were measured for vertical marginal discrepancy under a stereoscopic zoom microscope and the data were statistically analyzed with 1-way analysis of variance, followed by the Tukey honestly significant difference test (α=.05). The results showed that different cement space values had statistically significant effect on the mean vertical marginal discrepancy value of tested crowns (P<.001). The mean marginal discrepancy was 85 μm for group 25-30, 68 μm for group 25-40, and 53 μm for group 25-50. Within the limitations of this in vitro study, it was concluded that the cement space had a significant effect on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. The marginal fit improved as the cement space decreased. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Massin, N; Bohadana, A B; Wild, P; Kolopp-Sarda, M N; Toamain, J P
1995-06-01
Our goal was to assess the relation between dust exposure levels and the respiratory health status of workers in grain and flour mills in eastern France. We studied 118 male workers from 11 mills and 164 unexposed male controls. Dust concentration was measured by personal sampling methods. Outcome variables included respiratory symptoms, routine pulmonary function tests, and indices of airway responsiveness to methacholine. A great within- and between-area variability of inhalable dust concentration was found in all mills. A dose-response relationship was observed between dust exposure levels and chronic respiratory symptoms, suggesting that exposure to grain and flour dust may lead to chronic bronchitis. A significant relation was found between dust exposure and airway hyper-responsiveness; this finding is important since it has been hypothesized that the latter abnormality may lead to or be a predisposing factor in subsequent chronic, irreversible airflow obstruction.
Disability Pensions due to Skin Diseases: A Cohort Study in Swedish Construction Workers.
Meding, Birgitta; Wrangsjö, Karin; Burdorf, Alex; Järvholm, Bengt
2016-02-01
Disability pensions due to skin diseases in Swedish male construction workers were studied by linking data from pension registers and an occupational health service. Incidence rates of disability pensions for cement workers, painters and plumbers were compared with 2 control groups. A total of 623 disability pensions were granted during 4 decades of follow-up. The main diagnoses were eczema (36%) and psoriasis (49%). Pensions were mostly granted in the age range 55-64 years. Among painters, cement workers and plumbers the incidence rates for disability pensions were 33.3, 24.5 and 20.4 cases/100,000 person-years, respectively, compared with 13.7 and 9.2 cases/100,000 person-years in control groups. Relative risks were highest for eczema, and were notable for psoriasis. Attributable fractions for eczema were 90% in cement workers and painters and 75% in plumbers compared with control groups. Attributable fractions for psoriasis in the occupational groups studied were in the range 54-67%. In conclusion, eczema and psoriasis have a high impact on loss of work ability, as reflected by disability pensions.
Submicron particle monitoring of paving and related road construction operations.
Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra
2012-01-01
This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of paver ventilation systems; diesel fume engineering controls; reduced idling; provision of cabs for the operators; and improved dust suppression systems on the milling machine.
The yellowed archives of yellowcake.
Silver, K
1996-01-01
Extensive historical documentation of exposures and releases at government-owned energy facilities is a unique and valuable resource for analyzing and communicating health risks. Facilities at all stages of the atomic fuel cycle were the subject of numerous industrial hygiene, occupational health, and environmental assessments during the Cold War period. Uranium mines and mills on the Colorado Plateau were investigated as early as the 1940s. One such facility was the mill in Monticello, Utah, which began operation as a vanadium extraction plant in 1943 and was later adapted to recover uranium from carnotite ores. The mill ceased operation in 1960. The site was added to the federal Superfund list in 1986. ATSDR held public availability sessions in 1993 as part of its public health assessment process, at which several former mill workers voiced health concerns. An extensive literature search yielded several industrial hygiene evaluations of the Monticello mill and health studies that included Monticello workers, only two of which had been published in the peer-reviewed literature. In combination with the broader scientific literature, these historical reports provide a partial basis for responding to mill workers' contemporary health concerns. The strengths and limitations of the available exposure data for analytical epidemiologic studies and dose reconstruction are discussed. As an interim measure, the available historical documentation may be especially helpful in communicating about health risks with workers and communities in ways that acknowledge the historical context of their experience. Images p116-a p117-a p118-a PMID:8606907
Rana, Madhab Ch; Naskar, Somnath; Roy, Ramaprasad; Das, Dilip Kr; Das, Soumya
2018-01-01
Rice mill workers constitute a special group from the perspective of occupational health. Unprotected dust exposure among them adversely affects their respiratory health, which needs to be evaluated. Adequate evidence is still lacking in many parts of India including West Bengal. Burdwan is one of the main rice-producing districts in the state with abundant rice mills. The aim of the study was to find out the prevalence and pattern of respiratory morbidity and associated background characteristics of rice mill workers. A descriptive cross-sectional study was conducted at Burdwan municipality area during July-December 2016. Considering 44.2% prevalence, 95% confidence interval, 15% allowable error, 10% non-response, a sample of 252 directly engaged rice mill workers were selected through multistage random sampling. With prior consent, the subjects were interviewed, clinically examined, and underwent spirometry; relevant records were also reviewed using a pre-designed schedule. Any abnormal spirometry finding was considered as respiratory morbidity. Ethical approval was obtained from institutional ethics committee. Data were analyzed using SPSS version 20. Chi-square test and multiple logistic regression were applied. Prevalence of respiratory morbidity was 40.73% with obstructive and restrictive respiratory morbidity being 24.60% and 16.13%, respectively. Non-use of any protective measure, duration (years) of working in rice mill and average daily working hours were significant predictors of respiratory morbidity. Respiratory morbidity is quite high in the area. Proper health education and provision of personal protective equipments need to be provided.
Sagsoz, N Polat; Yanıkoglu, N
2018-04-01
The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P < 0.001). It is seen that cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.
Civil construction work: The unseen contributor to the occupational and global disease burden
Sitalakshmi, R.; Saikumar, P.; Jeyachandran, P.; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Background: Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. Aim: To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. Setting and Design: This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Statistical Analysis: Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Results: Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25–75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Conclusions: Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions. PMID:28194084
Civil construction work: The unseen contributor to the occupational and global disease burden.
Sitalakshmi, R; Saikumar, P; Jeyachandran, P; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25-75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions.
Removal of copper ions from aqueous solutions by a steel-making by-product.
López, F A; Martín, M I; Pérez, C; López-Delgado, A; Alguacil, F J
2003-09-01
A study is made of the use of a steel-making by-product (rolling mill scale) as a material for removing Cu(2+) ions from aqueous solutions. The influence of contact time, initial copper ion concentration and temperature on removal capability is considered. The removal of Cu(2+) ions from an aqueous solution involves two processes: on the one hand, the adsorption of Cu(2+) ions on the surface of mill scale due to the iron oxides present in the latter; and on the other hand, the cementation of Cu(2+) onto metallic iron contained in the mill scale. Rolling mill scale is seen to be an effective material for the removal of copper ions from aqueous solutions.
CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.
ERIC Educational Resources Information Center
Taylor, Mary Lou
This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…
The study on dynamic properties of monolithic ball end mills with various slenderness
NASA Astrophysics Data System (ADS)
Wojciechowski, Szymon; Tabaszewski, Maciej; Krolczyk, Grzegorz M.; Maruda, Radosław W.
2017-10-01
The reliable determination of modal mass, damping and stiffness coefficient (modal parameters) for the particular machine-toolholder-tool system is essential for the accurate estimation of vibrations, stability and thus the machined surface finish formed during the milling process. Therefore, this paper focuses on the analysis of ball end mill's dynamical properties. The tools investigated during this study are monolithic ball end mills with different slenderness values, made of coated cemented carbide. These kinds of tools are very often applied during the precise milling of curvilinear surfaces. The research program included the impulse test carried out for the investigated tools clamped in the hydraulic toolholder. The obtained modal parameters were further applied in the developed tool's instantaneous deflection model, in order to estimate the tool's working part vibrations during precise milling. The application of the proposed dynamics model involved also the determination of instantaneous cutting forces on the basis of the mechanistic approach. The research revealed that ball end mill's slenderness can be considered as an important milling dynamics and machined surface quality indicator.
2. LOOKING DOWN THE LINED POWER CANAL AS IT WINDS ...
2. LOOKING DOWN THE LINED POWER CANAL AS IT WINDS ITS WAY TOWARD THE CEMENT MILL Photographer: Walter J. Lubken, November 19, 1907 - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ
Energy-effective Grinding of Inorganic Solids Using Organic Additives.
Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J
2017-08-09
We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.
General view looking west of Middle Street in Riverview Mill ...
General view looking west of Middle Street in Riverview Mill village section of Valley. This worker housing was intended for operatives at the nearby Riverdale Cotton Mill (HAER No AL-166) - 35 Middle Street (House), 35 Middle Street, Valley, Chambers County, AL
Akhtar, Ali; Sarmah, Ajit K
2018-03-01
In this study, biochar, a carbonaceous solid material produced from three different waste sources (poultry litter, rice husk and pulp and paper mill sludge) was utilized to replace cement content up to 1% of total volume and the effect of individual biochar mixed with cement on the mechanical properties of concrete was investigated through different characterization techniques. A total of 168 samples were prepared for mechanical testing of biochar added concrete composites. The results showed that pulp and paper mill sludge biochar at 0.1% replacement of total volume resulted in compressive strength close to the control specimen than the rest of the biochar added composites. However, rice husk biochar at 0.1% slightly improved the splitting tensile strength with pulp and papermill sludge biochar produced comparable values. Biochar significantly improved the flexural strength of concrete in which poultry litter and rice husk biochar at 0.1% produced optimum results with 20% increment than control specimens. Based on the findings, we conclude that biochar has the potential to improve the concrete properties while replacing the cement in minor fractions in conventional concrete applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Formulation of portland composite cement using waste glass as a supplementary cementitious material
NASA Astrophysics Data System (ADS)
Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina
2017-09-01
Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.
20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET ...
10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET OF WINDOWS PROVIDE LIGHT FOR THE DELIVERY LEVEL. THE LOWER SETS OF WINDOWS PROVIDE LIGHT TO THREE STORY SPACE BENEATH THE DELIVERY LEVEL AND BEHIND THE ORE STORAGE BINS. NOTE THE ORE DELIVER TRESTLE AT THE TIME THE PHOTOGRAPH WAS TAKEN, THE MODERN CEMENT MIXER AND WHEELBARROWS WERE FOR THIS WORK. NOTE THE MORTAR BOXES ON THEIR SIDES. IT IS UNCLEAR IF THESE WERE FROM EARLIER STAMPS AT THIS MILL OR IF THEY WERE BROUGHT TO THE SITE FROM OTHER MILLS IN THE REGION. RISDON IRON WORKS IS CAST INTO THE MORTARS AND THEY ALSO BEAR A PLATE: WHITE, ROGERS AND CO. MILL WRIGHTS. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Corneal permeability for cement dust: prognosis for occupational safety
NASA Astrophysics Data System (ADS)
Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.
2018-02-01
The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.
Halioua, Bruno; Bensefa-Colas, Lynda; Crepy, Marie-Noëlle; Bouquiaux, Barbara; Assier, Haudrey; Billon, Stéphane; Chosidow, Olivier
2013-03-01
Active employees in the construction industry are particularly exposed to occupational cement eczema (OCE) which affects the hands in 80 to 90% of cases. The importance of OCE in France and the impact of the application of decree n(o). 2005-577 on 26 May 2005 were estimated from data collected by the Occupational risks division of the French national health insurance fund for salaried workers (CNAMTS). This decree prohibits the placing on the market and use of cement (and preparations containing it) with a chromium VI content above 0.0002% in order to reduce its hazardousness. All cases of OCE reported to and recognized by the CNAMTS between 1 January 2004 and 31 December 2008 among construction workers were selected. The following parameters were noted in each case: age, gender, industrial sector concerned, local French National health insurance agency, causal agent and the number of working days lost. The incidence per 100,000 salaried workers could be determined from the total number of salaried workers followed up by occupational medicine as well as those working in the construction industry. For the five years studied, 3698 cases of occupational eczema (OE) were reported in construction workers and this was 17.1% of the total number of cases of OE for all salaried employees (n=12.689). Cement was the causal agent most frequently involved in the construction sector (57.8%, 2139/3698). The annual incidence of OCE decreased from 37.8 to 21.1 new cases per 100,000 employees in the construction industry per year between 2004 and 2008. The total number of days lost from work due to OCE decreased by 39% during the study period. This descriptive study highlights the importance and socio-economic impact of OCE in the construction industry. Application of decree n(o). 2005-577 on 26 May 2005 may explain a reduction in OCE. Copyright © 2012. Published by Elsevier Masson SAS.
Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming
2018-02-01
Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.
3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...
3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Job Tasks as Determinants of Thoracic Aerosol Exposure in the Cement Production Industry.
Notø, Hilde; Nordby, Karl-Christian; Skare, Øivind; Eduard, Wijnand
2017-12-15
The aims of this study were to identify important determinants and investigate the variance components of thoracic aerosol exposure for the workers in the production departments of European cement plants. Personal thoracic aerosol measurements and questionnaire information (Notø et al., 2015) were the basis for this study. Determinants categorized in three levels were selected to describe the exposure relationships separately for the job types production, cleaning, maintenance, foreman, administration, laboratory, and other jobs by linear mixed models. The influence of plant and job determinants on variance components were explored separately and also combined in full models (plant&job) against models with no determinants (null). The best mixed models (best) describing the exposure for each job type were selected by the lowest Akaike information criterion (AIC; Akaike, 1974) after running all possible combination of the determinants. Tasks that significantly increased the thoracic aerosol exposure above the mean level for production workers were: packing and shipping, raw meal, cement and filter cleaning, and de-clogging of the cyclones. For maintenance workers, time spent with welding and dismantling before repair work increased the exposure while time with electrical maintenance and oiling decreased the exposure. Administration work decreased the exposure among foremen. A subjective tidiness factor scored by the research team explained up to a 3-fold (cleaners) variation in thoracic aerosol levels. Within-worker (WW) variance contained a major part of the total variance (35-58%) for all job types. Job determinants had little influence on the WW variance (0-4% reduction), some influence on the between-plant (BP) variance (from 5% to 39% reduction for production, maintenance, and other jobs respectively but an 79% increase for foremen) and a substantial influence on the between-worker within-plant variance (30-96% for production, foremen, and other workers). Plant determinants had little influence on the WW variance (0-2% reduction), some influence on the between-worker variance (0-1% reduction and 8% increase), and considerable influence on the BP variance (36-58% reduction) compared to the null models. Some job tasks contribute to low levels of thoracic aerosol exposure and others to higher exposure among cement plant workers. Thus, job task may predict exposure in this industry. Dust control measures in the packing and shipping departments and in the areas of raw meal and cement handling could contribute substantially to reduce the exposure levels. Rotation between low and higher exposed tasks may contribute to equalize the exposure levels between high and low exposed workers as a temporary solution before more permanent dust reduction measures is implemented. A tidy plant may reduce the overall exposure for almost all workers no matter of job type. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Determination of the boundary conditions of the grinding load in ball mills
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.
Cotton worker's lung; Cotton bract disease; Mill fever; Brown lung disease; Monday fever ... to reduced lung function. In the United States, worker's compensation may be available to people with byssinosis.
Main elevation of Lincoln School (built 1928) utilized by the ...
Main elevation of Lincoln School (built 1928) utilized by the children of Lincoln Mill workers living the surrounding mill housing neighborhood - Lincoln School, 1110 Meridian Street, Huntsville, Madison County, AL
Code of Federal Regulations, 2012 CFR
2012-07-01
...: (i) Coal cleaning plants (with thermal dryers); (ii) Kraft pulp mills; (iii) Portland cement plants... plants; (xii) Phosphate rock processing plants; (xiii) Coke oven batteries; (xiv) Sulfur recovery plants...) totaling more than 250 million British thermal units per hour heat input; (xxii) Petroleum storage and...
Code of Federal Regulations, 2012 CFR
2012-07-01
...: (i) Coal cleaning plants (with thermal dryers); (ii) Kraft pulp mills; (iii) Portland cement plants... plants; (xii) Phosphate rock processing plants; (xiii) Coke oven batteries; (xiv) Sulfur recovery plants...) totaling more than 250 million British thermal units per hour heat input; (xxii) Petroleum storage and...
Properties of cement based composites modified using diatomaceous earth
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek
2017-07-01
Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.
Cancer incidence among male pulp and paper workers in Norway.
Langseth, H; Andersen, A
2000-04-01
The study investigated cancer incidence among 23,718 male pulp and paper workers employed continuously for at least 1 year between 1920 and 1993 in Norway. The name, date of birth, personal identification number, dates of hire and termination for all employment periods, specific department, and job categories were registered for each worker. Six subcohorts were established (sulfite mill, sulfate mill, paper mill, maintenance department, administrative staff and other departments). Data on the cohort were linked with data in the Norwegian Cancer Register. The follow-up period for cancer incidence, date of death, or emigration was from 1953 through 1993. An excess incidence of lung cancer was found among both short- and long-term employees [standardized incidence ratio (SIR) 1.5, 95% confidence interval (95% CI) 1.13-2.03 and SIR 1.2, 95% CI 1.09-1.34, respectively], especially for workers with the longest latency (SIR 1.3, 95% CI 1.08-1.44) and for sulfite mill workers (SIR 1.5, 95% CI 1.09-1.99). The risk for pleural mesothelioma was also increased (SIR 2.4, 95% CI 1.45-3.75), especially among maintenance workers. The results also showed an increased risk for malignant melanoma (SIR 1.3, 95% CI 1.04-1.60), an unexpected finding. Almost all the increased risk for lung cancer can be explained by a combination of smoking habits and asbestos use. although an effect of other work-related exposures (sulfur and chloride compounds, wood dust) cannot be excluded. Most of the cases of pleural mesothelioma occurred in departments where asbestos was used. There is no clear explanation for the excess of malignant melanoma, and the finding may be a chance occurrence.
Pernicious anaemia in the textile industry.
Roman, E; Beral, V; Sanjose, S; Schilling, R; Watson, A
1991-05-01
The objective was to examine whether the observed excess mortality from anaemia in textile and clothing workers was associated with any specific anaemia type or occupational activity. The design was a death certificate based case-control study of textile and clothing workers who died in England and Wales in the years surrounding the decennial censuses of 1961, 1971, and 1981. The main outcome measures were type of anaemia, place of residence, place of birth, and occupation. The frequency of the different types of anaemia in textile and clothing workers differed from that of England and Wales with relatively more deaths from pernicious anaemia than in the country as a whole (74 observed v 55 expected deaths). Within the industry, those whose death was attributed to pernicious anaemia were more than twice as likely as other textile and clothing workers to have worked in textile mills (odds ratio = 2.4, 95% confidence interval 1.4-4.2). These results could not be explained by age, sex, place of residence, or place of birth, and review of the death certificates did not suggest that pernicious anaemia as a cause of death had been recorded in error. Historical support for the finding was found in the Registrar General's 1931 decennial supplement on occupational mortality, in which the standardised mortality ratio from pernicious anaemia in male textile mill workers was estimated to be twice that of the general population. In conclusion, occupational factors, specifically work in textile mills, could be implicated in the pathogenesis of pernicious anaemia. The aetiology of this disease is not well understood and further study of pernicious anaemia in textile mill workers is required.
Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.
1982-08-01
Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance
Kaleli, Necati; Saraç, Duygu
2017-05-01
Marginal adaptation plays an important role in the survival of metal-ceramic restorations. Porcelain firings and cementation may affect the adaptation of restorations. Moreover, conventional casting procedures and casting imperfections may cause deteriorations in the marginal adaptation of metal-ceramic restorations. The purpose of this in vitro study was to compare the marginal adaptation after fabrication of the framework, porcelain application, and cementation of metal-ceramic restorations prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and LaserCUSING, a direct process powder-bed system. Alterations in the marginal adaptation of the metal frameworks during the fabrication stages and the precision of fabrication methods were evaluated. Forty-eight metal dies simulating prepared premolar and molar abutment teeth were fabricated to investigate marginal adaptation. They were divided into 4 groups (n=12) according to the fabrication method used (group C serving as the control group: lost-wax method; group M: milling method; group LS: DMLS method; group DP: direct process powder-bed method). Sixty marginal discrepancy measurements were recorded separately on each abutment tooth after fabrication of the framework, porcelain application, and cementation by using a stereomicroscope. Thereafter, each group was divided into 3 subgroups according to the measurements recorded in each fabrication stage: subgroup F (framework), subgroup P (porcelain application), and subgroup C (cementation). Data were statistically analyzed with univariate analysis of variance (followed by 1-way ANOVA and Tamhane T2 test (α=.05). The lowest marginal discrepancy values were observed in restorations prepared by using the direct process powder-bed method, and this was significantly different (P<.001) from the other methods. The highest marginal discrepancy values were recorded after the cementation procedure in all groups. The results showed that the direct process powder-bed method is quite successful in terms of marginal adaptation. The marginal discrepancy increased after porcelain application and cementation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet
2013-01-30
This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip
2017-04-01
Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.
[Bronchogenic carcinoma of the lungs in 3 workers with asbestosis employed in the same factory].
Herceg, Z; Herceg, K; Car, Z; Remskar, Z; Kovac, S; Beritić, T
1989-01-01
In two female workers (nonsmokers) and in one male worker (a smoker) employed in the same mill with a history of asbestosis, bronchogenic lung carcinoma type adenocarcinoma (women), respectively anaplastic carcinoma (a man) had developed. All the three patients worked in the same area in a spinning-mill. The duration of exposure to asbestos was relatively short (10 to 15 years) in female workers, while the duration of exposure to asbestos was much longer in a male worker (29 years), although it was intermittent. Dyspnea was the main and the only discomfort. In accordance with the International Labour Organization (ILO) classification, a chest radiograph revealed the lesions of s/t 1/2 and s/t 2/1 features. There was also a ventilation deficit (very decreased carbon monoxide diffusing capacity).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, S.J.
1996-07-31
This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbentsmore » were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.« less
Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
Neira, Inés S; Kolen'ko, Yury V; Kommareddy, Krishna P; Manjubala, Inderchand; Yoshimura, Masahiro; Guitián, Francisco
2010-11-01
A series of biocomposite materials was successfully prepared by reinforcing advanced calcium phosphate cement with hydroxyapatite fibrous and elongated plate-like particles. Powder X-ray diffraction showed that ball-milled biocomposite precursors (dicalcium and tetracalcium phosphates) entirely transform to a single phase hydroxyapatite end product within 7 h at 37 °C. Electron microscopy showed that the resultant biocomposites are constituted of nanoscaled cement particles intimately associated with the reinforcement crystals. The influence of shape, size, and concentration of the hydroxyapatite filler on the compression strength of reinforced cements is discussed. The best compression strength of 37 ± 3 MPa (enhancement of ∼50% compared to pure cement) was achieved using submicrometer-sized hydroxyapatite crystals with complementary shapes. Nanoindentation revealed that averaged elastic modulus and hardness values of the cements are consistent with those reported for trabecular and cortical human bones, indicating a good match of the micromechanical properties for their potential use for bone repair. The stiffness of the biocomposites was confirmed to gradate-compliant cement matrix, cement-filler interface, and stiff filler-as a result of the structuring at the nanometer-micrometer level. This architecture is critical in conditioning the final mechanical properties of the functional composite biomaterial. In vitro cell culture experiments showed that the developed biomaterial system is noncytotoxic.
Job-Quitting at Appalachain Sawmills
Charles H. Wolf
1977-01-01
Labor turnover in hardwood sawmills of the Appalachian Region was studied by using data collected during interviews with 68 mill managers. Job-quitting was highest among young unskilled workers who had less than 6 months of service with their employers. Half of the mills surveyed had annual quit rates of more than 100 percent. Variation among mills was associated with...
Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.
Collivignarelli, Carlo; Sorlini, Sabrina
2002-01-01
This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.
Kirgiz, Mehmet Serkan
2014-01-01
Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737
Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.
Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin
2016-02-18
In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.
Caustic ulcers caused by cement aqua: report of a case.
Machovcova, Alena
2010-01-01
Chromium is widely used in various industries including construction sector. Skin contact with cement has been associated with allergic or irritant contact dermatitis. Contact dermatitis is one of the most frequently reported health problems among construction workers. Irritant contact dermatitis from cement ranges from cement burns to cumulative irritant contact dermatitis. Cement burns are rarely reported and are considered a severe form of acute irritant contact dermatitis. They are associated with amateur user working in a short ready-mix time-frame with poor protective measures. They usually result in significant morbidity and initially are associated with minimal discomfort. We report a typical case.
Dahl, Bjørn E; Dahl, Jon E; Rønold, Hans J
2018-02-01
Suboptimal adaptation of fixed dental prostheses (FDPs) can lead to technical and biological complications. It is unclear if the computer-aided design/computer-aided manufacturing (CAD/CAM) technique improves adaptation of FDPs compared with FDPs made using the lost-wax and metal casting technique. Three-unit FDPs were manufactured by CAD/CAM based on digital impression of a typodont model. The FDPs were made from one of five materials: pre-sintered zirconium dioxide; hot isostatic pressed zirconium dioxide; lithium disilicate glass-ceramic; milled cobalt-chromium; and laser-sintered cobalt-chromium. The FDPs made using the lost-wax and metal casting technique were used as reference. The fit of the FDPs was analysed using the triple-scan method. The fit was evaluated for both single abutments and three-unit FDPs. The average cement space varied between 50 μm and 300 μm. Insignificant differences in internal fit were observed between the CAD/CAM-manufactured FDPs, and none of the FPDs had cement spaces that were statistically significantly different from those of the reference FDP. For all FDPs, the cement space at a marginal band 0.5-1.0 mm from the preparation margin was less than 100 μm. The milled cobalt-chromium FDP had the closest fit. The cement space of FDPs produced using the CAD/CAM technique was similar to that of FDPs produced using the conventional lost-wax and metal casting technique. © 2017 Eur J Oral Sci.
1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS ...
1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND TWO IDENTICAL STRUCTURES VISIBLE TO THE LEFT. - 209 Ware Street (House), 209 Ware Street, La Grange, Troup County, GA
The fatigue behavior of an amorphous brittle composite material
NASA Astrophysics Data System (ADS)
Kumar, Brijesh
The use of poly methyl methacrylate (PMMA) based bone cement as a grouting agent for the in-vivo fixation of orthopaedic implants has been in practice for nearly fifty years. Fatigue failure of the bone cement has been identified as the primary cause of cement failure. Implant loosening due to the failure of the cement is one of the major reasons necessitating revision surgery. The need for a more fatigue resistant bone cement is well documented in the literature. One method of producing a more fatigue resistant bone cement is to reinforce it with short fibers. The fundamental purpose of this work was to investigate the possible improvement of the fatigue characteristics of bone cement provided by the following two types of fiber reinforcements: short flexible Polyethylene Terephalate (PET) fibers and stiff milled carbon fibers. It has been shown that the reinforcement of the bone cement with fibers provides substantial improvement of the fracture toughness of the bone cement. In this investigation the impact of fiber reinforcement on the fatigue properties of the bone cement was studied. The effects of the fiber reinforcement on the fatigue life of bone cement has been determined experimentally. Since fatigue characteristics are known to have considerable scatter, a methodology was developed to analyze the experimental data in a statistically rigorous manner. The effect of the fiber reinforcement on bone cement was also analyzed using a theoretical approach and by conducting extensive Scanning Electron Microscopy (SEM) of the fractured surfaces. The results of this study indicate that fiber reinforcement improves the fatigue life of bone cement at a very high level of reliability. This could potentially lead to a more fatigue tolerant bone cement, which would delay the need for revision surgery due to implant loosening.
Using of Stone Flour from Some Mineral Rocks in Modern Concrete
NASA Astrophysics Data System (ADS)
Roman, Moskvin; Elena, Belyakova; Marina, Moroz
2018-03-01
There is shown the possibility of using mill ground rocks in SCC without deterioration of rheological properties of concrete mixtures. Obtained high-strength concrete of the new generation with high technical and economic indices and low unit costs per unit of cement strength.
NASA Astrophysics Data System (ADS)
Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.
2018-04-01
Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.
1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON ...
1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON RIGHT) LOOKING WEST. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND IDENTICAL STRUCTURES FACING EACH OTHER ALONG BOTH SIDES OF THE NARROW STREET. - 208 Vine Street (House), 208 Vine Street, La Grange, Troup County, GA
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
2013-01-01
Background Occupational exposure to irritants is associated with chronic bronchitis. The aim of this study was to elucidate whether repeated peak exposures with respiratory symptoms, gassings, to sulphur dioxide (SO2) and other irritant gases could increase the risk of chronic bronchitis. Methods The study population comprised 3,060 Swedish pulp mill workers (84% males) from a cohort study, who completed a comprehensive questionnaire with items on chronic bronchitis symptoms, smoking habit, occupational history, and specific exposures, including gassings. 2,037 have worked in sulphite mills. Incidence rates and hazard ratios (HRs) for the observation period, 1970–2000, in relation to exposure and the frequency of repeated gassings to SO2 and other irritant gases were calculated. Results The incidence rate for chronic bronchitis among workers with repeated gassings was 3.5/1,000 person-years compared with 1.5/1,000 person-years among unexposed workers (HR 2.1, 95% confidence interval (CI) 1.4-3.1). The risk was even higher in the subgroup with frequent gassings (HR 3.2, 95% CI 2.0-5.2), particularly among never-smokers (HR 8.7, 95% CI 3.5-22). Conclusions Repeated gassings to irritant gases increased the incidence of chronic bronchitis in our study population during and after work in pulp mills, supporting the hypothesis that occupational exposures to irritants negatively affect the airways. These results underscore the importance of preventive actions in this work environment. PMID:24354705
Loading capacity of zirconia implant supported hybrid ceramic crowns.
Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens
2015-12-01
Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
van der Walt, Anita; Lopata, Andreas L; Nieuwenhuizen, Natalie E; Jeebhay, Mohamed F
2010-01-01
Three spice mill workers developed work-related allergy and asthma after prolonged exposure to high levels (>10 mg/m(3)) of inhalable spice dust. Patterns of sensitization to a variety of spices and putative allergens were identified. Work-related allergy and asthma were assessed on history, clinical evaluation, pulmonary function and fractional exhaled nitric oxide. Specific IgE reactivity to a range of common inhalant, food and spice allergens was evaluated using ImmunoCAP and allergen microarray. The presence of non-IgE-mediated reactions was determined by basophil stimulation (CAST-ELISA). Specific allergens were identified by immunoblotting to extracts of raw and dried processed garlic, onion and chili pepper. Asthma was confirmed in all 3 subjects, with work-related patterns prominent in worker 1 and 3. Sensitization to multiple spices and pollen was observed in both atopic workers 1 and 2, whereas garlic and chili pepper sensitization featured in all 3 workers. Microarray analysis demonstrated prominent profilin reactivity in atopic worker 2. Immunoblotting demonstrated a 50-kDa cross-reactive allergen in garlic and onion, and allergens of approximately 40 and 52 kDa in chili pepper. Dry powdered garlic and onion demonstrated greater IgE binding. This study demonstrated IgE reactivity to multiple spice allergens in workers exposed to high levels of inhalable spice dust. Processed garlic and onion powder demonstrated stronger IgE reactivity than the raw plant. Atopy and polysensitization to various plant profilins, suggesting pollen-food syndrome, represent additional risk factors for sensitizer-induced work-related asthma in spice mill workers. 2010 S. Karger AG, Basel.
Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti
2002-01-01
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... includes in situ lung cancers. (m) Readily available documentation means documents in the possession... or functional damage to the kidney tubules that results in renal disease and dysfunction. (g) Miller or uranium mill worker means a person who operated or otherwise worked in a uranium mill. (h...
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes in situ lung cancers. (m) Readily available documentation means documents in the possession... or functional damage to the kidney tubules that results in renal disease and dysfunction. (g) Miller or uranium mill worker means a person who operated or otherwise worked in a uranium mill. (h...
40 CFR 63.1201 - Definitions and acronyms used in this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Definitions and acronyms used in this... manager, and other necessary components and electrical circuitry designed, operated and maintained to stop... kiln raw mill means a hazardous waste burning cement kiln design whereby kiln gas is ducted through the...
40 CFR 63.1201 - Definitions and acronyms used in this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Definitions and acronyms used in this... manager, and other necessary components and electrical circuitry designed, operated and maintained to stop... kiln raw mill means a hazardous waste burning cement kiln design whereby kiln gas is ducted through the...
Performance of CAD/CAM fabricated fiber posts in oval-shaped root canals: An in vitro study.
Tsintsadze, Nino; Juloski, Jelena; Carrabba, Michele; Tricarico, Marella; Goracci, Cecilia; Vichi, Alessandro; Ferrari, Marco; Grandini, Simone
2017-10-01
To assess the push-out strength, the cement layer thickness and the interfacial nanoleakage of prefabricated fiber posts, CAD/CAM fiber posts and metal cast posts cemented into oval-shaped root canals. Oval-shaped post spaces were prepared in 30 single-rooted premolars. Roots were randomly assigned to three groups (n=10), according to the post type to be inserted: Group 1: Prefabricated fiber post (D.T. Light-Post X-RO Illusion); Group 2: Cast metal post; Group 3: CAD/CAM-fabricated fiber post (experimental fiber blocks). In Group 3, post spaces were sprayed with scan powder (VITA), scanned with an inEos 4.2 scanner, and fiber posts were milled using an inLab MC XL CAD/CAM milling unit. All posts were cemented using Gradia Core dual-cure resin cement in combination with Gradia core self-etching bond (GC). After 24 hours, the specimens were sectioned perpendicular to the long axis into six 1 mm-thick sections, which were differentiated by the root level. Sections from six roots per group were used to measure the cement thickness and subsequently for the thin-slice push-out test, whereas the sections from the remaining four teeth were assigned to interfacial nanoleakage test. The cement thickness around the posts was measured in micrometers (µm) on the digital images acquired with a digital microscope using the Digimizer software. Thin-slice push-out test was conducted using a universal testing machine at the crosshead speed of 0.5 mm/minute and the bond strength was expressed in megaPascals (MPa). The interfacial nanoleakage was observed under light microscope and quantified by scoring the depth of silver nitrate penetration along the post-cement-dentin interfaces. The obtained results were statistically analyzed by Kruskal-Wallis ANOVA, followed by the Dunn's Multiple Range test for post hoc comparisons. The level of significance was set at P< 0.05. Statistically significant differences were found among the groups in push-out bond strength, cement thickness and interfacial nanoleakage (P< 0.05). CAD/CAM-fabricated fiber posts achieved retention that was comparable to that of cast metal posts and significantly higher than that of prefabricated fiber posts. The cement layer thickness around CAD/CAM-fabricated fiber posts was significantly lower than around prefabricated fiber posts, but higher than that around cast metal posts. Root level was not a significant factor for push-out strength in any of the groups, whereas it significantly affected cement layer thickness only in the prefabricated fiber post group. No differences were observed in interfacial nanoleakage between CAD/CAM fabricated and prefabricated fiber posts, while nanoleakage recorded in cast metal posts was significantly lower. CAD/CAM fabricated fiber posts could represent a valid alternative to traditionally used posts in the restoration of endodontically-treated teeth with oval or wide root canals, offering the advantages of better esthetics, retention, and cement thickness values that are comparable to cast post and cores.
1. EXTERIOR VIEW OF 1103 TROUP STREET FROM WEST/NORTHWEST. THIS ...
1. EXTERIOR VIEW OF 1103 TROUP STREET FROM WEST/NORTHWEST. THIS STRUCTURE WAS BUILT AS WORKER HOUSING FOR THE HILLSIDE COTTON MILL BUILT BY CALLAWAY MILLS IN SOUTHWEST LaGRANGE, 1914-15. - 1103 Troup Street (House), 1103 Troup Street, La Grange, Troup County, GA
Effects of Metric Change on Workers’ Tools and Training.
1981-07-01
understanding of the metric system, and particularly a lack of fluency in converting customary measurements to metric measuremerts, may increase the...assembly, installing, and repairing occupations 84 Painting, plastering, waterproofing, cementing , and related occupations 85 Excavating, grading... cementing , and related occupations 85 Excavating, grading, paving, and related occupations 86 Construction occupations, n.e.c. 89 Structural work
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Division, Product Engineering, Including On-Site Leased Workers of Aerotek Contract Engineering, Allied Personnel Services, Eastern Engineering, Hobbie Professional Services, Mccallion Staffing Specialists, Peak Technical Services, Inc., Yoh Engineering, and Clarke Consulting, Inc., Bethlehem, PA; Amended Certification...
Engineering and sustainability aspect of palm oil shell powder in cement
NASA Astrophysics Data System (ADS)
Karim, Mohammad Razaul; Hossain, Md. Moktar; Yusoff, Sumiani Binti
2017-06-01
Palm oil shell (POS) is a waste material which significantly produced in palm oil mills. In current practice, this waste is dumped in open land or landfill sites or is used as fuel to run a steam turbine of a boiler, which leads to environmental pollutions. The characterization, engineering and sustainability aspect of this waste for using in cement-based applications lead to reduce the emission of carbon dioxide and cost, save natural resources for cement production and also sustainable usage of waste material. The characterization was carried out using particle size analyzer, XRF, SEM and total organic carbon analyzer. ASTM standard methods were used to observe the setting time and water for normal consistency. The compressive strength of palm oil shell powder (POSP) blended cement was explored with the water to cement and cement to sand ratio of 0.40 and 0.50, respectively up to 40% replacement levels of OPC. Result found that the setting time and water demand were increased, but compressive strength was decreased to replacement levels. However, the incorporation of POSP in cement was reduced 9.6% of CO2 emission, 25 % of the cost and save natural resource, i.e. limestone, clay, iron ore, silica shale and gypsum of 35.1%, 4.95%, 0.9%, 4.05 % and 1.2 %, respectively at 30% replacement level of OPC. The results of this extensive study on POSP characterization, effect on basic cement properties and sustainability aspect provide the guidance for using the POSP at industrial scale for cement production.
Retention of long-term interim restorations with sodium fluoride enriched interim cement
NASA Astrophysics Data System (ADS)
Strash, Carolyn
Purpose: Interim fixed dental prostheses, or "provisional restorations", are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested. Retentive strength of each cement was recorded using a universal testing machine. Results: TempBond NE and NexTemp cements performed similarly when tested after 24h. The addition of Duraphat significantly decreased the retention when added to TempBond NE. NexTemp cement had high variability in retention over all tested time periods. Thermocycling for 2500 and 5000 cycles significantly decreased the retention of all cements. Conclusions: The addition of Duraphat fluoride varnish significantly decreased the retention of TempBond NE and is therefore not recommended for clinical use. Thermocycling significantly reduced the retention of TempBond NE and NexTemp. This may suggest that use of these cements for three months, as simulated in this study, is not recommended.
Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi
2016-01-01
As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.
Advocacy Week: A Model to Prepare Clinical Social Workers for Lobby Day
ERIC Educational Resources Information Center
Kilbane, Teresa; Pryce, Julia; Hong, Philip Young P.
2013-01-01
Legislative advocacy is an important and long-standing skill in social work. However, this role cannot be left solely to social workers who specialize in macro and policy practice. Rather, clinical social workers who assist clients as they face "private" troubles (Mills, 1959) also need to face the structural barriers that contribute to…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any... Production 327310 Portland cement manufacturing plants. CO2 Enhanced Oil and Gas Recovery 211 Oil and gas... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead...
Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures
NASA Astrophysics Data System (ADS)
Kara, P.; Csetényi, L. J.; Borosnyói, A.
2016-04-01
In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.
Casing window milling with abrasive fluid jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.
1995-12-31
Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less
Mechanical properties of cement concrete composites containing nano-metakaolin
NASA Astrophysics Data System (ADS)
Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana
2017-11-01
The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.
The local impact of globalization: worker health and safety in Mexico's sugar industry.
Lemus-Ruiz, B E
1999-01-01
With the opening of its economy to international trade, the government of Mexico privatized many of its productive holdings, including the state-owned sugar industry. Sugar cane and mill workers had played an important role in the armed struggles of the revolutionary period (1910-1917). Organized into a militant labor union, they had become staunch supporters of the new government in the following decades. Furthermore, in the early years of industrialization, the sugar industry was very important for the Mexican economy, and the union played an active role in the political arena. Since the privatization of the sugar mills, the sugar workers have experienced a dramatic reorganization of the work process, and industry-union relationships are being reshaped. This paper offers an analysis of the impact of the privatization on workers' health and safety. Since the economic and social changes in the work process have a direct impact on the community as a whole, the study also explores these effects.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... determinations for a Portland cement plant and a paper mill and proposed Federal limits for those two facilities... principles bearing on whether the feasibility of low NO X burners in other industries suggests that low NO X... demonstrated in several other industries, were likely to be a successful technology for reducing NO X emissions...
Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand
2016-05-01
The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the fractions. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco
2016-01-01
Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822
Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco
2016-01-01
The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.
van der Walt, Anita; Singh, Tanusha; Baatjies, Roslynn; Lopata, Andreas Ludwig; Jeebhay, Mohamed Fareed
2013-07-01
The aim of the study was to determine the prevalence and risk factors for allergic respiratory disease in spice mill workers. A cross-sectional study of 150 workers used European Community Respiratory Health Survey questionnaires, Phadiatop, serum specific IgE (garlic, chili pepper), spirometry and fractional exhaled nitric oxide (FeNO). Personal air samples (n=62) collected from eight-hour shifts were analysed for inhalable particulate mass. Novel immunological assays quantified airborne garlic and chili pepper allergen concentrations. Mean dust particulate mass (geometric mean (GM)=2.06 mg/m(3)), chili pepper (GM=0.44 µg/m(3)) and garlic allergen (GM=0.24 µg/m(3)) were highest in blending and were highly correlated. Workers' mean age was 33 years, 71% were men, 46% current smokers and 45% atopic. Spice-dust-related asthma-like symptoms (17%) were common, as was garlic sensitisation (19%), with 13% being monosensitised and 6% cosensitised to chili pepper. Airflow reversibility and FeNO>50 ppb was present in 4% and 8% of workers respectively. Spice-dust-related ocular-nasal (OR 2.40, CI 1.09 to 5.27) and asthma-like (OR 4.15, CI 1.09 to 15.72) symptoms were strongly associated with airborne garlic in the highly exposed (>0.235 µg/m(3)) workers. Workers monosensitised to garlic were more likely to be exposed to higher airborne chili pepper (>0.92 µg/m(3)) (OR 11.52, CI 1.17 to 113.11) than garlic allergens (OR 5.08, CI 1.17 to 22.08) in this mill. Probable asthma was also more strongly associated with chili pepper than with garlic sensitisation. Exposure to inhalable spice dust (GM >2.06 mg/m(3)) containing garlic (GM>0.24 µg/m³) and chili pepper (GM >0.44 µg/m(3)) allergens increase the risk of allergic respiratory disease and asthma.
Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi
2016-01-01
Background or Statement of Problem: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. Aims and Objectives: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Methodology: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann–Whitney U-test, Kruskal–Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Results: Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage. PMID:27134427
Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola
2018-01-01
The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296
El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T
2015-09-01
Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.
Uzgur, Recep; Ercan, Ertuğrul; Uzgur, Zeynep; Çolak, Hakan; Yalçın, Muhammet; Özcan, Mutlu
2016-08-12
To evaluate the marginal and internal cement thicknesses of inlay restorations made of various CAD/CAM materials using 3D X-ray micro-computed tomography (micro-CT) technique. Caries-free extracted mandibular molars (N = 30) with similar size were randomly assigned to three groups (N = 10 per group). Mesio-occlusal-distal (MOD) cavities were prepared, and inlay restorations were obtained by milling out CAD/CAM materials namely, (a) IPS: monolithic lithium disilicate (control), (b) VE: polymer-infiltrated ceramic, and (c) CS: nano-ceramic using a CAM unit. Marginal and internal cement thicknesses were measured using 3D micro-CT. Data were analyzed using 1-way ANOVA and Tukey's tests (alpha = 0.05). The mean marginal and internal cement thickness were not significant in all inlay materials (p > 0.05). Mean marginal cement thickness (μm) was the lowest for the IPS group (67.54 ± 10.16) followed by VE (84.09 ± 3.94) and CS (95.18 ± 10.58) (p > 0.05). The internal cement thickness (μm) was the lowest in the CS group (54.85 ± 6.94) followed by IPS (60.58 ± 9.22) and VE (77.53 ± 12.13) (p > 0.05). Marginal and internal cement thicknesses of MOD inlays made of monolithic lithium disilicate, polymer-infiltrated ceramic, and nano-ceramic CAD/CAM materials were similar and all less than 100 μm, which could be considered clinically acceptable. MOD inlays made of different CAD/CAM materials presented similar cement thickness, less than 100 μm. © 2016 by the American College of Prosthodontists.
Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.
Kassem, Amr S; Atta, Osama; El-Mowafy, Omar
2012-01-01
The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.
Fracture load of ceramic restorations after fatigue loading.
Baladhandayutham, Balasudha; Lawson, Nathaniel C; Burgess, John O
2015-08-01
A clinician must decide what ceramic coping and veneer material to prescribe based on the amount of tooth reduction possible and the desired esthetic outcome of the restoration. The purpose of this in vitro study was to compare the fracture strength of monolithic and bilayered lithium disilicate (IPS e.max) and zirconia (LAVA) crowns at clinically relevant thicknesses after load cycling. Crowns (n=8) were fabricated from 6 groups: 1.2-mm monolithic lithium disilicate, 1.5-mm monolithic lithium disilicate, 1.5-mm bilayered lithium disilicate with hand-layered veneer, 0.6 mm monolithic zirconia, 1.2-mm bilayered zirconia with hand-layered veneer, and 1.2-mm bilayered zirconia with milled veneer (dimension represents thickness at the occlusal pit). Crowns were cemented to identical milled resin dies with resin-modified glass ionomer cement. Cemented crowns were stored at 37°C for 24 hours and load cycled for 200,000 cycles at 25 N at a rate of 40 cycles/minute. The ultimate fracture load for each specimen was measured in a universal testing machine. Data were analyzed with a 1-way ANOVA and Tukey honest significant difference post hoc analysis (α=.05). Mean ±SD fracture load values were 1465 ±330 N for monolithic lithium disilicate (1.2-mm thickness) and 2027 ±365 N (1.5-mm thickness) and 1732 ±315 N for bilayered hand-veneered lithium disilicate (1.5-mm thickness). Fracture loads were 1669 ±311 N for monolithic zirconia crowns (0.6mm thickness), 2625 ±300 N for zirconia milled-veneered (1.2-mm thickness), and 2655 ±590N for zirconia hand-veneered crowns (1.2mm thickness). One-way ANOVA showed a statistically significant difference among the groups (P<.01). Veneered zirconia crowns showed the highest fracture strength, 1.2-mm hand veneered zirconia was similar to that of 1.5-mm monolithic zirconia, and all other groups were not statistically different. Crowns of 1.2-mm bilayered zirconia had higher fracture loads than 0.6-mm zirconia or 1.2-mm lithium disilicate monolithic crowns. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Sett, Moumita; Sahu, Subhashis
2012-01-01
Work-related problems, many of which could be prevented with proper ergonomic techniques are particularly common in developing countries. The aim of this study was to evaluate the work stress and the development of the work-related musculoskeletal disorders (WRMSDs) of workers employed in the jute mills of India. About 219 male workers engaged in different departments of three jute industries in 24-Parganas (North) and Hooghly districts of West Bengal, India volunteered for this study. Questionnaires along with direct observation of work postures were conducted. Physical parameters such as body weight, height; physiological parameters like heart rate response, blood pressure and psycho-physiological parameters such as perceived exertion rating were studied during different tasks performed by them. It was observed that the 'hacklers' are mostly stressed. Analyses of working postures (OWAS) suggested that their adopted awkward postures were very stressful. A large number of hacklers (92.5% suffer from intense pain in different body parts as compared to workers in other departments of the jute industries. Workers report that the pain even lasts many hours after work. Since most of the workers perform repetitive tasks, so both the workplace as well as the work-rest schedule must be reorganized.
Öztürk, Ayşe; Cimrin, Arif Hikmet; Tür, Mahmut; Güven, Rana
2012-01-01
Problems in legal definition and diagnosis of occupational diseases in Turkey makes the diagnosis of these diseases and informing the parties important. For this purpose, this study was planned to elicit the frequency of silicosis in quartz mill workers in Cine which is one of the largest quartz and feldspat areas, and to detect the working conditions, to inform the workers to improve the working conditions. The aim was to evaluate 592 workers in 10 quartz mill and mines around Cine in 2004. A structured questionnaire including personal information and work-related questions was applied. Standards chest X-rays taken in the last six months were evaluated according to International Labour Organization (ILO) 1980 standards. Dust concentration and respirable dust concentration in the work place were measured in enterprises. The mean age of the workers was 31.8 ± 8.26 years and 71.7% was smoker. Duration of working was ≤ 5 years in 80.5% and ≥ 10 years in only 4.2%. According to the results of dust measurements, threshold value was found to be exceeded in chopping, packaging and bagging parts of three workplaces. Frequency of silicosis was calculated to be 23.7%. Frequency of pneumoconiosis was found to be high like previous studies carried out in similar workplaces in this study. Although it was impossible to put forward the cumulative effect of dust exposure because of frequent altering in workplace, the high frequency of working in similar workplaces among the cases supported the significant risk of silicosis in these enterprises. The workplaces were observed after the workers and persons responsible from occupational health and safety.
Ong, S G; Lam, T H; Wong, C M; Ma, P L; Lam, S K; O'Kelly, F J
1985-01-01
After a report in 1980 of the first three diagnosed locally cases and a preliminary epidemiological investigation that found little evidence of the disease, a survey was aimed at determining the prevalence of byssinosis in Hong Kong. Some 1776 workers in six cotton mills were studied using the standard MRC questionnaire and portable spirometers. Only 48 (2.7%) of the mill workers had symptoms acceptable for a diagnosis of byssinosis. The pattern of relation to dust exposure levels was similar to findings in other countries: blowing and carding process operatives had twice the prevalence rate of the spinners. Another 178 workers (10%) had symptoms of chest tightness or breathlessness or both that were not related to the first exposure after a break and therefore did not fit the standard diagnosis. Some 257 workers (14.5%) had chronic obstructive airflow disease but only 12 (4.7%) had chronic bronchitis. Job mobility had self selection of sensitive cases out of cotton dust exposure seem the most likely explanations for the low prevalence. The significance of non-specific lung ailments needs further assessment to elucidate the possible connection with cotton dust exposure. PMID:4015999
Detection of particulate air pollution plumes from major point sources using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Lyons, W. A.; Pease, S. R.
1973-01-01
The Earth Resources Technology Satellite (ERTS-1) launched by NASA in July 1972 has been providing thousands of high resolution multispectral images of interest to geographers, cartographers, hydrologists, and agroculturists. It has been found possible to detect the long-range (over 50 km) transport of suspected particulate plumes from the Chicago-Gary steel mill complex over Lake Michigan. The observed plumes are readily related to known steel mills, a cement plant, refineries, and fossil-fuel power plants. This has important ramifications when discussing the interregional transport of atmospheric pollutants. Analysis reveals that the Multispectral Scanner Band 5 (0.6 to 0.7 micrometer) provides the best overall contrast between the smoke and the underlying water surface.
Reuse of de-inking sludge from wastepaper recycling in cement mortar products.
Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta
2011-08-01
This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hypobaric Conditions and Retention of Dental Crowns Luted with Manually or Automixed Dental Cements.
Kielbassa, Andrej M; Müller, Johannes A G
2018-05-01
There is only scant information on the influence of the hypobaric environment on luting agents and their efficacy on dental crown cementation. The objective of this study was to provide data on the retentive characters of two cements commonly used on implant abutment surfaces both under normal and under hypobaric conditions. There were 56 implant abutments supplied with CAD/CAM milled zirconia oxide crowns. 1) A zinc phosphate cement (ZP), and 2) a resin-modified glass ionomer cement (RMGI), each mixed either A) manually or B) by means of automix capsules, were used for cementation. The cemented crowns of the 4 × 2 subgroups were either kept on the ground or were transported in an aircraft at altitudes up to 13,730 m (45,045.9 ft; N = 28 each), thus being subjected to the pressure changes (80×) every aircrew member or frequent flyer is exposed to. All cemented crowns were stored in climatized boxes during the experimental phase. Hand-mixing of ZP resulted in a significant reduction of mean (± SD) retention forces (581.6 ± 204.5 N) when compared to the control group on the ground (828.4 ± 147.9 N). Automixed ZP (931.9 ± 134.4 N in flight; 996.0 ± 107.4 N on the ground) and RMGI subgroups (ranging from 581.0 N ± 114.3 N to 662.4 N ± 92.5 N) were not affected by hypobaric conditions. When treating patients frequently exposed to hypobaric environments, automixing of ZP would seem favorable, while manual mixing should be avoided. RMGI is considered suitable and is not influenced by hand-mixing or barometric pressure changes.Kielbassa AM, Müller JAG. Hypobaric conditions and retention of dental crowns luted with manually or automixed dental cements. Aerosp Med Hum Perform. 2018; 89(5):446-452.
Adhesive Cementation Promotes Higher Fatigue Resistance to Zirconia Crowns.
Campos, F; Valandro, L F; Feitosa, S A; Kleverlaan, C J; Feilzer, A J; de Jager, N; Bottino, M A
The aim of this study was to investigate the influence of the cementation strategy on the fatigue resistance of zirconia crowns. The null hypothesis was that the cementation strategy would not affect the fatigue resistance of the crowns. Seventy-five simplified molar tooth crown preparations were machined in glass fiber-filled epoxy resin. Zirconia crowns were designed (thickness=0.7 mm), milled by computer-aided design/computer-aided manufacturing, and sintered, as recommended. Crowns were cemented onto the resin preparations using five cementation strategies (n=15): ZP, luting with zinc phosphate cement; PN, luting with Panavia F resin cement; AL, air particle abrasion with alumina particles (125 μm) as the crown inner surface pretreatment + Panavia F; CJ, tribochemical silica coating as crown inner surface pretreatment + Panavia F; and GL, application of a thin layer of porcelain glaze followed by etching with hydrofluoric acid and silanization as crown inner surface pretreatment + Panavia F. Resin cement was activated for 30 seconds for each surface. Specimens were tested until fracture in a stepwise stress fatigue test (10,000 cycles in each step, 600 to 1400 N, frequency of 1.4 Hz). The mode of failure was analyzed by stereomicroscopy and scanning electron microscopy. Data were analyzed by Kaplan-Meier and Mantel-Cox (log rank) tests and a pairwise comparison (p<0.05) and by Weibull analysis. The CJ group had the highest load mean value for failure (1200 N), followed by the PN (1026 N), AL (1026 N), and GL (1013 N) groups, while the ZP group had the lowest mean value (706 N). Adhesively cemented groups (CJ, AL, PN, and GL) needed a higher number of cycles for failure than the group ZP did. The groups' Weibull moduli (CJ=5.9; AL=4.4; GL=3.9; PN=3.7; ZP=2.1) were different, considering the number of cycles for failure data. The predominant mode of failure was a fracture that initiated in the cement/zirconia layer. Finite element analysis showed the different stress distribution for the two models. Adhesive cementation of zirconia crowns improves fatigue resistance.
Tall among the Trees: Organizing against Globalist Forestry in Rural British Columbia
ERIC Educational Resources Information Center
Prudham, Scott
2008-01-01
In January of 2001, the TimberWest Corporation permanently closed its Youbou sawmill facility near Duncan, British Columbia, Canada laying off 220 workers. On the surface, the Youbou mill closure reinforced a pervasive sense that workers and communities in the province are increasingly vulnerable to an ever more globally integrated and footloose…
Nimble Fingers. From 19th Century New England Mills to 20th Century Global Assembly Lines.
ERIC Educational Resources Information Center
Reese, Lyn
1988-01-01
Covers women's labor history in the United States and in industrialized nations from the early 1800s to the present. Provides primary source documents from New England workers in the 1830s and 1840s and from women workers on global assembly lines in the 1980s. Includes discussion questions. (LS)
Survey on Urinary Levels of Aflatoxins in Professionally Exposed Workers
Ferri, Fulvio; Brera, Carlo; De Santis, Barbara; Fedrizzi, Giorgio; Bacci, Tiziana; Bedogni, Lorena; Capanni, Sauro; Collini, Giorgia; Crespi, Enrica; Debegnach, Francesca; Ferdenzi, Patrizia; Gargano, Angelo; Gattei, Daniela; Luberto, Ferdinando; Magnani, Ines; Magnani, Massimo Giuseppe; Mancuso, Pamela; Menotta, Simonetta; Mozzanica, Stefania; Olmi, Milva; Ombrini, Giuseppe; Sala, Orietta; Soricelli, Sabina; Vicentini, Massimo; Giorgi Rossi, Paolo
2017-01-01
Feed mill workers may handle or process maize contaminated with aflatoxins (AFs). This condition may lead to an unacceptable intake of toxins deriving from occupational exposure. This study assessed the serological and urinary levels of AFs in workers exposed to potentially contaminated dusts in two mills. From March to April 2014, blood and urine samples were collected, on Monday and Friday morning of the same working week from 29 exposed workers and 30 non-exposed controls. AFs (M1, G2, G1, B1, B2) and aflatoxicol (AFOH) A were analyzed. Each subject filled in a questionnaire to evaluate potential food-borne exposures to mycotoxins. AFs contamination in environmental dust was measured in both plants. No serum sample was found to be positive. Seventy four percent of urine samples (73.7%) revealed AFM1 presence. AFM1 mean concentration was 0.035 and 0.027 ng/mL in exposed and non-exposed workers, respectively (p = 0.432); the concentration was slightly higher in Friday’s than in Monday’s samples, in exposed workers, 0.040 versus (vs.) 0.031 and non-exposed controls (0.030 vs. 0.024, p = 0.437). Environmental AFs contamination ranged from 7.2 to 125.4 µg/kg. The findings of this study reveal the presence of higher AFs concentration in exposed workers than in non-exposed controls, although these differences are to be considered consistent with random fluctuations. PMID:28338636
Prevalence of Chronic Respiratory Disease in a Pulp Mill and a Paper Mill in the United States1
Ferris, B. G.; Burgess, W. A.; Worcester, J.
1967-01-01
A sample of 147 men drawn from the workers in a pulp mill was compared with one of 124 men from a paper mill. The former included those exposed to chlorine and to sulphur dioxide. No significant differences were found in respiratory symptoms or in simple tests of ventilatory function in the two samples, but men working in chlorine had a somewhat poorer respiratory function and more shortness of breath than those working in sulphur dioxide. The working population of both mills together had a lower prevalence of respiratory disease than that of the male population of Berlin, N.H., previously studied, suggesting that working populations may not be representative of the general population. Further, a low prevalence of disease in a working population exposed to pollutants may not indicate their `safety' in general populations. PMID:6017136
Lee, Mi-Young; Heo, Seong-Joo; Park, Eun-Jin; Park, Ji-Man
2013-08-01
The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of α=.05. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 µm/m at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.
[Mortality study of asbestos cement workers in Emilia-Romagna].
Luberto, Ferdinando; Amendola, Plinio; Belli, Stefano; Bruno, Caterina; Candela, Silvia; Grignoli, Mario; Comba, Pietro
2004-01-01
The present study updates to 06/30/1998 the cohort mortality study of 3358 workers employed in 10 asbestos cement production plants in the Italian region Emilia-Romagna. The cohort includes 2712 males and 646 females. Overall mortality was significantly increased (SMR=131, IC95%:108-127). Excess mortality has been observed for all malignant neoplasms (SMR=131, IC95%: 115-149, 250 observed) and for respiratory diseases (SMR=153, IC: 105-216, 32 observed), 3 deaths due to asbestosis. Mortality for all respiratory tract neoplasms (SMR=179, IC: 148-215, 114 observed), pulmonary cancer (SMR=157, IC: 126-192, 90 observed) and pleural cancer (SMR=1922, IC: 1139-3038, 18 observed) are significantly increased. This study confirms the previous cohort study observation of increased mortality for all causes, all neoplasm and cancer affecting lungs and pleura.
NASA Astrophysics Data System (ADS)
Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.
2018-03-01
The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.
Heiden, Marina; Garza, Jennifer; Trask, Catherine; Mathiassen, Svend Erik
2017-03-01
A cost-efficient approach for assessing working postures could be to build statistical models for predicting results of direct measurements from cheaper data, and apply these models to samples in which only the latter data are available. The present study aimed to build and assess the performance of statistical models predicting inclinometer-assessed trunk and arm posture among paper mill workers. Separate models were built using administrative data, workers' ratings of their exposure, and observations of the work from video recordings as predictors. Trunk and upper arm postures were measured using inclinometry on 28 paper mill workers during three work shifts each. Simultaneously, the workers were video filmed, and their postures were assessed by observation of the videos afterwards. Workers' ratings of exposure, and administrative data on staff and production during the shifts were also collected. Linear mixed models were fitted for predicting inclinometer-assessed exposure variables (median trunk and upper arm angle, proportion of time with neutral trunk and upper arm posture, and frequency of periods in neutral trunk and upper arm inclination) from administrative data, workers' ratings, and observations, respectively. Performance was evaluated in terms of Akaike information criterion, proportion of variance explained (R2), and standard error (SE) of the model estimate. For models performing well, validity was assessed by bootstrap resampling. Models based on administrative data performed poorly (R2 ≤ 15%) and would not be useful for assessing posture in this population. Models using workers' ratings of exposure performed slightly better (8% ≤ R2 ≤ 27% for trunk posture; 14% ≤ R2 ≤ 36% for arm posture). The best model was obtained when using observational data for predicting frequency of periods with neutral arm inclination. It explained 56% of the variance in the postural exposure, and its SE was 5.6. Bootstrap validation of this model showed similar expected performance in other samples (5th-95th percentile: R2 = 45-63%; SE = 5.1-6.2). Observational data had a better ability to predict inclinometer-assessed upper arm exposures than workers' ratings or administrative data. However, observational measurements are typically more expensive to obtain. The results encourage analyses of the cost-efficiency of modeling based on administrative data, workers' ratings, and observation, compared to the performance and cost of measuring exposure directly. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
[The organization of the comprehensive prevention of urolithiasis among ferrous metallurgy workers].
Egorova, A M
2009-01-01
The purpose of study is to evaluate the effectiveness of the set of preventive measures as applied to 321 workers of basic ferrous metallurgy specialties (steel makers, mill men, hot metal shearers). During the clinical examination all the workers were divided on three groups: the workers without any pathology (11.83%, the first group), the workers with metabolic disorders only without urolitiasis (64.81%, the second group) and the workers with urolitiasis diagnosis approved by ultrasonography (23.36%, the third group). The effectiveness of rehabilitation measures was evaluated during half a year (diet therapy, drinking regimen, medicinal plants treatment). After the course of preventive measures was applied the overall health condition of most workers ameliorated and the number of workers with urolitiasis development risk factors reliably decreased up to 6-12%.
Kabir, G; Madugu, A I
2010-01-01
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249-3,745 mg/m3 and 2,440-2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NOx, SOx and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062-0.093 mg/m3 NOx, 0.026 mg/m3 SOx and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker-roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.
Todd, Lori A; Mottus, Kathleen; Mihlan, Gary J
2008-03-01
This research reports on a pilot industrial hygiene study that was performed at four footwear factories and two equipment factories in Thailand. Workers in these factories were exposed through inhalation and dermal contact to a large number of organic vapors from solvents and cements that were hand applied. In addition, these workers were exposed to highly toxic isocyanates primarily through the dermal route. A total of 286 personal air samples were obtained at the four footwear factories using organic vapor monitors; individual job tasks were monitored using a real-time MIRAN Spectrometer. A total of 64 surface, tool, or hand samples were monitored for isocyanates using surface contamination detectors. Real-time measurements were also obtained for organic vapors in two equipment factories. From 8% to 21% of the workers sampled in each footwear factory were overexposed to mixtures of chemicals from solvents and cements. Up to 100% of the workers performing specific job tasks were overexposed to mixtures of chemicals. From 39% to 69% of the surface samples were positive for unreacted isocyanates. Many of the real-time measurements obtained in the equipment factories exceeded occupational exposure limits. Personal protective equipment and engineering controls were inadequate in all of the factories.
Processing equipment for grinding of building powders
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.
2018-03-01
In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.
Influence of the supporting die structures on the fracture strength of all-ceramic materials.
Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz
2012-08-01
This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.
VIEW FROM ALLEY LOOKING WEST AT REAR ELEVATION OF 260 ...
VIEW FROM ALLEY LOOKING WEST AT REAR ELEVATION OF 260 RENNIE ST., UPRIGHT AND WING TYPE MILL WORKER HOUSING, C. 1900. THIS NEW TOWN SECTION OF GRANITEVILLE ON THE HILL EAST OF THE MILL COMPLEX HAD A GRID-PLAN STREET PATTERN WITH ALLEYS RUNNING THROUGH THE MIDDLE OF THE BLOCKS. NOTE GARAGES ADDED IN THE 1940'S AND IDENTICAL STRUCTURES 262 AND 264 RENNIE ST. TO RIGHT - 260 Rennie Street (House), Graniteville, Aiken County, SC
Getting the Policies Right: The Prioritization and Sequencing of Policies in Post-Conflict Countries
2007-01-01
be recapitulated again using public money. Similarly, liberalization of cashew nuts , which was imposed by the World Bank and the IMF, did not go...reduced from 105 % to 35 % in 1996 and to 30 percent in 1999; however liberalization of cashew nuts didn’t go well. Mixed success Infrastructure and...owned enterprises. Although many of the enterprises were small, the three cement plants, two breweries, the steel rolling mill, the cashew
ERIC Educational Resources Information Center
Austin, Gary F., Ed.
1977-01-01
The report contains the papers given and resolution adopted at the 1976 conference of the Professional Rehabilitation Workers with the Adult Deaf. An introduction by the association's president (C. Lloyd) precedes the keynote address and response (by C. Mills and H. Hirschi, respectively) which focused on such issues as mainstreaming and Public…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
... Industries, Inc. Oldsmar, FL 08/23/10 08/16/10 (Company). 74547 HAVI Logistics NA-DAVIS Davis, CA 08/23/10 08... Restaurants, Inc. Anaheim, CA 08/23/10 08/18/10 (Company). 74553 Fiserv, Inc. (State/One- Owing Mills, MD 08... Supply Group (Company). 74568 Cardone Industries Philadelphia, PA 08/27/10 08/17/10 (Workers). [FR Doc...
Islam, Qazi Shafayetul; Islam, Md Akramul; Islam, Shayla; Ahmed, Syed Masud
2015-12-24
The National Tuberculosis (TB) Control Programme (NTP) of Bangladesh succeeded in achieving the dual targets of 70 % case detection and 85 % treatment completion as set by the World Health Organization. However, TB prevention and control in work places remained largely an uncharted area for NTP. There is dearth of information regarding manufacturing workers' current knowledge, attitudes and practices (KAP) on pulmonary TB which is essential for designing a TB prevention and control programme in the workplaces. This study aimed to fill-in this knowledge gap. This cross-sectional survey was done in multiple workplaces like garment factories, jute mills, bidi/tobacco factories, flour mills, and steel mills using a multi-stage sampling procedure. Data on workers' KAP related to pulmonary TB were collected from 4800 workers in face-to-face interview. The workers were quite knowledgeable about symptoms of pulmonary TB (72 %) and free- of-cost sputum test (86 %) and drug treatment (88 %), but possessed superficial knowledge regarding causation (4 %) and mode of transmission (48 %). Only 11 % knew about preventive measures e.g., taking BCG vaccine and/or refraining from spitting here and there. Knowledge about treatment duration (43 %) and consequences of incomplete treatment (11 %) was poor. Thirty-one percent were afraid of the disease, 21 % would feel embarrassed (and less dignified) if they would have TB, and 50 % were afraid of isolation if neighbours would come to know about it. Workers with formal education (AOR 1.92; 95 % CI 1.61, 2.29) and exposure to community health workers (CHW) (AOR 31.60; 95 % CI 18.75, 53.35) were more likely to have TB knowledge score ≥ mean. Workers with knowledge score ≥ mean (AOR = 1.91; 95 % CI:1.44, 2.53) and exposure to CHWs either alone (AOR = 42.4; 95 % CI: 9.94, 180.5) or in combination with print media (AOR = 37.35; 95 % CI: 9.1, 180.5) were more likely to go to DOTS centre for treatment . Only around 43 % had sputum examination despite having chronic cough of ≥ 3 weeks duration. The workers had inadequate knowledge regarding its causation, transmission and prevention which may interfere with appropriate treatment-seeking for chronic cough including sputum test. NTP needs to be cognizant of these factors while designing a workplace TB prevention and control programme for Bangladesh.
Kovler, Konstantin
2006-01-01
The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.
Mei, Leung; Lesure, Frank Gardner
1978-01-01
Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.
The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement
NASA Astrophysics Data System (ADS)
Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi
2015-04-01
Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.
Lin, Qiu-Hong; Jiang, Chao-Qiang; Lam, Tai-Hing; Xu, Lin; Jin, Ya-Li; Cheng, Kar-Keung
2014-01-01
Few studies have systematically investigated the impact of past occupational dust exposure on mental health. We examined whether retired factory workers exposed to any of the 4 dusts of silica, cement, coal and asbestos had more depressive symptoms and anxiety in southern China, which has experienced rapid economic development. We used data from the Guangzhou Biobank Cohort Study phase 3. Exposures, lifestyle, symptoms and medical history of the participants were assessed with a structured interview. Self-reported intensity and duration of past occupational dust exposure were used to derive cumulative exposure. Outcome measures were assessed by the 15-item Chinese version of the Geriatric Depression Scale (score ≥5) and the single-item on anxiety. The results revealed that 359 workers were exposed to at least one of the 4 dusts and that 1,253 were unexposed (controls). After adjustment of multiple confounders, greater risks of depressive symptoms were associated with high exposure to silica (odds ratio (OR) of 3.12, 95% CI of 1.17-8.31) and asbestos (OR of 6.90; CI of 1.29-36.75). Risks of anxiety were higher in those with low or high exposures to dust (OR of 2.01 and CI of 1.04-3.87 and OR of 2.29 and CI of 1.30-4.03, respectively) and cement (OR of 3.20 and CI of 1.27-8.07 and OR of 2.30 and CI of 1.09-4.87, respectively), and those with high exposure to silica (OR of 5.29, CI of 1.76-15.92). Past occupational exposures to silica, cement, coal and asbestos dusts were associated with adverse mental health outcomes in retired factory workers. The mechanism underlying the relationship between occupational exposures and psychological symptoms in later life needs to be further studied.
An unusual case of extensive self-inflicted cement burn.
Catalano, F; Mariano, F; Maina, G; Bianco, C; Nuzzo, J; Stella, M
2013-03-31
Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world's most frequently used building material in the construction industry. First described by Ramazzini in his book "De Morbis Artificia Diatriba" in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient's clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome.
An unusual case of extensive self-inflicted cement burn
Catalano, F.; Mariano, F.; Maina, G.; Bianco, C.; Nuzzo, J.; Stella, M.
2013-01-01
Summary Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world’s most frequently used building material in the construction industry. First described by Ramazzini in his book “De Morbis Artificia Diatriba” in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient’s clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome. PMID:23966898
Desai, Manisha Rajib; Ghosh, Sandip
2003-01-01
A study was undertaken on environmental mycoflora of rice mills situated in Bawla town, Ahmedabad district. The airborne fungal communities were isolated and identified quantitatively by using Andersen-6-stage viable sampler, midget impinger and high volume samplers (Cone and Hexhlet for total and respirable dusts respectively). Of all the isolates, genus Aspergillus was predominant and among the Aspergillus species, A. flavus was the common isolate, irrespective of the method applied for sample collection. Number of isolates recovered from the working place was significantly greater (p < 0.01) compared to control. Total percentage of aflatoxin positive strains of A. flavus was 8 %. These aflatoxin producing strains were identified on various media, such as Czapek agar (Cz) with 0.05 % anisaldehyde, APA and CAM. Surface morphology of aflatoxin positive strains was studied by SEM. Highly significant total and respirable dust concentrations were found in the work place (p < 0.01) whereas in the store, only the total dust concentration was significantly higher (p < 0.05) than the control site. The study indicates that the rice mill workers are occupationally exposed to airborne aflatoxin producing strains of A. flavus. Thus, they require protective mask for their safety.
Follow up study of workers manufacturing chrysotile asbestos cement products.
Gardner, M J; Winter, P D; Pannett, B; Powell, C A
1986-01-01
A cohort study has been carried out of 2167 subjects employed between 1941 and 1983 at an asbestos cement factory in England. The production process incorporated the use of chrysotile asbestos fibre only, except for a small amount of amosite during four months in 1976. Measured airborne fibre concentrations available since 1970 from personal samplers showed mean levels below 1 fibre/ml, although higher levels had probably occurred previously in certain areas of the factory. No excess of lung cancer was observed in the mortality follow up by comparison with either national or local death rates, and analyses of subgroups of the workforce by job, exposure level, duration of employment, duration since entry, or calendar years of employment gave no real suggestion of an asbestos related excess for this cause of death. There was one death from pleural mesothelioma and one with asbestosis mentioned as an associated cause on the death certificate, but neither is thought to be linked to asbestos exposure at this factory. Other suggested asbestos related cancers, such as laryngeal and gastrointestinal, did not show raised risks. Although the durations of exposure were short in this study, the findings are consistent with two other studies of workers exposed to low concentrations of chrysotile fibre in the manufacture of asbestos cement products which reported no excess mortality. PMID:3024695
View of twofamily house at 520522 Rison Ave., NE, originally ...
View of two-family house at 520-522 Rison Ave., NE, originally occupied by workers in nearby mills. Note original asbestos shingle roof - 520-522 Rison Avenue, Northeast (House), Huntsville, Madison County, AL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... investigation resulting in-- (A) An affirmative determination of serious injury or threat thereof under section..., MN...... Inc., General Mills, Inc., Manpower, Certes, Salo, etc. The investigation revealed that the...
Environmental health survey in asbestos cement sheets manufacturing industry.
Ansari, F A; Bihari, V; Rastogi, S K; Ashquin, M; Ahmad, I
2007-01-01
About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants) are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile) in the occupational as well as ambient air environment of the asbestos-cement (AC) sheets industry using membrane filter method of Bureau of Indian Standards (BIS). The fibre concentrations in 15 samples collected in the occupational environment at ingredient feeding site, sheet-producing site, fibre godown were 0.079, 0.057 and 0.078 f/cc, respectively and in five samples from surrounding ambient air at factory gate resulted fibre concentration of 0.071 f/cc. All the samples have shown fibre concentration lower than the threshold limit values (TLVs) prescribed by BIS. Morphological analysis of samples, further under phase contrast and polarized microscopy indicates the presence of chrysotile asbestos, which acts as carcinogen as well as co-carcinogen. A clinical examination of exposed subjects reveals that there was no case of clubbing, crepitation, ronchi and dyspnea on exertion; however, obstruction and restriction were 10.9 per cent and 25 per cent in exposed subjects, respectively while in control there were 12 per cent and 28 per cent, respectively. The study revealed that chrysotile asbestos is emitted in the occupational as well as ambient environment that may cause adverse health impact.
Pasali, Baris; Sarac, Duygu; Kaleli, Necati; Sarac, Yakup Sinasi
2018-02-01
Recently, presintered metal blocks for nonprecious and precious metal implant-supported restorations have gained popularity in computer-aided design and computer-aided manufacturing (CAD-CAM) systems. However, few studies have evaluated the marginal discrepancy of implant-supported restorations made with these new alloy systems. The purpose of this in vitro study was to compare the milling-sintering method with the lost-wax and milling methods in terms of the marginal fit of implant-supported metal-ceramic restorations. Thirty implant abutments screwed to implant analogs were embedded into acrylic resin to investigate marginal fit and then divided according to fabrication methods into the following 3 groups (n=10): lost-wax (LW; control group), milling (M), and milling-sintering (MS). Porcelain material was applied to all specimens after completion of the fabrication process. Subsequently, all specimens were cemented to implant abutments for the measurement of marginal discrepancies. Twelve marginal discrepancy measurements were recorded on each implant abutment by using a stereomicroscope. The arithmetic mean of these 12 measurements was considered the mean marginal discrepancy value of each abutment. Data were statistically analyzed by using 1-way ANOVA and Tukey honest significant difference tests (α=.05). The lowest mean marginal discrepancy values (81 ±2 μm) were observed in the M group, which was significantly different (P<.001) from the other methods. The highest mean marginal discrepancy values (99 ±2 μm) were observed in the MS group. The results revealed that restorations prepared by the milling-sintering method provided clinically acceptable results (<120 μm); however, this new technique was not found to be as precise as the milling method in terms of marginal fit. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Application of ESP for gas cleaning in cement industry--with reference to India.
Bapat, J D
2001-02-16
Electrostatic precipitators (ESP) are used for gas cleaning in almost every section of cement manufacture. Application of ESP is studied, keeping in view Indian conditions. The characterisation of dust emissions has been done for different units, such as rotary kiln and raw mill, alkali by-pass, clinker cooler, cement and coal mill, in terms of exit gas quantity, temperature, dew point, dust content and particle size. It is seen that all these characteristics have a wide range of variance. The ESP system must effectively deal with these variations. The fundamental analytical expression governing the performance of ESP, i.e. the Deutsch equation, and that for particle migration velocity, were analysed to predict the effect of major operating parameters, namely particle size, temperature and applied voltage. Whereas the migration velocity (and the efficiency) varies directly with the particle size, it is proportional to the square and square root of applied voltage and absolute temperature of the gas, respectively. The increase in efficiency due to temperature is not seen in dc based ESP, perhaps due to more pronounced negative effect on the applied voltage due to the increase in dust resistivity at higher temperatures. The effect of gas and dust characteristics on the collection efficiency of ESP, as seen in the industrial practice, is summarised. Some main process and design improvements effectively dealing with the problem of gas and dust characteristics have been discussed. These are gas conditioning, pulse energization, ESP-fabric filter (FF) combination, improved horizontal flow as well as open top ESP.Generally, gas conditioning entails higher operating and maintenance costs. Pulse energization allows the use of hot gas, besides reducing the dust emission and power consumption. The improved horizontal flow ESP has been successfully used in coal dust cleaning. The open top or vertical flow ESP has a limitation on collection efficiency as it provides for only one electric field.
Elevation of dwelling at 80 North Broad Place, SW, originally ...
Elevation of dwelling at 80 North Broad Place, SW, originally built to house workers from the nearby Merrimack Mill - 80 North Broad Place, Southwest (House), 80 North Broad Place, Southwest, Huntsville, Madison County, AL
Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod
2011-10-01
Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.
Lu, Liulei; Ouyang, Dong; Xu, Weiting
2016-01-01
In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension. PMID:28773541
Lu, Liulei; Ouyang, Dong; Xu, Weiting
2016-05-27
In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.
Lipoid pneumonia caused by oil mist exposure from a steel rolling tandem mill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, M.R.; Balmes, J.R.; Robins, J.M.
1981-01-01
Five of nine active tandem mill operators exposed at work to aerosolized hydrocarbon mist were referred for evaluation of respiratory complaints. The worker with the longest exposure had reduced lung volumes; he was admitted to the hospital for detailed study. Exercise studies revealed work load limited by ventilation and arterial oxygen desaturation. Flexible fiberoptic bronchoscopy with bronchoalveolar lavage and transbronchial biopsy revealed evidence of lipoid pneumonia. Assessment of the mill revealed levels of respirable oil mist by personal samplers throughout the area far below the currently accepted standard of 5 mg/M3. These findings confirm a 20-year-old hypothesis of J.G. Jonesmore » regarding the hazard of oil mist in this industrial setting.« less
Optimization design and analysis of the pavement planer scraper structure
NASA Astrophysics Data System (ADS)
Fang, Yuanbin; Sha, Hongwei; Yuan, Dajun; Xie, Xiaobing; Yang, Shibo
2018-03-01
By LS-DYNA, it establishes the finite element model of road milling machine scraper, and analyses the dynamic simulation. Through the optimization of the scraper structure and scraper angle, obtain the optimal structure of milling machine scraper. At the same time, the simulation results are verified. The results show that the scraper structure is improved that cemented carbide is located in the front part of the scraper substrate. Compared with the working resistance before improvement, it tends to be gentle and the peak value is smaller. The cutting front angle and the cutting back angle are optimized. The cutting front angle is 6 degrees and the cutting back angle is 9 degrees. The resultant of forces which contains the working resistance and the impact force is the least. It proves accuracy of the simulation results and provides guidance for further optimization work.
Modelling of teeth of a gear transmission for modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.
2017-08-01
The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.
Prevalence of common mental disorders among sugarcane workers.
Costa, Polyana Felipe Ferreira da; Santos, Solange Laurentino Dos; Silva, Marcelo Saturnino da; Gurgel, Idê Gomes Dantas
2017-12-11
To estimate the prevalence of common mental disorders and to analyze the associated factors in migrant and sugarcane workers. This is a cross-sectional study carried out with 110 workers. Common mental disorders were evaluated using the Self-Reporting Questionnaire (SRQ-20), and sociodemographic, occupational, and lifestyle variables were studied. The CAGE questionnaire was used to detect the abuse of alcoholic beverages. The prevalence of common mental disorders affected 40% of the workers and the association showed statistical significance for the positive result of the CAGE test, sickness, absence from work, and medical care during the harvest period. The suspected cases of problem drinkers and the control mechanisms used by the mill for workers who miss work or become ill are factors that can cause common mental disorders.
Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater
NASA Astrophysics Data System (ADS)
Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.
2012-04-01
In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the conventional treatment with coal fly ash. One of the most important parameters to evaluate the swelling potential, swelling pressure, dramatically decreased in samples treated with olive mill wastewater, from 220kPa in the original sample of bentonite to values under 60kPa after 30 days. Regarding the mineralogy of the treated soil, X-ray Diffraction tests suggested a noticeable reduction in the amount of smectite within the crystalline structure of treated soils. Moreover, the smectite 001 peak shifted to right indicating a smaller d-spacing and hence a more stable mineral structure. To sum up, the improvements achieved by adding olive mill wastewater were, to some extent, similar to those produced by lower dosages of conventional additives (Portland cement or coal fly ash). The first results obtained in this work therefore indicate promising properties of biomass for its use in stabilization of expansive soils. A further research is still necessary. Finally, it must be pointed out that the use of raw biomass proceeding from olive grove might considerably improve the waste management in olive oil industry while offering new opportunities to civil works.
Health-hazard evaluation report HETA 88-030-2109, Neiman Sawmills, Inc. , Hulett, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubbs, R.L.
1991-04-01
In response to a request from management, an evaluation was undertaken of possible hazardous working conditions as a result of excessive noise at the Neiman Sawmill facilities (SIC-2421), Hulett, Wyoming. The company produced several varieties of untreated boards and lumber products from pine logs. During this survey 108 workers were employed. Noise dosimetry readings revealed that 73% of the surveyed job descriptions (16 of 22) had time weighted average (TWA) noise levels in excess of 90 decibles-A (dBA). Only one job had TWA levels less than the NIOSH recommended limits of 85dBA. Engineering noise controls produced differing amounts of noisemore » reduction to the workers. An enclosure around the planer in the planer mill was found to be effective. However, the separation of the edger and trimmer operations to their own buildings was not an effective noise reduction technique. Hearing tests revealed that 72.5% of the employees exhibited some degree of hearing impairment at one or more audiometric test frequencies. The author concludes that a health hazard existed for workers. The author recommends that a comprehensive hearing conservation program should be implemented. Recommendations for engineering controls for the mills are included.« less
29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.
Code of Federal Regulations, 2010 CFR
2010-07-01
... his machine, or install a new cutting tool. Such activities are an integral part of the principal activity, and are included within such term. (2) In the case of a garment worker in a textile mill, who is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-05-01
A health-hazard evaluation, including mortality and follow-up environmental studies of worker exposure to oil mists, coal tar pitch volatiles (CTPV), and carbon monoxide in the rolling mills of the Alcoa Aluminum Company Warrick Operations, Newburgh, Indiana was conducted. The mortality study was inconclusive due to the small number of expected deaths and inaccurate medical histories. It was impossible to determine if Alcoa employees who died from cancer or ischemic heart disease did so as a result of their work exposure. Results of sampling indicate that employees working in the anode block fabrication and kiln area were exposed to hazardous levelsmore » of CTPV as cyclohexane solubles. Fifteen of 17 extracts contained benzo(a)pyrene. Employees were not exposed to hazardous levels of carbon monoxide and those in the hot mill area and cold mill oil houses were not exposed to oil mist at concentrations which would be expected to result in long-term adverse health effects. Recommendations included: pre-employment and periodic physical examination; environmental monitoring, effective engineering, and administrative controls to reduce exposure to CTPV to the lowest extent possible; disposable protective clothes for workers exposed to CTPV; and prompt decontamination of skin exposed to CTPV.« less
In-vitro performance and fracture strength of thin monolithic zirconia crowns
Weigl, Paul; Wu, Yanyun; Felber, Roland; Lauer, Hans-Christoph
2018-01-01
PURPOSE All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: 5℃ and 55℃, 2×3,000 cycles, 2 min/cycle; ML: 50 N, 1.2×106 cycles), while the other samples were stored in water (37℃/24 h). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; α=.05). The fracture mode was analyzed. RESULTS In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application. PMID:29713427
Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça
2017-12-01
To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P <.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.
Prevalence and burden of primary headache in Akaki textile mill workers, Ethiopia.
Takele, Getahun Mengistu; Tekle Haimanot, Redda; Martelletti, Paolo
2008-04-01
Headache disorders are the most common complaints worldwide. Migraine, tension-type and cluster headaches account for majority of primary headaches and impose a substantial burden on the individual, family or society at large. The burden is immense on workers, women and children in terms of missing work and school days. There are few studies that show relatively lower prevalence of primary headaches in Africa as compared to Europe and America. There might be many reasons for this lower prevalence. The objective of this study is to determine the prevalence and burden of primary headaches among the Akaki textile factory workers, which may provide data for the local and international level toward the campaign of lifting the burden of headache worldwide. The overall 1-year prevalence of all types of primary headaches was found to be 16.4%, and that of migraine was 6.2%. The prevalence of migraine in females was 10.1% while it was 3.7% in males. The prevalence of tension-type headaches was found to be 9.8%. This was 16.3 % in females as compared to 5.7% in males. The burden of the primary headaches in terms of lost workdays, gross under recognition and absence of effective treatment is tremendous. In conclusion, the prevalence of primary headaches in the Akaki textile mill workers is significant, particularly in females, and the burden is massive, in a place of poverty and ignorance. We recommend the availability and administration of specific therapy to the factory workers with primary headaches, and community based well-designed study for the whole nation's rural and urban population.
[Evolution of worker's health in the social security medical examination in Brazil].
Pinto Júnior, Afrânio Gomes; Braga, Ana Maria Cheble Bahia; Roselli-Cruz, Amadeu
2012-10-01
In order to analyze the practice of the social security medical examination starting from the introduction of the worker's health paradigms, data was gathered on the granting of social security disability benefits to assess worker illness based on notification of work-related accidents in the cement industries of Rio de Janeiro. From 2007 to 2009 there was only one notification, which involved a worker handling toxic waste instead of the energy matrix. However, the analysis revealed sources and mechanisms of illness overlooked in the social security medical examination, which is still focused on the one-cause-only logic of occupational medicine. To achieve the worker's health paradigms, changes are required to alter the way of conducting the social security medical examination, by re-establishing partnerships, training human resources, adopting epidemiological indicators, as well as setting and assessing social security goals that transcend the mere granting of disability benefits.
Dement, John M; Welch, Laura; Ringen, Knut; Bingham, Eula; Quinn, Patricia
2010-03-01
A study of chronic obstructive pulmonary disease (COPD) among 7,579 current and former workers participating in medical screening programs at Department of Energy (DOE) nuclear weapons facilities through September 2008 was undertaken. Participants provided a detailed work and exposure history and underwent a respiratory examination that included a respiratory history, respiratory symptoms, a posterior-anterior (P-A) chest radiograph classified by International Labour Office (ILO) criteria, and spirometry. Statistical models were developed to generate group-level exposure estimates that were used in multivariate logistic regression analyses to explore the risk of COPD in relation to exposures to asbestos, silica, cement dust, welding, paints, solvents, and dusts/fumes from paint removal. Risk for COPD in the study population was compared to risk for COPD in the general US population as determined in National Health and Nutrition Examination Survey (NHANES III). The age-standardized prevalence ratio of COPD among DOE workers compared to all NHANES III data was 1.3. Internal analyses found the odds ratio of COPD to range from 1.6 to 3.1 by trade after adjustment for age, race, sex, smoking, and duration of DOE employment. Statistically significant associations were observed for COPD and exposures to asbestos, silica, welding, cement dusts, and some tasks associated with exposures to paints, solvents, and removal of paints. Our study of construction workers employed at DOE sites demonstrated increased COPD risk due to occupational exposures and was able to identify specific exposures increasing risk. This study provides additional support for prevention of both smoking and occupational exposures to reduce the burden of COPD among construction workers. 2009 Wiley-Liss, Inc.
Career Concerns, Values, and Role Salience in Employed Men.
ERIC Educational Resources Information Center
Duarte, M. Eduarda
1995-01-01
Tests Super's model of career adaptability by examining the relationship between career development concerns, values, and role salience among cement factory workers (n=881). They responded to the Adult Career Concerns Inventory, the Values Inventory, and the Salience Inventory. Results supported both Super's model of career adaptation and his…
Needs Assessments for Automated Manufacturing Training Programs.
ERIC Educational Resources Information Center
Northampton Community Coll., Bethlehem, PA.
This document contains needs assessments used by Northampton Community College to develop training courses for a business-industry technology resource center for firms in eastern Pennsylvania. The following needs assessments are included: (1) individual skills survey for workers at Keystone Cement Company; (2) Keystone group skills survey; (3)…
40 CFR 192.21 - Criteria for applying supplemental standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL... a clear and present risk of injury to workers or to members of the public, notwithstanding...
Jennison, E; Jacobs, R R
1994-05-01
OSHA surveillance data were collected for 769 individuals employed in four different cotton textile mills. Current workers were asked to complete a questionnaire about personal and family history of atopy or asthma. Both surveillance and survey data were available for 502 individuals. The prevalence of atopy in the population as reported by questionnaire was 18%, while asthma was reported by 4%. Dust levels at the four mills were in compliance with the cotton dust standard during the period of surveillance. No relationship was found between a self-reported history of atopy or asthma and the magnitude or frequency of acute overshift declines in forced expiratory volume during 1 second (FEV1). Nonsmokers had annual changes in FEV1 and forced vital capacity (FVC) comparable to nonexposed populations. In one of the four mills surveyed, annual declines in FEV1 and FVC for current smokers were significantly greater than declines for smokers in the other mills or the general smoking population (p < 0.02). This mill effect was also observed for subjects who were categorized as atopic (p < 0.02). For nonsmokers there appears to be no significant adverse health effect from exposure to the levels of cotton dust observed in these mills.
[Occupational dermatitis in construction and public workers].
Frimat, Paul
2002-09-01
Construction workers perform a large variety of duties concerned with building, repairing, and wrecking buildings, bridges, dams, roads, railways and so on. The work may include mixing, pouring and spreading concrete, asphalt, gravel and other materials. Despite the increasing mechanization of construction and the more frequent use of precast concrete sections, contact with wet cement still occurs, particularly in small jobs. The work is hard physical labor, often under difficult conditions, including hot, cold, and wet weather. Occupational diseases of the skin in the construction have paralleled industrial development.
Marginal and internal fit of nano-composite CAD/CAM restorations.
Park, So-Hyun; Yoo, Yeon-Jee; Shin, Yoo-Jin; Cho, Byeong-Hoon; Baek, Seung-Ho
2016-02-01
The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.
Dahl, Bjørn Einar; Rønold, Hans Jacob; Dahl, Jon E
2017-03-01
Whether single crowns produced by computer-aided design and computer-aided manufacturing (CAD-CAM) have an internal fit comparable to crowns made by lost-wax metal casting technique is unknown. The purpose of this in vitro study was to compare the internal fit of single crowns produced with the lost-wax and metal casting technique with that of single crowns produced with the CAD-CAM technique. The internal fit of 5 groups of single crowns produced with the CAD-CAM technique was compared with that of single crowns produced in cobalt-chromium with the conventional lost-wax and metal casting technique. Comparison was performed using the triple-scan protocol; scans of the master model, the crown on the master model, and the intaglio of the crown were superimposed and analyzed with computer software. The 5 groups were milled presintered zirconia, milled hot isostatic pressed zirconia, milled lithium disilicate, milled cobalt-chromium, and laser-sintered cobalt-chromium. The cement space in both the mesiodistal and buccopalatal directions was statistically smaller (P<.05) for crowns made by the conventional lost-wax and metal casting technique compared with that of crowns produced by the CAD-CAM technique. Single crowns made using the conventional lost-wax and metal casting technique have better internal fit than crowns produced using the CAD-CAM technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-12-01
Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p < 0.001 was considered significant. Statistically significant differences existed between the groups ( p < 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings.
Rani, Sapna; Verma, Mahesh; Gill, Shubhra; Gupta, Rekha
2016-01-01
Background/Purpose: The aim of this study was to compare the shear bond strength of computer aided design/computer aided machined ceramic (CAD/CAM), pressable ceramic, and milled metal implant copings on abutment and the effect of surface conditioning on bonding strength. Materials and Methods: A total of 90 test samples were fabricated on three titanium abutments. Among 90 test samples, 30 copings were fabricated by CAD/CAM, 30 by pressable, and 30 by milling of titanium metal. These 30 test samples in each group were further subdivided equally for surface treatment. Fifteen out of 30 test samples in each group were surface conditioned with airborne particle abrasion. All the 90 test samples were luted on abutment with glass ionomer cement. Bonding strength was evaluated for all the samples using universal testing machine at a crosshead speed of 5 mm/min. The results obtained were compared and evaluated using one-way ANOVA with post-hoc and unpaired t-test at a significance level of 0.05. Results: The mean difference for CAD/CAM surface conditioned subgroup was 1.28 ± 0.12, for nonconditioned subgroup was 1.20 ± 0.11. The mean difference for pressable surface conditioned subgroup was 1.18 ± 0.04, and for nonconditioned subgroup was 0.75 ± 0.28. The mean difference for milled metal surface conditioned subgroup was 2.57 ± 0.58, and for nonconditioned subgroup was 1.49 ± 0.15. Conclusions: On comparison of bonding strength, milled metal copings had an edge over the other two materials, and surface conditioning increased the bond strength. PMID:27141163
Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder.
Kim, Si-Jun; Yang, Keun-Hyeok; Moon, Gyu-Don
2015-09-01
This study proposed a new binder as an alternative to conventional cement to reduce the heat of hydration in mass concrete elements. As a main cementitious material, low-heat cement (LHC) was considered, and then fly ash (FA), modified FA (MFA) by vibrator mill, and limestone powder (LP) were used as a partial replacement of LHC. The addition of FA delayed the induction period at the hydration heat curve and the maximum heat flow value ( q max ) increased compared with the LHC based binder. As the proportion and fineness of the FA increased, the induction period of the hydration heat curve was extended, and the q max increased. The hydration production of Ca(OH)₂ was independent of the addition of FA or MFA up to an age of 7 days, beyond which the amount of Ca(OH)₂ gradually decreased owing to their pozzolanic reaction. In the case of LP being used as a supplementary cementitious material, the induction period of the hydration heat curve was reduced by comparison with the case of LHC based binder, and monocarboaluminate was observed as a hydration product. The average pore size measured at an age of 28 days was smaller for LHC with FA or MFA than for 100% LHC.
Construction materials as a waste management solution for cellulose sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.
2011-02-15
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less
New technology and energy-saving equipment for production of composite materials
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Glagolev, S. N.; Babaevsky, A. N.
2018-03-01
The article considers industrial technology and energy-saving equipment for cement and composite binder production with a reduction in energy intensity of the process up to 50% due to the synergetic effect during mechanic activation of the raw mix with the replacement of part of the clinker component with the mineral hydro-active additive. The technological process is based on the sequential introduction of components in dispersed phases into the feed mixture in the grinding path and at the stage of product separation with certain dispersed characteristics. The increase in the energy efficiency of the line is achieved by the joint operation of the press roller aggregate, which is the development of BSTU named after V.G. Shoukhov, and rotor-vortex mills of a very fine grinding of a new design. The experienced design of the aggregate with the device for deagglomeration of the pressed tape allows combining the processes of grinding and disaggregation of the pressed material, thereby reducing the operating costs and increasing the efficiency of using the grinding unit. Comparative tests of cement samples obtained in energy-saving aggregates (PRA + RVM) are given which allowed establishing that their beam strength for compression and bending is higher by 15-20% than the traditional method obtained in a ball mill. An analytical expression is also given that allows one to determine the power consumed for the deagglomeration of crushed and pressed material between the main rolls, taking into account the geometric dimensions of the rolls and the physico-mechanical characteristics of the material.
VIEW LOOKING EAST AT 23 GREGG ST., A GOTHIC REVIVAL ...
VIEW LOOKING EAST AT 23 GREGG ST., A GOTHIC REVIVAL HOUSE BUILT C. 1848 FOR FAMILIES OF MILL WORKERS, NOW WITH ADDITION ON SIDE. NOTE BOARD AND BATTEN VERTICAL SIDING AND DECORATIVE BARGE BOARDS IN FRONT GABLE - 23 Gregg Street (House), Graniteville, Aiken County, SC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
..., Uniseve Corporation, Jacobs Engineering and Stafflogix Corporation, Everett, WA; Amended Certification... Services, Healthforce, UNISEVE Corporation and Jacobs Engineering, Everett, Washington. The workers are engaged in activities related to the production of tissue products (paper towels, toilet paper, wipes) and...
Labor Day and the war on workers.
Rosner, D; Markowitz, G
1999-01-01
We celebrate Labor Day every year with barbecues and picnics, rarely remembering that the holiday was born in the midst of tremendous labor struggles to improve working conditions. In the last century, 16-hour workdays and 6- and 7-day workweeks led to terribly high injury rates in the nation's mines and mills. Thousands upon thousands of workers died, caught in the grinding machinery of our growing industries. Today, despite improvements, thousands of workers still die in what has been described as a form of war on the American workforce. This commentary reminds us of the historical toll in lives and limbs that workers have paid to provide us with our modern prosperity. It also reminds us that the continuing toll is far too high and that workers who died and continue to die in order to produce our wealth deserve to be remembered and honored on this national holiday. PMID:10474546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, R.P.; Knutti, E.B.
1993-04-01
In response to a request from the International Chemical Workers Union, an investigation was made of exposures to asbestos and diesel emissions at the Morton Salt Company, Weeks Island, Louisiana. The most significant source of particulates was diesel exhaust. None of the 20 personal breathing zone or area air samples collected in the mill exceeded limits for asbestos. An increased prevalence of chronic cough and phlegm was reported by workers. More complaints of eye irritation and tearing of the eyes were noted in underground workers, consistent with diesel byproduct exposure. Pulmonary function studies indicated that four workers had mild obstructivemore » lung disease and one had moderate obstructive lung disease. Three workers with mild restriction of lung volume were also noted. None of the 61 chest films taken was positive for pneumoconiosis. The authors conclude that a potential hazard existed from exposure to diesel exhaust.« less
Exposure to biohazards in wood dust: bacteria, fungi, endotoxins, and (1-->3)-beta-D-glucans.
Alwis, K U; Mandryk, J; Hocking, A D
1999-09-01
Personal exposure to fungi, bacteria, endotoxin, and (1-->3)-beta-D-glucan was determined at different woodworking sites--logging sites, sawmills, woodchipping sites, and joineries. Exposure levels to fungi at logging sites and sawmills were in the range of 10(3)-10(4) cfu/m3, at the woodchipping mill, 10(3)-10(5) cfu/m3, and at joineries, 10(2)-10(4) cfu/m3. Although mean endotoxin levels were lower than the suggested threshold value of 20 ng/m3, some personal exposures at sawmills and a joinery exceeded the standard. The geometric mean personal (1-->3)-beta-D-glucan exposure level at the woodchipping mill was 2.32 ng/m3, at sawmills, 1.37 ng/m3, at logging sites, 2.02 ng/m3, and at joineries, 0.43 ng/m3. Highly significant associations were found between mean personal inhalable endotoxin exposures and Gram-negative bacteria levels (p < 0.0001), and mean personal inhalable (1-->3)-beta-D-glucan exposures and fungi levels (p = 0.0003). The prevalence of cough, phlegm, chronic bronchitis, nasal symptoms, frequent headaches, and eye and throat irritations was significantly higher among woodworkers than controls. Dose-response relationships were found between personal exposures and work-related symptoms among joinery workers and sawmill and chip mill workers.
Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin
2017-01-01
PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (P<.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. CONCLUSION The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials. PMID:29279763
Friction stir processing on high carbon steel U12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.
1. Photocopy of a drawing (original in the Collection of ...
1. Photocopy of a drawing (original in the Collection of the PL&C, Shelf 123, Drawing 2792)--ca. 1822-1825--TOPOGRAPHIC PLAN OF MILLS AND WORKER HOUSING ON THE SOUTH SIDE OF THE LOWER PAWTUCKET CANAL, PROPOSAL - Pawtucket Canal, Pawtucket Falls vicinity, Lowell, Middlesex County, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
..., Hufnagle Forest Resources, LLC, Johnson Timber Harvesting, Inc., Kimball Logging, Inc., Koski Wood Services..., Inc., and Wood Forest Products, Inc. and Including Bryce Kowalzek and Ted Kromy, Sartell, Minnesota...., Kimball Logging, Inc., Koski Wood Services, Larson Lumber Company, Lovdahl & Sons, LLC, Lundberg Forest...
Decline in lung function among cement production workers: a meta-analysis.
Moghadam, Somayeh Rahimi; Abedi, Siavosh; Afshari, Mahdi; Abedini, Ehsan; Moosazadeh, Mahmood
2017-12-20
Several studies with different results have been performed regarding cement dust exposure and its pathogenic outcomes during the previous years. This study aims to combine these results to obtain a reliable estimate of the effect of exposure to cement dust. PubMed and other data banks were searched to identify required electronic articles. The search was extended interviewing with relevant experts and research centers. Point and pooled estimates of outcome with 95% confidence intervals were estimated. Participants were 5371 exposed and 2650 unexposed persons. Total mean differences (95% confidence intervals) were estimated as of -0.48 (-0.71 to -0.25) L for forced vital capacity (FVC), -0.7 (-0.92 to -0.47) L for forced expiratory volume in the first second (FEV1), -0.43 (-0.68 to -0.19) L for FEV1/FVC%, -0.73 (-1.15 to -0.30) L/min for PEFR and -0.36 (-0.51 to -0.21) L/s for FEF25-75. Our meta-analysis showed that cement dust has significant impact on lung function and reduces the indicators of FVC, FEV1, FEV1/FVC, PEFR and FEF25-75.
Utilization of CO2 in High Performance Building and Infrastructure Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCristofaro, Nicholas
The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed withmore » Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow-core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects reduced the CO2 footprint associated with the production and use of cement in concrete products by over 50% (a reduction of 430 kg of CO2 per tonne of cement). Applied at the first commercial Solidia Concrete manufacturing site, the two effects will combine to reduce the CO2 footprint associated with the production and use of cement by over 10,000 tonnes per year. When applied across the precast concrete industry in the U.S., it is estimated that the CO2 footprint will be reduced by 8.6 million tonnes per year (20 million tonnes of cement used in precast concrete x 430 kg of CO2 per tonne of cement). Applied across the entire concrete industry in the U.S., it is expected that 43 million tonnes of CO2 will be avoided per year (100 million tonnes of cement used in all concrete x 430 kg of CO2 per tonne of cement).« less
[Results of patch tests using basic allergens in construction workers].
Kieć-Swierczyńska, M
1983-01-01
A group of 853 construction industry workers exposed to irritants and allergens (mainly cement, lime, sand, water, lubricants and antiadhesive oils and a control group of 74 subjects (sawers) underwent patch tests after Jadassohn--Bloch with seven allergens most common in the construction industry working environment (compounds of chromium, nickel and cobalt, turpentine and three rubber allergens--mercantobenzothiazole, thiocarbamoyl and diphenylguanidine). Allergy was found in 25.5% of the construction industry workers, in this 7.7% were those with eczema and dermatitis, 17.8%--those with latent allergy (in 12.2% allergy was accompanied by dermatoses of non-allergic etiology, 5.6% construction workers no skin changes). The highest number of skin positive tests was that with chromium (22.4% of affected workers) and cobalt (12.4%). Most susceptible to allergy were: painters, bricklayers, carpenters, joiners, reinforcing concretors, terrazers, concretors, electricians, smiths and reinforcers. In addition, allergy was found to be dependent on age and length of employment.
Marginal and internal fit of nano-composite CAD/CAM restorations
Park, So-Hyun; Shin, Yoo-Jin
2016-01-01
Objectives The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). Conclusions The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations. PMID:26877989
Occupational skin problems in construction workers.
Shah, Kartik R; Tiwari, Rajnarayan R
2010-10-01
Construction workers handle cement which has constituents to produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients, such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients, such as chromium). The present study has been carried out among unorganized construction workers to find the prevalence of skin problems. The present cross-sectional study was conducted in 92 construction workers of Ahmedabad and Vadodara. All the workers were subjected to clinical examination after collection of information regarding demographic characteristics, occupational characteristics and clinical history on a predesigned proforma. Of them, 47.8% had morbid skin conditions. Frictional callosities in palm were observed in 18 (19.6%) subjects while 4 (4.3%) subjects had contact dermatitis. Other conditions included dry, fissured and scaly skin, infectious skin lesion, tinea cruris, lesion and ulcers on hands and/or soles. The skin conditions were common in the age group of 20-25 years, males, those having ≥1 year exposure and those working for longer hours. Half of the workers not using personal protective equipment had reported skin-related symptoms.
Improving the work position of worker based on manual material handling in rice mill industry
NASA Astrophysics Data System (ADS)
Astuti, Rahmaniyah Dwi; Susmartini, Susy; Kinanthi, Ade Putri
2017-11-01
In traditional industries still using manual material handling to weight lifting. Worker at the rice mill, especially in rice filtering activity has wrong ergonomic posture to enforce the body bends and carried loads too heavy cause of injury for lower back and waist. The work attitude is unnatural posture. This study aimed to determine the severity of the workload, the level of risk posed to the rice taking activities and suggested as an improvement to it. Identify the operator complaints used Nordic Body Map method. Rapid Entire Body Assessment (REBA) method is used to provide an assessment of the working posture of the operator. Assessment of the working posture on rice filtering process shows that REBA score is 12 with an explanation very high level of risk and action level is 4 which means the action needs to be repaired immediately. Biomechanics calculation shows result 6713.21 N, the result of the calculation of the biomechanics of worker in the rice filtering activities indicates that the activities would pose a risk or injury. Therefore, improvement in rice filtering activity by designing a tool for lowering the risk level worker. The design tools are illustrated with 2D modeling resulted in the level of risk that is working REBA score became 3 which shows a low risk level. Biomechanics calculation after designed of tools show the result is 6282.86 N. The results means the activities carried out are still in safe condition and does not pose a risk or injury.
Örtorp, Anders; Jönsson, David; Mouhsen, Alaa; Vult von Steyern, Per
2011-04-01
This study sought to evaluate and compare the marginal and internal fit in vitro of three-unit FDPs in Co-Cr made using four fabrication techniques, and to conclude in which area the largest misfit is present. An epoxy resin master model was produced. The impression was first made with silicone, and master and working models were then produced. A total of 32 three-unit Co-Cr FDPs were fabricated with four different production techniques: conventional lost-wax method (LW), milled wax with lost-wax method (MW), milled Co-Cr (MC), and direct laser metal sintering (DLMS). Each of the four groups consisted of eight FDPs (test groups). The FDPs were cemented on their cast and standardised-sectioned. The cement film thickness of the marginal and internal gaps was measured in a stereomicroscope, digital photos were taken at 12× magnification and then analyzed using measurement software. Statistical analyses were performed with one-way ANOVA and Tukey's test. Best fit based on the means (SDs) in μm for all measurement points was in the DLMS group 84 (60) followed by MW 117 (89), LW 133 (89) and MC 166 (135). Significant differences were present between MC and DLMS (p<0.05). The regression analyses presented differences within the parameters: production technique, tooth size, position and measurement point (p < 0.05). Best fit was found in the DLMS group followed by MW, LW and MC. In all four groups, best fit in both abutments was along the axial walls and in the deepest part of the chamfer preparation. The greatest misfit was present occlusally in all specimens. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Wang, Yu-guang; Xing, Yan-xi; Sun, Yu-chun; Zhao, Yi-jiao; Lü, Pei-jun; Wang, Yong
2013-06-01
To evaluate clinical effects of computer aided design and computer aided manufacturing (CAD/CAM) milled zirconia crown in three aspects: aesthetic, contact wear and fracture. Sixty patients were divided into two groups.In one group, 35 full contour CAD/CAM zirconia crown were made on molars of 30 patients. The manufacturing process of zirconia crown was as follow. First, the three dimensional(3-D) data of working models, antagonist impression and check records were acquired by 3-D laser scanning Dental wings S50. Then full contour zirconia crowns, which had functional occlusal contacts with antagonistic teeth, and appropriate contact with adjacent teeth were designed with Zeno-CAD(V4.2.5.5.12919) software. ZENOSTAR Zr pure zirconia material was milled in digital controlled machine WIELAND 4030 M1.In the end, the zirconia crown were completed with the method of second sintering and polishing. After clinical try-in, the crown was cemented.In the control group, thirty gold alloy full crown were made and cemented on molars of 30 patients. According to the modified U S Public Health Service Criteria(USPHS) evaluation standard, all crowns were evaluated on the same day, at three months, half a year, one year and two years following delivery. There were three aspects we were focusing on in the evaluation: aesthetic, contact wear(restoration and antagonist), and fracture. In all the prosthesis we evaluated during the 24 months, no fracture was found. Contact wear of crowns varies according to different antagonist teeth. The zirconia crowns show privilege in aesthesis, toughness and anti-wearing.However, there is contact wear on antagonistic natural teeth. Thus it is a good choice when full zirconia crowns are indicated on two antagonistic teeth in both jaws.
Frequency of sister chromatid exchange and chromosomal aberrations in asbestos cement workers.
Fatma, N; Jain, A K; Rahman, Q
1991-02-01
Exposure to asbestos minerals has been associated with a wide variety of adverse health effects including lung cancer, pleural mesothelioma, and cancer of other organs. It was shown previously that asbestos samples collected from a local asbestos factory enhanced sister chromatid exchanges (SCEs) and chromosomal aberrations in vitro using human lymphocytes. In the present study, 22 workers from the same factory and 12 controls were further investigated. Controls were matched for age, sex, and socioeconomic state. The peripheral blood lymphocytes were cultured and harvested at 48 hours for studies of chromosomal aberrations and at 72 hours for SCE frequency determinations. Asbestos workers had a raised mean SCE rate and increased numbers of chromosomal aberrations compared with a control population. Most of the chromosomal aberrations were chromatid gap and break types.
ERIC Educational Resources Information Center
Gehring, John
2005-01-01
Slam poetry was born in the Green Mill Tavern, a one-time Chicago speakeasy where Al Capone imbibed, when a construction worker and poet named Marc Smith revolutionized poetry readings with an Uptown Poetry Slam in 1986. Slam borrows heavily from the rhythms and wordplay of rap and hip-hop, as well as the stream of consciousness and metaphysical…
Navajo Uranium Education Programs: The Search for Environmental Justice
ERIC Educational Resources Information Center
Charley, Perry H.; Dawson, Susan E.; Madsen, Gary E.; Spykerman, Bryan R.
2004-01-01
Uranium mining and milling in the Four Corners' area of the American Southwest has had serious negative impacts on American Indian workers, their families, and their communities. In this article, we will examine Navajo education programs which inform citizens about risks and health impacts associated with radiation exposures. Because the Navajo…
Where the "Unemployable" Do the Impossible.
ERIC Educational Resources Information Center
Deutsch, James I.
1981-01-01
At a time when property tax valuations and frozen mill levies can't keep pace with the rising costs of library operations, special employment workers at the Parmly Billings Public Library in Montana have helped sustain many programs and activities. This is one of the top five winners in American Libraries' competition to identify innovative…
Mensi, Carolina; Riboldi, Luciano; De Matteis, Sara; Bertazzi, Pier Alberto; Consonni, Dario
2015-01-01
Few studies have examined the incidence of malignant mesothelioma (MM) associated with distinct sources of asbestos exposure (occupational, familial, or environmental). We assessed the impact of asbestos exposure-global and by source-on the incidence of MM in Broni, an Italian town in which an asbestos cement factory once operated (1932-1993). Based on data collected by the Lombardy Mesothelioma Registry, we calculated the number of observed and expected MM cases among workers, their cohabitants, and people living in the area in 2000-2011. We identified 147 MM cases (17.45 expected), 138 pleural and nine peritoneal, attributable to exposure to asbestos from the factory. Thirty-eight cases had past occupational exposure at the factory (2.33 expected), numbering 32 men (26 pleural, six peritoneal) and six women (four pleural, two peritoneal). In the families of the workers, there were 37 MM cases (4.23 expected), numbering five men (all pleural) and 32 women (31 pleural, one peritoneal). Among residents in Broni or in the adjacent/surrounding towns, there were 72 cases of pleural MM (10.89 expected), numbering 23 men and 49 women. The largest MM excess was found in the towns of Broni (48 observed, 3.68 expected) and Stradella (16 observed, 1.85 expected). This study documents the large impact of the asbestos cement factory, with about 130 excess MM cases in a 12-year period. The largest MM burden was among women, from non-occupational exposure. Almost half of the MM cases were attributable to environmental exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mortality among a cohort of uranium mill workers: an update
Pinkerton, L; Bloom, T; Hein, M; Ward, E
2004-01-01
Aims: To evaluate the mortality experience of 1484 men employed in seven uranium mills in the Colorado Plateau for at least one year on or after 1 January 1940. Methods: Vital status was updated through 1998, and life table analyses were conducted. Results: Mortality from all causes and all cancers was less than expected based on US mortality rates. A statistically significant increase in non-malignant respiratory disease mortality and non-significant increases in mortality from lymphatic and haematopoietic malignancies other than leukaemia, lung cancer, and chronic renal disease were observed. The excess in lymphatic and haematopoietic cancer mortality was due to an increase in mortality from lymphosarcoma and reticulosarcoma and Hodgkin's disease. Within the category of non-malignant respiratory disease, mortality from emphysema and pneumoconioses and other respiratory disease was increased. Mortality from lung cancer and emphysema was higher among workers hired prior to 1955 when exposures to uranium, silica, and vanadium were presumably higher. Mortality from these causes of death did not increase with employment duration. Conclusions: Although the observed excesses were consistent with our a priori hypotheses, positive trends with employment duration were not observed. Limitations included the small cohort size and limited power to detect a moderately increased risk for some outcomes of interest, the inability to estimate individual exposures, and the lack of smoking data. Because of these limitations, firm conclusions about the relation of the observed excesses in mortality and mill exposures are not possible. PMID:14691274
Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing
2018-03-01
Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.
Aboushelib, Moustafa Nabil; Elmahy, Waleed AbdelMeguid; Ghazy, Mohammed Hamed
2012-08-01
The aim of this study was to evaluate the internal adaptation and marginal properties of ceramic laminate veneers fabricated using pressable and machinable CAD/CAM techniques. 40 ceramic laminate veneers were fabricated by either milling ceramic blocks using a CAD/CAM system (group 1 n=20) or press-on veneering using lost wax technique (group 2 n=20). The veneers were acid etched using hydrofluoric acid, silanated, and cemented on their corresponding prepared teeth. All specimens were stored under water (37 °C) for 60 days, then received thermocycling (15,000 cycles between 5 and 55 °C and dwell time of 90 s) followed by cyclic loading (100,000 cycles between 50 and 100 N) before immersion in basic fuchsine dye for 24 h. Half of the specimens in each group were sectioned in labio-lingual direction and the rest were horizontally sectioned using precision cutting machine (n=10). Dye penetration, internal cement film thickness, and vertical and horizontal marginal gaps at the incisal and cervical regions were measured (α=0.05). Pressable ceramic veneers demonstrated significantly lower (F=8.916, P<0.005) vertical and horizontal marginal gaps at the cervical and incisal margins and lower cement film thickness (F=50.921, P<0.001) compared to machinable ceramic veneers. The inferior marginal properties of machinable ceramic veneers were associated with significantly higher microleakage values. Pressable ceramic laminate veneers produced higher marginal adaptation, homogenous and thinner cement film thickness, and improved resistance to microleakage compared to machinable ceramic veneers. The manufacturing process influences internal and marginal fit of ceramic veneers. Therefore, dentist and laboratory technicians should choose a manufacturing process with careful consideration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D
2011-09-15
The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
Radiological risk of building materials using homemade airtight radon chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan
Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samplesmore » were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.« less
Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud
2006-09-14
Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion for bulk water. This reduction of the water diffusion is discussed in terms of the interaction of the water with the calcium silicate gel and the ions present in the pore water.
Mehrparvar, A H; Mirmohammadi, S J; Mostaghaci, M; Davari, M H; Hashemi, S H
2013-04-01
Respiratory diseases cause a considerable amount of morbidity and mortality in the world. Pulmonary function tests are important measures for the diagnosis and management of respiratory disorders. Workers in tile and ceramic industry are exposed to high amounts of respiratory pollutants. To identify the changes in spirometric parameters in a 2-year period among tile and ceramic workers in Yazd and compare it with a control group. The study was conducted in 5 tile and ceramic factories selected by cluster sampling between 2009 and 2011 in Yazd, southeastern Iran. Demographic data and spirometric parameters of participants were recorded. Spirometric parameters were significantly reduced during the 2 years. The largest decrease was observed in FVC (≈500 mL) in ball-mill and grinding after 2 years. Decrease in all spirometric parameters was significantly higher in industrial workers than office workers. Respiratory exposure in tile and ceramic industry can significantly affect pulmonary function tests.
NASA Astrophysics Data System (ADS)
Romankov, S.; Park, Y. C.; Shchetinin, I. V.
2017-11-01
Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.
Geopolymers from lunar and Martian soil simulants
NASA Astrophysics Data System (ADS)
Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.
2017-01-01
This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires milling to reduce the particle size. Tests were carried out to measure, for both JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural strengths. In the case of the lunar simulant, these are higher than those of conventional cements. In the case of the Martian simulant, they are close to those of common building bricks.
Nash, J. Thomas; Stillings, Lisa L.
2003-01-01
Reconnaissance field studies of 40 mining districts in and near the Humboldt River basin have identified 83 mills and associated tailings impoundments and several other kinds of mineral-processing facilities (smelters, mercury retorts, heap-leach pads) related to historic mining. The majority of the mills and tailings sites are not recorded in the literature. All tailings impoundments show evidence of substantial amounts of erosion. At least 11 tailings dams were breached by flood waters, carrying fluvial tailings 1 to 15 km down canyons and across alluvial fans. Most of the tailings sites are dry most of the year, but some are near streams. Tailings that are wet for part of the year do not appear to be reacting significantly with those waters because physical factors such as clay layers and hard-pan cement appear to limit permeability and release of metals to surface waters. The major impact of mill tailings on surface- water quality may be brief flushes of runoff during storm events that carry acid and metals released from soluble mineral crusts. Small ephemeral ponds and puddles that tend to collect in trenches and low areas on tailings impoundments tend to be acidic and extremely enriched in metals, in part through cycles of evaporation. Ponded water that is rich in salts and metals could be acutely toxic to unsuspecting animals. Rare extreme storms have the potential to cause catastrophic failure of tailings impoundments, carry away metals in stormwaters, and transport tailings as debris flows for 1 to 15 km. In most situations these stormwaters and transported tailings could impact wildlife but probably would impact few or no people or domes-tic water wells. Because all identified historic tailings sites are several kilometers or more from the Humboldt River and major tributaries, tailings probably have no measurable impact on water quality in the main stem of the Humboldt River.
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-01-01
Statement of the Problem: Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. Purpose: This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). Materials and Method: We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p< 0.001 was considered significant. Results: Statistically significant differences existed between the groups (p< 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Conclusion: Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings. PMID:27942545
78 FR 18370 - Investigations Regarding Eligibility To Apply for Worker Adjustment Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... (State/One-Stop) 82538 Zebra Technologies (Company) Lincoln, RI 03/08/13 03/07/13 82539 Elster Solutions... Semiconductor, Clarksville, TN....... 03/08/13 03/07/13 L.L.C. (Company) 82543 Zebra Technologies (Company... NewPage Duluth Paper Mill Duluth, MN 03/04/13 03/01/13 (State/One-Stop) 82522 United Technologies...
Øilo, Marit; Nesse, Harald; Lundberg, Odd Johan; Gjerdet, Nils Roar
2018-04-25
New additive manufacturing techniques for nonprecious alloys have made the fabrication of metal-ceramic fixed partial dentures (FPDs) less expensive and less time-consuming. However, whether the mechanical properties produced by these techniques are comparable is unclear. The purpose of this in vitro study was to evaluate the mechanical properties of cobalt-chromium frameworks for FPDs fabricated by 3 different techniques. Thirty frameworks for 3-unit FPDs were fabricated by traditional casting, computer-aided design and computer-aided manufacturing (CAD-CAM) milling, and selective laser melting (SLM), with n=10 in each group. The frameworks were weighed, and distal and mesial connector areas measured. The frameworks were cemented and loaded centrally (0.5 mm/s) until deformation above 1 mm occurred. Stiffness was measured as the slope of the axis between 500 and 2000 N. Microhardness was measured on sectioned specimens by Vickers indentation. The microstructure was also analyzed by scanning electron microscopy. One-way ANOVA with Tukey post hoc analysis was used to compare the groups (α=.05). The framework design differed among the groups, making a comparison of strength impossible. The milled frameworks appeared bulky, while the cast and SLM frameworks were more slender. Statistically significant differences were found in microhardness, stiffness, wall thickness, weight, and connector size (P<.05), and a significant correlation was found between hardness and stiffness (-0.4, P<.005). Fabrication method affects the design, stiffness, microhardness, and microstructure of cobalt-chromium FPD frameworks. The SLM frameworks were stiffer and harder than the cast and milled specimens. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Millworkers' Asthma: Allergic Responses to the Grain Weevil (Sitophilus granarius)
Lunn, J. A.
1966-01-01
Two laboratory workers, who spent a considerable time each day handling grain infested by the grain weevil (Sitophilus granarius), developed allergic responses to this insect varying from rhinitis and pruritus to marked asthma. These findings suggested that weevil protein present in mill dust could result in sensitization in those exposed continuously. A pilot study was therefore undertaken on 75 volunteer millworkers to determine whether such sensitivity existed. A millworker was defined as anyone who worked in a flour mill or mill producing animal feed from mixed cereals, or who worked in grain-storing silos. Skin testing with weevil, mixed flour extracts, and a control was carried out on all 75 volunteers; 57% had a positive response to the weevil extract and 68% a positive response to the mixed flour extract. In a control group of 100 workers from two engineering firms matched for age and sex, 34% were positive to the weevil extract and 17% to mixed flour. From the initial 75 millworkers, 15 were selected for further study based on a positive skin response to the weevil and a history of a productive cough and chest tightness and wheezing when exposed to mill dust. The forced expiratory volume in one second (F.E.V.1·0) was measured after control inhalations and after weevil and mixed flour inhalations. Significant reductions of 20% and 15·4% were found in two subjects after inhalation of weevil extract. In one case wheezing and cough developed. The changes in F.E.V.1·0 were reversed after inhalation of a bronchodilator aerosol. Twenty-five of the control subjects with positive skin responses to the grain weevil were given similar provocation inhalations but none showed any significant change in F.E.V.1·0. This pilot study suggests that grain weevil sensitivity is an additional factor in millworkers' asthma. PMID:5929689
Nasal manifestations in chromium industry workers.
Aiyer, R G; Kumar, Gaurav
2003-04-01
People working in mines, plating factories, cement industries are mainly exposed to chrome substances, IIexavalent chromium has been implicated for its toxic effect on the nasal mucosa. Hereby we present a rare study of 28 patients who attended out patient department of Otorhinolaryngology at SSG Hospital, Baroda from a nearby chromium industry. This study aims to present various nasal manifestations of toxic effects of prolonged chromium exposure.
Lung health and heart rate variability changes in salt workers.
Glad Mohesh, M I; Sundaramurthy, A
2016-04-01
India is the third largest salt producing country in the World, with a global annual production of 230 million tonnes. Large number of salt workers get employed in these salt milling plants risking their life from the effects of salt. Recent foreign evidences reported that these salt workers are exposed to aerosol salt particles that disturb their lung and cardiovascular autonomic control. To compare the status of lung health, cardiovascular autonomic control and biochemical changes in a group of salt industry workers with that of the age-matched normal subjects. Volunteers of both sexes (25-35 years) were divided into Group I (n=10) controls and Group II (n=10) non-brine salt workers in salt milling plants. From fasting blood sample, complete blood count, plasma electrolyte and lipid profile estimation were done. After resting for 15min, blood pressure and lead II ECG were recorded. Spirometry was done using RMS Helios spirometer. Data collected were later analysed using GraphPad Prism 5.0 with statistical significance set at p<0.05. Blood pressure recorded showed a slight elevation in the subjects than that in the controls. Significant rise of plasma sodium (141.9±0.4, 138.7±1.0, p<0.008) and chloride (113.9±1.3, 107.7±1.4, p<0.005). Spirometric tests showed mild obstructive airway disease in the subjects with FEV1 and FEV1/FVC significantly lower than the controls (81.11±3.8, 92.0±3.3, p<0.049), (37.4±4.0, 112.8±1.7, p<0.0001), FEF25-75% (123.3±5.6, 101.0±5.6, p<0.01). Heart rate variability parameters also showed statistically significant variation. Exposure to salt aerosols by the workers in the salt industry has shown a little or no impact on the respiratory system, however there are changes in the blood and cardiovascular system, which need to be further studied to understand the long-term influences of salt in this population. Copyright © 2015 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.
Incidence of asthma among workers exposed to sulphur dioxide and other irritant gases.
Andersson, E; Knutsson, A; Hagberg, S; Nilsson, T; Karlsson, B; Alfredsson, L; Torén, K
2006-04-01
The aim of the present study was to investigate whether repeated peak exposure (gassings) to sulphur dioxide (SO2) and other irritant gases increases the risk of new-onset asthma. A questionnaire was sent to 4,112 sulphite workers, of whom 1,919 completed the questionnaire and 396 completed the short-form questionnaire, which was sent out as a last reminder. A sample of 130 nonrespondents completed a telephone interview using the short-form questionnaire. The incidence of adult-onset, physician-diagnosed asthma during employment duration was analysed in relation to exposure to SO2 and gassings giving rise to respiratory symptoms. Incidence rates, as well as incidence rate ratios with 95% confidence interval (CI), were calculated. Further Cox regression models were used allowing assessment of hazard ratios (HR) stratified for sex and adjusted for atopy, smoking habits and age. The incidence rate for asthma among sulphite mill workers reporting gassings of SO2 was 6.2 out of 1,000 person-yrs, compared with 1.9 out of 1,000 person-yrs among subjects unexposed to SO2 and any gassings (HR (95% CI) 4.0 (2.1-7.7)). Among males reporting gassings to SO2, the HR (95% CI) for asthma was 5.8 (2.6-13) compared with unexposed males. In conclusion, repeated peak exposure to sulphur dioxide increased the incidence of asthma during work in sulphite pulp mills, which supports the hypothesis of irritant-induced asthma.
A pilot field evaluation on heat stress in sugarcane workers in Costa Rica: What to do next?
Crowe, Jennifer; van Wendel de Joode, Berna; Wesseling, Catharina
2009-01-01
Background Climate change is producing major impacts including increasing temperatures in tropical countries, like Costa Rica, where the sugarcane industry employs thousands of workers who are exposed to extreme heat. Objectives This article outlines a pilot qualitative evaluation of working conditions and heat in the sugarcane industry. Design A literature review, direct observations and exploratory interviews with workers were conducted to reach a preliminary understanding of the dimensions of heat-related health issues in the sugarcane industry, as a basis for the design of future studies. Results The industry employs temporary workers from Nicaragua and Costa Rica as well as year-round employees. Temporary employees work 12-hour shifts during the harvest and processing (‘zafra’) season. In many cases, sugarcane field workers are required to carry their own water and often have no access to shade. Sugar mill workers are exposed to different levels of heat stress depending upon their job tasks, with the most intense heat and workload experienced by the oven (‘caldera’) cleaners. Conclusions Research is needed to achieve better understanding of the multiple factors driving and interacting with heat exposures in the sugarcane industry in order to improve the health and safety of workers while maintaining worker productivity. PMID:20052430
Six-Month Results for the Kelly Air Force Base Compressed Work Week Survey
1993-07-01
plans to continue the CWS past the 1-year original plan. REFERENCES 1. Balch, B.W. The four day week and the older workers. Personnel Journal, 394-396...8217 perceptions of the four - day week . California Management Review, 28, 31-35, 1975. 15. Mills, M.E. Core-12: A controlled study of the impact of 12 hour scheduling
One-Year Results for the Kelly Air Force Base Compressed Work Week Survey
1994-01-01
10 REFERENCES 1. Balch, B.W. The four day week and the older workers. Personnel Journal, December, 394-396, 1974. 2. Breaugh, J.A. The 12-hour work day...the four - day week . California Management Review, 28, 31-35, 1975. 16. Mills, M.E. Core-12: A controlled study of the impact of 12 hour scheduling
The World of Barilla Taylor: A Primary Source-Based Kit for Students in Grades 8-12.
ERIC Educational Resources Information Center
Fellner, Kelly; Stearns, Liza
1995-01-01
Examines a primary source-based kit that describes the life of a young woman factory worker in early 19th-century New England. The kit includes five document sets, utilizing maps, newspaper articles, deeds, letters, poems, and other artifacts. The document sets illustrate various topics including mill life and personal life. (MJP)
Folksong in the Classroom. Volume XI, Numbers 1-3, 1990-91.
ERIC Educational Resources Information Center
Scott, John W., Ed.
1991-01-01
This volume of a journal on folksong for elementary and secondary teachers of history, literature, music, and the humanities contains three issues. The Fall 1990 issue is devoted to the songs of Newfoundland. The Winter 1991 issue features songs concerning mine, mill and tunnel workers in the years 1877-1932. The Spring 1991 issue focuses on songs…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-16
...)... Miami, FL 01/12/10 01/11/10 73250 Stein Steel Mill Services, Granite City, IL...... 01/12/10 07/08/09...). 73254 KS Automotive, Inc. (State) San Leandro, CA....... 01/13/10 01/12/10 73255 Mountain Valley Express... Huntington Foam, LLC (Wkrs) Jeannette, PA......... 01/15/10 01/06/10 73293 Continental Automotive Huntsville...
USDA-ARS?s Scientific Manuscript database
Aflatoxins primarily accumulate in the hull and bran layers of rough rice making these by-products of rice milling unsuitable for animal feed or human consumption. Contaminated rough rice is also a potential source of aflatoxin exposure to workers handling the grain during post-harvest storage and p...
Mortality and cancer morbidity among cement workers.
Jakobsson, K; Horstmann, V; Welinder, H
1993-01-01
OBJECTIVE--To explore associations between exposure to cement dust and cause specific mortality and tumour morbidity, especially gastrointestinal tumours. DESIGN--A retrospective cohort study. SUBJECTS AND SETTING--2400 men, employed for at least 12 months in two Swedish cement factories. MAIN OUTCOME MEASURES--Cause specific morality from death certificates (1952-86). Cancer morbidity from tumour registry information (1958-86). Standardised mortality rates (SMRs; national reference rates) and standardised morbidity incidence rates (SIRs; regional reference rates) were calculated. RESULTS--An increased risk of colorectal cancer was found > or = 15 years since the start of employment (SIR 1.6, 95% confidence interval (95% CI) 1.1-2.3), mainly due to an increased risk for tumours in the right part of the colon (SIR 2.7, 95% CI 1.4-4.8), but not in the left part (SIR 1.0, 95% CI 0.3-2.5). There was a numerical increase of rectal cancer (SIR 1.5, 95% CI 0.8-2.5). Exposure (duration of blue collar employment)-response relations were found for right sided colon cancer. After > or = 25 years of cement work, the risk was fourfold (SIR 4.3, 95% CI 1.7-8.9). There was no excess of stomach cancer or respiratory cancer. Neither total mortality nor cause specific mortality were significantly increased. CONCLUSIONS--Diverging risk patterns for tumours with different localisations within the large bowel were found in the morbidity study. Long term exposure to cement dust was a risk factor for right sided colon cancer. The mortality study did not show this risk. PMID:8457494
Qeblawi, Dana; Hill, Thomas; Chlosta, Kelly
2011-11-01
Endodontic access preparation through lithium disilicate ceramic restorations may damage the restoration and compromise its load-bearing capability. The purpose of this in vitro research was to investigate the effect of simulated endodontic access preparation through lithium disilicate glass-ceramic restorations on their load to failure. Sixty lithium disilicate glass-ceramic (IPS e.max CAD) complete-coverage restorations were milled and crystallized. Five coats of die relief were applied internally in the crown to provide a cement space approximately 60 μm in thickness. Composite resin dies were fabricated by backfilling each crown. The specimens were then stored at 37°C and 100% humidity for 30 days. The crowns with their respective dies were divided into 6 groups: Groups M-C, M-ZR, M-SC, and M-CRF were adhesively bonded with a resin cement (Multilink Implant), and Groups F-C and F-ZR were conventionally cemented with zinc phosphate cement (Fleck's). After storing all groups for 1 week, Groups M-C and F-C served as the intact controls for the 2 cementation techniques, while Groups M-ZR and F-ZR had an access prepared with a 126 μm grit-size diamond rotary instrument. For Groups M-SC and M-CRF, the endodontic access was prepared with 150 μm and 180 μm grit-size diamond rotary instruments, respectively. Access preparations were restored with composite resin. All specimens were stored at 37°C and 100% humidity for 1 week before they were loaded to failure with a universal loading apparatus (crosshead speed=1mm/min). The results were analyzed with a 1-way ANOVA followed by Tukey's HSD test (α=.05). The highest failure loads were achieved with Groups M-C (3316 N ±483) and M-ZR (3464 N ±645) Larger grit rotary instruments resulted in lower failure-loads in Groups M-SC (2915 N ±569) and M-CRF (2354 N ±476). Groups F-C (2242 N ±369) and F-ZR(1998 N ±448) had significantly lower failure loads than their adhesively bonded counterparts (P<.05). The use of 126 μm grit size did not significantly alter the failure loads of the restorations in either cementation technique. Adhesively bonded restorations sustained significantly higher loads to failure than those conventionally cemented. The use of a high efficiency, smaller-grit diamond rotary instrument for endodontic access preparation did not alter the load to failure of lithium disilicate restorations, regardless of the cement used. The use of a larger-grit rotary instrument did not improve the cutting efficiency and reduced the failure load of bonded restorations. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Water requirements of the pulp and paper industry
Mussey, Orville D.
1955-01-01
Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills are manufacturing sulfate pulp; because of the antipollution laws, many sulfite-pulp mills are being converted to sulfate-pulp mills. The waste from the manufacture of a ton of sulfate pulp is much more readily disposed of than that from a ton of sulfite pulp. Pulp mills are located near the source of raw material, which means that they are located in the eastern half of the United States and in the Pacific Northwest. It is advantageous for paper mills to be located close to a market and therefore a large number of paper mills are in the northeastern section of the United States from Minnesota to Maine. However, much of the coarser paper, which will ship well, is produced close to the pulp mills. The entire process of making paper from pulpwood, with special reference to water use is briefly described to provide an understanding of how the water is used and reused.
NASA Astrophysics Data System (ADS)
Witantyo; Rindiyah, Anita
2018-03-01
According to data from maintenance planning and control, it was obtained that highest inventory value is non-routine components. Maintenance components are components which procured based on maintenance activities. The problem happens because there is no synchronization between maintenance activities and the components required. Reliability Centered Maintenance method is used to overcome the problem by reevaluating maintenance activities required components. The case chosen is roller mill system because it has the highest unscheduled downtime record. Components required for each maintenance activities will be determined by its failure distribution, so the number of components needed could be predicted. Moreover, those components will be reclassified from routine component to be non-routine component, so the procurement could be carried out regularly. Based on the conducted analysis, failure happens in almost every maintenance task are classified to become scheduled on condition task, scheduled discard task, schedule restoration task and no schedule maintenance. From 87 used components for maintenance activities are evaluated and there 19 components that experience reclassification from non-routine components to routine components. Then the reliability and need of those components were calculated for one-year operation period. Based on this invention, it is suggested to change all of the components in overhaul activity to increase the reliability of roller mill system. Besides, the inventory system should follow maintenance schedule and the number of required components in maintenance activity so the value of procurement will be decreased and the reliability system will increase.
Marginal and internal fits of fixed dental prostheses zirconia retainers.
Beuer, Florian; Aggstaller, Hans; Edelhoff, Daniel; Gernet, Wolfgang; Sorensen, John
2009-01-01
CAM (computer-aided manufacturing) and CAD (computer-aided design)/CAM systems facilitate the use of zirconia substructure materials for all-ceramic fixed partial dentures. This in vitro study compared the precision of fit of frameworks milled from semi-sintered zirconia blocks that were designed and machined with two CAD/CAM and one CAM system. Three-unit posterior fixed dental prostheses (FDP) (n=10) were fabricated for standardized dies by: a milling center CAD/CAM system (Etkon), a laboratory CAD/CAM system (Cerec InLab), and a laboratory CAM system (Cercon). After adaptation by a dental technician, the FDP were cemented on definitive dies, embedded and sectioned. The marginal and internal fits were measured under an optical microscope at 50x magnification. A one-way analysis of variance (ANOVA) was used to compare data (alpha=0.05). The mean (S.D.) for the marginal fit and internal fit adaptation were: 29.1 microm (14.0) and 62.7 microm (18.9) for the milling center system, 56.6 microm (19.6) and 73.5 microm (20.6) for the laboratory CAD/CAM system, and 81.4 microm (20.3) and 119.2 microm (37.5) for the laboratory CAM system. One-way ANOVA showed significant differences between systems for marginal fit (P<0.001) and internal fit (P<0.001). All systems showed marginal gaps below 120 microm and were therefore considered clinically acceptable. The CAD/CAM systems were more precise than the CAM system.
NASA Astrophysics Data System (ADS)
Ruliati, L. P.; Adiputra, N.; Sutjana, I. D. P.; Sutajaya, I. M.
2017-11-01
Rice mill is one of the businesses in informal sector. From the rice milling process, ergonomic problems arise when employees work with bent position that done repeatedly to lift grain sacks to be transferred to peeler machine. This situation will affect the comfort of work, thus increasing the workload, muscle tension, and fatigue. The consequence will certainly affect the health and productivity of workers. In this study introduces ergo Tri Hita Karana (ergo THK) as an ergonomics intervention model which solves ergonomics problems of the cultural aspects of THK. The study aim is to determine the modification of working conditions based Ergo THK to reduce workload, muscle tension and fatigue. This research uses Randomized Pretest and Posttest Control Group Design experimental design. The subjects were 30 male rice mill workers with an age range of 16 until 56 years, and then divided into 15 subjects in the control group and 15 subjects in the treatment group. The results showed that the average posttest workloads in the control group are 136.950 more less 0.297 and in the treatment group are 107.60 more less 0.396. Significance analysis showed that after the two groups done their activities, the average workload significantly different p less than 0.005. The amount of reduction in the workload between the two groups was 21.43 percent. In muscle tension posttest showed that the mean score of the muscle tension in the control group was 62.67 more less 7.31 and the treatment group was 20.96 more less 2.96. Significance analysis showed that both groups mean muscle-tension results were significantly different p less than 0.005. The amount of reduction in tension between the control group and the treatment group while working was 66.55 percent. At fatigue posttest showed that the mean score of fatigue in the control group was 76.40 more less 13.51 and the treatment group was 55.53 more less 9.51. Significant analysis showed that the mean fatigue of both groups significantly different p less than 0.005. The amount of reduction in fatigue between the control group and the treatment group while working was 27.31 percent. From this study it can be concluded that the modification of the working conditions based on Ergo THK can reduce the workload by 21.43 percent, muscle tension by 66.55 percent and fatigue by 27.31 percent.
Occupational skin disease in the construction industry.
Bock, M; Schmidt, A; Bruckner, T; Diepgen, T L
2003-12-01
Construction workers have a substantial risk of developing irritant and/or allergic contact dermatitis. Unfortunately, however, there is little population-based epidemiological data relating to occupational skin diseases (OSD) in the European construction industry that allow assessment of preventive measures. In this investigation, the yearly incidence rates and causes of OSD in the construction industry were analysed on the basis of our register in Northern Bavaria. From 1990 until 1999, all incidences of OSD in the construction industry were recorded prospectively. This enables the calculation of incidence rates of OSD in relation to the employed population in Northern Bavaria as recorded by the German Federal Employment Office. In the construction industry, a total of 335 OSD were registered. These comprise 9.0% of all OSD in the register. We classified them into four relevant groups: (A) tile setters and terrazzo workers (incidence per 10 000 employees = 19.9); (B) painters (7.8); (C) construction and cement workers (5.2); and (D) wood processors (2.6). The overall incidence was 5.1 per 10 000 employees over 10 years, which is a little below average for the entire register (6.7). Of these, 43.6% were at least 40 years old. Allergic contact dermatitis (61.5%) occurred more often than irritant contact dermatitis (44.5%). Potassium dichromate caused roughly half of all cases of sensitization found to be occupationally relevant in the construction industry (152 cases) followed by epoxy resin (40) and cobalt chloride (32). The results indicate that potassium dichromate is still the most important allergen in the construction industry of Northern Bavaria; there has been no significant decline during the 1990s. This contrasts with the Scandinavian countries, where the prevalence of potassium dichromate sensitization declined following the reduction of chromium VI levels resulting from the addition of ferrous sulphate to cement. Within the construction industry, tile setters and terrazzo workers have a strikingly high incidence of OSD.
NASA Astrophysics Data System (ADS)
Dutton, Kenneth
Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.
A Standardized Procedure for a Pre-evaluation of the IED Instance
NASA Astrophysics Data System (ADS)
Panepinto, Deborah; Ruffino, Barbara; Zanetti, Mariachiara; Genon, Giuseppe
2016-04-01
This study presents a procedure, called EICS (Enterprise IPPC Compatibility Study) aimed at evaluating, by means of the calculation of three indexes, the compliance of the processes performed in an industrial plant with the guidelines provided by BREFs (BAT References) Documents. In fact, according to European Directive 2010/75/EU (concerning the Integrated Pollution Prevention and Control and repealing European Directive 2008/01/EC), industrial plants must require authorizations to the competent authority stating the conformity of their activity, in order to obtain this conformity they are advised to Best Available Technologies (BAT). The aim of the BATs is to avoid or minimize the impact of an industrial activity on the environment through the prevention of the atmospheric emissions, wastewater discharge and energetic consumption, and the correct waste management thus improving the efficiency of the plant. The procedure shown in the present paper has been tested on several types of industrial plant (cement plants, secondary smelt foundries, paper-mill, and automotive industries as regards their paint lines). In this paper, the application of EICS method to a cement plant is presented: the obtained results highlight a good correlation between the index values and the real situation of the plant.
6. Photocopy of c. 1906 photograph taken from top of ...
6. Photocopy of c. 1906 photograph taken from top of water tower of fields west of mill complex. These were known as the 'wop' fields because they were tended by Italian workers; corn grinding shed is the building in lower right of photograph and fuel oil storage tank is to the right. - Laurel Valley Sugar Plantation, State Route 308, Thibodaux, Lafourche Parish, LA
Lesson and Impressions of the Ghanaian Capital Markets
2011-07-31
Gold and cocoa production are major sources of foreign exchange. Interestingly, the country’s largest source of foreign exchange is remittances from...workers abroad. Oil production has expanded. According to industry experts, within 5 years, Ghana is likely to be the third-largest producer of oil...State Department reports the most prominent industries include textiles, apparel, steel, tires, flour milling, cocoa processing, beverages, tobacco
Lesson and Impressions of the Ghanaian Capital Markets
2011-07-31
with natural resources, Ghana has roughly twice the per capita output of the poorest countries in West Africa. Gold and cocoa production are major...sources of foreign exchange. Interestingly, the country’s largest source of foreign exchange is remittances from workers abroad. Oil production has...prominent industries include textiles, apparel, steel, tires, flour milling, cocoa processing, beverages, tobacco, simple consumer goods, and car, truck
Characterization of particle exposure in ferrochromium and stainless steel production.
Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo
2016-07-01
This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churg, A.; Wiggs, B.
1986-01-01
We analyzed chrysotile and chrysotile-associated amphibole (largely tremolite) asbestos fibers in 21 workers exposed to various types of processed (milled) chrysotile ore, 20 long-term chrysotile miners, and 20 members of the general population (controls). Significantly greater amounts of both chrysotile and tremolite were found in processed-ore workers and miners than in controls. On average, the mean fiber lengths and aspect ratios for the mining and processed-ore-exposed workers were similar and were significantly greater than the values seen in the controls; within the processed-ore group, there was a marked variation in these parameters, and some workers appeared to be exposed tomore » fairly long, thin fibers. It was found empirically that the fiber size data, and to a lesser extent the concentration data, could be used to classify workers accurately into those with processed-ore exposure and controls. We conclude that fiber sizes in the lungs of processed-ore-exposed workers are similar to those of chrysotile miners and are considerably longer than those found in the general population; some processed-ore workers have longer fibers which might be responsible for higher disease incidences in certain working groups; tremolite accompanies chrysotile in a variable proportion of workers exposed to processed chrysotile products and might be important in the genesis of mesothelioma in such workers; and mineralogic analysis will usually detect exposure even when chrysotile has largely disappeared from lung tissue.« less
Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns?
Antunes, Monize Carelli Felipe; Miranda, Jean Soares; Carvalho, Ronaldo Luís Almeida de; Carvalho, Rodrigo Furtado de; Kimpara, Estevão Tomomitsu; Assunção E Souza, Rodrigo Othávio de; Leite, Fabíola Pessôa Pereira
2018-01-01
To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.
2. EXTERIOR FRONT (SOUTHEAST) SIDE OF BUILDING 117 SHOWING MAIN ...
2. EXTERIOR FRONT (SOUTHEAST) SIDE OF BUILDING 117 SHOWING MAIN RESIDENTIAL STREET IN LOWER FOREGROUND, CEMENT-LAID ROCK RETAINING WALL IN FRONT OF HOUSE, AND CONCRETE STEPS AND WALKWAY TO FRONT PORCH AND DOOR. NOTE SLIDING GLASS DOOR REPLACEMENT FOR ORIGINAL DOOR WHICH HAS SUBSEQUENTLY BEEN REMODELED BACK TO A SINGLE ENTRY DOOR. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Work-related asthma in a population exposed to grain, flour and other ingredient dusts.
Smith, T A; Lumley, K P
1996-02-01
The purpose of the study was to determine the prevalence and causation of work-related asthmatic symptoms in a population exposed to grain, flour and other ingredient dusts. Where workers complained of asthmatic symptoms which were the result of dust exposure, follow-up aimed to identify whether the symptoms were the result of sensitisation or of non-specific irritation. A questionnaire was presented to 3,450 workers who had exposure to dust during the course of flour milling (528), bread baking (1,756), cake baking (209) and other activities in food preparation (957). Those with positive responses were followed-up by taking a formal history, examination, skin prick testing and serial peak flow measurement. The overall prevalence of work-related asthmatic symptoms was 4.4% (153 out of 3,450). In the group who were followed-up (128 out of 153), non-specific respiratory irritation was thought to be the cause in 90 (2.6%), whilst sensitisation was responsible for symptoms in 12 (0.3%). Of the 12 cases due to sensitisation, the agents responsible were: fungal amylase (10 cases, all associated with bread baking), flour (one case, associated with flour packing), and grain (one case, associated with flour milling). Non-specific irritation is considerably more common than sensitisation as the cause of work-related asthmatic symptoms in flour milling, baking and other flour-based industries. The prevalence of sensitisation to flour is very low (less than 1 in 1,000) in all these industries. The principal sensitiser encountered in modern plant bakeries appears to be fungal amylase. The most important source of exposure to fungal amylase is probably the debagging, sieving, weighing and mixing of bread improvers.
Van Gosen, Bradley S.; Lowers, Heather; Bush, Alfred L.; Meeker, Gregory P.; Plumlee, Geoffrey S.; Brownfield, Isabelle K.; Sutley, Stephen J.
2002-01-01
Unusually high incidences of asbestos-related mortality and respiratory disease in the small town of Libby, Montana, have been linked to amphibole mineral fibers intergrown with the vermiculite deposits mined and milled near the town from 1923 to 1990. A study conducted by the U.S. Agency for Toxic Substances and Disease Registry concluded that mortality due to asbestosis in Libby mine and mill workers and residents during 1979 to 1998 was much higher than expected for a similar Montana or United States population group. Recent medical testing of past and present mineworkers and residents of Libby showed lung abnormalities in nearly one-fifth of the adult study participants. The U.S. Environmental Protection Agency, under Superfund authority, is completing sampling and cleanup of asbestos-bearing materials in the mine, mill, and town sites. The U.S. Geological Survey is conducting a study, reviewed herein, to investigate the mineral content of other U.S. vermiculite deposits and to determine if the amphibole asbestos minerals like those found in the Libby deposits are common in other vermiculite deposits.
Zimmermann, Moritz; Valcanaia, Andre; Neiva, Gisele; Mehl, Albert; Fasbinder, Dennis
2017-11-30
Several methods for the evaluation of fit of computer-aided design/computer-assisted manufacture (CAD/CAM)-fabricated restorations have been described. In the study, digital models were recorded with an intraoral scanning device and were measured using a new three-dimensional (3D) computer technique to evaluate restoration internal fit. The aim of the study was to evaluate the internal adaptation and fit of chairside CAD/CAM-fabricated zirconia-reinforced lithium silicate ceramic crowns fabricated with different post-milling protocols. The null hypothesis was that different post-milling protocols did not influence the fitting accuracy of zirconia-reinforced lithium silicate restorations. A master all-ceramic crown preparation was completed on a maxillary right first molar on a typodont. Twenty zirconia-reinforced lithium silicate ceramic crowns (Celtra Duo, Dentsply Sirona) were designed and milled using a chairside CAD/CAM system (CEREC Omnicam, Dentsply Sirona). The 20 crowns were randomly divided into two groups based on post-milling protocols: no manipulation after milling (Group MI) and oven fired-glazing after milling (Group FG). A 3D computer method was used to evaluate the internal adaptation of the crowns. This was based on a subtractive analysis of a digital scan of the crown preparation and a digital scan of the thickness of the cement space over the crown preparation as recorded by a polyvinylsiloxane (PVS) impression material. The preparation scan and PVS scan were matched in 3D and a 3D difference analysis was performed with a software program (OraCheck, Cyfex). Three areas of internal adaptation and fit were selected for analysis: margin (MA), axial wall (AX), and occlusal surface (OC). Statistical analysis was performed using 80% percentile and one-way ANOVA with post-hoc Scheffé test (P = .05). The closest internal adaptation of the crowns was measured at the axial wall with 102.0 ± 11.7 µm for group MI-AX and 106.3 ± 29.3 µm for group FG-AX. The largest internal adaptation of the crowns was measured for the occlusal surface with 258.9 ± 39.2 µm for group MI-OC and 260.6 ± 55.0 µm for group FG-OC. No statistically significant differences were found for the post-milling protocols (P > .05). The 3D difference pattern was visually analyzed for each area with a color-coded scheme. Post-milling processing did not affect the internal adaptation of zirconia-reinforced lithium silicate crowns fabricated with a chairside CAD/CAM technique. The new 3D computer technique for the evaluation of fit of restorations may be highly promising and has the opportunity to be applied to clinical studies.
Long-term mortality study of steelworkers. IX. Mortality patterns among sheet and tin mill workers.
Mazumdar, S; Lerer, T; Redmond, C K
1975-12-01
As a result of findings of an earlier report in this series, this study examines the updated cause-specific mortality of men employed in the sheet and tin mill areas of the steel industry. In order to investigate possible relationships between occupational responsibilities or exposures and mortality from specific causes, the sheet and tin mills have been subdivided into 13 mutually exclusive work areas. Detailed analysis is limited primarily to white workers due to the small number of nonwhites in these areas. The most important observations are: 1. Increased overall mortality appears for men employed in 1953 in the sheet finishing and shipping area, confirming the findings of Lloyd, et al. The earlier observation of a significant excess in deaths from vascular lesions of the central nervous system does not hold over time. The previously noted excess for this cause may be related to selective factors or an extreme chance observation. The excess in mortality from all causes of death, which occurs over several disease categories, may not be a result of occupational exposures, but rather some selectivity. 2. Significant excesses in mortality from arteriosclerotic heart disease are noted among men employed in batch pickling and sheet dryer operations, which is in agreement with the earlier findings. Increased risks of dying from hypertensive heart disease are seen in the coating area. 3. Cancer of the lymphatic and hematopoietic tissues is found to be a significant source of excess mortality for workers in the heat treating and forging and tin finishing and shipping work areas. 4. Steelworkers employed in the annealing-normalizing work area show an excess in deaths from nonmalignant respiratory diseases, primarily pneumonia. Further study in these areas should attempt to investigate whether factors in the work environment may be responsible for the observed excess mortalities. More specifically, work should be done to find out whether men employed in heat treating and forging and tin finishing and shipping work in close proximity to chemicals or radiation exposure and whether workers employed in the annealing-normalizing area are exposed to any kind of oil, vapor, or chemical which might be irritating or infectious to the respiratory system. A similar analysis for men working in the batch pickling and sheet dryers and coating areas would also be worthwhile. The main emphasis of any future study should lie upon investigating whether the observed excess mortalities are due to any environmental factor, selection for health, or random fluctuation.
Sauvard, Daniel; Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet's flight capacity to understand the species' success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts.
Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet’s flight capacity to understand the species’ success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts. PMID:29883467
Van der Walt, Anita; Baatjies, Roslynn; Singh, Tanusha; Jeebhay, Mohamed F
2016-09-01
This study evaluated the determinants of high fractional exhaled nitric oxide (FeNO; >50 ppb) and serial changes in FeNO over a 24-hour period in spice mill workers at risk of work-related allergic respiratory disease and asthma. A cross-sectional study of 150 workers used European Community Respiratory Health Survey (ECRHS) questionnaires, Phadiatop, serum-specific IgE (garlic, chilli pepper, wheat; Phadia, ImmunoCAP), spirometry and FeNO. A hand-held portable nitric oxide sampling device (NIOX MINO, Aerocrine AB) measured FeNO before and after the 8-hour shift and after 24 hours from baseline. The mean age of workers was 33 years; 71% were male, 46% current smokers and 45% atopic. Among workers with garlic sensitisation, 13% were monosensitised and 6% were co-sensitised to chilli pepper. Baseline preshift FeNO geometric mean (GM=14.9 ppb) was similar to the mean change across shift (GM=15.4 ppb) and across the 24-hour period (GM=15.8 ppb). In multivariate linear models, smoking (β=-0.507) and atopy (β=0.433) were strongly associated with FeNO. High FeNO (>50 ppb) was significantly associated with asthma-like symptoms due to spice dust (OR=5.38, CI 1.01 to 28.95). Sensitisation to chilli pepper was more strongly correlated with FeNO (r=0.32) and FeNO>50 ppb (OR=17.04, p=0.005) than garlic. FeNO increase (>12%) across 24 hours demonstrated a strong association with elevated exposures to spice dust particulate (OR=3.77, CI 1.01 to 14.24). This study suggests that chilli pepper sensitisation is associated with high FeNO (>50 ppb), more strongly compared with garlic, despite the low prevalence of sensitisation to chilli. Elevated inhalant spice dust particulate is associated with a delayed elevation of FeNO across the 24-hour period. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Norbisrath, Jan Henrik
Carbonate rocks are known to have complex and heterogeneous pore structures, which result from their biogenic origin and strong affinity for diagenetic processes that change their pore structure after burial. The combination of sheer endless variations of precursor biogenic material, depositional environments, and diagenetic effects results in rocks that are interesting to study but intricate to understand. Many schemes to categorize the diversity of carbonate rocks are in use today; most are based on the macropore structure and qualitative thin-section analysis. Many studies, however, acknowledge that micropores have a significant influence on the macroscopic petrophysical rock properties, which are essential to determine reservoir quality. Micropores are, by definition, smaller than the thickness of a thin-section (< 30 microm) and hence cannot be quantified with conventional methods. For their analysis, scanning electron microscopy (SEM) is the logical next step. The challenge is that mechanical polishing methods produce excessive surface roughness at micron scale; the resulting surfaces are not suited for quantification of micropores. Advances in broad-ion-beam (BIB) milling enable preparation of nanometer-precision 2D sections that are suited for quantitative analysis with the SEM. To accomplish the objective of accurate quantification of carbonate micropores, part one of this dissertation employs the BIB-SEM technique on a variety of carbonate rock samples and finds four major carbonate microporosity types: (1) small intercrystalline, (2) large inter-crystalline, (3) intercement, and (4) micromoldic. Each microporosity type shows a distinct capacity to conduct electrical charge, which largely controls the magnitude and range of cementation factors (m) in rocks with such microporosity type. The BIB-SEM method is also used on a dataset of mixed carbonate-siliciclastic (mudrock) samples with high kerogen and pyrite content. Results show that the nanopore geometry here has little influence on cementation factors, and instead porosity is the main control on m in mudrocks. Cementation factors are crucial for estimates of oil-in-place and water saturation in a wireline application, and a slight change of (assumed) cementation factor can change the interpreter's evaluation from dry hole to discovery. Therefore, accurate determination of cementation factors is a critical task in formation evaluation, similar to accurate estimates of permeability. To achieve this goal, this dissertation utilizes a new approach of using complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical and fluid flow properties. Specifically, frequency dispersion of complex resistivity in the kHz range is used as input for a new model to predict cementation factor and permeability in a wide variety of core plug samples. The underlying concept that relates CRS to flow properties is that both are related to pore geometry. CRS are linked to pore geometry by interfacial polarization effects at the fluid-rock boundary that control the phase and amplitude shift of an applied alternating current. Larger interfacial area results in higher phase shifts, but also indicates a more intricate pore structure that often results in lower permeability and higher cementation factors. The findings from this dissertation imply that (1) the CRS prediction method greatly improves estimates of cementation factors and permeability in carbonate, dolomite, and mixed siliciclastic rocks, (2) there are at least four distinct microporosity types in carbonate rocks, which have great impact on cementation factors and permeability, (3) nanopore geometry has a small impact on electrical flow properties in mudrocks where the main control on cementation factors is porosity, and (4) all sedimentary limestone and mixed carbonate-siliciclastic rocks have power law pore size distributions.
Respiratory Symptoms and Lung Function among Greek Cotton Industry Workers: A Cross-Sectional Study.
Anyfantis, Ioannis D; Rachiotis, Georgios; Hadjichristodoulou, Cristos; Gourgoulianis, Konstantinos I
2017-01-01
Workers in cotton industry are occupationally exposed to various dust-related hazards. The nature of these agents and the respective exposure levels depend on the cotton industry specific sector. These exposures could be associated with respiratory symptoms and changes in lung function parameters. To evaluate associations between occupational exposure and respiratory function as well as reported symptoms in several groups of workers at different stages of the cotton industry in a vertical approach that covers all the major sectors-from cotton ginning to weaving and fabric production. A questionnaire on respiratory symptoms and individual as well as workplace characteristics was completed by 256 workers at the cotton industry and 148 office workers (control group). Both groups underwent spirometry. Workers in cotton industry reported a higher prevalence of severe dyspnea (p=0.002) and wheezing (p=0.004) compared to the control group. Also they were found to have a lower predicted FEV 1 % (p<0.029) and lower FEV 1 /FVC (p<0.001) values. In addition, a higher prevalence of FEV 1 % <80% (p<0.001) and FEV 1 /FVC <70% (p=0.041) were found among textile workers. Similar results were found for non-smoker textile workers compared to non-smoker control group workers. Those working in cotton ginning mills recorded the highest decrease of spirometric values. Duration of employment in cotton industry and smoking use were found to be predictors of lung function decline for cotton industry workers. Occupational exposure to cotton dust was associated with increased prevalence of respiratory symptoms and obstructive pattern in pulmonary function test.
Wang, Xuanwen; Dong, Xiuwen Sue; Choi, Sang D; Dement, John
2017-05-01
Examine trends and patterns of work-related musculoskeletal disorders (WMSDs) among construction workers in the USA, with an emphasis on older workers. WMSDs were identified from the 1992-2014 Survey of Occupational Injuries and Illnesses (SOII), and employment was estimated from the Current Population Survey (CPS). Risk of WMSDs was measured by number of WMSDs per 10 000 full-time equivalent workers and stratified by major demographic and employment subgroups. Time series analysis was performed to examine the trend of WMSDs in construction. The number of WMSDs significantly dropped in the US construction industry, following the overall injury trends. However, the rate of WMSDs in construction remained higher than in all industries combined; the median days away from work increased from 8 days in 1992 to 13 days in 2014, and the proportion of WMSDs for construction workers aged 55 to 64 years almost doubled. By occupation, construction labourers had the largest number of WMSD cases, while helpers, heating and air-conditioning mechanics, cement masons and sheet metal workers had the highest rates of WMSDs. The major cause of WMSDs in construction was overexertion, and back injuries accounted for more than 40% of WMSDs among construction workers. The estimated wage loss for private wage-and-salary construction workers was $46 million in 2014. Construction workers continue to face a higher risk of WMSDs. Ergonomic solutions that reduce overexertion-the primary exposure for WMSDs-should be adopted extensively at construction sites, particularly for workers with a higher risk of WMSDs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Tests for sensitisation in occupational medicine practice--the soy bean example.
Roodt, L; Rees, D
1995-06-01
To determine the prevalence of sensitisation to soy bean measured by specific IgE and skin prick tests (SPTs) and to examine the association between evidence of sensitisation to soy bean allergens and symptoms of allergic disease. Cross-sectional study. Questionnaire survey. A venous blood sample was taken for specific IgE testing, and SPTs for common allergens and soy bean dust were performed. Soy bean mill. A volunteer sample of 22 workers exposed to soy bean dust; the first 20 non-exposed workers presenting to the National Centre for Occupational Health clinic formed the control group. Immunological tests for sensitisation and symptoms of respiratory and allergic disease. Eight of the exposed workers had positive skin reactions to either full-fat or defatted soy bean. None of the controls was SPT-positive. Eight of the exposed workers had increased levels of soy-specific IgE of whom only 4 were SPT-positive and had an increased level of soy-specific IgE. One of the control workers had an increased level of soy-specific IgE. Workers with an increased specific IgE or SPT positive to soy bean did not have more symptoms than workers with negative tests. However, work-related breathlessness was significantly higher in the exposed group (P < 0.05). The data suggest that the immunological tests for sensitisation were not useful in identifying workers with soy bean-related disease but that tests for sensitisation were linked to exposure.
Segmental thoracic spinal anesthesia in patient with Byssinosis undergoing nephrectomy.
Patel, Kiran; Salgaonkar, Sweta
2012-01-01
Byssinosis is an occupational disease occurring commonly in cotton mill workers; it usually presents with features of chronic obstructive pulmonary disease (COPD). The management of patients with COPD presents a significant challenges to the anesthetist. Regional anesthesia is preferred in most of these patients to avoid perioperative and postoperative complications related to general anesthesia. We report a known case of Byssinosis who underwent nephrectomy under segmental spinal anesthesia at the low thoracic level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye
2014-02-15
Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less
Durability of conventional concretes containing black rice husk ash.
Chatveera, B; Lertwattanaruk, P
2011-01-01
In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yazigi, Christine; Kern, Matthias; Chaar, Mohamed Sad
2017-11-01
To evaluate the efficiency of immediate dentin sealing and the effects of different bonding protocols on the fracture strength of CAD/CAM occlusal veneers bonded to exposed dentin. Ninety-six extracted maxillary premolars were initially divided into three main groups with 32 specimens each: without immediate dentin sealing, immediate dentin sealing/total etching and immediate dentin sealing/selective etching. Teeth were identically prepared in the dentin to receive occlusal veneers of 0.8mm thickness, milled from lithium disilicate ceramic blocks (IPS e.max CAD). Each main group was later subdivided, according to the pre-cementation surface etching protocol (total/selective), into two subgroups with 16 specimens each. All restorations were adhesively bonded using a resin cement (Variolink Esthetic). Half of the specimens of each subgroup were subjected to thermo-dynamic loading in a chewing simulator with 1,200,000 cycles at 10kg load. The other half and the surviving specimens were subjected to quasi-static loading until failure. Statistical analysis was performed using three-way ANOVA and Tukey's post-hoc tests. All specimens except one survived the artificial aging. A significantly higher fracture strength of restorations (p ≤ 0.001) was obtained when immediate dentin sealing was followed regardless of the etching method with values ranging from a minimum of 1122 ± 336N to a maximum of 1853 ± 333N. Neither the pre-cementation treatment nor the artificial aging had a statistical significant effect on the fracture strength. Immediate dentin sealing protocol is recommended whenever dentin is exposed during the preparation for thin glass-ceramic occlusal veneers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Digital versus conventional techniques for pattern fabrication of implant-supported frameworks
Alikhasi, Marzieh; Rohanian, Ahmad; Ghodsi, Safoura; Kolde, Amin Mohammadpour
2018-01-01
Objective: The aim of this experimental study was to compare retention of frameworks cast from wax patterns fabricated by three different methods. Materials and Methods: Thirty-six implant analogs connected to one-piece abutments were divided randomly into three groups according to the wax pattern fabrication method (n = 12). Computer-aided design/computer-aided manufacturing (CAD/CAM) milling machine, three-dimensional printer, and conventional technique were used for fabrication of waxing patterns. All laboratory procedures were performed by an expert-reliable technician to eliminate intra-operator bias. The wax patterns were cast, finished, and seated on related abutment analogs. The number of adjustment times was recorded and analyzed by Kruskal–Wallis test. Frameworks were cemented on the corresponding analogs with zinc phosphate cement and tensile resistance test was used to measure retention value. Statistical Analysis Used: One-way analysis of variance (ANOVA) and post hoc Tukey tests were used for statistical analysis. Level of significance was set at P < 0.05. Results: The mean retentive values of 680.36 ± 21.93 N, 440.48 ± 85.98 N, and 407.23 ± 67.48 N were recorded for CAD/CAM, rapid prototyping, and conventional group, respectively. One-way ANOVA test revealed significant differences among the three groups (P < 0.001). The post hoc Tukey test showed significantly higher retention for CAD/CAM group (P < 0.001), while there was no significant difference between the two other groups (P = 0.54). CAD/CAM group required significantly more adjustments (P < 0.001). Conclusions: CAD/CAM-fabricated wax patterns showed significantly higher retention for implant-supported cement-retained frameworks; this could be a valuable help when there are limitations in the retention of single-unit implant restorations. PMID:29657528
Digital versus conventional techniques for pattern fabrication of implant-supported frameworks.
Alikhasi, Marzieh; Rohanian, Ahmad; Ghodsi, Safoura; Kolde, Amin Mohammadpour
2018-01-01
The aim of this experimental study was to compare retention of frameworks cast from wax patterns fabricated by three different methods. Thirty-six implant analogs connected to one-piece abutments were divided randomly into three groups according to the wax pattern fabrication method ( n = 12). Computer-aided design/computer-aided manufacturing (CAD/CAM) milling machine, three-dimensional printer, and conventional technique were used for fabrication of waxing patterns. All laboratory procedures were performed by an expert-reliable technician to eliminate intra-operator bias. The wax patterns were cast, finished, and seated on related abutment analogs. The number of adjustment times was recorded and analyzed by Kruskal-Wallis test. Frameworks were cemented on the corresponding analogs with zinc phosphate cement and tensile resistance test was used to measure retention value. One-way analysis of variance (ANOVA) and post hoc Tukey tests were used for statistical analysis. Level of significance was set at P < 0.05. The mean retentive values of 680.36 ± 21.93 N, 440.48 ± 85.98 N, and 407.23 ± 67.48 N were recorded for CAD/CAM, rapid prototyping, and conventional group, respectively. One-way ANOVA test revealed significant differences among the three groups ( P < 0.001). The post hoc Tukey test showed significantly higher retention for CAD/CAM group ( P < 0.001), while there was no significant difference between the two other groups ( P = 0.54). CAD/CAM group required significantly more adjustments ( P < 0.001). CAD/CAM-fabricated wax patterns showed significantly higher retention for implant-supported cement-retained frameworks; this could be a valuable help when there are limitations in the retention of single-unit implant restorations.
Thyssen, J P; Jensen, P; Carlsen, B C; Engkilde, K; Menné, T; Johansen, J D
2009-12-01
Chromium allergy has traditionally been caused by occupational skin contact with cement. In 1983, Danish legislation made the addition of ferrous sulphate compulsory in cement to reduce the water-soluble chromium content to not more than 2 ppm. An effect from this intervention has previously been demonstrated among Danish construction workers. To investigate the development of chromium allergy among patients with dermatitis tested between 1985 and 2007 in Denmark. Furthermore, to determine causative exposures in patients with chromium allergy. A retrospective analysis of patch test data was performed (n = 16,228) and charts from patients with chromium allergy were reviewed. Comparisons were made using a chi(2) test. Logistic regression analyses were used to test for associations. The prevalence of chromium allergy decreased significantly from 3.6% in 1985 to 1% in 1995 (P(trend) < 0.001) but increased to 3.3% in 2007 (P(trend) < 0.001). The frequency of clinically relevant cement exposure decreased significantly among patients with chromium allergy from 12.7% in 1989-1994 to 3.0% (P < 0.01) in 1995-2007, whereas the frequency of relevant leather exposure increased significantly from 24.1% during 1989-1994 to 45.5% during 1995-2007 (P < 0.02). Chromium allergy is currently increasing in Denmark due to leather exposure.
Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.
Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk
2015-08-01
The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Schouten, Lianne S; Bültmann, Ute; Heymans, Martijn W; Joling, Catelijne I; Twisk, Jos W R; Roelen, Corné A M
2016-04-01
The Work Ability Index (WAI) identifies non-sicklisted workers at risk of future long-term sickness absence (LTSA). The WAI is a complicated instrument and inconvenient for use in large-scale surveys. We investigated whether shortened versions of the WAI identify non-sicklisted workers at risk of LTSA. Prospective study including two samples of non-sicklisted workers participating in occupational health checks between 2010 and 2012. A heterogeneous development sample (N= 2899) was used to estimate logistic regression coefficients for the complete WAI, a shortened WAI version without the list of diseases, and single-item Work Ability Score (WAS). These three instruments were calibrated for predictions of different (≥2, ≥4 and ≥6 weeks) LTSA durations in a validation sample of non-sicklisted workers (N= 3049) employed at a steel mill, differentiating between manual (N= 1710) and non-manual (N= 1339) workers. The discriminative ability was investigated by receiver operating characteristic analysis. All three instruments under-predicted the LTSA risks in both manual and non-manual workers. The complete WAI discriminated between individuals at high and low risk of LTSA ≥2, ≥4 and ≥6 weeks in manual and non-manual workers. Risk predictions and discrimination by the shortened WAI without the list of diseases were as good as the complete WAI. The WAS showed poorer discrimination in manual and non-manual workers. The WAI without the list of diseases is a good alternative to the complete WAI to identify non-sicklisted workers at risk of future LTSA durations ≥2, ≥4 and ≥6 weeks. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Kaolinosis in a cotton mill worker.
Levin, J L; Frank, A L; Williams, M G; McConnell, W; Suzuki, Y; Dodson, R F
1996-02-01
A 62-year-old white male employed for 43 years in the polishing room of a cotton textile mill was admitted to a tertiary care center with progressive dyspnea and productive cough that had not responded to therapy for tuberculosis. In spite of aggressive antibiotic therapy and respiratory support, the patient died as a consequence of respiratory failure. Small rounded and irregular opacities had been noted on the chest radiograph. Review of job-site spirometry demonstrated a worsening restrictive pattern over a 4-year period prior to his death. Additional occupational history revealed long-term exposure to kaolin in the polishing room, and pathologic examination of lung tissue confirmed extensive fibrosis and substantial quantities of kaolin. Kaolinosis is a disease typically found among individuals involved in mining or processing this material rather than in user industries. This case illustrates the importance of obtaining a complete occupational history in reaching a diagnosis. The clinicopathologic aspects of kaolinosis are also reviewed.
Field performance measurements of half-facepiece respirators: steel mill operations.
Myers, W R; Zhuang, Z
1998-11-01
Ambient and in-facepiece samples to evaluate the protection provided by negative-pressure, half-facepiece respirators were collected on workers in different areas of a steel mill including a sinter plant and a basic oxygen process shop. Protection was assessed by workplace protection factors (WPF). All the in-facepiece concentrations were dramatically less than the corresponding ambient concentration levels or permissible exposure limits. The geometric mean (GM) ambient and in-facepiece concentrations of iron were found to vary among tasks. Significant differences were also found to occur between the GM ambient exposure levels in which some of the respirators were used. Significant differences in respirator performance as measured by WPF or in-facepiece iron concentration were observed among different brands of respirators. For all job classifications and at all levels of airborne exposure, the fifth percentile estimates for the WPF distributions for each brand of respirator were all greater than 20.
This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and were combined into one region-wide layer. Thus far the sources include:1. California Gulch (Irrigated Meadows) - ESAT Contractor.2. Manning Canyon - U.S. EPA Region 8; ESAT Contractor.3. Rapid City Small Arms Range - U.S. EPA Region 8; ESAT Contractor.4. Animas River/Cement Creek - U.S. EPA Region 8; ESAT Contractor.5. Monticello Mill Tailings (USDOE) - USDOE; ESAT Contractor.6. Pinon Canyon - USDOD.7. Rock Flats Industrial Park - U.S. EPA Region 8.8. Bountiful/Woods Cross - U.S. EPA Region 8.9. Lincoln Park - U.S. EPA Region 8.10. Marshall Landfill - U.S. EPA Region 8.11. U.S. Magnesium - Pacific Western Technologies Inc.
Segmental thoracic spinal anesthesia in patient with Byssinosis undergoing nephrectomy
Patel, Kiran; Salgaonkar, Sweta
2012-01-01
Byssinosis is an occupational disease occurring commonly in cotton mill workers; it usually presents with features of chronic obstructive pulmonary disease (COPD). The management of patients with COPD presents a significant challenges to the anesthetist. Regional anesthesia is preferred in most of these patients to avoid perioperative and postoperative complications related to general anesthesia. We report a known case of Byssinosis who underwent nephrectomy under segmental spinal anesthesia at the low thoracic level. PMID:25885628
Effects of exposure to lead among lead-acid battery factory workers in Sudan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, A.A.E.K.; Hamed, A.A.S.; Elhaimi, Y.A.A.
Health effects of occupational exposure to lead were investigated among 92 exposed workers in lead-acid battery factory and 40 nonexposed workers serving as a control group from an oil mill in Khartoum North industrial area. The two groups were closely similar in age, stature, body weight, and socioeconomic conditions. A highly significant increase (P<.01) was recorded in blood lead, urinary coproporphyrin, and basophilic stippled red blood cells of the exposed group in comparison to the control group. Central nervous system symptoms (insomnia, fatigue, weakness, and drowsiness) were reported by 50% and other symptoms such as abdominal colic and constipation weremore » reported by 41% of the exposed group. Blue line on the gum was detected only on 2% of the exposed group. Strong associations between exposure to lead and the prevalence of central nervous system symptoms, abdominal colic, and constipation were recorded. Exposure to exceedingly high levels of lead in the working environment causes adverse health effects.« less
Prevalence of Pneumoconiosis in Cornish Kaolin Workers
Sheers, Geoffrey
1964-01-01
In 1961, 553 Cornish china clay workers had been exposed to kaolin dust for periods exceeding five years, and evidence of kaolinosis was seen in 48 (9%). No kaolinosis was found in men who had been exposed for less than five years. Workers in the more heavily exposed jobs of milling, bagging, and loading showed a prevalence rising from 6% in those with between five and 15 years' exposure to 23% in those exposed for more than 15 years. Men who had been intermittently and less heavily exposed in the older, out-dated drying plants needed 25 years' exposure before reaching the highest prevalence of 17%. Massive fibrosis has been observed in two cases in the industry and also in two men who have left the industry. Six men needed anti-tuberculous chemotherapy, but none had a positive sputum. Preventive measures now include pre-employment chest examination, but the problems of dust control have not yet been satisfactorily solved. Images PMID:14180481
Nafees, Asaad Ahmed; Fatmi, Zafar; Kadir, Muhammad Masood; Sathiakumar, Nalini
2016-05-01
To determine the frequency and predictors of chronic bronchitis and COPD among textile workers in Karachi, Pakistan. Cross-sectional survey. Karachi, Pakistan, from October to December 2009. Male textile workers from 15 mills of Karachi were inducted. Data was collected using American Thoracic Society respiratory questionnaire (ATS-DLD-78-a) and spirometry. Out of 372 participants, 29 (7.8%) workers had chronic bronchitis (4, 9.1% aged ≥40 years) and 25 (6.7%) had COPD (12, 27.2% aged ≥40 years). Workers with chronic bronchitis had significantly decreased lung function compared to the healthy workers. Those reporting severe self-perceived dust exposure at work, ≥ 10 pack years of smoking, uneducated, longer duration of work (≥11 years), and ever smokers were more likely to have chronic bronchitis or COPD. In the multivariate analyses, severe self-perceived dust exposure at work (AOR = 7.4; 95% CI: 1.9, 28.0), family history of respiratory illness/symptoms (AOR = 4.8; 95% CI: 1.1, 20.9) and lack of education (AOR = 4.2; 95% CI: 1.1, 16.9) were significant predictors of chronic bronchitis. Duration of work ≥11 years (AOR = 5.5; 95% CI: 1.5, 19.7) and pack years of smoking ≥10 years (AOR = 3.5; 95% CI: 1.1, 11.7) were strong predictors for COPD. There is a high frequency of chronic bronchitis and COPD among textile workers. Multiple important predictors for prevention are identified.
Health-hazard evaluation report HETA 88-391-2156, Morton Salt Company, Weeks Island, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, R.P.; Knutti, E.B.
1991-11-01
In response to a request from the International Chemical Workers Union, project director, an evaluation was undertaken of possible hazardous working conditions at the Morton Salt Company (SIC-1479), Weeks Island, Louisiana. At Weeks Island the salt was mined from large domes, circular in shape and from a few hundred yards to a mile across. The only detectable overexposures in the mining operation were to coal-tar pitch volatiles. None of the 20 personal breathing zone and area air samples collected in the mill were above detectable limits for asbestos (1332214). The prevalences of chronic cough and chronic phlegm reported were statisticallymore » different, exceeding those reported by a group of nonexposed blue collar workers. Chronic symptoms were reported by underground workers in all smoking categories, but only by those surface workers who also smoked. There were more complaints about eye irritation and tearing of the eyes in the underground workers, consistent with diesel byproduct exposure. Four workers were identified through pulmonary function test results with mild obstructive lung disease and one with moderate obstructive lung disease. Three workers with mild restriction of lung volume were noted. None of the 61 chest films taken read positively for pneumoconiosis. The authors conclude that overexposures to coal-tar pitch volatiles existed at the time of the survey. The authors recommend measures for reducing occupational exposures to workplace contaminants. A follow up medical questionnaire survey should be conducted.« less
Rogaczewska, T; Matczak, W
1985-01-01
By stationary measurements the levels of cadmium oxide aerosols concentrations in air at particular workplaces related to cadmium production at non-ferrous metals mill have been determined. High concentrations of that compound have been found at such technological operations as unloading of cadmium-bearing raw materials, batching of cadmium sponge in the induction furnace and casting of fused cadmium into moulds. With the personal dosimetry technique, concentrations of that compound in the workers' breathing zone have been determined. Those were within 0.16-1.84 mg/m3, so--above the TLV values. However, those concentrations do not necessarily reflect the occupational exposure magnitude, as the workers had respirators.
The role of endotoxin in grain dust exposure and airway obstruction.
Von Essen, S
1997-05-01
Grain dust exposure is a common cause of respiratory symptoms in grain workers, feed mill employees, and farmers. Many of these workers develop wheezing and acute and chronic bronchitis symptoms, which can be associated with obstructive changes on pulmonary function testing. It has recently been demonstrated that grain dust exposure causes neutrophilic airways inflammation and systemic symptoms related to release of interleukin-1, tumor necrosis factor, interleukin-6, and other mediators of inflammation. Although grain dust is a heterogenous substance, endotoxin has received the greatest amount of attention as a possible cause of the airway inflammation that occurs after grain dust exposure. Although endotoxin undoubtedly causes a portion of the changes seen after grain dust exposure, it is becoming clear that other substances play a role as well.
Drillers and mill operators in an open-pit gold mine are at risk for impaired lung function.
Vinnikov, Denis
2016-01-01
Occupational studies of associations of exposures with impaired lung function in mining settings are built on exposure assessment and far less often on workplace approach, so the aim of this study was to identify vulnerable occupational groups for early lung function reduction in a cohort of healthy young miners. Data from annual screening lung function tests in gold mining company in Kyrgyzstan were linked to occupations. We compared per cent predicted forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC between occupational groups and tested selected occupations in multivariate regression adjusted for smoking and work duration for the following outcomes: FEV1 < 80 %, FEV1/FVC < 70 % and both. 1550 tests of permanent workers of 41 occupations (mean age 40.5 ± 9.2 years, 29.8 % never smokers) were included in the analysis. The mean overall VC was 103.0 ± 12.9 %; FVC 109.1 ± 13.0 % and FEV1 100.2 ± 25.9 %. Drillers and smoking food handlers had the lowest FEV1%. In non-smokers, the lowest FEV1 was in drillers (94.9 ± 11.3 % compared to 115.2 ± 17.7 % in engineers). Drillers (adjusted odds ratio (OR) 1.53 (95 % confidence interval (CI) 1.11-2.09)) and mill operators (OR 2.01 (1.13-3.57)) were at greater risk of obstructive ventilation pattern (FEV1/FVC < 70 %). Drilling and mill operations are the highest risk jobs in an open-pit mine for reduced lung function. Occupational medical clinic at site should follow-up workers in these occupations with depth and strongly recommend smoking cessation.
Asbestos and health in the Third World: the case of Brazil.
Berman, D M
1986-01-01
Almost all of the asbestos used in Brazil is mined by an enterprise wholly owned by two European multinational companies, which also produce and market over two-thirds (by weight of asbestos) of the products made from asbestos. About 80 percent of the asbestos used in Brazil is finally consumed in the form of asbestos cement: for roof tiles and roofing panels, wall-board, and domestic and industrial water tanks. A survey of consumer literature and advertising printed by Eternit, S.A., and Brasilit, S.A., disclosed no mention of a potential danger from exposure to asbestos dust, and no recommendations for cutting down exposure to that dust. The situation at smaller, Brazilian-owned firms is reputed to be disastrous from the standpoint of workers' exposure to asbestos dust at the point of production. At a large asbestos-cement manufacturing plant owned by Eternit, however, exposure to asbestos dust (according to company records) seemed to be kept under 2.0 fibers per cc., the present standard for the United States.
Reid, Alison; Merler, Enzo; Peters, Susan; Jayasinghe, Nimashi; Bressan, Vittoria; Franklin, Peter; Brims, Fraser; de Klerk, Nicholas H; Musk, Arthur W
2018-01-01
Three hundred and thirty thousand Italians arrived in Australia between 1945 and 1966, many on assisted passage schemes where the worker agreed to a 2-year unskilled employment contract. Italians were the largest of 52 migrant groups employed at the Wittenoom blue asbestos mining and milling operation. We compare mortality from asbestos-related diseases among Italian and Australian workers employed at Wittenoom. A cohort of 6500 male workers was established from employment records and followed up at state and national mortality and cancer registries. SMRs were calculated to compare mortality with the Western Australian male population. Time-varying Cox proportional hazards models compared the risk of mesothelioma between Australian and Italian workers. 1031 Italians and 3465 Australians worked at Wittenoom between 1943 and 1966. Duration of employment was longer for the Italian workers, although the concentration of exposure was similar. The mesothelioma mortality rate per 100 000 was higher in Italians (184, 95% CI 148 to 229) than Australians (128, 95% CI 111 to 149). The risk of mesothelioma was greater than twofold (HR 2.27, 95% CI 1.43 to 3.60) in Italians at the lowest asbestos exposure category (<10 fibre years/per mL). A hierarchy in migration, isolation and a shortage of workers led to Italians at Wittenoom incurring higher cumulative exposure to blue asbestos and subsequently a greater rate of malignant mesothelioma than Australian workers. Poor working conditions and disparities between native and foreign-born workers has had a detrimental and differential impact on the long-term health of the workforce. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.
Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya
2017-03-01
Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ 2 = 26.1258, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers' health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.
Identification of potential hazards associated with new residential construction.
Methner, M M
2000-02-01
There were several advantages and limitations of this observational study. The most important advantage of this study was the opportunity to observe residential construction workers performing their jobs. By observing work practices, valuable information was gathered about specific trades and their potential exposure to various chemical and physical agents. This information will be useful in guiding subsequent exposure assessments. Probably the greatest limitation of this study was the lack of participation by homebuilders. Ideally, observations of construction processes would have been more objective if the study included the participation of more than one homebuilder. Aside from one worker who was observed to wear safety glasses, leather gloves, and a dust mask, virtually no personal protective equipment (PPE) was observed onsite. Often small contractors do not have the financial resources necessary to procure the appropriate PPE and issue these items to the workers. Based on hazard prevalence, professional judgement, and the degree of hazardous product use, potential exposures that warrant quantitative sampling efforts during Phase 2 of this study are: bulldozer/backhoe operators--noise, vibration, diesel exhaust; concrete workers--naphtha, mineral spirits, Portland cement; asphalt workers--petroleum hydrocarbons, asphalt, mineral spirits; plumbers--methylethyl ketone, acetone, tetrahydrofuran, cyclohexanone; drywall finishers--total and respirable dust, hexane, acetone; painters--ethylene glycol, VOCs; masons--dust (during the preparation of mortar); floor preparation technicians--total and respirable dust; and ceramic tile installers--toluene, naphtha, silica (from grout powder).
NASA Astrophysics Data System (ADS)
Tabares Tamayo, Juan D.
The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such as the shape and size of the particles, were determined by optical microscopy combined with image analysis. The second stage, the absorption capacity of SAP's, involved determination of the swelling behavior and the absorption capacity of polymers exposed to artificial pore solutions with different levels of alkalinity. The swelling behavior was followed using the optical microscope while the absorption capacity was characterized using the tea bag method. It was found that changes in the chemical compositions of the pore solutions influence the adsorption kinetics and result in different absorption isotherms. In the third stage, the internal curing effects of inclusion of SAP in cement pastes were evaluated. Mixture proportions of pastes used in this stage of the study were selected based on the absorption capacity of the SAP determined in stage two. The testing of the pastes involved determination of their set times, heat of hydration, and autogenous shrinkage.
Muthukumar, B; Kumar, M Vasantha
2015-01-01
Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique showed the least amount of microleakage when compared with group A and group C. Group C (Dental Varnish) specimen showed comparatively more amount of microleakage than that of group B. Group A (control group) specimens showed the maximum amount of microleakage. Conclusion The application of a single layer of Dental varnish appears to be of no significant benefit when compared to crowns cemented with the application of Dentin bonding agent on the tooth surface. The application of a single layer of Dentin bonding agent (Solobond M) and temporary crowns fabricated with direct technique may be of some benefit for crown preparations as an interim measure prior to the luting of final crown. PMID:26266219
Lacourt, Aude; Pintos, Javier; Lavoué, Jérôme; Richardson, Lesley; Siemiatycki, Jack
2015-09-22
Given the large number of workers in the construction industry, it is important to derive accurate and valid estimates of cancer risk, and in particular lung cancer risk. In most previous studies, risks among construction workers were compared with general populations including blue and white collar workers. The main objectives of this study were to assess whether construction workers experience excess lung cancer risk, and whether exposure to selected construction industry exposures carries excess risks. We wished to address these objectives within the sub-population of blue collar workers. Two case-control studies were conducted in Montreal. Combined, they included 1593 lung cancer cases and 1427 controls, of whom 1304 cases and 1081 controls had been blue collar workers. Detailed lifetime job histories were obtained and translated by experts into histories of exposure to chemical agents. The two key analyses were to estimate odds ratio (OR) estimates of lung cancer risk: a) for all blue-collar construction workers compared with other blue-collar workers, and b) for construction workers exposed to each of 20 exposure agents found in the construction industry compared with construction workers unexposed to those agents. All analyses were conducted using unconditional logistic regression adjusted for socio-demographic factors and smoking history. The OR for all construction workers combined was 1.11 (95 % CI: 0.90-1.38), based on 381 blue collar construction workers. Analyses of specific exposures were hampered by small numbers and imprecise estimates. While none of 20 occupational agents examined was significantly associated with lung cancer, the following agents manifested non-significantly elevated ORs: asbestos, silica, Portland cement, soil dust, calcium oxide and calcium sulfate. Compared with other blue collar workers, there was only a slight increased risk of lung cancer for subjects who ever held an occupation in the construction industry. The analyses of agents within the construction industry produced imprecise estimates of risk, but nevertheless pointed to some plausible associations. Excess risks for asbestos and silica were in line with previous knowledge. The possible excess risks with the other inorganic dusts require further corroboration.
1979-01-01
stemming from different backgrounds, and goals, could introduce new" versus "old" conflicts in politics, customs , and everyday social inter- action...determined. It would also be difficult to estimate the extent to which such facilities would be used by those workers who represent pntential customers . Car...during other hours of the day. The use of rail transport would depend upon desti- nations, customers ’ locations, and the ability of the receiver to
THE FLOW OF FUNDS IN SMALL BUSINESSES AND IN LARGE BUSINESSES. PART I.
range of variations in the flow of funds in different businesses . The data have at least two possible types of use. The first is of direct concern to...funds in a given business . The study of the cement company is an example of a use of this sort. A second type of use is by research workers who may wish...causes which may lead to differences in the fund flow behavior of different companies, or (c) the effect of general economic conditions on the flow of funds in businesses .
Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark
2010-11-01
Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.
Asbestos exposure during renovation and demolition of asbestos-cement clad buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.K.
External asbestos cement (AC) claddings become weathered after many years by the gradual loss of cement from exposed surfaces; as a result, loosely bound layers enriched with asbestos fibers are formed. Asbestos fibers on such weathered surfaces may be mixtures of chrysotile with amosite or crocidolite. Renovation and demolition of old AC clad buildings could cause asbestos fiber emission, but this has not been investigated in the past. The exposure of workers to asbestos dust during these operations and precautions to minimize exposure now have been investigated at several building sites. Asbestos dust concentrations during water jet cleaning or paintingmore » of weathered AC roofing were approximately 0.1 to 0.2 fibers per milliliter (f/mL). Limited results suggest that concentrations may be reduced substantially by avoiding abrasion of surfaces. Concentrations during AC roof replacement averaged approximately 0.1 f/mL and were reduced markedly by employing more careful work procedures. Asbestos dust concentrations during demolition by removal of whole sheets averaged 0.3 to 0.6 f/mL for roofs and less than 0.1 f/mL for walls, reflecting the significant differences in extent of weathering between these elements. Suppression of asbestos emissions from roof sheets by wetting or sealing of weathered surfaces was not predictable because of the occurrence of asbestos fibers in dust trapped under sheet laps.« less
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
Klammert, Uwe; Vorndran, Elke; Reuther, Tobias; Müller, Frank A; Zorn, Katharina; Gbureck, Uwe
2010-11-01
Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg(3)(PO(4))(2)) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20-40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2-7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.
Friction stir processing on carbon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Sergei Yu., E-mail: tsy@ispms.ru; Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru; Rubtsov, Valery E., E-mail: rvy@ispms.ru
2014-11-14
Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring themore » wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.« less
Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde
2014-09-01
Powders of α-tricalcium phosphate (α-TCP), which readily react with water to form calcium-deficient hydroxyapatite (CDHA), are frequently used in bone cements. As, for clinical applications, it is important to adjust the setting reaction of the cements to a reasonable reaction time, exact knowledge of the hydration mechanism is essential. It is known that prolonged milling results in partial amorphization of α-TCP powders and that dissolution of the amorphous phase significantly accelerates the hydration, but it is not clear yet when the amorphous phase reacts in comparison to the crystalline α-TCP. Therefore the aim of this study was to investigate the development of quantitative phase content of α-TCP samples during hydration. For this purpose, three α-TCP powders, containing 0, 16 and 71wt.% of amorphous phase (ATCP), were mixed with either deionized water or a 0.1M Na2HPO4 aqueous solution. The crystalline evolution of the paste was assessed quantitatively during the first 48h of hydration at 23°C by G-factor quantification. The present investigations demonstrate that ATCP reacted earlier than crystalline α-TCP. The results also suggest the formation of an X-ray amorphous phase during the hydraulic conversion formation of α-TCP into CDHA. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Caprai, V; Florea, M V A; Brouwers, H J H
2018-06-15
Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Bergman, S.; Crider, J. G.
2012-12-01
Brittle fault systems can serve as either conduits or barriers to fluid flow, impacting mass and heat transfer in the crust and influencing the potential storage and migration of hydrocarbons and geothermal fluids. For fault systems in porous sandstones, different classes of structures control both hydrological and mechanical behavior during fault evolution: while cataclastic deformation bands form zones of localized deformation and crushed grains that reduce permeability within and across fault zones, joints can act as significant conduits for fluid. We investigate the relationship between structures and fluid flow in porous sandstones by studying calcite cements along the Moab Fault, a large normal fault system in the Paradox Basin, Utah. We use clumped isotope thermometry of fault cements to independently determine both the temperature and δ18O of the water from which the cements grew, placing new constraints on the source and path of diagenetic fluids in the basin. Based on fluid inclusion micro-thermometry and stable isotopic analysis of calcite cements from the Moab Fault, previous workers have hypothesized that joints served as conduits for the ascension of warm (84-125 °C) basinal fluids and deeply circulating meteoric waters. At the minor joint-dominated fault segment from which these data were collected, clumped isotope temperatures range from 57±10 to 101±2°C (2 SE), consistent with this hypothesis. However, at the nearby intersection of two major fault segments - in a zone characterized by both deformation bands and abundant joints - we find a broad range of temperatures (12±4 to 78±4°C) that vary spatially with distance from the fault and correlate with variations in secondary deformation structures (joints and deformation bands). These data provide the first evidence for cement growth from Earth surface-temperature fluids along the Moab Fault and suggests that the Fault served as a conduit for both ascending and descending fluids. The spatial distribution of low-temperature cements argues for rapid penetration of surface waters flowing down intensely-jointed fault intersections and suggests that deformation-band faults served as low-permeability baffles, preventing lateral migration of cold fluids. This interpretation is consistent with the cathodoluminescence patterns and δ18O and δ13C values of the samples, and confirms the important role of structures in transmission and compartmentalization of fluids in porous rocks. Our study illustrates how clumped isotope thermometry can aid in understanding interactions of mechanical, chemical, and transport processes associated with fractures and faults.
Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.
Cavariani, Fulvio
2016-01-01
Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions.
Case-control study of lung cancer among sugar cane farmers in India
Amre, D. K.; Infante-Rivard, C.; Dufresne, A.; Durgawale, P. M.; Ernst, P.
1999-01-01
OBJECTIVES: To investigate the risk of lung cancer among sugar cane farmers and sugar mill workers. METHODS: A case-control study was conducted based in six hospitals in the predominantly sugar cane farming districts of the province of Maharashtra in India. Newly diagnosed, histologically confirmed cases were identified from these hospitals between May 1996 and April 1998. Other cancers were chosen as controls and matched to cases by age, sex, district of residence, and timing of diagnosis. RESULTS: Adjusting for confounders, an increased risk of lung cancer was found for workers ever employed on a sugar cane farm (odds ratio (OR) 1.92, 95% confidence interval (95% CI) 1.08 to 3.40). Increased risks were found for work involving preparation of the farm (OR 1.81, 95% CI 0.99 to 3.27) and burning of the farm after harvesting (OR 1.82, 95% CI 0.99 to 3.34). Non-significant increases in risks were found for harvesting the crop (OR 1.41, 95% CI 0.70 to 2.90) and processing the cane in the mills (OR 1.70, 95% CI 0.20 to 12.60). CONCLUSIONS: Exposure to fibres of biogenic amorphous silica (BAS) formed from silica absorbed from the soil and deposited in the leaves of the sugar cane crop or crystalline silica formed as a result of conversion of BAS to cristobalite at high temperatures may account for the increased risks of lung cancer among sugar cane farmers. PMID:10492653
NASA Astrophysics Data System (ADS)
Jaffer, Shahzma Jafferali
Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there was a minor effect of the type of loading on rebar corrosion within the period of the project. These measurements also highlighted the problems associated with corrosion measurements, for example, identifying the actual corroding area and the influence of the length of rebar. The numbers of cracks and crack-widths in each beam were measured after the beam's initial exposure to salt solution and, again, after the final corrosion measurements. HPC beams had more cracks than the OPCC. Also, final measurements illustrated increased crack-widths in dynamically loaded beams, regardless of the concrete type. The cracks in both statically and dynamically loaded OPCC and HPC beams bifurcated at the rebar level and propagated parallel to the rebar. This project also examined the extent of corrosion on the rebars and the distribution of corrosion products in the concrete and on the concrete walls of the cracks. Corrosion occurred only at cracks in the concrete and was spread over a larger area on the rebars in HPC than those in OPCC. The damage due to corrosion was superficial in HPC and crater-like in OPCC. Regardless of the concrete type, there was a larger distribution of corrosion products on the crack walls of the dynamically loaded beams. Corrosion products diffused into the cement paste and the paste-aggregate interface in OPCC but remained in the crack in HPC. The most voluminous corrosion product identified was ferric hydroxide. Elemental analysis of mill-scale on rebar which was not embedded in concrete or exposed to chlorides was compared to that of the bars that had been embedded in uncontaminated concrete and in cracked concrete exposed to chlorides. In uncontaminated concrete, mill-scale absorbed calcium and silicon. At a crack, a layer, composed of a mixture of cement paste and corrosion products, developed between the mill-scale and the substrate steel. Based on the results, it was concluded that (i) corrosion occurred on the rebar only at cracks in the concrete, (ii) corrosion was initiated at the cracks immediately upon exposure to salt solution, (ii) the type of loading had a minor influence on the corrosion rates of reinforcing steel and (iv) the use of polarized area led to a significant underestimation of the current density at the crack. It is recommended that the effect of cover-depth on (i) the time to initiation of corrosion and (ii) the corrosion current density in cracked concrete be investigated.
Working conditions and public health risks in slaughterhouses in western Kenya.
Cook, Elizabeth Anne Jessie; de Glanville, William Anson; Thomas, Lian Francesca; Kariuki, Samuel; Bronsvoort, Barend Mark de Clare; Fèvre, Eric Maurice
2017-01-05
Inadequate facilities and hygiene at slaughterhouses can result in contamination of meat and occupational hazards to workers. The objectives of this study were to assess current conditions in slaughterhouses in western Kenya and the knowledge, and practices of the slaughterhouse workers toward hygiene and sanitation. Between February and October 2012 all consenting slaughterhouses in the study area were recruited. A standardised questionnaire relating to facilities and practices in the slaughterhouse was administered to the foreperson at each site. A second questionnaire was used to capture individual slaughterhouse workers' knowledge, practices and recent health events. A total of 738 slaughterhouse workers from 142 slaughterhouses completed questionnaires. Many slaughterhouses had poor infrastructure, 65% (95% CI 63-67%) had a roof, cement floor and walls, 60% (95% CI 57-62%) had a toilet and 20% (95% CI 18-22%) had hand-washing facilities. The meat inspector visited 90% (95% CI 92-95%) of slaughterhouses but antemortem inspection was practiced at only 7% (95% CI 6-8%). Nine percent (95% CI 7-10%) of slaughterhouses slaughtered sick animals. Only half of workers wore personal protective clothing - 53% (95% CI 51-55%) wore protective coats and 49% (95% CI 46-51%) wore rubber boots. Knowledge of zoonotic disease was low with only 31% (95% CI 29-33%) of workers aware that disease could be transmitted from animals. The current working conditions in slaughterhouses in western Kenya are not in line with the recommendations of the Meat Control Act of Kenya. Current facilities and practices may increase occupational exposure to disease or injury and contaminated meat may enter the consumer market. The findings of this study could enable the development of appropriate interventions to minimise public health risks. Initially, improvements need to be made to facilities and practices to improve worker safety and reduce the risk of food contamination. Simultaneously, training programmes should target workers and inspectors to improve awareness of the risks. In addition, education of health care workers should highlight the increased risks of injury and disease in slaughterhouse workers. Finally, enhanced surveillance, targeting slaughterhouse workers could be used to detect disease outbreaks. This "One Health" approach to disease surveillance is likely to benefit workers, producers and consumers.
Lin, Tai-Min; Liu, Perng-Ru; Ramp, Lance C; Essig, Milton E; Givan, Daniel A; Pan, Yu-Hwa
2012-03-01
The purpose of this investigation is to evaluate marginal discrepancy and fracture resistance of two veneering materials using two preparation designs. Two veneer preparation designs (full and traditional) were restored with leucite-reinforced ceramic (ProCAD, Ivoclar Vivadent, Amherst, NY) milled by CAD/CAM (Cerec 3D milling system, Serona Dental Systems), and conventional sintered feldspathic porcelain (Noritake Super Porcelain EX3, Noritake Dental Supply Co). Forty-eight specimens were analysed with a sample size of n=12 per group. The thickness of each veneer was measured on four specific surfaces. Marginal discrepancy was evaluated with a replica technique and cross-sectional view using a digital microscope. The fracture resistance of veneers cemented on standardised composite resin dies was evaluated using a universal testing machine. Results were analysed with ANOVA, Tukey-Kramer post hoc testing, and linear regression. The results of this investigation revealed no correlation between the thickness and marginal discrepancy of the veneers. The full preparation design with ProCAD and the traditional preparation design with feldspathic porcelain manifested smaller gap. Fracture resistance was decreased for the full preparation design with feldspathic porcelain. In terms of marginal discrepancy and fracture resistance, the most favourable combination was a traditional veneer preparation design with conventional sintered feldspathic porcelain. For the full veneer preparation, a stronger ceramic material such as ProCAD is suggested. Published by Elsevier Ltd.
Petrographic and Isotopic Evidence for Siderite Precursors to Iron Oxide Cements
NASA Astrophysics Data System (ADS)
Loope, D.
2015-12-01
The origin of iron oxide mineralization in the Navajo Sandstone on the Colorado Plateau is important because of the different forms of distinct self-organization exhibited by these systems, the potential importance of the cements as geochronometers, and their use as analogs for similar mineralization on other planets. We consider this mineralization to be the product of microbially mediated oxidation of siderite in evolving groundwater systems. Iron oxide grain coatings were dissolved and the iron precipitated as siderite during a reducing phase of diagenesis. Upon invasion by oxidizing waters, iron-oxidizing bacteria colonized the redox interface between siderite-cemented and porous sandstone. Precipitation of iron oxide at this interface generated acid that facilitated further siderite dissolution. One difficulty in testing this hypothesis is that siderite is destroyed by the cm-scale transport of iron during oxidation. There are two lines of evidence that support the presence of a siderite precursor in these systems. 1)Rhombic grains that we interpret to be iron oxide pseudomorphs after siderite occur where in-situ oxidation rather than dissolution of the siderite precursor has occurred. 2) The δ56Fe values of these iron oxide cements are typically negative. We have measured the δ56Fe value of Navajo Sandstone to be 0.2‰; a value in good agreement with previous workers (Chan et al., 2006; Busigny and Dauphas, 2007). Bleaching of the sandstones apparently results in near complete removal of Fe with little change in the δ56Fe values of the bulk sandstone. The δ56Fe values of iron oxide cements have a median value of -0.8‰; similar to the value we obtained from ferroan carbonate (-0.86‰). Iron oxide from samples that comprise largely rhombic grains has similar δ56Fe values (-0.5‰) to those obtained from cements produced by siderite dissolution and subsequent oxidation (-0.4‰). Our interpretation is that siderite precipitated from an aqueous solution in which the δ56Fe value was <0.2‰ yielding siderite with δ56Fe values that ranged upward from -1.4‰. Invasion of the Navajo by oxidizing waters resulted in microbially mediated oxidation of the siderite concretions. The strongly negative values of the Fe oxides result from the near-quantitative oxidation of the siderite in a closed system.
[Rheumatoid arthritis and morbidity among wet spinning factory women workers].
Wysocki, Z; Janas, Z; Cichoń, L; Sikorzewski, M; Gregorowicz, H
1977-01-01
Two hundred ninety women employed in the wet spinning mill of the linen plants have been examined. Their average age and duration of employment were respectively 45 and 17,5 years. Examined women worked in specific microclimate including temperature from 24 degrees C to 25.3 degrees C and the moisture of air from 63,5 to 72,5%. Rheumatoid Arthritis in women working in wet spinning factory was the aim of this examination. It has been stated that these surroundings have no influence on that sort of disease.
1980-12-01
the British Navy was also of significant value, for then Britannia still ruled the waves. The huge indemnity received from the Chinese played an...11 among the sons, the eldest took all and the second and third sons became either factory or mine workers or apprentices of a merchant. When...warehouses, spin- ning, paper and sugar mills, all based on the large profits which came from banking, mining and foreign trade. Mitsubishi had its
Influence of different transitional restorations on the fracture resistance of premolar teeth.
Qualtrough, A J; Cawte, S G; Wilson, N H
2001-01-01
Controversy exists over the most favorable material and type of restoration to be used to transitionally restore teeth destined to be crowned. This in vitro study uses fracture resistance testing to compare eight different transitional restorations in maxillary premolars. Ninety sound maxillary premolars were randomly selected and allocated to nine groups, each comprising 10 teeth. One group remained unrestored and was used as the control. Teeth in the remaining groups were prepared to a standard cavity form using: a copy milling process removing the palatal cusp. Restorations were placed using amalgam with dentin pins and cavity varnish; amalgam with an amalgam bonding agent; resin composite with dentin pins and a dentin bonding agent; resin composite with a dentin bonding agent only; resin-modified glass ionomer with dentin pins; resin-modified glass ionomer cement alone and cermet with dentin pins and cermet alone. Each restored tooth was then subjected to axial loading via a bar contacting the buccal and restored palatal cusps until failure of the restored tooth occurred. The mean load-to-fracture values were statistically compared and the modes of failure recorded. It was found that the choice of restorative material and type of restoration had little effect on the fracture resistance of the restored tooth with the exception of those teeth restored with reinforced glass ionomer cement alone, which exhibited a significantly lower resistance to fracture than the other restored teeth. However, the choice of restorative material/technique did influence the mode of failure. Failure in teeth restored with resin-modified glass ionomer cement alone produced the least damage to the remaining tooth tissue when failure occurred. Consequently, this material may offer the most favorable range of properties for the transitional restoration of extensively broken-down maxillary premolar teeth destined to be crowned. Furthermore, the findings of this study fail to support the use of dentin pins in the placement of bonded build-up restorations.
Rathmann, Friederike; Bömicke, Wolfgang; Rammelsberg, Peter; Ohlmann, Brigitte
2017-09-01
The purpose of this study was to evaluate the 10-year clinical performance of zirconia-based inlay-retained fixed dental prostheses (IRFDP). For replacement of a molar in 27 patients, 30 IRFDP were luted by use of different cements, Panavia F (Kuraray Europe GmbH) or Multilink Automix (Ivoclar Vivadent GmbH), with use of inlay/inlay, inlay/full-crown, or inlay/partial-crown retainers for anchorage. Frameworks were milled from yttria-stabilized zirconia (IPS e.maxZirCAD; Ivoclar Vivadent GmbH) and fully veneered with pressable ceramic (IPS e.max ZirPress; Ivoclar Vivadent GmbH). Before luting, the IRFDP were silica-coated (Rocatec; 3M Espe) and silanized (Monobond S; Ivoclar Vivadent GmbH). Complications (for example, chipping or delamination of the veneering ceramic, debonding, secondary caries, endodontic treatment, and abutment tooth fracture) and failure were reported, by use of standardized report forms, 2 weeks, 6 months, and 1, 2, and 10 years after cementation. Statistical analysis included Kaplan-Meier survival and success (complication-free survival) and Cox regression analysis (α=0.05 for all). During the 10-year observation period, the complications most often observed were chipping of the veneer and debonding. Twenty-five restorations failed and one participant dropped out. Cumulative 10-year survival and success were 12.1% and 0%, respectively. The design of the retainer, use of a dental dam, choice of cement, and location in the dental arch had no statistically significant effect on the occurrence of complications. Use of fully veneered zirconia-based IRFDP with this technique cannot be recommended. A large incidence of complications and poor survival were observed for fully veneered zirconia-based IRFDP, revealing an urgent need for further design improvements for this type of restoration. This, again, emphasizes the need for testing of new restoration designs in clinical trials before implementation in general dental practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asbestosis in an asbestos composite mill at Mumbai: A prevalence study
Murlidhar, V; Kanhere, Vijay
2005-01-01
Background Of an estimated 100000 workers exposed to asbestos in India, less than 30 have been compensated. The reasons for such a small number are: refusal by management sponsored studies to grant medical certifications to workers suffering from occupational diseases, lack of training for doctors in diagnosis of occupational lung diseases, deliberate misdiagnosis by doctors of asbestosis as either chronic bronchitis or tuberculosis and the inherent class bias of middle class doctors against workers. The aim of the study was to identify workers suffering from Asbestosis (parenchymal and pleural non-malignant disease) among the permanent workers of the Hindustan Composites Factory and assess their disability and medically certify them, whereupon they could avail of their basic rights to obtain compensation and proper treatment. Methods The study was conducted by the Occupational Health and Safety Centre and the Workers' Union. Asbestosis was diagnosed if they had an occupational history of asbestos exposure for at least 15 years and showed typical radiographic findings. Results Of 232 workers in the factory, 181 participated in the survey. 22% of them had asbestosis. All the asbestos affected workers had at least 20 years of exposure. 7% had rhonchi, 34% had late basal inspiratory rates, 82% had more than 80% of Forced Expiratory Volume in the first second (FEV1)/Forced Vital capacity (FVC) ratio and 66% had FVC less than 80% of the predicted value. On radiology 7% had only pleural disease, 10% had both pleural and parenchymal disease and 82% had only parenchymal disease. The association of pleural disease with chest pain was statistically significant. Conclusion We found the prevalence of asbestosis among exposed workers to be less than that anticipated for the number of years of exposure due to "Healthy Worker Effect". We suggest that all affected asbestos workers (including those who have been forced to leave) in India be medically certified and compensated. We also recommend better control of asbestos use in India. We also implore the management to provide all information about the work process and its hazards, conduct medical checkups as mandated by law and give the medical records to the workers. PMID:16262892
Norwegian industry and health promotion 1910-1967.
Ibsen, H
1993-01-01
The development of occupational health services in Norway is explored by making a case study of both a chocolate factory and a cement factory. The study shows how different motives and ideological positions promoted the industrial health service. Prominent among them were a social and political philosophy, those of welfare capitalism, as an alternative to socialism and state policy in building the affluent society and the move toward improvements of production. All leading to a growing interest in the human factor in industry, where the medical officer should help to shape a satisfied, rational and productive worker in a healthy work environment.
Industrial noise level study in a wheat processing factory in ilorin, nigeria
NASA Astrophysics Data System (ADS)
Ibrahim, I.; Ajao, K. R.; Aremu, S. A.
2016-05-01
An industrial process such as wheat processing generates significant noise which can cause adverse effects on workers and the general public. This study assessed the noise level at a wheat processing mill in Ilorin, Nigeria. A portable digital sound level meter HD600 manufactured by Extech Inc., USA was used to determine the noise level around various machines, sections and offices in the factory at pre-determined distances. Subjective assessment was also mode using a World Health Organization (WHO) standard questionnaire to obtain information regarding noise ratings, effect of noise on personnel and noise preventive measures. The result of the study shows that the highest noise of 99.4 dBA was recorded at a pressure blower when compared to other machines. WHO Class-4 hearing protector is recommended for workers on the shop floor and room acoustics should be upgraded to absorb some sounds transmitted to offices.
[Dust and silica exposure on metallurgical furnace maintenance using refractory materials].
Garattini, S; Barbieri, P G; Bottone, F; Brunelli, E; Carminati, F; Chiari, R; Sarnico, M
2012-01-01
In the metallurgical industries the silica risk has long been known, particularly for the refractoryes maintenance workers. The maintenance of furnaces, ladles and tundisches refractory linings, on the current organization of production, is provided by companies under contract. The information available about the characterization of risk for this group of workers are at present inadequate. The study investigates the exposure to dust, also containing free crystalline silica (SLC), through the analysis of samples of commercial products used in the reconstruction of refractory linings of furnaces, ladles and tundisches, materials from the demolition of refractory articles and dust from work areas. It also presents the results of an environmental investigation conducted during the demolition and reconstruction of the refractory in three steel mills. The Authors, by the numerous inspections and the systematic survey of working conditions, have formulated a SLC risk profile and some proposals for prevention.
Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C
2011-09-01
The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment.
Varicose Veins in Women Cotton Workers. An Epidemiological Study in England and Egypt*
Mekky, Siza; Schilling, R. S. F.; Walford, Joan
1969-01-01
The prevalence of varicose veins was studied in 504 women cotton workers in England and 467 in Egypt, by a standardized questionary and a specially developed method of examination. The English mill population showed a much higher prevalence of varicose veins than the Egyptian, probably owing to environmental rather than ethnic reasons. Among the European women the prevalence of varicose veins was significantly related to age, parity, body weight, type of corsetry, and occupation—that is, whether or not they stood at their work. After standardizing for the other variables there was a statistically significant excess of varicose veins in women wearing corsets and roll-ons compared with those wearing less-constrictive garments. After a similar standardization a significant excess was found in women who stood at their work compared with those whose jobs entailed walking or sitting. Imagesp593-a PMID:5798468
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Stoyushko, N. Yu; Gladkova, N. A.
2017-05-01
Designed the composition of the fiber-reinforced concrete on composite binder with high gas-, water- and steam impermeability. With 1.6% of reinforcing steel anchoring a fiber can be obtained in terms of the maximum physical and mechanical properties (Rcompr = 100.9 MPa). It was found that the combined effect of mechanical and chemical activation (the presence of limestone particles) increases the pozzolanic activity of acidic environment. It has a catalytic effect on the reaction activity of the surface of ash and sand during machining in vario-planetary mill. Furthermore, the introduction of limestone increases the alkalinity of the concrete, which leads to the formation of greater hydration products of cement per unit of time. Theoretical and experimental results can be recommended for enhanced implementation of the construction in various regions of the World, taking into account the availability of raw materials.
New-Generation Sealing Slurries For Borehole Injection Purposes
NASA Astrophysics Data System (ADS)
Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert
2015-12-01
The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.
Cameron, Stephen M; Morris, W Jack; Keesee, Stephen M; Barsky, Todd B; Parker, M Harry
2006-06-01
Clinicians have used resistance form as a basis for determining guidelines for preparation design to ensure clinical success of cemented cast restorations. Disagreement on whether clinical success follows the on-off or linear nature of resistance form continues. The purpose of this study was to evaluate the number of cycles required to dislodge a cemented complete crown casting under a cyclic lateral load as a function of taper and to compare this relationship for the resistive and nonresistive ranges of taper. Three dies were milled from stainless steel at each of the following tapers: 4, 8, 12, 16, 20, 24, 28, and 32 degrees. A gold-palladium metal-ceramic alloy crown was fabricated for each die, cemented, and subjected to lateral cyclic loading until failure or 1,000,000 cycles. The limiting taper for the dies with their given height and base was 26.6 degrees. Dies with taper less than 26.6 degrees had resistance form, whereas dies with taper larger than 26.6 degrees did not. A linear regression (alpha=.05) was used to evaluate the relation of cycles at dislodgement to taper. The average number of cycles to crown dislodgement or completion for each taper (SD), in units of 10,000, was as follows: 4 degrees, 100 (0); 8 degrees, 100 (0); 12 degrees, 93.54 (16.56); 16 degrees, 61.33 (38.47); 20 degrees, 25.73 (34.67); 24 degrees, 4.33 (7.36); 28 degrees, 0.06 (0.08); and 32 degrees, 0.05 (0.09). The crowns in the resistive area less than 26.6 degrees that demonstrated failure showed a linear regression with a correlation coefficient of -0.995 between the average number of cycles to dislodge the crown and the taper. The slope was significantly different from zero (P=.0048), with a value of -7.58 and a standard error of 0.53. The number of cycles required to cause crown dislodgement was linear after 12 degrees in the resistive area and nearly zero for preparations in the nonresistive area. The limiting taper concept closely predicted the transition point where the slope of the graph of cycles to dislodgement as a function of taper abruptly changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, X.F.; Amano, R.S.
2006-12-15
CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of themore » bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.« less
Physicochemical characterizations of nano-palm oil fuel ash
NASA Astrophysics Data System (ADS)
Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad
2015-07-01
Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.
Kim, Jae-Hyun; Jeong, Ji-Hye; Lee, Jin-Han; Cho, Hye-Won
2016-10-01
Although the number of lithium disilicate crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) technology has increased, the accuracy of the prostheses produced by using digital pathways remains unknown. The purpose of this in vitro study was to compare marginal and internal discrepancies of lithium disilicate crowns fabricated from digital and conventional impressions. A typodont mandibular first molar was prepared for a lithium disilicate crown, and 20 duplicate dies were fabricated by milling poly(methyl methacrylate) resin blocks from laboratory scans. Four groups of 5 lithium disilicate crowns each were created by using a CS3500 (Carestream Dental) intraoral digital impression; Trios (3shape) intraoral digital impression; Ceramill Map400 (Amann Girrbach) extraoral digital impression; and a heat-press technique as a control group. All of the IPS e.max CAD (Ivoclar Vivadent AG) crowns were produced using a 5-axis milling engine (Ceramill Motion2). The lithium disilicate crowns were cemented with zinc phosphate cement under finger pressure. Marginal and internal discrepancies were measured using micro-computed tomography (SkyScan1172). One-way ANOVAs with the Tukey honest significant differences test were used for statistical analysis of the data (α=.05). The mean marginal discrepancies of CS3500 lithium disilicate crowns were 129.6 μm, 200.9 μm for Ceramill Map400, and 207.8 μm 176.1 μm for the heat-press technique; and the internal discrepancy volumes for CS3500 were 25.3 mm 3 , 40.7 mm 3 for Trios, 29.1 mm 3 for Ceramill Map400, and 29.1 and 31.4 mm 3 for the heat-press technique. The CS3500 group showed a significantly better marginal discrepancy than the other 3 groups and a smaller internal discrepancy volume than the Trios group (P<.05). Significant differences were found between IPS e.max CAD crowns produced using 2 intraoral digital impressions, whereas no differences were found between IPS e.max CAD crowns produced from an extraoral digital impression and IPS e.max Press crowns produced using a heat-press technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gunsoy, S; Ulusoy, M
2016-01-01
The purpose of this study was to evaluate the internal and marginal fit of chrome cobalt (Co-Cr) crowns were fabricated with laser sintering, computer-aided design (CAD) and computer-aided manufacturing, and conventional methods. Polyamide master and working models were designed and fabricated. The models were initially designed with a software application for three-dimensional (3D) CAD (Maya, Autodesk Inc.). All models were fabricated models were produced by a 3D printer (EOSINT P380 SLS, EOS). 128 1-unit Co-Cr fixed dental prostheses were fabricated with four different techniques: Conventional lost wax method, milled wax with lost-wax method (MWLW), direct laser metal sintering (DLMS), and milled Co-Cr (MCo-Cr). The cement film thickness of the marginal and internal gaps was measured by an observer using a stereomicroscope after taking digital photos in ×24. Best fit rates according to mean and standard deviations of all measurements was in DLMS both in premolar (65.84) and molar (58.38) models in μm. A significant difference was found DLMS and the rest of fabrication techniques (P < 0.05). No significant difference was found between MCo-CR and MWLW in all fabrication techniques both in premolar and molar models (P > 0.05). DMLS was best fitting fabrication techniques for single crown based on the results.The best fit was found in marginal; the larger gap was found in occlusal.All groups were within the clinically acceptable misfit range.
Airway disease in highway and tunnel construction workers exposed to silica.
Oliver, L Christine; Miracle-McMahill, Heidi
2006-12-01
Construction workers employed in a unique type of tunnel construction known as tunnel jacking were exposed over an 18-month period to respirable crystalline silica at concentrations that exceeded the OSHA permissible exposure limit. The present study examines workplace exposures and occurrence of airway disease in these workers. Medical and occupational histories and chest radiographs were obtained on 343 active construction workers who had worked on the site during the period in question. Chest radiographs were interpreted according to the ILO-1980 system of classification. Standardized questions were used to develop an algorithm to define symptoms consistent with asthma (SCA) and to determine these respiratory outcomes: chronic bronchitis, shortness of breath (SOB), and physician-diagnosed asthma (current vs. not current). Relationships with each of three work activities were examined: slurry wall breakthrough (SWB), chipping caisson overpour, and tunneling/mining. Participants included laborers, carpenters, tunnel workers, ironworkers, operating engineers, and electricians. No cases of silicosis were found on chest X-ray. Overall prevalence of chronic bronchitis, SCA, SOB, and physician-diagnosed asthma was 10.7%, 25%, 29%, and 6.6%, respectively. Odds ratios (OR) for carpenters compared to laborers were significantly elevated for chronic bronchitis, SCA, and SOB. SWB was associated with chronic bronchitis and SCA (OR 4.93, 95% CI = 1.01, 24.17; OR 3.32, 95% CI = 1.25, 8.84, respectively). The interaction between SWB, SCA, and trade was significant for carpenters (OR 6.87, 95% CI = 1.66, 28.39). Inverse trends were observed for months on the site and chronic bronchitis, SCA, and SOB (P = 0.0374, 0.0006, and 0.0307, respectively). Tunnel construction workers exposed to respirable crystalline silica and cement dust are at increased risk for airway disease. Extent of risk varies by trade and work activity. Our data indicate the importance of bystander exposures and suggest that tunnel jacking may be associated with greater risk compared to more traditional methods of tunnel construction. A healthy worker effect is suggested.
Cotton dust and endotoxin exposure-response relationships in cotton textile workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, S.M.; Christiani, D.C.; Eisen, E.A.
Endotoxin exposure has been implicated in the etiology of lung disease in cotton workers. We investigated this potential relationship in 443 cotton workers from 2 factories in Shanghai and 439 control subjects from a nearby silk mill. A respiratory questionnaire was administered and pre- and postshift forced expiratory volume (FVC) and flow in one second (FEV1) were determined for each worker. Multiple area air samples were analyzed for total elutriated dust concentration (range: 0.15 to 2.5 mg/m3) and endotoxin (range: 0.002 to 0.55 microgram U.S. Reference Endotoxin/m3). The cotton worker population was stratified by current and cumulative dust or endotoxinmore » exposure. Groups were compared for FEV1, FVC, FEV1/FVC%, % change in FEV1 over the shift (delta FEV1%), and prevalences of chronic bronchitis and byssinosis, and linear and logistic regression models were constructed. No dose-response relationships were demonstrated comparing dust concentration to any pulmonary function or symptom variable. A dose-response trend was seen with the current endotoxin level and FEV1, delta FEV1%, and the prevalence of byssinosis and chronic bronchitis, except for the highest exposure level group in which a reversal of the trend was seen. The regression coefficients for current endotoxin exposure were significant (p less than 0.05) in the models for FEV1 and chronic bronchitis but not in the models for delta FEV1% (i.e., acute change in FEV1) or byssinosis prevalence. The coefficient for dust level was never significant in the models.« less
Eco-friendly rubberized cotton fabric roller for ginning machines.
Iyer, G V
2007-01-01
This article discusses the pollution caused by chrome composite leather-clad (CCLC) rollers commonly used in cotton roller ginning mills and suggests an alternative roller material. CCLC rollers contain about 18,000 to 36,000 mg/kg (ppm) total chromium in trivalent and hexavalent forms, which are toxic to human health and carcinogenic. When seed-cotton is processed in double roller (DR) ginning machines, the lint is contaminated with chromium, and chromium particles are carried into the spun yarns and cotton by-products. Specifically, due to persistent rubbing of the leather-clad roller over the stationary knife during the ginning process, the lint is contaminated with about 140 to 1990 ppm of chromium, and the spun yarns and cotton by-products contain about 100 to 200 ppm, far in excess of the standard limit of 0.1 ppm. Gin and mill workers are directly exposed to this carcinogenic substance. To offset this problem, pollution-free rubberized cotton fabric (RCF) rollers have been fabricated and tested in roller gins. The RCF roller covering is made of multiple layers of fabric bonded together using a white rubber compound, which has a surface finish conducive to high ginning efficiency. This eliminates chromium contamination and pollution during the ginning process. On the basis of the design and development of various test rollers and subsequent evaluation studies, the performance of pollution-free RCF rollers has been demonstrated with reference to their commercial benefit and eco-friendliness in cotton ginning mills.
Papadatou, Zoi; Williams, Hector; Cooper, Kay
2018-06-01
The aim of this review was to identify, appraise and synthesize the best available evidence on the effectiveness of moisturizers, barrier creams, protective gloves, skin protection education and complex interventions (a combination of two or more of the interventions listed here) in preventing occupational irritant hand dermatitis (OIHD) in wet workers, comparing each intervention to an alternative intervention or to usual care (workers' regular skin care regimen). The most significant occupational skin problem potentially encountered in wet work occupations is occupational dermatitis. When the skin comes into contact with hazardous substances at work, this can cause occupational dermatitis. Substances which may cause occupational dermatitis include cleaning products, organic solvents, metalworking fluids, cement, flour, adhesives, other chemicals and even certain plants. Occupational skin disease has adverse effects on quality of life and the long term prognosis for skin health is poor unless workplace exposures are addressed. To date, no systematic review has been undertaken to determine the effectiveness of interventions for the primary prevention of OIHD in wet workers. The review included any workers from healthcare (e.g. nurses, doctors and allied health professionals) and also people in different wet work occupations (e.g. hairdressers, florists, catering workers, metal workers) at similar risk of OIHD. Studies that assessed the following interventions in the primary prevention of OIHD in wet workers at the workplace and at home (before and after work) were included:Types of studies considered were experimental study designs including randomized controlled trials, non-randomized controlled trials, quasi-experimental, and before and after studies. Primary outcome measures were OIHD incidence, and secondary outcome measures were product evaluation and change of occupation because of OIHD versus staying in the occupation. Published and unpublished literature in the English language was sought between 2004 and 2017. The databases searched included: COCHRANE CENTRAL, MEDLINE, CINAHL, AMED and Embase. The search for unpublished studies included: Google Scholar, Open DOAR and Robert Gordon University's thesis database, "OPEN AIR". There were no studies located that met the inclusion requirements of this review. There is currently no evidence available to determine the effectiveness of interventions to prevent OIHD amongst wet workers that met this review's inclusion criteria.
Can Tooth Preparation Design Affect the Fit of CAD/CAM Restorations?
Roperto, Renato Cassio; Oliveira, Marina Piolli; Porto, Thiago Soares; Ferreira, Lais Alaberti; Melo, Lucas Simino; Akkus, Anna
2017-03-01
The purpose of this study was to evaluate if the marginal fit of computer-aided design and computer-aided manufacturing (CAD/CAM) restorations manufactured with CAD/CAM systems can be affected by different tooth preparation designs. Twenty-six typodont (plastic) teeth were divided into two groups (n = 13) according to the occlusal curvature of the tooth preparation. These were the group 1 (control group) (flat occlusal design) and group 2 (curved occlusal design). Scanning of the preparations was performed, and crowns were milled using ceramic blocks. Blocks were cemented using epoxy glue on the pulpal floor only, and finger pressure was applied for 1 minute. On completion of the cementation step, poor fits between the restoration and abutment were measured by microphotography and the silicone replica technique using light-body silicon material on mesial, distal, buccal, and lingual surfaces. Two-way ANOVA analysis did not reveal a statistical difference between flat (83.61 ± 50.72) and curved (79.04 ± 30.97) preparation designs. Buccal, mesial, lingual, and distal sites on the curved design preparation showed less of a gap when compared with flat design. No difference was found on flat preparations among mesial, buccal, and distal sites (P < .05). The lingual aspect had no difference from the distal side but showed a statistically significant difference from mesial and buccal (P < .05). Difference in occlusal design did not significantly impact the marginal fit. Marginal fit was significantly affected by the location of the margin; lingual and distal locations exhibited greater margin gap values compared with buccal and mesial sites regardless of the preparation design.
Use of Brazilian sugarcane bagasse ash in concrete as sand replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Almir, E-mail: almir@ufscar.b; Lima, Sofia Araujo, E-mail: sofiaalima@yahoo.com.b
2010-06-15
Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction asmore » inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.« less
Physicochemical characterizations of nano-palm oil fuel ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com; Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my
2015-07-22
Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM)more » and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.« less
Huang, Yuyan; Li, Haoxin; Jiang, Zhengwu; Yang, Xiaojie; Chen, Qing
2018-05-07
The aim of this work was to investigate the migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln, and better understand the emission of the sulfur related pollutants in this process. In consideration of the temperature conditions in the practical operation, municipal sewage sludge was pre-dried at 105 °C, and then dried at 210, 260 and 310 °C, co-combusted with cement raw mill at 800, 900 and 1000 °C, and 1350, 1400 and 1450 °C respectively in the laboratory. X-ray photoelectron spectroscopy (XPS) was used to determine the S2p spectral lines of the municipal sewage sludge treated in the different process. Besides, The Thermal Analysis-Thermogravimetry (DTA-TG), Back Scattered Electron (BSE) and Energy Dispersive Spectrometer (EDS) were also employed to explore the mechanism of sulfur subsistence at 1450 °C. The results indicate that sulfide, thiophene, sulfone and sulfate are mainly sulfur compound in the municipal sewage sludge dried at 105 °C. Sulfoxide, a new sulfur compound, appears after it is further dried at 210 °C. The relative contents of sulfide and thiophene are continuously declined as the drying temperature increases due to their evaporation, decomposition and transformation in this process. The transformation of sulfide and thiophene makes the relative contents of sulfoxide and sulfate accordingly increased. However, the relative content of sulfone experiences an elevating-lowering process while the dry temperature elevated from 210 to 310 °C. This case is related to its evaporation and decomposition, as well as its production for the transformation of sulfide and thiophene. In the co-combustion process, sulfide, thiophene and sulfone are entirely vanished for their evaporation, decomposition and transformation. Sulfone is still contained at 800 °C, but when the temperature unceasingly rises, it is completely decomposed or evaporated and sulfate is the only sulfur compound. The microstructures left by the gas release are also observed in the mixtures sintered at 1450 °C, however sulfate still exists even at 1450 °C. The BSE and EDS results show that the melt phase is the important contribution to the appearance of sulfate at the high temperature. These results will sever as a theoretically reference for the pollution control of the sulfur related pollutants in the disposal process of the municipal sewage sludge in cement kiln. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ghani, Nadia; Khalid, Anum; Tahir, Arifa
2016-07-01
To examine the effects of airborne endotoxin on lung function impairment in exposure-response relationships among the workers of textile industry. The cross-sectional study was conducted at Lahore College for Women University, Lahore, Pakistan, from January to August 2014, and comprised textile mill workers. The participants were divided into exposed and control groups. A questionnaire was used to ask workers about the potential adverse health effects of their occupation. The pulmonary function test was carried out by spirometer. Endotoxin levels in the samples were determined using the key quality characteristics limulus amebocyte lysate. The data was analysed to determine the correlation between the endotoxin exposure duration and pulmonary function test parameters. There were 200 subjects subdivided into 100 each inexposed and control groups. Overall, 160(80%) were not aware of safety measures and the remaining 40(20%) were partially practising. Changes in pulmonary function due to endotoxin exposure showed decreased force vital capacity, flow rate and peak expiratory flow parameters significantly different (p<0.05, p<0.001). The endotoxin concentration was between 12EU/m3 and 300EU/m3. Airborne endotoxin concentrations in textile plants exceeded the Dutch health-based guidance limit of 90EU/m3 and was associated with respiratory health effects. Prolonged exposure to airborne endotoxin caused constant lung impairment. Proper safety measures should be adopted to avoid the inhalation of cotton dust.
Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.
Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin
2016-01-01
The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However, the fracture strength was significantly higher for PSZirLS, PolyFSP, ResNC, and LiDS ceramics than for the FSP, LrGC, and the FcZirLS ceramic with all luting agents tested.
Modular femoral component for conversion of previous hip surgery in total hip arthroplasty.
Goldstein, Wayne M; Branson, Jill J
2005-09-01
The conversion of previous hip surgery to total hip arthroplasty creates a durable construct that is anatomically accurate. Most femoral components with either cemented or cementless design have a fixed tapered proximal shape. The proximal femoral anatomy is changed due to previous hip surgery for fixation of an intertrochanteric hip fracture, proximal femoral osteotomy, or a fibular allograft for avascular necrosis. The modular S-ROM (DePuy Orthopaedics Inc., Warsaw, Ind) hip stem accommodates these issues and independently prepares the proximal and distal portion of the femur. In preparation and implantation, the S-ROM hip stem creates less hoop stresses on potentially fragile stress risers from screws and thin bone. The S-ROM hip stem also prepares a previously distorted anatomy by milling through cortical bone that can occlude the femoral medullar canals and recreate proper femoral anteversion and reduces the risk of intraoperative or postoperative periprosthetic fracture due to the flexible titanium-slotted stem. The S-ROM femoral stem is recommended for challenging total hip reconstructions.
Incorporating technetium in minerals and other solids: A review
NASA Astrophysics Data System (ADS)
Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel
2015-11-01
Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Urai, Janos L.; Schuck, Bernhardt; Hoehne, Nadine; Oelker, Anne; Bésuelle, Pierre; Viggiani, Gioacchino; Schmatz, Joyce; Klaver, Jop
2017-04-01
A microphysics-based understanding of mechanical and fluid flow properties in clay-rich geomaterials is required for extrapolating better constitutive equations beyond the laboratory's time scales, so that predictions over the long term can be made less uncertain. In this contribution, we present microstructural investigations of rocks specimens sheared in triaxial compression at low bulk strain, by using the combination of broad-ion-beam (BIB) milling and scanning electron microscopy (SEM) to infer deformation mechanisms based on microstructures imaged at sub-micron resolution. Two end-member clay-rich geomaterials from European Underground Laboratories (URL) were analysed: (i) the poorly cemented Boom Clay sediment (BC from URL at Mol/Dessel, Belgium; confining pressure [CP] = 0.375 & 1.5 MPa) and (ii) the Callovo-Oxfordian claystone (COx from the URL at Bure, France; CP = 2 & 10 MPa). Although as a first approximation the inelastic bahvior of cemented and uncemented clay-rich geomaterials can be described by similar pressure-dependent hardening plasticity models, deformed samples in this contribution show very contrasting micro-scale behaviour: microstructures reveal brittle-ductile transitional behaviour in BC, whereas deformation in COx is dominantly cataclastic. In Boom Clay, at meso-scale, shear bands exhibit characteristics that are typical of uncemented small-grained clay-rich materials deformed at high shear strains, consisting of anastomosing shears interpreted as Y- and B-shears, which bound the passively deformed microlithons. At micro- down to nano-scale, the strong shape preferential orientation of clay aggregates in the anastomosing shears is interpreted to be responsible of the shear weakness. More over, the reworking of clay aggregates during deformation contributes to the collapsing of porosity in the shear band. Ductile deformation mechanisms represented by grain-rotation, grain-sliding, bending and granular flow mechanisms are strongly involved for the development of the shear band. At the same time, evidence for dilatancy at low confining pressure indicates that deformation involves also brittle deformation. Our observations strongly suggest that the deformation mostly localizes in those regions of the specimen, where the original grain sizes are smaller. In COx, microstructures show evidence for dominantly cataclastic deformation involving intergranular - transgranular - and - intragranular micro fracturing, grain rotation and clay particle bending mechanisms, down to nm- scale. Micro fracturing of the original fabric results in fragments at a range of scales, which are reworked into a clay-rich cataclastic gouge during frictional flow. Intergranular and minor intragranular micro fracturing occur in regions of non localized deformation, whereas transgranular micro fracturing occurs at regions of localized deformation. These processes are accompanied by dilatancy, but also by progressive decrease of porosity and pore size in the gouge with the non-clay particles embedded in reworked clay. The mechanism of this compaction during shearing is interpreted to be a combination of cataclasis of the cemented clay matrix, and shear-induced rearrangement of clay particles around the fragments of non-clay particles.
Cancer deaths and occupational exposure in a group of plutonium workers.
Fallahian, Naz Afarin; Brey, Richard R; Tivis, Rick D; Piland, Neill F; Simpson, David R
2012-04-01
An exploratory epidemiological study was conducted for 319 deceased nuclear workers who had intakes of transuranic radionuclides and histories of employment during the time period from 1943 to 1995. The workers were employed at various facilities throughout the United States, including the Department of Energy defense facilities and uranium mining and milling sites. The majority of individuals were involved in documented radiological incidents during their careers. All had voluntarily agreed to donate their organs or whole body to the United States Transuranium and Uranium Registries. External and internal dose assessments were performed using occupational exposure histories and postmortem concentrations of transuranic radionuclides in critical organs. Statistical data analyses were performed to investigate the potential relationship between radiation exposure and causes of death within this population due to cancers of the lungs, liver, and all sites combined while controlling for the effects of other confounders. No association was found between radiation exposure and death due to cancer (α = 0.05). However, statistically significant associations were found between death due to any type of cancer and smoking (yes or no) (odds ratio = 5.41; 95% CI: 1.42 to 20.67) and rate of cigarette smoking (packs per day) (odds ratio = 2.70; 95% CI: 1.37 to 5.30).
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
Horton, Sarah; Barker, Judith C.
2012-01-01
Severe early childhood caries (ECC) can leave lasting effects on children’s physical development, including malformed oral arches and crooked permanent dentition. This article examines the way that ECC sets up Mexican American farm worker children in the United States for lasting dental problems and social stigma as young adults. We examine the role of dietary and environmental factors in contributing to what we call “stigmatized biologies,” and that of market-based dental public health insurance systems in cementing their enduring effects. We adapt Margaret Lock’s term, local biology, to illustrate the way that biology differs not only because of culture, diet, and environment but also because of disparities in insurance coverage. By showing the long-term effects of ECC and disparate dental treatment on farmworker adults, we show how the interaction of immigrant caregiving practices and underinsurance can have lasting social effects. An examination of the long-term effects of farm worker children’s ECC illustrates the ways that market-based health care systems can create embodied differences that in turn reproduce a system of social inequality. PMID:20550093
NASA Astrophysics Data System (ADS)
van Broekhuizen, Pieter; van Broekhuizen, Fleur; Cornelissen, Ralf; Reijnders, Lucas
2011-02-01
In the European construction industry in 2009, the use of engineered nanoparticles appears to be confined to a limited number of products, predominantly coatings, cement and concrete. A survey among representatives of workers and employers from 14 EU countries suggests a high level of ignorance about the availability and use of nanomaterials for the construction industry and the safety aspects thereof. Barriers for a large-scale acceptance of products containing engineered nanoparticles (nanoproducts) are high costs, uncertainties about long-term technical material performance, as well as uncertainties about health risks of nanoproducts. Workplace measurements suggest a modest exposure of construction workers to nanoparticles (NPs) associated with the use of nanoproducts. The measured particles were within a size range of 20-300 nm, with the median diameter below 53 nm. Positive assignment of this exposure to the nanoproduct or to additional sources of ultrafine particles, like the electrical equipment used was not possible within the scope of this study and requires further research. Exposures were below the nano reference values proposed on the basis of a precautionary approach.
Bayer, Angela M; Garvich, Mijail; Díaz, David A; Sánchez, Hugo; García, Patricia J; Coates, Thomas J
2014-09-01
In Peru, there are few studies on male sex workers (MSWs), and existing studies explore limited subgroups or offer limited information about MSWs' perspectives. This study provides in-depth perspectives from 40 MSWs who work in downtown Lima (Cercado) and in surrounding urban neighborhoods (non-Cercado) through interviews on their identities, lives, and HIV/STI (sexually transmitted infection) risks and vulnerabilities. Findings are that entry into sex work links economy and affection, particularly among Cercado MSWs. Continued sex work cements this link, making it difficult to exit sex work and establish goals. Ties between economics and affections influence MSWs' perceived HIV/STI risks, vulnerabilities, and prevention practices. Although Cercado MSWs report higher HIV/STI risks and vulnerabilities than non-Cercado peers, they report fewer prevention practices given inability to buy condoms and acceptance of client offers of higher payment, especially clients they feel affection for. MSWs need support to strengthen their self-perceptions and define and pursue their goals in order to improve their HIV/STI prevention practices, health, and well-being. © The Author(s) 2013.
Bayer, Angela M.; Garvich, Mijail; Díaz, David A.; Sánchez, Hugo; García, Patricia J.; Coates, Thomas J.
2014-01-01
In Peru, there are few studies on male sex workers (MSWs) and existing studies explore limited sub-groups or offer limited information about MSWs’ perspectives. This study provides in-depth perspectives from 40 MSWs who work in downtown Lima (Cercado) and in surrounding urban neighborhoods (non-Cercado) through interviews on their identities, lives and HIV/STI risks and vulnerabilities. Findings are that entry into sex work links economy and affection, particularly among Cercado MSWs. Continued sex work cements this link, making it difficult to exit sex work and establish goals. Ties between economics and affections influence MSWs’ perceived HIV/STI risks, vulnerabilities and prevention practices. Although Cercado MSWs report higher HIV/STI risks and vulnerabilities than non-Cercado peers, they report fewer prevention practices given inability to buy condoms and acceptance of client offers of higher payment, especially clients they feel affection for. MSWs need support to strengthen their self-perceptions and define and pursue their goals in order to improve their HIV/STI prevention practices, health and well-being. PMID:24368712
The organizational implications of smokeless tobacco use in the lumber mill industry.
Donaldson, S I; Dent, C W; Sussman, S; Stoddard, J L; Severson, H H
1996-01-01
Although much is known about the characteristics of employees who smoke cigarettes, very little is known about workers who use smokeless tobacco. The current study was designed to understand the characteristics of smokeless tobacco users in relation to their performance at work and compare them with smokers and former tobacco users. Data were collected via interviews and questionnaires from a random sample of employees working at Pacific Lumber Company (N = 146), the largest single-site lumber mill in California. A total of 63 smokeless tobacco users (21 of whom also smoked cigarettes), 43 cigarette smokers, and 40 employees who had successfully quit using tobacco (34 of whom previously used cigarettes only) provided information about their health behavior, quality of work life, and performance at work. Analyses revealed that smokeless tobacco users reported less healthful sleep patterns, drank alcohol more often, were intoxicated more often, reported less job satisfaction and organizational commitment, and reported that both chewers and smokers do not work as hard and take more breaks than do tobacco-free employees (quitters). Specific differences among chewers-only, smokers-only, smokers-and-chewers, and quitters are presented. Results suggest the organizational value of developing worksite cessation programs for smokeless tobacco users.
Race, Amos; Miller, Mark A; Mann, Kenneth A
2008-10-20
Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.
Berman, D Wayne
2010-01-01
Results of a meta-analysis indicate that the variation in potency factors observed across published epidemiology studies can be substantially reconciled (especially for mesothelioma) by considering the effects of fiber size and mineral type, but that better characterization of historical exposures is needed before improved exposure metrics potentially capable of fully reconciling the disparate potency factors can be evaluated. Therefore, an approach for better characterizing historical exposures, the Modified Elutriator Method (MEM), was evaluated to determine the degree that dusts elutriated using this method adequately mimic dusts generated by processing in a factory. To evaluate this approach, elutriated dusts from Grade 3 milled fiber (the predominant feedstock used at a South Carolina [SC] textile factory) were compared to factory dust collected at the same facility. Elutriated dusts from chrysotile ore were also compared to dusts collected in Quebec mines and mills. Results indicate that despite the substantial variation within each sample set, elutriated dusts from Grade 3 fiber compare favorably to textile dusts and elutriated ore dusts compare to dusts from mines and mills. Given this performance, the MEM was also applied to address the disparity in lung cancer mortality per unit of exposure observed, respectively, among chrysotile miners/millers in Quebec and SC textile workers. Thus, dusts generated by elutriation of stockpiled chrysotile ore (representing mine exposures) and Grade 3 milled fiber (representing textile exposures) were compared. Results indicate that dusts from each sample differ from one another. Despite such variation, however, the dusts are distinct and fibers in Grade 3 dusts are significantly longer than fibers in ore dusts. Moreover, phase-contrast microscopy (PCM) structures in Grade 3 dusts are 100% asbestos and counts of PCM-sized structures are identical, whether viewed by PCM or transmission electron microscope (TEM). In contrast, a third of PCM structures in ore dusts are not asbestos and only a third that are counted by PCM are also counted by TEM. These distinctions also mirror the characteristics of the bulk materials themselves. Perhaps most important, when the differences in size distributions and PCM/TEM distinctions in these dusts are combined, the combined difference is sufficient to completely explain the difference in exposure/response observed between the textile worker and miner/miller cohorts. Importantly, however, evidence that such an explanation is valid can only be derived from a meta-analysis (risk assessment) covering a diverse range of epidemiology study environments, which is beyond the scope of the current study. The above findings suggest that elutriator-generated dusts mimic factory dusts with sufficient reliability to support comparisons between historical exposures experienced by the various cohorts studied by epidemiologists. A simulation was also conducted to evaluate the relative degree that the characteristics of dust are driven by the properties of the bulk material processed versus the nature of the mechanical forces applied. That results indicate it is the properties of bulk materials reinforces the theoretical basis justifying use of the elutriator to reconstruct historical exposures. Thus, the elutriator may be a valuable tool for reconstructing historical exposures suitable for supporting continued refinements of the risk models being developed to predict asbestos-related cancer risk.
[Health risk among workers employed in rubber footwear plant].
Szubert, Z; Wilczyńska, U; Sobala, W
2001-01-01
The aim of the study was to assess the health risk of workers performing specific jobs in the process of the rubber footwear production by defining the cause and length of temporary work disability, as well as mortality causes and level. The analysis was carried out in the groups of workers performing the following jobs: mixing, mill operation, pressing and vulcanizing (A); semi-product preparation and calendaring (B); finishing and sorting (C); production of polyvinyl chloride footwear (D); and auxiliary works (E). The sickness absence study covered all workers (208 men and 315 women) employed in a large rubber footwear company and performing all above-listed jobs in 1995. Standardized sick days ratio was used to analyze the risk of temporary work disability. Mortality rate was estimated on the basis of the results of the cohort study performed in the same company among workers who had worked at least three months during the years 1945-1985. The follow-up continued until 31 December 1997. The present study included sub-cohorts composed of 5628 men and 7197 women, performing jobs listed above. The results of both studies indicated the enhanced risk of cardiovascular diseases among workers employed in the basic phases of the production process. The increased risk of the diseases of the digestive system was observed in men and women employed in: finishing, sorting and packing of the products (group C); in men involved in mixing, pressing and vulcanizing (group A); and in women engaged in auxiliary works (group E). In addition, the enhanced risk of sickness absence due to the diseases of the respiratory, digestive, or genitourinary systems was related to the enhanced risk of death from malignant neoplasms in a given site. The analysis showed that the temporary work disability may be regarded as a parameter useful in early assessment of health effects of the work environmental hazards.
Mineral resource of the month: hydraulic cement
van Oss, Hendrik G.
2012-01-01
Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.
Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza
2013-04-01
Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the highest amount of excess cement. The volume of cement used for group PI specimens was significantly higher than for those in the other groups (P=.001). With respect to the volume of cement loaded into the test crowns no statistically significant difference was observed among other test groups (groups IM, AH, and AA). Group MI used the least amount of cement, followed by group AH and AA. No correlation between the amount of used cement and the amount of excess cement was found in any of the tested groups. Within the limitations of this in vitro study, the least amount of excess cement was present when a cementation device was used to displace the excess cement before seating the crown on the abutment (Group PI). With this technique a uniform layer of the luting agent is distributed over the internal surface of the crown leaving minimal excess cement when the restoration is seated. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Banaszkiewicz, Kamil; Marcinkowski, Tadeusz
2017-11-01
Research on evaluation of evaporation rate of volatile organic compounds from soil beds during processing is presented. For the experiment, soil samples were prepared with the same amounts of benzene and stabilized using a mixture of CEMI 42.5R cement and fly ash from pit-coal combustion. Solidification of soils contaminated with BTEX hydrocarbons using hydraulic binders involves a risk of releasing vapours of these compounds during homogenization of waste with stabilizing mixture introduced and its dilution with water. The primary purposes of the research were: analysis of benzene volume emitted from soil during stabilization/solidification process and characterization of factors that may negatively affect the quality of measurements/the course of stabilization process. Analysis of benzene emission intensity during the process was based on concentration (C6H6) values, recorded with flame-ionization detector above the surface of reacting mixture. At the same time, gaseous contaminants emitted during waste stabilization were passed through pipes filled with activated carbon (SCK, Anasorb CSC). Benzene vapours adsorbed on activated carbon were subjected to analysis using gas chromatograph Varian 450-GC. Evaporation characteristics of benzene during processing contaminated soils revealed the stages creating the highest danger to workers' health, as well as a need for actions connected with modification of technological line.
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Influence of cement film thickness on the retention of implant-retained crowns.
Mehl, Christian; Harder, Sönke; Steiner, Martin; Vollrath, Oliver; Kern, Matthias
2013-12-01
The main goal of this study was to establish a new, high precision procedure to evaluate the influence of cement film thickness on the retention of cemented implant-retained crowns. Ninety-six tapered titanium abutments (6° taper, 4.3 mm diameter, Camlog) were shortened to 4 mm. Computer-aided design was used to design the crowns, and selective laser sintering, using a cobalt-chromium alloy, was used to produce the crowns. This method used a focused high-energy laser beam to fuse a localized region of metal powder to build up the crowns gradually. Before cementing, preset cement film thicknesses of 15, 50, 80, or 110 μm were established. Glass ionomer, polycarboxylate, or resin cements were used for cementation. After 3 days storage in demineralized water, the retention of the crowns was measured in tension using a universal testing machine. The cement film thicknesses could be achieved with a high level of precision. Interactions between the factors cement and cement film thickness could be found (p ≤ 0.001). For all cements, crown retention decreased significantly between a cement film thickness of 15 and 50 μm (p ≤ 0.001). At 15 μm cement film thickness, the resin cement was the most retentive cement, followed by the polycarboxylate and then the glass ionomer cement (p ≤ 0.05). The results suggest that cement film thickness has an influence on the retentive strength of cemented implant-retained crowns. © 2013 by the American College of Prosthodontists.
The mechanical effect of the existing cement mantle on the in-cement femoral revision.
Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J
2012-08-01
Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smith, Geoffrey C S; McCann, Phillip S; Simpson, Danielle; Blewitt, Neil; Amirfeyz, Rouin
2015-02-01
To compare the cement mantle characteristics associated with use of a narrow nozzle cement gun versus the use of a 60-mL catheter tip syringe. Twelve cadaveric distal humeri were cemented with either a cement gun or a syringe without canal occlusion. The humeri were sectioned and photographed. The corticocancellous junction and the outer margin of the cement mantle were analyzed digitally. The corticocancellous junction defined the available area for cement penetration. The outline of the cement mantle defined the actual area of penetration. The ratio of penetration to the available area was recorded for each slice. The mean ratio for each humerus was multiplied by the number of slices in that sample containing cement to calculate a cement index. The cement penetration ratios observed in cross-sections at the same level and the cement index were significantly greater with the use of the cement gun than with the use of the syringe. There was no difference in the number of slices that contained cement. The use of a cement gun with a narrow nozzle improved cement mantle characteristics compared with the use of a syringe when measured in a cadaveric model in the absence of canal occlusion. Improving cement mantle characteristics may decrease the incidence of aseptic loosening after total elbow arythroplasty. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna
2017-10-01
During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.
Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging.
Karaokutan, Isil; Yilmaz Savas, Tuba; Aykent, Filiz; Ozdere, Eda
2016-08-01
To investigate the influence of accelerated artificial aging on the color stability of three different inlay restorations produced with a CAD/CAM system. Thirty non-carious human mandibular molar teeth were used. The teeth were embedded in autopolymerizing acrylic resin blocks. Standard Class I inlay cavities were prepared, and the teeth were randomly divided into three groups (n = 10) to fabricate inlay restorations: (1) a feldspathic-ceramic group, (2) a resin nano-ceramic group, and (3) a leucite glass-ceramic group. Optical impressions were made with CEREC software, and the restorations were designed and then milled. The inlays were adhesively cemented with a dual-polymerizing resin cement and left in distilled water at room temperature for 1 week. Color measurements were performed with a spectrophotometer before and after accelerated aging in a weathering machine with a total energy of 150 kJ/m(2) . Changes in color (∆E, ∆L, ∆a, ∆b, ∆C) were determined using the CIE L*a*b* system. The results were assessed using a one-way ANOVA and Tukey's HSD test (p = 0.05). The color changes of the materials ranged from 2.1 to 9.29. The highest color change was seen in the resin nano-ceramic material. This change was not clinically acceptable (∆E > 5.5). No significant differences were found in the ∆L and ∆a values of the test groups. Color changes were observed in each evaluated material after accelerated aging. All CAD/CAM inlays became darker in appearance, more saturated, a little reddish, and more yellow. © 2015 by the American College of Prosthodontists.
Stawarczyk, Bogna; Teuss, Simona; Eichberger, Marlis; Roos, Malgorzata; Keul, Christine
2015-01-01
Computer aided design/computer aided manufacturing (CAD/CAM) polymers for long-term dental restorations benefit from enhanced mechanical properties. However, the quantification of their bonding properties on teeth is lacking. Therefore, the aim of this study was to determine the retention strength (RS) of differently pretreated new developed polymethylmethacrylate/urethanedimethacrylate-based CAD/CAM polymer bonded on dentin. In summary, 120 human caries-free molars were prepared, and polymeric crowns were milled and pretreated (n = 20): visio.link (VL), Scotchbond Universal (SU), Monobond Plus/Heliobond (MH), Margin Bond (MB), Margin Bond mixed with acetone (1:1) (MBA) or not pretreated (CG). Half of the specimens were cemented using Variolink II and the other half with RelyX Ultimate. Specimens were stored for 24 h in distilled water and thermal cycled (5000 ×, 5 °C/55 °C). The retention load was measured and failure types were defined. RS was calculated and analyzed using both two- and one-way ANOVA with a post-hoc Scheffé-test, unpaired t-test, Kaplan–Meier with Breslow–Gehan test and chi-squared test (p < 0.05). Crowns bonded using RelyX Ultimate showed higher RS than those bonded using Variolink II. The pretreatment showed no impact on the RS. However, survival analysis within Variolink II found an impact of pretreatment. The median RS for MH was the lowest and statistically different from MB, MBA and CG. For Variolink II MH had the poorest survival as the estimated cumulative failure function of the debonded crown increased very quickly with increasing TBS. Within the RelyX Ultimate groups, no significant differences were determined. The newly developed CAD/CAM polymer showed the highest bonding properties after cementation using RelyX Ultimate. PMID:28793651
NASA Astrophysics Data System (ADS)
Yoon, H.; Mook, W. M.; Dewers, T. A.
2017-12-01
Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Effect of temporary cements on the shear bond strength of luting cements
FIORI-JÚNIOR, Marco; MATSUMOTO, Wilson; SILVA, Raquel Assed Bezerra; PORTO-NETO, Sizenando Toledo; SILVA, Jaciara Miranda Gomes
2010-01-01
Objective The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. Results Means were (MPa): I - 3.80 (±1.481); II - 5.24 (±2.297); III - 6.98 (±1.885); IV - 6.54 (±1.459); V - 5.22 (±2.465); VI - 4.48 (±1.705); VII - 6.29 (±2.280); VIII - 2.47 (±2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2 based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyXTM ARC and RelyXTM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). Conclusion When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation. PMID:20379679
NASA Astrophysics Data System (ADS)
Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.
2017-03-01
A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.
Traction test of temporary dental cements.
Román-Rodríguez, Juan-Luis; Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-04-01
Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words: Temporary dental cements, cements resistance.
High Early-Age Strength Concrete for Rapid Repair
NASA Astrophysics Data System (ADS)
Maler, Matthew O.
The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator dosage was increased to 2.8 % by cement weight. When Type III Portland cement and Rapid Set cement were used, the opening time reduced to as low as 4.5 hours and 1 hour, respectively. The results for Type V Portland cement concretes showed that as cement factor increased so did mechanical properties until the cement factor exceeded 504 kg/m3 (850 lb/yd3), at which point the peak heat of hydration exceeded 46.1 °C (115 °F) and the mechanical properties decreased. Other evaluations on the studied High Early-Age Strength Type V Portland cement concretes revealed increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, corrosion resistance, and resistance to wear with increases in cement content. The addition of air-entrainment had adverse effects on compressive strength, absorption, and rapid chloride migration; while showing lower values for rapid chloride penetration. Curing had positive effects on all hardened properties of the studied HES concretes containing Type V cement. When examining the studied Type III Portland cement concretes, it was seen that an increase in cement content led to decreases in mechanical properties. It is noted that the peak heat of hydration for these concrete exceeded the threshold of 46.1 °C (115 °F). In addition, increases in cement factor also resulted in decreases in rapid chloride migration, frost resistance and resistance to wear. Increases in cement content resulted in increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, and corrosion resistance. The use of air-entrainment imparted decreases in compressive strength and rapid chloride penetration, increases in absorption, and negligible effects on rapid chloride migration. Extending curing period resulted in beneficial effects on all properties of the studied Type III cement concretes. The studied CSA cement concretes had slightly decreasing strength trends as cement content was increased. Concretes containing CSA cement produced the lowest opening time (one hour) and the highest peak hydration heats of all concretes studied. While its corrosion and frost resistance reduced as cement content increased, the absorption and rapid chloride penetration increased with increasing cement content. For drying shrinkage, opening time curing showed more volume change with increasing cement content, whereas extending curing to 24 hours and 28 days resulted in reduction of drying shrinkage. Increasing cement factor had minimal effects on water permeability and abrasion resistance. Air-entrainments reduced compressive strength, but increased absorption and rapid chloride penetration. Rapid chloride migration was found to be incompatible with CSA cements concretes. All hardened properties of the studied CSA cement concretes improved once curing age was extended to 24 hours and 28 days. (Abstract shortened by ProQuest.).
26-year radiographic follow-up of workers in a diatomite mine and mill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, W.C.; Sargent, E.N.
1984-06-01
Chest roentgenograms of 473 employees of a California diatomite plant were reviewed as part of periodic reevaluation of the efficacy of the dust control program. The plant's processing of diatomite included flux-calcination, which provided opportunities for exposure to cristobalite. The films examined were those of workers with at least five years of service. Only 11 films were interpreted as showing changes consistent with pneumoconiosis, i.e., small opacities of profusion categorized as 1/1 or greater. Only six were classified as 1/2 or more. All who developed categories 1/1 or higher during their employment had more than 25 years of service. Nomore » large opacities were reported. The low prevalence of abnormalities and the absence of definite pneumoconiosis in employees with fewer than 25 years of service was in striking contrast with findings in 1953. At that time more than 25% of those with five or more years of employment had roentgenographic evidence of pneumoconiosis and over 10% had confluent changes producing large opacities.« less
Circuit board accident--organizational dimension hidden by prescribed safety.
de Almeida, Ildeberto Muniz; Buoso, Eduardo; do Amaral Dias, Maria Dionísia; Vilela, Rodolfo Andrade Gouveia
2012-01-01
This study analyzes an accident in which two maintenance workers suffered severe burns while replacing a circuit breaker panel in a steel mill, following model of analysis and prevention of accidents (MAPA) developed with the objective of enlarging the perimeter of interventions and contributing to deconstruction of blame attribution practices. The study was based on materials produced by a health service team in an in-depth analysis of the accident. The analysis shows that decisions related to system modernization were taken without considering their implications in maintenance scheduling and creating conflicts of priorities and of interests between production and safety; and also reveals that the lack of a systemic perspective in safety management was its principal failure. To explain the accident as merely non-fulfillment of idealized formal safety rules feeds practices of blame attribution supported by alibi norms and inhibits possible prevention. In contrast, accident analyses undertaken in worker health surveillance services show potential to reveal origins of these events incubated in the history of the system ignored in practices guided by the traditional paradigm.
NASA Astrophysics Data System (ADS)
Chen, Irvin Allen
Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.
NASA Astrophysics Data System (ADS)
Himabindu, Ch.; Geethasri, Ch.; Hari, N.
2018-05-01
Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.
Korsch, Michael; Marten, Silke-Mareike; Dötsch, Andreas; Jáuregui, Ruy; Pieper, Dietmar H; Obst, Ursula
2016-12-01
Cementing dental restorations on implants poses the risk of undetected excess cement. Such cement remnants may favor the development of inflammation in the peri-implant tissue. The effect of excess cement on the bacterial community is not yet known. The aim of this study was to analyze the effect of two different dental cements on the composition of the microbial peri-implant community. In a cohort of 38 patients, samples of the peri-implant tissue were taken with paper points from one implant per patient. In 15 patients, the suprastructure had been cemented with a zinc oxide-eugenol cement (Temp Bond, TB) and in 23 patients with a methacrylate cement (Premier Implant Cement, PIC). The excess cement found as well as suppuration was documented. Subgingival samples of all patients were analyzed for taxonomic composition by means of 16S amplicon sequencing. None of the TB-cemented implants had excess cement or suppuration. In 14 (61%) of the PIC, excess cement was found. Suppuration was detected in 33% of the PIC implants without excess cement and in 100% of the PIC implants with excess cement. The taxonomic analysis of the microbial samples revealed an accumulation of oral pathogens in the PIC patients independent of the presence of excess cement. Significantly fewer oral pathogens occurred in patients with TB compared to patients with PIC. Compared with TB, PIC favors the development of suppuration and the growth of periodontal pathogens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.
Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand
2013-11-01
The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the exposure levels of microbial components varied between workplaces although the dust levels were similar. We therefore recommend that exposure levels at different workplaces should be assessed separately and a task-based assessment should be done for detailed evaluation of efficient dust-reducing measures. The microbial content and knowledge of health effects of the microbial components should be considered in health risk evaluations of these workplaces.
Karkera, Reshma; Raj, A P Nirmal; Isaac, Lijo; Mustafa, Mohammed; Reddy, R Naveen; Thomas, Mathew
2016-12-01
This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substanceat all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO 4 , 50% for PMCR, 29% for PC, and 17% for RMGIC. The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion.
Development of high-performance blended cements
NASA Astrophysics Data System (ADS)
Wu, Zichao
2000-10-01
This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.
Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response
NASA Astrophysics Data System (ADS)
Roemhildt, Maria Lynn
A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.
Korsch, Michael; Walther, Winfried
2015-10-01
The cementation of fixed implant-supported dental restorations involves the risk of leaving excess cement in the mouth which can promote biofilm formation in the peri-implant sulcus. As a result, an inflammation may develop. The aim of the present study was to investigate the clinical effect of two different luting cements on the peri-implant tissue. Within the scope of a retrospective clinical follow-up study, the prosthetic structures of 22 patients with 45 implants were revised. In all cases, a methacrylate cement (Premier Implant Cement [PIC], Premier® Dental Products Company, Plymouth Meeting, PA, USA) had been used for cementation. In 16 additional patients with 28 implants, the suprastructures were retained with a zinc oxide-eugenol cement (Temp Bond [TB], Kerr Sybron Dental Specialities, Glendora, CA, USA). These patients were evaluated in the course of routine treatment. In both populations, the retention time of the suprastructures was similar (TB 3.77 years, PIC 4.07 years). In the PIC cases, 62% of all implants had excess cement. In the TB cases, excess cement was not detectable on any of the implants. Bleeding on probing was significantly more frequent on implants cemented with PIC (100% with and 94% without excess cement) than on implants cemented with TB (46%). Pocket suppuration was observed on 89% of the PIC-cemented implants with excess cement (PIC without excess cement 24%), whereas implants with TB were not affected by it at all. The peri-implant bone loss was significantly greater in the PIC patients (with excess cement 1.37 mm, without excess cement 0.41 mm) than it was in the TB patients (0.07 mm). The frequency of undetected excess cement depends essentially on the type of cement used. Cements that tend to leave more undetected excess have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss. © 2014 Wiley Periodicals, Inc.
Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi
2012-02-01
The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.
Safety concerns in composite manufacturing and machining
NASA Astrophysics Data System (ADS)
Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed
2018-03-01
Because of the superior properties, composites have been used in many industrial applications, including aerospace, wind turbines, ships, cars, fishing rods, storage tanks, swimming pool panels, and baseball bats. Each application may require different combinations of reinforcements and matrices, which make the manufacturing safety even more challenging while working on these substances. In this study, safety issues in composite manufacturing and machining were investigated in detail, and latest developments were provided for workers. The materials most frequently used in composite manufacturing, such as matrix (polyester, vinylester, phenolic, epoxies, methyl ethyl ketone peroxide, benzoil peroxide, hardeners, and solvents), and reinforcement materials (carbon, glass and Kevlar fibers, honeycomb and foams) can be highly toxic to human body. These materials can also be very toxic to the environment when dumped out uncontrollably, creating major future health and environmental concerns. Throughout the manufacturing process, workers inhale vapors of the liquid matrix, hardeners and solvents / thinners, as well as reinforcement materials (chopped fibers and particles) in airborne. Milling, cutting and machining of the composites can further increase the toxic inhalations of airborne composite particles, resulting in major rashes, irritation, skin disorders, coughing, severe eye and lung injury and other serious illnesses. The major portions of these hazardous materials can be controlled using appropriate personal protective equipment for the chemicals and materials used in composite manufacturing and machining. This study provides best possible safety practices utilized in composite manufacturing facilities for workers, engineers and other participants.
Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim
2016-01-01
The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (p<0.01). In the post hoc Tukey test, there were significant differences between groups except DMLS and TC. While Co-Cr posts fabricated by TC and DMLS systems performed similarly in terms of fracture resistance, posts fabricated by CCM techniques showed higher fracture resistance values. Co-Cr metal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie
2014-01-01
In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.
Traction test of temporary dental cements
Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-01-01
Background Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Material and Methods Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. Results TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. Conclusions The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words:Temporary dental cements, cements resistance. PMID:28469824
Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian
2013-06-01
The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.
Respiratory health in Turkish asbestos cement workers: the role of environmental exposure.
Akkurt, Ibrahim; Onal, Buhara; Demir, Ahmet Uğur; Tüzün, Dilek; Sabir, Handan; Ulusoy, Lütfi; Karadağ, Kaan O; Ersoy, Nihat; Cöplü, Lütfi
2006-08-01
Benign and malignant pleural and lung diseases due to environmental asbestos exposure constitute an important health problem in Turkey. The country has widespread natural deposits of asbestos in rural parts of central and eastern regions. Few data exists about the respiratory health effects of occupational asbestos exposure in Turkey. A cross-sectional study was conducted to investigate respiratory health effects of occupational asbestos exposure and the contribution of environmental asbestos exposure. Investigations included asbestos dust measurements in the workplace and application of an interviewer-administered questionnaire, a standard posteroanterior chest X-ray and spirometry. Information on birthplace of the workers was obtained in 406 workers and used to identify environmental exposure to asbestos, through a map of geographic locations with known asbestos exposure. Asbestos dust concentration in the ambient air of the work sites (fiber/ml) ranged between 0.2 and 0.76 (mean: 0.25, median: 0.22). Environmental exposure to asbestos was determined in 24.4% of the workers. After the adjustment for age, smoking, occupational asbestos exposure, and potential risk factors environmental asbestos exposure was associated with small irregular opacities grade > or = 1/0 (44.2% vs. 26.6%, P < 0.01), FVC% (97.8 vs. 104.5, P < 0.0001), and FEV1% (92.4 vs. 99.9, P < .0001). Occupational exposure to asbestos was associated with small irregular opacities grade > or = 1/0 (OR: 2.0, 95% CI: 1.3-3.1, per 1 unit increase in the natural logarithm of fiber/ml) and FEV1/FVC% (beta: 1.1, SEM: 0.54; P < 0.05, per 1 unit increase in the natural logarithm of fiber/ml). Environmental exposure to asbestos could increase the risk of asbestosis and lung function impairment in workers occupationally exposed to asbestos, independent from occupational exposure and smoking. Copyright 2006 Wiley-Liss, Inc.
In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells
NASA Astrophysics Data System (ADS)
Kupresan, D.; Radonjic, M.; Heathman, J.
2013-12-01
Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.
Westberg, Håkan; Elihn, Karine; Andersson, Eva; Persson, Bodil; Andersson, Lennart; Bryngelsson, Ing-Liss; Karlsson, Cathe; Sjögren, Bengt
2016-07-01
To study the relationship between exposure to airborne particles in a pulp and paper mill and markers of inflammation and coagulation in blood. Personal sampling of inhalable dust was performed for 72 subjects working in a Swedish pulp and paper mill. Stationary measurements were used to study concentrations of total dust, respirable dust, PM10 and PM2.5, the particle surface area and the particle number concentrations. Markers of inflammation, interleukins (IL-1b, IL-6, IL-8, and IL-10), C-reactive protein (CRP), serum amyloid A (SAA), and fibrinogen and markers of coagulation factor VIII, von Willebrand, plasminogen activator inhibitor, and D-dimer were measured in plasma or serum. Sampling was performed on the last day of the work free period of 5 days, before and after the shift the first day of work and after the shifts the second and third day. In a mixed model analysis, the relationship between particulate exposures and inflammatory markers was determined. Sex, age, smoking, and BMI were included as covariates. The average 8-h time-weighted average (TWA) air concentration levels of inhalable dust were 0.30 mg/m(3), range 0.005-3.3 mg/m(3). The proxies for average 8-h TWAs of respirable dust were 0.045 mg/m(3). Significant and consistent positive relations were found between several exposure metrics (PM 10, total and inhalable dust) and CRP, SAA and fibrinogen taken post-shift, suggesting a dose-effect relationship. This study supports a relationship between occupational particle exposure and established inflammatory markers, which may indicate an increased risk of cardiovascular disease.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...
Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose
Nakai, Takahisa; Enomoto, Koichi; Uchio, Yuji; Yoshino, Katsumi
2010-01-01
Background Major disadvantages of antibiotic bone cements include limited drug release and reduced strength resulting from the addition of high doses of antibiotics. Bacterial cellulose, a three-dimensional hydrophilic mesh, may retain antibiotics and release them gradually. We hypothesized that the addition of cellulose to antibiotic bone cement would improve mechanical strength and antibiotic release. Questions/purposes We therefore examined the mechanical strength and antibiotic release of cellulose antibiotic cement. Methods A high dose of antibiotics (5 g per 40 g cement powder) was incorporated into bacterial cellulose and then mixed with bone cement. We compared the compression strength, fracture toughness, fatigue life, and elution kinetics of this formulation with those of plain cement and a traditional antibiotic cement. Results The average values for compression strength, fracture toughness, and fatigue life of the cellulose antibiotic cement were 97%, 97%, and 78% of the values obtained for plain cement, respectively. The corresponding values for the traditional antibiotic cement were 79%, 82%, and 17%, respectively. The cumulative elution over 35 days was 129% greater from the cellulose antibiotic cement than from the traditional antibiotic cement. Conclusions With a high dose of antibiotics, incorporating cellulose into the bone cement prevented compression and fracture fragility, improved fatigue life, and increased antibiotic elution. Clinical Relevance Antibiotic cements containing cellulose may have applications in clinical situations that require high levels of antibiotic release and preservation of the mechanical properties of the cement. PMID:20945120
Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihoon; Moridis, George
2014-11-01
We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Jansik, Danielle; Um, Wooyong
2013-01-02
ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
Piemjai, Morakot; Miyasaka, Kumiko; Iwasaki, Yasuhiko; Nakabayashi, Nobuo
2002-12-01
Demineralized dentin beneath set cement may adversely affect microleakage under fixed restorations. Microleakage of direct composite inlays cemented with acid-base cements and a methyl methacrylate resin cement were evaluated to determine their effect on the integrity of the underlying hybridized dentin. Sixty Class V box preparations (3 mm x 3 mm x 1.5 mm) were precisely prepared in previously frozen bovine teeth with one margin in enamel and another margin in dentin. Direct composite inlays (EPIC-TMPT) for each preparation were divided into 4 groups of 15 specimens each and cemented with 3 acid-base cements (control group): Elite, Ketac-Cem, Hy-Bond Carbo-Cem, and 1 adhesive resin cement: C&B Metabond. All specimens were stored in distilled water for 24 hours at 37 degrees C before immersion in 0.5% basic fuchsin for 24 hours. The dye penetration was measured on the sectioned specimens at the tooth-cement interface of enamel and cementum margins and recorded with graded criteria under light microscopy (Olympus Vanox-T) at original magnification x 50, 100, and 200. A Kruskal-Wallis and the Mann-Whitney test at P<.05 were used to analyze leakage score. All cementum margins of the 3 acid-base cements tested demonstrated significantly higher leakage scores than cementum margins for inlays cemented with the resin cement tested(P<.01). No leakage along the tooth-cement interface was found for inlays retained with the adhesive resin cement. Within the limitations of this study, the 3 acid-base cements tested exhibited greater microleakage at the cementum margins than did the adhesive resin cement that was tested.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
Hewett, Paul; Morey, Sandy Z; Holen, Brian M; Logan, Perry W; Olsen, Geary W
2012-01-01
A study was conducted to construct a job exposure matrix for the roofing granule mine and mill workers at four U.S. plants. Each plant mined different minerals and had unique departments and jobs. The goal of the study was to generate accurate estimates of the mean exposure to respirable crystalline silica for each cell of the job exposure matrix, that is, every combination of plant, department, job, and year represented in the job histories of the study participants. The objectives of this study were to locate, identify, and collect information on all exposure measurements ever collected at each plant, statistically analyze the data to identify deficiencies in the database, identify and resolve questionable measurements, identify all important process and control changes for each plant-department-job combination, construct a time line for each plant-department combination indicating periods where the equipment and conditions were unchanged, and finally, construct a job exposure matrix. After evaluation, 1871 respirable crystalline silica measurements and estimates remained. The primary statistic of interest was the mean exposure for each job exposure matrix cell. The average exposure for each of the four plants was 0.042 mg/m(3) (Belle Mead, N.J.), 0.106 mg/m(3) (Corona, Calif.), 0.051 mg/m(3) (Little Rock, Ark.), and 0.152 mg/m(3) (Wausau, Wis.), suggesting that there may be substantial differences in the employee cumulative exposures. Using the database and the available plant information, the study team assigned an exposure category and mean exposure for every plant-department-job and time interval combination. Despite a fairly large database, the mean exposure for > 95% of the job exposure matrix cells, or specific plant-department-job-year combinations, were estimated by analogy to similar jobs in the plant for which sufficient data were available. This approach preserved plant specificity, hopefully improving the usefulness of the job exposure matrix.
Mohammadian, Farugh; Abbasinia, Marzieh; Rahmani, Abdolrasoul; Monazzam, Mohammad Reza; Asghari, Mehdi; Ahmadnezhad, Iman; Asadi, Ali
2013-01-01
Given the hazardous nature of the work in steel factories and that the staff has to deal with hazardous equipment and machines, improper sleep quality and drowsiness among the works tackles performance and boosts rate of job accidents. This study is aimed to survey the quality of sleep and sleepiness status and the pertinent factors among the workers in a rolling mill and a steel production company in Tehran, Iran. In a Cross-Sectional study 2011, 180 workers were selected randomly from a rolling mill and a steel production company in Tehran. A questionnaire was designed to collect demographic data and variables of work condition. Pitersborg's sleep quality questionnaire was used to survey quality and problems of Participants' sleep. Epworth Sleepiness questionnaire was used to deals with sleepiness during work, studying, watching TV, or during time spent in public. Average score of sleep quality for the fixed shift staff and changing shift staff were 7.5±2.82 and 8.49±2.95 respectively. Surveys of sleep quality for the two groups of the participants based on T-test showed a significant difference between the two groups so that the changing shift staff group suffered poorer sleep quality (p=0.03). Comparison of average drowsiness scores between the two groups of participants based on Mann-Whitney test showed no significant difference (p>0.005). Chi square test showed a significant difference between severity of drowsiness and type of working shift (p =0.028 and 0.009). Staff in revolving shifts suffers poor sleep quality comparing with staff with fixed working shift. Moreover, type of working shift greatly affects severity of drowsiness as staff at different work shift experienced different level of sleepiness. It is essential to survey sleep disorder of the staff in the industry and pay more emphasis on sleep disorder epidemic in other fields of industry.
Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klyusov, A.A.
1988-08-20
Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less
NASA Astrophysics Data System (ADS)
Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja
2017-10-01
The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.
Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C
2008-01-01
Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.
76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...
The extent of slits at the interfaces between luting cements and enamel, dentin and alloy.
Oilo, G
1978-01-01
Four different cements were used to assess the presence of slits at the cement/tooth or the cement/alloy interfaces using a tooth-crown model. The model consisted of ground sections of teeth and plane plates of silver/palladium alloy. The plates were fixed with bolts between two brass plates and with three different dimensions of the cement film between tooth and alloy, i.e. 50 micrometer, 100 micrometer and 200 micrometer. The tooth-alloy specimens were sectioned and the adaption of cements was studied with an indirect technique (replica) in a scanning electron microscope. The extent of slits was expressed as the length of all slits relative to the total length of the interface in each specimen. The results showed that the zinc phosphate cement and polycarboxylate cement exhibited a slight to moderate tendency to formation of slits at the interfaces. The EBA cement had a small extent of slits adjacent to thin cement films, but more slits were observed with increasing film thickness. The composite resin cement had a marked tendency to slit formation independent of the cement film thickness.
In vitro tensile strength of luting cements on metallic substrate.
Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo
2014-01-01
The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.
Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements
NASA Astrophysics Data System (ADS)
Oyibo, A. E.
2014-12-01
The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore Integrity, Casing Expansion, Well Gas Leaks, CSH, Pore Collapse, Cement Pore Water.
Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo
2010-10-01
The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
Asbestos removal in the construction industry. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, A.J.
The purpose of this report is to examine the impact of asbestos abatement on the construction industry. It is estimated that the cleanup effort may cost $100 billion over the next twenty five years. More than 733,000 structures, or twenty percent of U. S. commercial and public properties are believed to contain asbestos. Some of the material is in a friable state. This asbestos is crumbling into microscopic fibers that can float in through the air. The use of asbestos was restricted after high doses of its fibers were found to scar lungs, causing cancer and other diseases. Construction businessesmore » use 50 percent of the U. S. supply of asbestos in asbestos cement pipes, sheets, siding shingles, floor tiles, coatings, and sealants. Some 29,000 workers install asbestos insulation during building construction. Other estimates of exposed workers include 20,400 in demolition, 67,800 in abatement, 82,500 in general building renovation, 135,700 doing routine maintenance in buildings, and 183,200 in routine maintenance in general industry. The demand for asbestos removal services exceeds the ability of the industry to supply it safely. Asbestos management and removal are major issues for the construction industry world wide.« less
[In vitro percutaneous absorption of chromium powder and the effect of skin cleanser].
D'Agostin, F; Crosera, M; Adami, G; Malvestio, A; Rosani, R; Bovenzi, M; Maina, G; Filon, F Larese
2007-01-01
Occupational chromium dermatitis occurs frequently among cement and metal workers, workers dealing with leather tanning and employees in the ceramic industry. The present study, using an in-vitro system, evaluated percutaneous absorption of chromium powder and the effect of rapid skin decontamination with a common detergent. Experiments were performed using the Franz diffusion cell method with human skin. Physiological solution was used as receiving phase and a suspension of chromium powder in synthetic sweat was used as donor phase. The tests were performed without or with decontamination using the cleanser 30 minutes after the start of exposure. The amount of chromium permeated through the skin was analysed by Inductively Coupled Plasma Atomic Emission Spectroscopy and Electro Thermal Atomic Absorption Spectroscopy. Speciation analysis and measurements of chromium skin content were also performed. We calculated a permeation flux of 0.843 +/- 0.25 ng cm(-2) h(-1) and a lag time of 1.1 +/- 0.7 h. The cleaning procedure significantly increased chromium skin content, whereas skin passage was not increased. These results showed that chromium powder can pass through the skin and that skin decontamination did not decrease skin absorption. Therefore, it is necessary to prevent skin contamination when using toxic agents.
Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin
2017-04-10
Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.
Influence of the temperature on the cement disintegration in cement-retained implant restorations.
Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga
2012-01-01
The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (p<0.05), but there was no difference between zinc phosphate cement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.
Effects of Silicon Amendment on Soilborne and Fruit Diseases of Avocado
Dann, Elizabeth K.; Le, Duy P.
2017-01-01
The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch (MM) or Mineral Dust (MD), containing 5% available Si) were investigated in field and greenhouse trials with avocado. Orchard soil drench applications with potassium silicate improved yield and quality of fruit, but visual health of trees declining from Phytophthora root rot (PRR) was not affected. Orchard spray or trunk injection applications with potassium silicate were ineffective. Amendment of potting mix with MM and MD reduced root necrosis of avocado seedlings after inoculation with Calonectria ilicicola, an aggressive soilborne pathogen causing black root rot. Application of MM to mature orchard trees declining with PRR had a beneficial effect on visual tree health, and Si accumulation in leaves and fruit peel, after only 10 months. Products that deliver available Si consistently for uptake are likely to be most successful in perennial tree crops. PMID:29053639
Boron carbide nanostructures: A prospective material as an additive in concrete
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay
2018-05-01
In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.
Improved detector for the measurement of gamma radiation
NASA Astrophysics Data System (ADS)
Zelt, F. B.
1985-07-01
The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.
Mineral facilities of Africa and the Middle East
Eros, J.M.; Candelario-Quintana, Luissette
2006-01-01
This map displays over 1,500 mineral facilities in Africa and the Middle East. The mineral facilities include mines, plants, mills, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. The data used in this poster were compiled from multiple sources, including the 2004 USGS Minerals Yearbook (Africa and Middle East volume), Minerals Statistics and Information from the USGS Web site (http://minerals.usgs.gov/minerals/), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists. See Table 1 for general information about each mineral facility site including country, location and facility name, facility type, latitude, longitude, mineral commodity, mining method, main operating company, status, capacity, and units.
NASA Astrophysics Data System (ADS)
Sein, Htet; Ahmed, Waqar; Rego, Christopher; Jackson, Mark; Polini, Riccardo
2006-04-01
Depositions of hot filament chemical vapor-deposited diamond on cobalt-cemented tungsten carbide (WC-Co) rotary cutting dental burs are presented. Conventional dental tools made of sintered polycrystalline diamond have a number of problems associated with the heterogeneity of the crystallite, decreased cutting efficiency, and short life. A preferential (111) faceted diamond was obtained after 15 h of deposition at a growth rate of 1.1 µm/h. Diamond-coated WC-Co dental burs and conventional sintered burs are mainly used in turning, milling, and drilling operations for machining metal ceramic hard alloys such as CoCr, composite teeth, and aluminum alloy in the dental laboratory. The influence of structure, the mechanical characteristics of both diamond grains and hard alloys on the wear behavior, as well as the regimen of grinding on diamond wear are considered. Erosion wear properties are also investigated under air-sand erosion testing. After machining with excessive cutting performance, calculations can be made on flank and crater wear areas. Diamond-coated WC-Co dental burs offered significantly better erosion and wear resistance compared with uncoated WC-Co tools and sintered burs.
Retrieval of Cement Embolus from Inferior Vena Cava After Percutaneous Vertebroplasty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athreya, S., E-mail: sathreya@stjoes.c; Mathias, N.; Rogers, P.
Percutaneous vertebroplasty is an accepted treatment for painful vertebral compression fractures caused by osteoporosis and malignant disease. Venous leakage of cement and pulmonary cement embolism have been reported complications. We describe a paravertebral venous cement leak resulting in the deposition of a cement cast in the inferior vena cava and successful retrieval of the cement embolus.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... manufacturing cement, has no use other than grinding into finished cement. Microfine cement was specifically... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... portland cement and clinker from Japan. As a result of this third sunset review, the Department finds that...
Safari, Sina; Hosseini Ghavam, Fereshteh; Amini, Parviz; Yaghmaei, Kaveh
2018-02-01
The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly ( P =.006). The difference in retention between the cemented and recemented copings was not statistically significant ( P =.40). Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.
Development of an Improved Cement for Geothermal Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabits, George
2015-04-20
After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s andmore » early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.« less
Rojpaibool, Thitithorn; Leevailoj, Chalermpol
2017-02-01
To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p < 0.05). Representative specimens were evaluated by scanning electron microscopy to control the cement film thickness. The RelyX Ultimate group with a cement thickness of 100 μm cemented to enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p < 0.05), and thinner film cement demonstrated a higher MFL than thicker films (p < 0.05). Bonding to dentin resulted in lower MFL than with enamel (p < 0.001). Higher fracture loads were related to thinner cement film thickness and RelyX Ultimate resin cement. Bonding to dentin resulted in lower fracture loads than bonding to enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.
Safari, Sina; Amini, Parviz; Yaghmaei, Kaveh
2018-01-01
PURPOSE The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). RESULTS The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement. PMID:29503708
Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin
2006-04-01
To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.
Microleakage of adhesive and nonadhesive luting cements for stainless steel crowns.
Memarpour, Mahtab; Mesbahi, Maryam; Rezvani, Gita; Rahimi, Mehran
2011-01-01
This study's purpose was to compare the ability of 5 luting cements to reduce microleakage at stainless steel crown (SSC) margins on primary molar teeth. Standard preparations were performed on 100 extracted primary molar teeth for SSC restoration. After fitting SSCs, samples were randomly divided into 5 groups of 20 teeth each, which were cemented with nonadhesive cement consisting of polycarboxylate (PC) or zinc phosphate (ZP), or with adhesive cement consisting of glass ionomer (GIC), resin-modified glass ionomer cement (RMGIC), or RMGIC with a bonding agent (RMGIC+DBA). After aging and thermocycling, the specimens were placed in 1% methylene blue, sectioned, and evaluated under a digital microscope. The data were compared between groups with the t test, analysis of variance, and the least significant difference test. Microleakage with adhesive cements was significantly lower than with nonadhesive cements (P<.05). Differences between cements were statistically significant at P<.001. RMGIC+DBA showed the lowest microleakage, followed in increasing order by RMGIC, GIC, and ZP. The PC cement showed the greatest microleakage. Adhesive cements were more effective in reducing microleakage in stainless steel crowns than nonadhesive cements. Use of a bonding agent with a resin-modified glass ionomer cement yielded better results than using the latter alone.
Elasticity and expansion test performance of geopolymer as oil well cement
NASA Astrophysics Data System (ADS)
Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.
2018-04-01
History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.
Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J
2014-02-01
The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. © 2013 by the American College of Prosthodontists.
Esquivel-Upshaw, Josephine F.; Clark, Arthur E.; Shuster, Jonathan J.; Anusavice, Kenneth J.
2013-01-01
Purpose The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52–75 years) were recruited for the study to receive a 3-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. Material: ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Results Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher’s exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Conclusions Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. PMID:23758092
Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José
2014-11-01
The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.
Yassen, Ghaeth H; Huang, Ruijie; Al-Zain, Afnan; Yoshida, Takamitsu; Gregory, Richard L; Platt, Jeffrey A
2016-11-01
This study evaluated selected properties of a prototype root repair cement containing surface pre-reacted glass ionomer fillers (S-PRG) in comparison to mineral trioxide aggregate (MTA) and intermediate restorative material (IRM). The antibacterial effect of S-PRG, MTA, and IRM cements was tested against Porphyromonas gingivalis and Enterococcus faecalis after 1 and 3 days of aging of the cements. The set cements were immersed in distilled water for 4 h to 28 days, and ion-releasing ability was evaluated. Initial and final setting times of all cements were evaluated using Gilmore needles. The push-out bond strength between radicular dentin and all cements was tested at different levels of the roots. S-PRG and IRM cements, but not MTA cement, demonstrated significant antibacterial effect against P. gingivalis. All types of cements exhibited significant antibacterial effect against E. faecalis without being able to eliminate the bacterium. S-PRG cement provided continuous release of fluoride, strontium, boron, sodium, aluminum, and zinc throughout all tested time points. Both initial and final setting times were significantly shorter for S-PRG and IRM cements in comparison to MTA. The push-out bond strength was significantly lower for S-PRG cement in comparison to MTA and IRM at coronal and middle levels of the roots. S-PRG cement demonstrated significant antibacterial effects against endodontic pathogens, multiple ion-releasing ability, relatively short setting time, and low bonding strength. S-PRG cement can be used as a one-visit root repair material with promising antibacterial properties and ion-releasing capacity.
Effect of wet curing duration on durability parameters of hydraulic cement concretes.
DOT National Transportation Integrated Search
2010-01-01
Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...
[Experimental rationale for carcinogenic risk of asbestos cement industry and its products].
Pylev, D N; Smirnova, O V; Vasil'eva, L A; Khrustalev, S A; Vezentsev, A I; Gudkova, E A; Naumova, L N
2010-01-01
During intraperitoneal administration of dispersiveness-comparable chrysotile or asbestos cement fibers to rats (20 mg thrice), mesotheliomas were found in 45.1 and 7.7% of cases respectively. Asbestos cement dust induced tumors in 2.5% of cases, which is of biological importance. Cement or freeze asbestos destruction cement dust failed to cause tumors. The latter were not detected in a control group receiving physiological saline. Asbestos cement fibers and fascicles are covered by a cement matrix. Fiber amorphization gradually occurs. In lung tissue, there may be destruction of the cement coat of fascicles and release of native chrysotile fibers that are carcinogenic.
In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.
Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver
2016-04-08
BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect.
In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces
Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver
2016-01-01
Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704
Prabhakar, A R; Mahantesh, T; Ahuja, Vipin
2010-01-01
The purpose of this study was to evaluate the efficacy of banding cements in terms of retentive capability and demineralization inhibition potential. We included 48 non-carious primary mandibular second molar teeth. Preformed stainless steel bands were adapted onto the teeth. All teeth were randomly assigned to four groups: Group I (Adaptation of bands without cementation), Group II (Cementation of bands using conventional Glass Ionomer Cement), Group III (Cementation of bands using Resin-modified Glass Ionomer Cement), Group IV (Cementation of bands using Resin cement), and placed in artificial saliva. Each day, specimens were taken from artificial saliva and suspended in an artificial caries solution for 35 minutes, every 8 hours. At the end of 3 months, retention of bands was estimated using an Instron Universal Testing Machine. The mode of failure was recorded and specimens were sectioned and examined under polarized microscope for demineralized lesions. The mean retention value was highest with resin cement, followed by RMGIC, GIC, and Control group respectively. The RMGIC group showed more favorable modes of failures. All the experimental groups showed significant demineralization inhibition potential. RMGIC is the preferable banding cement and can be used effectively to cement bands in primary dentition.
Cement selection for implant-supported crowns fabricated with different luting space settings.
Gultekin, Pinar; Gultekin, B Alper; Aydin, Murat; Yalcin, Serdar
2013-02-01
To measure and compare the retentive strength of cements specifically formulated for luting restorations onto implant abutments and to investigate the effect of varying cement gap on retention strength of implant-supported crowns. Standard titanium abutments were scanned by means of a 3D digital laser scanner. One hundred and sixty standard metal copings were designed by a Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) system with two cement gap values (20 and 40 μm). The copings were cemented to the abutments using the following eight cements with one being the control, zinc oxide temporary cement, while the other seven were specifically formulated implant cements (n = 10): Premier Implant Cement, ImProv, Multilink Implant, EsTemp Implant, Cem-Implant, ImplaTemp, MIS Crown Set, and TempBond NE. The specimens were placed in 100% humidity for 24 hours, and subjected to a pull-out test using a universal testing machine at a 0.5 mm/min crosshead speed. The test results were analyzed with two-way ANOVA, one-way ANOVA, post hoc Tamhane' s T2, and student's t-tests at a significance level of 0.05. Statistical analysis revealed significant differences in retention strength across the cement groups (p < 0.01). Resin-based cements showed significantly higher decementation loads than a noneugenol zinc oxide provisional cement (TempBond NE) (p < 0.01), with the highest tensile resistance seen with Multilink Implant, followed by Cem-Implant, MIS Crown Set, ImProv, Premier Implant Cement, EsTemp Implant, and ImplaTemp. Increasing the cement gap from 20 to 40 μm improved retention significantly for the higher strength cements: Multilink Implant, Premier Implant Cement, ImProv, Cem-Implant, and MIS Crown Set (p < 0.01), while it had no significant effect on retention for the lower strength cements: EsTemp Implant, ImplaTemp, and TempBond NE (p > 0.05). Resin cements specifically formulated for implant-supported restorations demonstrated significant differences in retention strength. The ranking of cements presented in the study is meant to be an arbitrary guide for the clinician in deciding the appropriate cement selection for CAD/CAM-fabricated metal copings onto implant abutments with different luting space settings. © 2012 by the American College of Prosthodontists.
31. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...
31. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: View down at the mill from top of the mill's circular masonry enclosure. Mill animals circling above the mill, on top of the enclosure, dragged booms radiating from the drive shaft to power the mill. The drive-shaft is no longer in its upright positon but is lying next to the mill in the foreground. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Farah, Ra'fat I; Al-Harethi, Naji
2016-10-01
The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p < 0.05. All groups exhibited marginal microleakage; the Bis-GMA/TEGDMA resin-based provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass ionomer-based provisional cement proved to be inferior to resin-based provisional cement as far as marginal microleakage is concerned.
Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M
2010-12-01
Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography scans were applied to analyse the cement penetration into the cancellous bone. The mean temperature during the in-vivo arthroplasty of the glenoid was 29.4 °C (27.2-31 °C) before and 26.2 °C (25-27.5 °C) after jet-lavage. The overall peak BMD was 0.59 (range 0.33-0.99) g/cm (2). Mean cement penetration was 107.9 (range 67.6-142.3) mm (2) in the peg group and 128.3 (range 102.6-170.8) mm (2) in the keel group. The thickness of the cement layer varied from 0 to 2.1 mm in the pegged group and from 0 to 2.4 mm in the keeled group. A strong negative correlation between BMD and mean cement penetration was found for the peg group (r (2) = -0.834; p < 0.01) and for the keel group (r (2) = -0.727; p < 0.041). Micro-CT shows an inhomogenous dispersion of the cement into the cancellous bone. Data from the in-vivo temperature measurement indicate that the temperature at the glenohumeral surface under operation differs from the body core temperature and should be considered in further in-vitro studies with human specimens. Bone mineral density is negatively correlated to cement penetration in the glenoid. The application of a modern cementing technique in the glenoid provides sufficient cementing penetration although there is an inhomogenous dispersion of the cement. The findings of this study should be considered in further discussions about cementing technique and cement penetration into the cancellous bone of the glenoid. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, D.P.
The exfoliated-cell micronucleus assay is a relatively new cytogenetic technique which can provide a measure of the genetic effect of exposure to carcinogens and mutagens in target tissues where tumors arise among exposed populations. It is responsive to the effects of ionizing radiation and tobacco smoke in some in vivo human cell systems, but has not been extensively field tested as an indicator of lung cancer-related effects, despite the public health importance of exposure to occupational and environmental lung carcinogens. In this study the exfoliated-cell micronucleus assay was used to assess effects of exposure to radon progeny and cigarette smokemore » in a population of uranium industry workers (including employees in underground and open-pit mines, mills, laboratories, and administrative offices); underground uranium miners experience markedly elevated lung cancer risk because of exposure to ionizing radiation from radon progeny. Ninety-nine workers were selected at random from among workers in Colorado Plateau uranium-related facilities who participated in a workplace sputum cytology screening program from 1964-1988. The prevalence of cells with micronuclei was determined by a manual assay of one sputum specimen for each worker under a light microscope. Occupational and smoking data obtained by interview during screening were used to classify exposure and smoking status at the time the sputum specimen was taken and to obtain information on potential confounders and effect modifiers; underground miners were classified as exposed to radon progeny, and others were considered unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of micronucleated cells. Crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CI 0.6-1.3), respectively, for radon exposure and smoking.« less
Lu, Xiao-ting; Liang, Rui-feng; Jia, Zhi-jian; Wang, Hao; Song, Wen-fei; Li, Qiu-ying; Niu, Qiao
2013-02-01
To clarify the effect of aluminum exposure on the cognitive function in electrolytic workers and the prevalence of mild cognitive impairment (MCI) among them by prevalence survey, and to investigate its influential factors. Sixty-six retired workers from the electrolysis workshop of an electrolytic aluminum plant were selected as an aluminum exposure group, while 70 retired workers from a flour mill in the same region were selected as a control group. MCI patients were screened out by Mini-Mental State Examination (MMSE); the blood aluminum level was measured by inductively coupled plasma-mass spectrometry; multivariate statistical analysis was used to investigate the influential factors for MMSE scores and the correlation between blood aluminum level and MCI prevalence. The aluminum exposure group showed a significantly higher blood aluminum level than the control group (25.18 ± 2.65 µg/L vs 9.97 ± 2.83 µg/L, P < 0.01). The total MMSE score of the aluminum exposure group (26.13 ± 2.57) was significantly lower than that of the control group (27.89 ± 1.91) (P < 0.05), particularly the scores on time and place orientation, short-term memory, calculation ability, and language skill (P < 0.05). The detection rate of MCI was significantly higher in the aluminum exposure group (18.2%) than in the control group (5.7%) (P < 0.01). The main influential factors for MMSE scores were gender, age, education level, and blood aluminum level. The logistic regression analysis indicated that the MCI prevalence was significantly correlated with blood aluminum level in the study population (OR = 1.168, P < 0.01). Long-term exposure to aluminum can cause cognitive disorders in electrolytic workers and may be one of the risk factors for MCI. Advanced age, male, low education level, and high blood aluminum level may be high-risk factors for cognitive impairment.
Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M
1996-01-01
OBJECTIVES: Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. METHODS: The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. RESULTS: Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. CONCLUSION: In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation. PMID:8983468
Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M
1996-08-01
Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation.
Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.
Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M
2014-10-01
The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment and root region resulted in no statistically significant effect after artificial aging. RelyX Unicem cement had significantly higher push-out bond strength than did zinc phosphate and RelyX ARC cements. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Occupational characteristics of respiratory cancer patients exposed to asbestos in Lithuania
NASA Astrophysics Data System (ADS)
Everatt, R. Petrauskaitdot e.; Smolianskiedot n, G.; Tossavainen, A.; Cicdot enas, S.; Jankauskas, R.
2009-02-01
Objective: To assess characteristics of asbestos exposure in respiratory cancer patients in Lithuania. Methods. Information on occupational exposure to asbestos was collected by personal interviews and occupational characteristics were evaluated among 183 lung cancer and mesothelioma patients with cumulative asbestos exposure >=0.01 fibre years hospitalized at the Institute of Oncology, Vilnius. Additionally, some results of workplace air measurements were reviewed. Results. Cases with estimated cumulative exposure >=5 fibre years had worked mainly in the construction industry (49%), installation and maintenance (13%), foundry and metal products manufacturing (6%), heating trades and boilerhouses (6%) as fitters/maintenance technicians, construction workers, welders, electricians or foremen. Typical asbestos materials used by the patients were asbestos powder, asbestos cement sheets and pipes, asbestos cord, brake and clutch linings. Patients were exposed to asbestos when insulating boilers, furnaces, pipes in power stations, industrial facilities, ships, locomotives, buildings, while covering and repairing roofs, at the asbestos cement plant or unloading asbestos products. Most patients with estimated cumulative exposure of >=0.01-4.9 fibre years worked as lorry, bus or tractor drivers and motor vehicle mechanics. In 2002-2007 workplace air asbestos concentrations exceeded the limit value of 0.1 f/cm3 in 11 samples out of 208 measurements. Conclusion. The results of this study indicate that since the 1960s occupational exposure to chrysotile asbestos was extensive in Lithuania.
Development of monetite-nanosilica bone cement: a preliminary study.
Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2014-11-01
In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications. © 2014 Wiley Periodicals, Inc.
[Men of the sugarcane fields and their hospitals: the architecture of health under the Estado Novo].
Monteiro, Marcia Rocha
2011-12-01
The article explores the emergence of an architectural heritage in the realm of healthcare assistance for workers in the sugarcane agroindustry in Brazil following enactment of the law known as the Estatuto da Lavoura Canavieira (1941), under the auspices of the Instituto do Açúcar e do Álcool and as part of Estado Novo policies (1937-1945). The institute proposed solutions based on surveys conducted at sugarcane mills in cane-producing states and on the medical and hospital system adopted by the institute's enlightened bureaucracy in the 1940s, which took the U.S. system as its model. Special focus is given to the central hospitals in Pernambuco and especially in Alagoas, which opposed institute guidelines.
[Augmentation with PMMA cement].
Kühn, K-D; Höntzsch, D
2015-09-01
Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects.
Kim, Seok-Gyu; Son, Mee-Kyoung
2015-01-01
PURPOSE The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and noncemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening. PMID:26140172
2015-01-01
PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-07-01
Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-01-01
Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062
Tsukimura, Naoki; Yamada, Masahiro; Aita, Hideki; Hori, Norio; Yoshino, Fumihiko; Chang-Il Lee, Masaichi; Kimoto, Katsuhiko; Jewett, Anahid; Ogawa, Takahiro
2009-07-01
Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.
Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan
To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu < 100 N), as well as glass-ionomer cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
Effect of ball milling materials and methods on powder processing of Bi2223 superconductors
NASA Astrophysics Data System (ADS)
Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.
1998-10-01
Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.
Parameswari, B. Devi; Rajakumar, M.; Lambodaran, G.; Sundar, Shyam
2016-01-01
Introduction: Several commercially available luting agents are used to cement the dental restorations such as intra-coronal, extra-coronal, and fixed partial dentures. Tensile bond strength (TBS) and accurate marginal fit are the essential factors to determine the good clinical results in fixed prosthesis. The retentivity of the luting cements is assessed by their adhesive capacity over the tooth surface and metal surface. Generally, the adhesive ability has been evaluated with in vitro testing, with tensile bond tests. The failure of fixed prosthesis may be happened as a result of incomplete seating during cementation. Most research on cementation of crowns relates seating failure to the thickness of the cement film. Materials and Methods: The study is divided into four groups with 10 samples for each of the luting cement taken up for testing TBS and four groups with 5 samples for each luting agent chosen for assessing marginal fit. The results were tabulated and statistically analyzed. Results: In this in vitro study, the TBS of luting cements, and marginal fit in relation to luting cements were tested by using appropriate testing devices. The TBS of cement is measured using universal testing machine, and the results are tabulated. The marginal gap that exists between the margin of the cast metal crown, and the finish line is measured using travelling microscope before and after cementation. The difference between these two values gives the discrepancy that is due to the film thickness of cement used for luting the restoration. Summary and Conclusion: The TBS value of zinc phosphate cement and glass ionomer cement were found to be almost same. The chemical adhesiveness of the glass ionomer with calcium ions of enamel and dentin may be the attributed reason (ionic bonding). In this study, the polycarboxylate is the one that showed low TBS, and it may be attributed to the weakness of the cement due to reduced film thickness, though this cement has a chemical bonding nature. The observation of results of marginal fit in this study is the increased gap found in zinc phosphate cement followed by resin cement, zinc polycarboxylate, and glass ionomer cement. It is agreeable to estimate the marginal fit of the restoration, which could be affected by the film thickness of the luting cement along with other factors. PMID:27829765
Parameswari, B Devi; Rajakumar, M; Lambodaran, G; Sundar, Shyam
2016-10-01
Several commercially available luting agents are used to cement the dental restorations such as intra-coronal, extra-coronal, and fixed partial dentures. Tensile bond strength (TBS) and accurate marginal fit are the essential factors to determine the good clinical results in fixed prosthesis. The retentivity of the luting cements is assessed by their adhesive capacity over the tooth surface and metal surface. Generally, the adhesive ability has been evaluated with in vitro testing, with tensile bond tests. The failure of fixed prosthesis may be happened as a result of incomplete seating during cementation. Most research on cementation of crowns relates seating failure to the thickness of the cement film. The study is divided into four groups with 10 samples for each of the luting cement taken up for testing TBS and four groups with 5 samples for each luting agent chosen for assessing marginal fit. The results were tabulated and statistically analyzed. In this in vitro study, the TBS of luting cements, and marginal fit in relation to luting cements were tested by using appropriate testing devices. The TBS of cement is measured using universal testing machine, and the results are tabulated. The marginal gap that exists between the margin of the cast metal crown, and the finish line is measured using travelling microscope before and after cementation. The difference between these two values gives the discrepancy that is due to the film thickness of cement used for luting the restoration. The TBS value of zinc phosphate cement and glass ionomer cement were found to be almost same. The chemical adhesiveness of the glass ionomer with calcium ions of enamel and dentin may be the attributed reason (ionic bonding). In this study, the polycarboxylate is the one that showed low TBS, and it may be attributed to the weakness of the cement due to reduced film thickness, though this cement has a chemical bonding nature. The observation of results of marginal fit in this study is the increased gap found in zinc phosphate cement followed by resin cement, zinc polycarboxylate, and glass ionomer cement. It is agreeable to estimate the marginal fit of the restoration, which could be affected by the film thickness of the luting cement along with other factors.
Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production
NASA Astrophysics Data System (ADS)
Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.
2017-06-01
Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.
The dynamic volume changes of polymerising polymethyl methacrylate bone cement.
Muller, Scott D; Green, Sarah M; McCaskie, Andrew W
2002-12-01
The Swedish hip register found an increased risk of early revision of vacuum-mixed cemented total hip replacements. The influence of cement mixing technique on the dynamic volume change in polymerising PMMA is not well understood and may be relevant to this observation. Applying Archimedes' principle, we have investigated the dynamic volume changes in polymerising cement and determined the influence of mixing technique. All specimens showed an overall volume reduction: hand-mixed 3.4% and vacuum-mixed 6.0%. Regression analysis of sectional porosity and volume reduction showed a highly significant relationship. Hand-mixed porous cement showed a transient volume increase before solidification. However, vacuum-mixed cement showed a progressive volume reduction throughout polymerisation. Transient expansion of porous cement occurs at the critical time of micro-interlock formation, possibly improving fixation. Conversely, progressive volume reduction of vacuum-mixed cement throughout the formation of interlock may damage fixation. Stable fixation of vacuum-mixed cement may depend on additional techniques to offset the altered volumetric behaviour of vacuum-mixed cement.
Study on Cr(VI) Leaching from Cement and Cement Composites
Palascakova, Lenka; Kanuchova, Maria
2018-01-01
This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550
Study on Cr(VI) Leaching from Cement and Cement Composites.
Estokova, Adriana; Palascakova, Lenka; Kanuchova, Maria
2018-04-22
This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55⁻80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time.
Effects of Coal Gangue on Cement Grouting Material Properties
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, H. X.
2018-05-01
The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.
Huang, Chengcheng; Zhang, Meng; Ruan, Changshun; Peng, Songlin; Li, Li; Liu, Wenlong; Wang, Ting; Li, Bing; Huang, Wenhai; Rahaman, Mohamed N.; Lu, William W.; Pan, Haobo
2017-01-01
Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro, evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery. PMID:28615491